US7001679B2 - Protective overlayer for ceramics - Google Patents
Protective overlayer for ceramics Download PDFInfo
- Publication number
- US7001679B2 US7001679B2 US10/214,785 US21478502A US7001679B2 US 7001679 B2 US7001679 B2 US 7001679B2 US 21478502 A US21478502 A US 21478502A US 7001679 B2 US7001679 B2 US 7001679B2
- Authority
- US
- United States
- Prior art keywords
- article
- xenotime
- phosphate
- ceramic
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 33
- 230000001681 protective effect Effects 0.000 title abstract description 16
- 229910000164 yttrium(III) phosphate Inorganic materials 0.000 claims abstract description 58
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 31
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052863 mullite Inorganic materials 0.000 claims abstract description 30
- UXBZSSBXGPYSIL-UHFFFAOYSA-K yttrium(iii) phosphate Chemical compound [Y+3].[O-]P([O-])([O-])=O UXBZSSBXGPYSIL-UHFFFAOYSA-K 0.000 claims abstract description 29
- 239000010452 phosphate Substances 0.000 claims abstract description 28
- 230000004888 barrier function Effects 0.000 claims abstract description 19
- 239000011153 ceramic matrix composite Substances 0.000 claims abstract description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000001301 oxygen Substances 0.000 claims abstract description 13
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 13
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 7
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 6
- -1 xenotime phosphate compound Chemical class 0.000 claims description 25
- 229910052575 non-oxide ceramic Inorganic materials 0.000 claims description 13
- 239000011225 non-oxide ceramic Substances 0.000 claims description 13
- 238000002485 combustion reaction Methods 0.000 claims description 10
- 239000011810 insulating material Substances 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 229910052845 zircon Inorganic materials 0.000 claims description 5
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims description 4
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 3
- 229910000166 zirconium phosphate Inorganic materials 0.000 claims description 3
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical compound [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 claims description 3
- 238000000576 coating method Methods 0.000 abstract description 27
- 239000011248 coating agent Substances 0.000 abstract description 25
- 239000000463 material Substances 0.000 abstract description 18
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 abstract description 7
- UXBZSSBXGPYSIL-UHFFFAOYSA-N phosphoric acid;yttrium(3+) Chemical compound [Y+3].OP(O)(O)=O UXBZSSBXGPYSIL-UHFFFAOYSA-N 0.000 abstract description 7
- 230000035939 shock Effects 0.000 abstract description 2
- 229910010293 ceramic material Inorganic materials 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 20
- 235000021317 phosphate Nutrition 0.000 description 18
- 239000007789 gas Substances 0.000 description 13
- 239000000377 silicon dioxide Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 229910052574 oxide ceramic Inorganic materials 0.000 description 4
- WWTBZEKOSBFBEM-SPWPXUSOSA-N (2s)-2-[[2-benzyl-3-[hydroxy-[(1r)-2-phenyl-1-(phenylmethoxycarbonylamino)ethyl]phosphoryl]propanoyl]amino]-3-(1h-indol-3-yl)propanoic acid Chemical compound N([C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)O)C(=O)C(CP(O)(=O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1C=CC=CC=1)CC1=CC=CC=C1 WWTBZEKOSBFBEM-SPWPXUSOSA-N 0.000 description 3
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229940126208 compound 22 Drugs 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000011224 oxide ceramic Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000007581 slurry coating method Methods 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910000601 superalloy Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- XFULIUKARWFBDF-UHFFFAOYSA-K erbium(3+);phosphate Chemical compound [Er+3].[O-]P([O-])([O-])=O XFULIUKARWFBDF-UHFFFAOYSA-K 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- OWNMACFMOIQGAC-UHFFFAOYSA-K lutetium(3+);phosphate Chemical compound [Lu+3].[O-]P([O-])([O-])=O OWNMACFMOIQGAC-UHFFFAOYSA-K 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- YHKRPJOUGGFYNB-UHFFFAOYSA-K sodium;zirconium(4+);phosphate Chemical compound [Na+].[Zr+4].[O-]P([O-])([O-])=O YHKRPJOUGGFYNB-UHFFFAOYSA-K 0.000 description 2
- 238000004901 spalling Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910007217 Si(OH)x Inorganic materials 0.000 description 1
- WOIHABYNKOEWFG-UHFFFAOYSA-N [Sr].[Ba] Chemical compound [Sr].[Ba] WOIHABYNKOEWFG-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 229920006184 cellulose methylcellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012710 chemistry, manufacturing and control Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000002694 phosphate binding agent Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000012720 thermal barrier coating Substances 0.000 description 1
- YXNVQKRHARCEKL-UHFFFAOYSA-K ytterbium(3+);phosphate Chemical compound [Yb+3].[O-]P([O-])([O-])=O YXNVQKRHARCEKL-UHFFFAOYSA-K 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5025—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
- C04B41/5048—Phosphates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/52—Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/87—Ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/89—Coating or impregnation for obtaining at least two superposed coatings having different compositions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249967—Inorganic matrix in void-containing component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249967—Inorganic matrix in void-containing component
- Y10T428/24997—Of metal-containing material
Definitions
- This invention relates generally to the field of materials, and more specifically to the field of ceramics, and in particular, to a protective overlayer coating for a ceramic matrix composite component of a gas turbine engine.
