US6730387B2 - Absorbent materials having improved structural stability in dry and wet states and making methods therefor - Google Patents
Absorbent materials having improved structural stability in dry and wet states and making methods therefor Download PDFInfo
- Publication number
- US6730387B2 US6730387B2 US09/171,049 US17104998A US6730387B2 US 6730387 B2 US6730387 B2 US 6730387B2 US 17104998 A US17104998 A US 17104998A US 6730387 B2 US6730387 B2 US 6730387B2
- Authority
- US
- United States
- Prior art keywords
- absorbent
- absorbent material
- gelling particles
- absorbent gelling
- microfiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002250 absorbent Substances 0.000 title claims abstract description 312
- 230000002745 absorbent Effects 0.000 title claims abstract description 311
- 239000000463 material Substances 0.000 title claims abstract description 114
- 238000000034 method Methods 0.000 title description 18
- 239000002245 particle Substances 0.000 claims abstract description 142
- 229920002851 polycationic polymer Polymers 0.000 claims abstract description 65
- 229920001410 Microfiber Polymers 0.000 claims abstract description 55
- 239000003658 microfiber Substances 0.000 claims abstract description 55
- 239000003292 glue Substances 0.000 claims abstract description 51
- 229920000642 polymer Polymers 0.000 claims abstract description 48
- 239000000835 fiber Substances 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 27
- 239000007788 liquid Substances 0.000 claims description 19
- -1 polyvinylpyrolidone Polymers 0.000 claims description 18
- 229920002873 Polyethylenimine Polymers 0.000 claims description 17
- 229920003043 Cellulose fiber Polymers 0.000 claims description 10
- 229920001169 thermoplastic Polymers 0.000 claims description 6
- 239000004416 thermosoftening plastic Substances 0.000 claims description 6
- 229920000768 polyamine Polymers 0.000 claims description 4
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 claims description 4
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 claims description 3
- 229920006187 aquazol Polymers 0.000 claims description 3
- 229920000083 poly(allylamine) Polymers 0.000 claims description 3
- 229920000962 poly(amidoamine) Polymers 0.000 claims description 3
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 3
- 150000003141 primary amines Chemical group 0.000 claims description 3
- 150000003335 secondary amines Chemical group 0.000 claims description 3
- 150000003512 tertiary amines Chemical group 0.000 claims description 3
- 239000004820 Pressure-sensitive adhesive Substances 0.000 claims description 2
- 150000001412 amines Chemical class 0.000 claims description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 2
- 239000000017 hydrogel Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 25
- 239000012530 fluid Substances 0.000 abstract description 23
- 230000008961 swelling Effects 0.000 abstract description 3
- 210000002700 urine Anatomy 0.000 description 28
- 239000000499 gel Substances 0.000 description 23
- 238000004132 cross linking Methods 0.000 description 15
- 239000010839 body fluid Substances 0.000 description 12
- 239000000178 monomer Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 239000002253 acid Substances 0.000 description 11
- 210000001124 body fluid Anatomy 0.000 description 9
- 239000002657 fibrous material Substances 0.000 description 9
- 239000007921 spray Substances 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 241001122767 Theaceae Species 0.000 description 6
- 238000011068 loading method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 206010021639 Incontinence Diseases 0.000 description 5
- 229920002125 Sokalan® Polymers 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 229920000098 polyolefin Polymers 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 239000004952 Polyamide Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000002998 adhesive polymer Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 229920006037 cross link polymer Polymers 0.000 description 4
- 229920000578 graft copolymer Polymers 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 239000004584 polyacrylic acid Substances 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 210000000476 body water Anatomy 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910019670 (NH4)H2PO4 Inorganic materials 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical group COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- 229920005372 Plexiglas® Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000000416 hydrocolloid Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229920000428 triblock copolymer Polymers 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- XVOUMQNXTGKGMA-OWOJBTEDSA-N (E)-glutaconic acid Chemical compound OC(=O)C\C=C\C(O)=O XVOUMQNXTGKGMA-OWOJBTEDSA-N 0.000 description 1