- Components of gas turbine engines are exposed to very high temperature, high pressure combustion gasses containing moisture, oxygen and other corrosive compounds.
- Modern gas turbine engines may have firing temperatures that exceed 1,400° C., and temperatures of 1,500–1,600° C. are expected as the demand for even more efficient engines continues.
- Cobalt and nickel base superalloys are used to form many gas turbine components, but even these superalloy materials must be aggressively cooled and/or insulated from the hot gas flow in order to survive long term operation in the combustion environment.
- Ceramic matrix composite (CMC) materials have many potential applications in high temperature environments due to their ability to withstand and operate at temperatures in excess of those allowed for a non-insulated superalloy part.
- CMC's can survive temperatures in excess of 1,200° C. for only limited time periods in a combustion environment.
- oxide-based CMC's can not be cooled effectively with active cooling systems due to their low thermal conductivity and their limitations in cooling fluid path design due to manufacturing constraints.
- Non-oxide based CMCs can be aggressively cooled to withstand temperatures above 1200° C., but they are subject to environmental degradation that limits their useful life.
- a high temperature insulation for a ceramic matrix composite material is described in U.S. Pat. No. 6,013,592.
- silica-based materials such as silicon carbide (SiC) and silicon nitride (Si 3 N 4 ) are subject to both oxidation and attack by high temperature, high pressure water vapor.
- SiC silicon carbide
- Si 3 N 4 silicon nitride
- SiO 2 thermally grown oxide
- This oxide layer then reacts with the high temperature, high pressure water vapor to form a volatile hydroxide species [Si(OH) x ] which is then lost to the environment.
- surface recession occurs in a continual process as the protective SiO 2 layer volatizes and the base ceramic oxidizes to replenish the lost SiO 2 .
- EBC environmental barrier coatings
- U.S. Pat. No. 5,391,404 describes a process for coating a silica-based ceramic with mullite
- U.S. Pat. No. 5,985,470 describes a barium strontium aluminosilicate (BSAS) bond coat underlying a thermally insulating top coat over a silicon carbide containing substrate.
- BSAS barium strontium aluminosilicate
- the composite structure described in U.S. Pat. No. 6,013,592 utilizes a thick mullite-based thermal barrier coating over a ceramic matrix composite substrate material.
- Oxide ceramics such as mullite (3Al 2 O 3 –2SiO 2 ) are not subject to oxidation, but they are degraded by the effects of high temperature water vapor, albeit at a slower rate than non-oxide ceramics.
- the rate of silica loss and subsequent recession of an oxide ceramic material will increase with an increasing temperature and flow velocity, and mullite may not perform adequately in certain gas turbine applications where flow rates are high and temperatures may be in the range of 1,500–1,600° C.
- firing temperatures may be in the range of 1,500–1,600° C.
- An article is described herein as including: a non-oxide ceramic substrate; an oxygen barrier layer disposed on the non-oxide ceramic substrate; and a xenotime phosphate compound disposed on the oxygen barrier layer.
- the xenotime phosphate compound may be yttrium phosphate.
- the non-oxide ceramic substrate may be one of the group of silicon carbide and silicon nitride; and the oxygen barrier layer may be one of the group of mullite, zircon, zirconium phosphate, and yttrium silicate.
- the xenotime phosphate compound may have a porosity of at least 10% or at least 15%, and a thickness of greater than 0.1 mm.
- the non-oxide ceramic substrate may include silicon.
- an article in another embodiment, is described as including an ceramic oxide substrate; and a xenotime phosphate compound disposed on the ceramic oxide substrate.
- the xenotime phosphate compound may be yttrium phosphate, and the ceramic oxide may be mullite.
- the ceramic oxide substrate may be one of the group of alumina, mullite, yttrium aluminum garnet and zirconia.
- the xenotime phosphate compound may have a porosity of at least 10%. or at least 15%, and a thickness of greater than 0.1 mm.
- the ceramic oxide substrate may include silicon.
- An article is also described as having a ceramic matrix composite substrate; a layer of ceramic oxide insulating material disposed on the substrate; and a layer of a xenotime phosphate compound disposed on the layer of insulating material.
- the xenotime phosphate compound may be yttrium phosphate, and the layer of ceramic oxide insulating material may be mullite.
- the xenotime phosphate compound may have a porosity of at least 10%. or at least 15%, and a thickness of greater than 0.1 mm.
- the ceramic oxide insulating material may include silicon.
- FIG. 1 is a partial cross-sectional view of a component formed of a ceramic matrix composite substrate material covered with a ceramic oxide insulating material, which in turn is protected by a xenotime phosphate coating.
- FIG. 2 is a partial cross-sectional view of a refractory oxide ceramic combustor tile formed of a ceramic oxide protected by a layer of yttrium phosphate.
- FIG. 3 is a partial cross-sectional view of a non-oxide ceramic substrate material protected by a xenotime phosphate coating, wherein an oxygen barrier layer is disposed between the non-oxide substrate and the protective coating.
- a xenotime phosphate compound may be used as a protective overlayer coating material for ceramics and ceramic matrix composite materials.
- Xenotime phosphates include yttrium phosphate (YPO 4 ), erbium phosphate (ErPO 4 ), ytterbium phosphate (Yb PO 4 ), and lutetium phosphate (LuPO 4 ).
- the compound yttrium phosphate (YPO 4 ) may be used as a protective overlayer for mullite and mullite containing ceramics.
- Yttrium phosphate is a stable compound up to its melting point, and it is chemically compatible with many different oxides up to 1,600° C., including mullite, alumina, yttrium aluminum garnet (YAG) and zirconia (ZrO 2 ). It is known that yttrium phosphate exhibits certain physical properties that are quite similar to mullite. Yttrium phosphate has been considered as an alternative for mullite in certain applications. These physical similarities make yttrium phosphate compatible as a coating for mullite, as shown in the following table:
- GPa Mullite Yttrium Phosphate Elastic Modulus
- GPa Coefficient of Thermal Expansion 5.3–5.7 6.2 (RT to 1,000° C.) Melting Temperature (° C.) 1,934 1,995
- FIG. 1 is a partial cross-sectional view of a component 10 of a gas turbine engine.
- the component 10 is formed of a substrate 12 of a ceramic matrix composite material that is thermally protected by a ceramic insulating coating 14 .
- the ceramic matrix composite substrate 12 and ceramic insulating coating 14 may be of the type described in U.S. Pat. No. 6,013,592, incorporated by reference herein.
- Ceramic insulating coating 14 is an oxide based ceramic including a matrix material 16 surrounding a plurality of mullite spheres 18 .
- the matrix material 16 may include a mullite filler powder and a phosphate binder or an alumina filler powder and an alumina binder.
- the mullite-based ceramic insulating coating 14 would be susceptible to silica loss and/or recession if it were exposed to very high temperature and atmospheric or high pressure water vapor, such as in the range of 1,500–1,600° C. Accordingly, an protective overlayer 20 is disposed over the ceramic insulating coating 14 to isolate the ceramic insulating coating 14 from water vapor contained in the hot gas environment in which component 10 is designed to operate.
- the protective overlayer 20 is a xenotime phosphate compound such as yttrium phosphate applied by any known deposition process, such as slurry coating, sol-gel, chemical vapor deposition, physical vapor deposition or plasma spray.
- a layer 20 of yttrium phosphate was applied as a slurry coat and was fired at 1,400° C.
- the thickness of the coating was relatively uniform at approximately 250 microns.
- the slurry coating showed no evidence of surface cracking, which can be attributed to a good match between the coefficients of thermal expansion of the yttrium phosphate coating 20 and the underlying mullite-based insulation layer 14 .
- Micro-cracking was present within the coating 20 , which may give the coating 20 added strain tolerance. There was no evidence of reaction between the mullite and the yttrium phosphate.
- the test specimens were pellets having a diameter of about 20 mm having a yttrium phosphate coating of about 1–2 mm.
- the test environment was limited to atmospheric pressure and a flow rate of 1.5 liter/minute, and was maintained at 100% water vapor in order to maximize the partial pressure of H 2 O.
- the test was conducted for 1,000 hours at 1,400° C.
- Three proprietary sodium zirconium phosphate (NZP) compositions were also tested in this same environment. Each of the NZP specimens showed catastrophic weight loss (>30%), which demonstrates the aggressiveness of the exposure conditions.
- the yttrium phosphate coated mullite specimens showed good resistance to the environment, exhibiting only 1–2% weight loss after 1,000 hours. Additional testing at high flow rates has not been completed.
- FIG. 2 illustrates a layer of a xenotime phosphate compound 22 such as yttrium phosphate disposed over a ceramic oxide substrate 22 to form a refractory oxide ceramic combustor tile 26 .
- the ceramic oxide substrate 22 may be mullite, zircon, an aluminosilicate or a sodium zirconium phosphate, for example.
- Layer 22 may be deposited by slurry coating, sol-gel, chemical vapor deposition, physical vapor deposition or plasma spray.
- Protective overlayer 22 may advantageously be applied to a thickness of greater than 0.1 mm (100 microns), for example, to a thickness of 0.1–0.5 mm, or greater than 0.1 mm up to 0.5 mm, or between 0.15–0.5 mm, or between 0.25–0.5 mm. Such thicknesses are possible because of the close match between the coefficients of thermal expansion between the protective overlayer 22 and the underlying layer 24 . Typical prior art environmental barrier coatings may be limited to a thickness of about 0.1 mm due to differential thermal expansion concerns.