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 1
- DZSVIVLGBJKQAP-UHFFFAOYSA-N 1-(2-methyl-5-propan-2-ylcyclohex-2-en-1-yl)propan-1-one Chemical compound CCC(=O)C1CC(C(C)C)CC=C1C DZSVIVLGBJKQAP-UHFFFAOYSA-N 0.000 description 1
- CBQFBEBEBCHTBK-UHFFFAOYSA-N 1-phenylprop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)C(C=C)C1=CC=CC=C1 CBQFBEBEBCHTBK-UHFFFAOYSA-N 0.000 description 1
- PRAMZQXXPOLCIY-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethanesulfonic acid Chemical compound CC(=C)C(=O)OCCS(O)(=O)=O PRAMZQXXPOLCIY-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- WROUWQQRXUBECT-UHFFFAOYSA-N 2-ethylacrylic acid Chemical compound CCC(=C)C(O)=O WROUWQQRXUBECT-UHFFFAOYSA-N 0.000 description 1
- SQVSEQUIWOQWAH-UHFFFAOYSA-N 2-hydroxy-3-(2-methylprop-2-enoyloxy)propane-1-sulfonic acid Chemical compound CC(=C)C(=O)OCC(O)CS(O)(=O)=O SQVSEQUIWOQWAH-UHFFFAOYSA-N 0.000 description 1
- VSKJLJHPAFKHBX-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 VSKJLJHPAFKHBX-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- GQTFHSAAODFMHB-UHFFFAOYSA-N 2-prop-2-enoyloxyethanesulfonic acid Chemical compound OS(=O)(=O)CCOC(=O)C=C GQTFHSAAODFMHB-UHFFFAOYSA-N 0.000 description 1
- KFNGWPXYNSJXOP-UHFFFAOYSA-N 3-(2-methylprop-2-enoyloxy)propane-1-sulfonic acid Chemical compound CC(=C)C(=O)OCCCS(O)(=O)=O KFNGWPXYNSJXOP-UHFFFAOYSA-N 0.000 description 1
- XUYDVDHTTIQNMB-UHFFFAOYSA-N 3-(diethylamino)propyl prop-2-enoate Chemical class CCN(CC)CCCOC(=O)C=C XUYDVDHTTIQNMB-UHFFFAOYSA-N 0.000 description 1
- NYUTUWAFOUJLKI-UHFFFAOYSA-N 3-prop-2-enoyloxypropane-1-sulfonic acid Chemical compound OS(=O)(=O)CCCOC(=O)C=C NYUTUWAFOUJLKI-UHFFFAOYSA-N 0.000 description 1
- GXLIFJYFGMHYDY-ZZXKWVIFSA-N 4-chlorocinnamic acid Chemical compound OC(=O)\C=C\C1=CC=C(Cl)C=C1 GXLIFJYFGMHYDY-ZZXKWVIFSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- UIERETOOQGIECD-UHFFFAOYSA-N Angelic acid Natural products CC=C(C)C(O)=O UIERETOOQGIECD-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- 229920004934 Dacron® Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical class ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229940091181 aconitic acid Drugs 0.000 description 1
- 229920006322 acrylamide copolymer Polymers 0.000 description 1
- 150000001253 acrylic acids Chemical class 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- UIERETOOQGIECD-ARJAWSKDSA-N angelic acid Chemical compound C\C=C(\C)C(O)=O UIERETOOQGIECD-ARJAWSKDSA-N 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- FACXGONDLDSNOE-UHFFFAOYSA-N buta-1,3-diene;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 FACXGONDLDSNOE-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 125000000879 imine group Chemical group 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 239000008274 jelly Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000002175 menstrual effect Effects 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000000643 oven drying Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 150000003097 polyterpenes Chemical class 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical group 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 150000003839 salts Chemical group 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229940047670 sodium acrylate Drugs 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 1
- 150000003459 sulfonic acid esters Chemical class 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/60—Liquid-swellable gel-forming materials, e.g. super-absorbents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/15577—Apparatus or processes for manufacturing
- A61F13/15617—Making absorbent pads from fibres or pulverulent material with or without treatment of the fibres
- A61F13/15658—Forming continuous, e.g. composite, fibrous webs, e.g. involving the application of pulverulent material on parts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/225—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/58—Adhesives
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/56—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/16—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/15577—Apparatus or processes for manufacturing
- A61F2013/15821—Apparatus or processes for manufacturing characterized by the apparatus for manufacturing