- the protective overlayer 22 may be formed to have a porosity of greater than 10%, or preferably greater than 15%, in order to provide the material with an improved resistance to thermal shock loadings.
- the layer of xenotime phosphate compound 22 acts as a barrier for the underlying ceramic oxide substrate 22 against a high temperature, high flow rate, moisture-bearing operating environment having a temperature exceeding 1,500° C.
- the layer of xenotime phosphate compound 22 also acts as a barrier for the underlying ceramic oxide substrate 24 in combustion type applications, such as gas turbines, where degradation of the underlying ceramic oxide substrate 24 would be further enhanced by high gas pressures.
- FIG. 3 illustrates the use of a layer of yttrium phosphate 28 as a protective overlayer coating for a non-oxide ceramic substrate 30 , such as silicon carbide or silicon nitride, to form an article 32 .
- the substrate 30 may be vulnerable to oxidation attack which could result in spalling of any overlying coating.
- an oxygen barrier layer 34 is disposed between the non-oxide ceramic substrate 30 and the moisture barrier yttrium phosphate layer 28 . The barrier layer 34 prevents the migration of oxygen from the environment to the underlying oxide layer 30 .
- the barrier layer 34 should be selected to be chemically and physically compatible with layers 28 , 30 and may be mullite, zircon (ZrSiO 4 ), zirconium phosphate, or yttrium silicate (Y 2 Si 2 O 7 ), for example.
- the barrier layer 34 may be deposited by any of the above-described deposition methods and may have a thickness of 10–100 microns.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Mullite | Yttrium Phosphate | ||
Elastic Modulus (GPa) | 150 | 152 |
Coefficient of Thermal Expansion | 5.3–5.7 | 6.2 |
(RT to 1,000° C.) | ||
Melting Temperature (° C.) | 1,934 | 1,995 |
Each of the xenotime phosphates is a candidate as a protective overlayer for mullite since each has a coefficient of thermal expansion that closely matches that of mullite.
Claims (14)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/214,785 US7001679B2 (en) | 2001-08-09 | 2002-08-08 | Protective overlayer for ceramics |
EP20030076670 EP1394139A3 (en) | 2002-08-08 | 2003-05-30 | Protective overlayer for ceramics |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US31118501P | 2001-08-09 | 2001-08-09 | |
US10/214,785 US7001679B2 (en) | 2001-08-09 | 2002-08-08 | Protective overlayer for ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030035907A1 US20030035907A1 (en) | 2003-02-20 |
US7001679B2 true US7001679B2 (en) | 2006-02-21 |
Family
ID=31494712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/214,785 Expired - Lifetime US7001679B2 (en) | 2001-08-09 | 2002-08-08 | Protective overlayer for ceramics |
Country Status (2)
Country | Link |
---|---|
US (1) | US7001679B2 (en) |
EP (1) | EP1394139A3 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006073841A1 (en) * | 2004-12-30 | 2006-07-13 | Corning Incorporated | Refractory materials |
US20070207330A1 (en) * | 2006-03-01 | 2007-09-06 | Sonia Tulyani | Adhesive protective coatings, non-line of sight methods for their preparation, and coated articles |
US20070298277A1 (en) * | 2006-06-21 | 2007-12-27 | General Electric Company | Metal phosphate coating for oxidation resistance |
US20090211299A1 (en) * | 2008-02-27 | 2009-08-27 | Cameron Wayne Tanner | Modified synthetic xenotime material, article comprising same and method for making the articles |
US20090298672A1 (en) * | 2006-06-05 | 2009-12-03 | Sandra Lee Gray | Single phase yttrium phosphate having the xenotime crystal structure and method for its synthesis |
US20100021713A1 (en) * | 2008-07-22 | 2010-01-28 | Siemens Power Generation, Inc. | Structure and method for protecting a hybrid ceramic structure from moisture attack in a high temperature environment |
US20100069226A1 (en) * | 2008-09-17 | 2010-03-18 | General Electric Company | Rare earth phosphate bonded ceramics |
US20100119718A1 (en) * | 2006-03-01 | 2010-05-13 | Sonia Tulyani | Dense protective coatings, methods for their preparation and coated articles |
US20100158680A1 (en) * | 2008-12-19 | 2010-06-24 | Glen Harold Kirby | Cmas mitigation compositions, environmental barrier coatings comprising the same, and ceramic components comprising the same |
US20100159150A1 (en) * | 2008-12-19 | 2010-06-24 | Glen Harold Kirby | Methods for making environmental barrier coatings and ceramic components having cmas mitigation capability |
US20100154422A1 (en) * | 2008-12-19 | 2010-06-24 | Glen Harold Kirby | Cmas mitigation compositions, environmental barrier coatings comprising the same, and ceramic components comprising the same |
US20100159261A1 (en) * | 2008-12-19 | 2010-06-24 | Glen Harold Kirby | Environmental barrier coatings providing cmas mitigation capability for ceramic substrate components |
US20100159253A1 (en) * | 2008-12-19 | 2010-06-24 | Glen Harold Kirby | Environmental barrier coatings providing cmas mitigation capability for ceramic substrate components |
US20100159151A1 (en) * | 2008-12-19 | 2010-06-24 | Glen Harold Kirby | Methods for making environmental barrier coatings and ceramic components having cmas mitigation capability |
US20100159252A1 (en) * | 2008-12-19 | 2010-06-24 | Glen Harold Kirby | Environmental barrier coatings providing cmas mitigation capability for ceramic substrate components |
US20100172760A1 (en) * | 2009-01-06 | 2010-07-08 | General Electric Company | Non-Integral Turbine Blade Platforms and Systems |
US20100202873A1 (en) * | 2009-02-06 | 2010-08-12 | General Electric Company | Ceramic Matrix Composite Turbine Engine |
US20110151239A1 (en) * | 2003-09-22 | 2011-06-23 | Siemens Power Generation, Inc. | High temperature insulation and insulated article |
US8347636B2 (en) | 2010-09-24 | 2013-01-08 | General Electric Company | Turbomachine including a ceramic matrix composite (CMC) bridge |
US9068275B2 (en) | 2013-05-08 | 2015-06-30 | General Electric Company | Composite geometrical design for a grain starter in a bridgman investment casting process |
US9527109B2 (en) | 2013-06-05 | 2016-12-27 | General Electric Company | Coating process and coated article |
US10408079B2 (en) | 2015-02-18 | 2019-09-10 | Siemens Aktiengesellschaft | Forming cooling passages in thermal barrier coated, combustion turbine superalloy components |
US11827986B2 (en) | 2018-03-16 | 2023-11-28 | Rolls-Royce Corporation | Coating system including nucleating agent |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7001679B2 (en) * | 2001-08-09 | 2006-02-21 | Siemens Westinghouse Power Corporation | Protective overlayer for ceramics |
GB0226997D0 (en) * | 2002-11-19 | 2002-12-24 | Welding Inst | Heat resistant product |
US6682820B1 (en) * | 2002-10-31 | 2004-01-27 | Saint-Gobain Ceramics & Plastics, Inc. | Recession resistant coated ceramic part |
US7108925B2 (en) * | 2003-09-22 | 2006-09-19 | Siemens Power Generation, Inc. | High temperature insulation utilizing zirconia-hafnia |
US20050129973A1 (en) * | 2003-12-16 | 2005-06-16 | Eaton Harry E. | Velocity barrier layer for environmental barrier coatings |
US20060115661A1 (en) * | 2004-12-01 | 2006-06-01 | General Electric Company | Protection of thermal barrier coating by a sacrificial coating |
US7258530B2 (en) * | 2005-01-21 | 2007-08-21 | Siemens Power Generation, Inc. | CMC component and method of fabrication |
US20060211241A1 (en) * | 2005-03-21 | 2006-09-21 | Christine Govern | Protective layer for barrier coating for silicon-containing substrate and process for preparing same |
US20060210800A1 (en) * | 2005-03-21 | 2006-09-21 | Irene Spitsberg | Environmental barrier layer for silcon-containing substrate and process for preparing same |
US20060280955A1 (en) * | 2005-06-13 | 2006-12-14 | Irene Spitsberg | Corrosion resistant sealant for EBC of silicon-containing substrate and processes for preparing same |
US7442444B2 (en) * | 2005-06-13 | 2008-10-28 | General Electric Company | Bond coat for silicon-containing substrate for EBC and processes for preparing same |
US20060280954A1 (en) * | 2005-06-13 | 2006-12-14 | Irene Spitsberg | Corrosion resistant sealant for outer EBL of silicon-containing substrate and processes for preparing same |
US7354651B2 (en) * | 2005-06-13 | 2008-04-08 | General Electric Company | Bond coat for corrosion resistant EBC for silicon-containing substrate and processes for preparing same |
US7604867B2 (en) * | 2005-12-20 | 2009-10-20 | General Electric Company | Particulate corrosion resistant coating composition, coated turbine component and method for coating same |
US7928029B2 (en) * | 2007-02-20 | 2011-04-19 | Corning Incorporated | Refractory ceramic composite and method of making |
CN115215668B (en) * | 2022-08-29 | 2023-05-12 | 广东省科学院新材料研究所 | A sandwich structure anti-high temperature water oxygen corrosion fiber composite coating and its preparation method and application |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5038693A (en) * | 1989-09-21 | 1991-08-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Composite flexible blanket insulation |
US5380580A (en) * | 1993-01-07 | 1995-01-10 | Minnesota Mining And Manufacturing Company | Flexible nonwoven mat |