- A61F2013/15934—Apparatus or processes for manufacturing characterized by the apparatus for manufacturing for making non-woven
- A61F2013/15967—Apparatus or processes for manufacturing characterized by the apparatus for manufacturing for making non-woven by meltblown technique
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
- A61F2013/530481—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
- A61F2013/530489—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials being randomly mixed in with other material
- A61F2013/530496—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials being randomly mixed in with other material being fixed to fibres
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
- Y10T428/24372—Particulate matter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/2484—Coating or impregnation is water absorbency-increasing or hydrophilicity-increasing or hydrophilicity-imparting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/608—Including strand or fiber material which is of specific structural definition
- Y10T442/614—Strand or fiber material specified as having microdimensions [i.e., microfiber]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/608—Including strand or fiber material which is of specific structural definition
- Y10T442/614—Strand or fiber material specified as having microdimensions [i.e., microfiber]
- Y10T442/619—Including other strand or fiber material in the same layer not specified as having microdimensions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/69—Autogenously bonded nonwoven fabric
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/699—Including particulate material other than strand or fiber material
Definitions
- the present invention relates to absorbent materials that, upon contacting liquids such as water or body fluids, swell and imbibe such liquids. More specifically, the present invention relates to improved structural stability in the dry and wet states of absorbent materials.
- the absorbent material of the present invention has particular applicability to absorbent articles such as diapers, adult incontinence pads, sanitary napkins, and the like.
- Water-insoluble, water-swellable, hydrogel-forming absorbent polymers are capable of absorbing large quantities of liquids such as water, body fluids (e.g., urine, blood, menstrual fluid), industrial fluids and household fluids and are further capable of retaining such absorbed liquids under moderate pressures. These absorption characteristics of such polymer materials make them especially useful for incorporation into absorbent articles such as disposable diapers, adult incontinence pads and briefs, and catamenial products such as sanitary napkins, and the like.
- a highly desired characteristic for such absorbent articles is thinness. For example, thinner diapers are less bulky to wear, fit better under clothing, and are less noticeable. They are also more compact in the package, making the diapers easier for the consumer to carry and store. Compactness in packaging also results in reduced distribution costs for the manufacturer and distributor, including less shelf space required in the store per diaper unit.
- prior absorbent articles have generally comprised relatively low amounts (e.g., less than about 50% by weight) of absorbent gelling particles of the WAHPs. See, for example, U.S. Pat. No. 4,834,735 (Alemany et. al), issued May 30, 1989. It discloses that an absorbent structure or core contains preferably from about 9 to about 50% of WAHP in the fibrous matrix. Unfortunately several problems are encountered when one attempts to provide a thin absorbent core having more than 50% concentration of absorbent gelling particles by weight.
- absorbent articles have the limitation that the absorbent gelling particles are not immobilized and are free to migrate(shift) during the manufacturing process and/or use(wearing). Migrations(shifting) of the absorbent gelling particles during manufacture can lead to absorbent material handling losses during manufacturing operations as well as nonhomogerous incorporation of the particles being used. A more significant problem, though, occurs when these absorbent gelling particles of WAHPs migrate during or after swelling. This inability to fix the particles at optimum locations leads to an insufficient urine storage capacity in one area and over-capacity in other areas due to the lack of stability.
- One important factor is to minimize and/or eliminate the shifting of particles of WAHPs from the first applying location to another position and