US5391404A (en) | 1993-03-15 | 1995-02-21 | The United States Of America As Represented By The National Aeronautics And Space Administration | Plasma sprayed mullite coatings on silicon-base ceramics |
US5514474A (en) | 1994-04-15 | 1996-05-07 | Rockwell International Corporation | Ceramic composites having a weak bond material selected from monazites and xenotimes |
US5665463A (en) | 1994-04-15 | 1997-09-09 | Rockwell International Corporation | Fibrous composites including monazites and xenotimes |
US5759632A (en) | 1997-04-14 | 1998-06-02 | The United States Of America As Represented By The Secretary Of The Air Force | Ceramic composite |
US5858465A (en) | 1993-03-24 | 1999-01-12 | Georgia Tech Research Corporation | Combustion chemical vapor deposition of phosphate films and coatings |
US5948516A (en) | 1997-02-06 | 1999-09-07 | The Board Of Trustees Of The University Of Illinois | High-strength, flaw-tolerant, oxide ceramic composite |
US5985470A (en) | 1998-03-16 | 1999-11-16 | General Electric Company | Thermal/environmental barrier coating system for silicon-based materials |
US6013592A (en) | 1998-03-27 | 2000-01-11 | Siemens Westinghouse Power Corporation | High temperature insulation for ceramic matrix composites |
US6036762A (en) | 1998-04-30 | 2000-03-14 | Sambasivan; Sankar | Alcohol-based precursor solutions for producing metal phosphate materials and coating |
US6074699A (en) * | 1994-04-29 | 2000-06-13 | Mcdonnell Douglas Corporation | Surface hardness of articles by reactive phosphate treatment |
US20020189496A1 (en) * | 2001-06-18 | 2002-12-19 | Davis Janet B. | Monazite-based coatings for thermal protection systems |
US6733907B2 (en) * | 1998-03-27 | 2004-05-11 | Siemens Westinghouse Power Corporation | Hybrid ceramic material composed of insulating and structural ceramic layers |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5948470A (en) * | 1997-04-28 | 1999-09-07 | Harrison; Christopher | Method of nanoscale patterning and products made thereby |
US7001679B2 (en) * | 2001-08-09 | 2006-02-21 | Siemens Westinghouse Power Corporation | Protective overlayer for ceramics |
-
2002
- 2002-08-08 US US10/214,785 patent/US7001679B2/en not_active Expired - Lifetime
-
2003
- 2003-05-30 EP EP20030076670 patent/EP1394139A3/en not_active Withdrawn
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5038693A (en) * | 1989-09-21 | 1991-08-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Composite flexible blanket insulation |
US5380580A (en) * | 1993-01-07 | 1995-01-10 | Minnesota Mining And Manufacturing Company | Flexible nonwoven mat |
US5391404A (en) | 1993-03-15 | 1995-02-21 | The United States Of America As Represented By The National Aeronautics And Space Administration | Plasma sprayed mullite coatings on silicon-base ceramics |
US5858465A (en) | 1993-03-24 | 1999-01-12 | Georgia Tech Research Corporation | Combustion chemical vapor deposition of phosphate films and coatings |
US5514474A (en) | 1994-04-15 | 1996-05-07 | Rockwell International Corporation | Ceramic composites having a weak bond material selected from monazites and xenotimes |
US5665463A (en) | 1994-04-15 | 1997-09-09 | Rockwell International Corporation | Fibrous composites including monazites and xenotimes |
US6074699A (en) * | 1994-04-29 | 2000-06-13 | Mcdonnell Douglas Corporation | Surface hardness of articles by reactive phosphate treatment |
US5948516A (en) | 1997-02-06 | 1999-09-07 | The Board Of Trustees Of The University Of Illinois | High-strength, flaw-tolerant, oxide ceramic composite |
US5759632A (en) | 1997-04-14 | 1998-06-02 | The United States Of America As Represented By The Secretary Of The Air Force | Ceramic composite |
US5985470A (en) | 1998-03-16 | 1999-11-16 | General Electric Company | Thermal/environmental barrier coating system for silicon-based materials |
US6013592A (en) | 1998-03-27 | 2000-01-11 | Siemens Westinghouse Power Corporation | High temperature insulation for ceramic matrix composites |
US6733907B2 (en) * | 1998-03-27 | 2004-05-11 | Siemens Westinghouse Power Corporation | Hybrid ceramic material composed of insulating and structural ceramic layers |
US6036762A (en) | 1998-04-30 | 2000-03-14 | Sambasivan; Sankar | Alcohol-based precursor solutions for producing metal phosphate materials and coating |
US20020189496A1 (en) * | 2001-06-18 | 2002-12-19 | Davis Janet B. | Monazite-based coatings for thermal protection systems |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110151239A1 (en) * | 2003-09-22 | 2011-06-23 | Siemens Power Generation, Inc. | High temperature insulation and insulated article |
US7985493B2 (en) | 2003-09-22 | 2011-07-26 | Siemens Energy, Inc. | High temperature insulation and insulated article |
USRE46072E1 (en) | 2004-12-30 | 2016-07-19 | Corning Incorporated | Refractory materials |
WO2006073841A1 (en) * | 2004-12-30 | 2006-07-13 | Corning Incorporated | Refractory materials |
US20090131241A1 (en) * | 2004-12-30 | 2009-05-21 | Hilary Tony Godard | Refractory Materials |
US8067326B2 (en) | 2004-12-30 | 2011-11-29 | Corning Incorporated | Refractory materials |
US8383537B2 (en) | 2004-12-30 | 2013-02-26 | Corning Incorporated | Refractory materials |
US9221720B2 (en) | 2006-03-01 | 2015-12-29 | United Technologies Corporation | Dense protective coatings, methods for their preparation and coated articles |
US20100119718A1 (en) * | 2006-03-01 | 2010-05-13 | Sonia Tulyani | Dense protective coatings, methods for their preparation and coated articles |
US20070207330A1 (en) * | 2006-03-01 | 2007-09-06 | Sonia Tulyani | Adhesive protective coatings, non-line of sight methods for their preparation, and coated articles |
US8425871B2 (en) | 2006-06-05 | 2013-04-23 | Corning Incorporated | Single phase yttrium phosphate having the xenotime crystal structure and method for its synthesis |
US20090298672A1 (en) * | 2006-06-05 | 2009-12-03 | Sandra Lee Gray | Single phase yttrium phosphate having the xenotime crystal structure and method for its synthesis |
US20070298277A1 (en) * | 2006-06-21 | 2007-12-27 | General Electric Company | Metal phosphate coating for oxidation resistance |
US8796168B2 (en) | 2008-02-27 | 2014-08-05 | Corning Incorporated | Modified synthetic xenotime material, article comprising same and method for making the articles |
US20090211299A1 (en) * | 2008-02-27 | 2009-08-27 | Cameron Wayne Tanner | Modified synthetic xenotime material, article comprising same and method for making the articles |
US10112875B2 (en) | 2008-07-22 | 2018-10-30 | Siemens Energy, Inc. | Method for protecting a hybrid ceramic structure from moisture attack in a high temperature environment |
US9328028B2 (en) | 2008-07-22 | 2016-05-03 | Siemens Energy, Inc. | Structure and method for protecting a hybrid ceramic structure from moisture attack in a high temperature environment |
US20100021713A1 (en) * | 2008-07-22 | 2010-01-28 | Siemens Power Generation, Inc. | Structure and method for protecting a hybrid ceramic structure from moisture attack in a high temperature environment |
US20100069226A1 (en) * | 2008-09-17 | 2010-03-18 | General Electric Company | Rare earth phosphate bonded ceramics |
US8039113B2 (en) | 2008-12-19 | 2011-10-18 | General Electric Company | Environmental barrier coatings providing CMAS mitigation capability for ceramic substrate components |
US8658255B2 (en) | 2008-12-19 | 2014-02-25 | General Electric Company | Methods for making environmental barrier coatings and ceramic components having CMAS mitigation capability |
US20100158680A1 (en) * | 2008-12-19 | 2010-06-24 | Glen Harold Kirby | Cmas mitigation compositions, environmental barrier coatings comprising the same, and ceramic components comprising the same |
US8119247B2 (en) | 2008-12-19 | 2012-02-21 | General Electric Company | Environmental barrier coatings providing CMAS mitigation capability for ceramic substrate components |
US20100159150A1 (en) * | 2008-12-19 | 2010-06-24 | Glen Harold Kirby | Methods for making environmental barrier coatings and ceramic components having cmas mitigation capability |
US8273470B2 (en) | 2008-12-19 | 2012-09-25 | General Electric Company | Environmental barrier coatings providing CMAS mitigation capability for ceramic substrate components |
US8343589B2 (en) | 2008-12-19 | 2013-01-01 | General Electric Company | Methods for making environmental barrier coatings and ceramic components having CMAS mitigation capability |
US20100154422A1 (en) * | 2008-12-19 | 2010-06-24 | Glen Harold Kirby | Cmas mitigation compositions, environmental barrier coatings comprising the same, and ceramic components comprising the same |
US20100159252A1 (en) * | 2008-12-19 | 2010-06-24 | Glen Harold Kirby | Environmental barrier coatings providing cmas mitigation capability for ceramic substrate components |
US20100159261A1 (en) * | 2008-12-19 | 2010-06-24 | Glen Harold Kirby | Environmental barrier coatings providing cmas mitigation capability for ceramic substrate components |
US20100159151A1 (en) * | 2008-12-19 | 2010-06-24 | Glen Harold Kirby | Methods for making environmental barrier coatings and ceramic components having cmas mitigation capability |
US8859052B2 (en) | 2008-12-19 | 2014-10-14 | General Electric Company | Methods for making environmental barrier coatings and ceramic components having CMAS mitigation capability |
US8658291B2 (en) | 2008-12-19 | 2014-02-25 | General Electric Company | CMAS mitigation compositions, environmental barrier coatings comprising the same, and ceramic components comprising the same |
US20100159253A1 (en) * | 2008-12-19 | 2010-06-24 | Glen Harold Kirby | Environmental barrier coatings providing cmas mitigation capability for ceramic substrate components |
US8382436B2 (en) | 2009-01-06 | 2013-02-26 | General Electric Company | Non-integral turbine blade platforms and systems |
US20100172760A1 (en) * | 2009-01-06 | 2010-07-08 | General Electric Company | Non-Integral Turbine Blade Platforms and Systems |
US20100202873A1 (en) * | 2009-02-06 | 2010-08-12 | General Electric Company | Ceramic Matrix Composite Turbine Engine |
US8262345B2 (en) | 2009-02-06 | 2012-09-11 | General Electric Company | Ceramic matrix composite turbine engine |
US8347636B2 (en) | 2010-09-24 | 2013-01-08 | General Electric Company | Turbomachine including a ceramic matrix composite (CMC) bridge |
US9068275B2 (en) | 2013-05-08 | 2015-06-30 | General Electric Company | Composite geometrical design for a grain starter in a bridgman investment casting process |
US9527109B2 (en) | 2013-06-05 | 2016-12-27 | General Electric Company | Coating process and coated article |
US10408079B2 (en) | 2015-02-18 | 2019-09-10 | Siemens Aktiengesellschaft | Forming cooling passages in thermal barrier coated, combustion turbine superalloy components |
US11827986B2 (en) | 2018-03-16 | 2023-11-28 | Rolls-Royce Corporation | Coating system including nucleating agent |
Also Published As
Publication number | Publication date |
---|---|
US20030035907A1 (en) | 2003-02-20 |
EP1394139A3 (en) | 2004-06-30 |
EP1394139A2 (en) | 2004-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7001679B2 (en) | Protective overlayer for ceramics | |
US6929852B2 (en) | Protective overlayer for ceramics | |
US7357994B2 (en) | Thermal/environmental barrier coating system for silicon-containing materials | |
US7985493B2 (en) | High temperature insulation and insulated article | |
US11072566B2 (en) | Thermal and environmental barrier coating compositions and methods of deposition | |
US7544394B2 (en) | Method for producing a thermal barrier coating/environmental barrier coating system | |
US5985470A (en) | Thermal/environmental barrier coating system for silicon-based materials | |
EP1734025B1 (en) | Thermal/Environmental barrier coating system for silicon-containing materials | |
US7687105B2 (en) | Environmental barrier coating for silicon-containing substrates and process therefor | |
US7115326B2 (en) | Thermal/environmental barrier coating with transition layer for silicon-comprising materials | |
RU2752182C2 (en) | Part comprising a substrate and a protective barrier | |
US20080292803A1 (en) | Low conductivity, thermal barrier coating system for ceramic matrix composite (CMC) articles | |
US10112875B2 (en) | Method for protecting a hybrid ceramic structure from moisture attack in a high temperature environment | |
US11655543B2 (en) | CMAS-resistant barrier coatings | |
US7326468B2 (en) | Thermal/environmental barrier coating for silicon-comprising materials | |
US20050129973A1 (en) | Velocity barrier layer for environmental barrier coatings | |
US7108925B2 (en) | High temperature insulation utilizing zirconia-hafnia | |
JP4031244B2 (en) | Corrosion resistant ceramics | |
JP4090335B2 (en) | Corrosion resistant ceramics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SIEMENS WESTINGHOUSE POWER CORPORATION, FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CAMPBELL, CHRISTIAN X.;LANE, JAY EDGAR;REEL/FRAME:013179/0735 Effective date: 20020808 |
|
AS | Assignment |
Owner name: SIEMENS POWER GENERATION, INC.,FLORIDA Free format text: CHANGE OF NAME;ASSIGNOR:SIEMENS WESTINGHOUSE POWER CORPORATION;REEL/FRAME:017000/0120 Effective date: 20050801 Owner name: SIEMENS POWER GENERATION, INC., FLORIDA Free format text: CHANGE OF NAME;ASSIGNOR:SIEMENS WESTINGHOUSE POWER CORPORATION;REEL/FRAME:017000/0120 Effective date: 20050801 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: SIEMENS ENERGY, INC., FLORIDA Free format text: CHANGE OF NAME;ASSIGNOR:SIEMENS POWER GENERATION, INC.;REEL/FRAME:022482/0740 Effective date: 20081001 Owner name: SIEMENS ENERGY, INC.,FLORIDA Free format text: CHANGE OF NAME;ASSIGNOR:SIEMENS POWER GENERATION, INC.;REEL/FRAME:022482/0740 Effective date: 20081001 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |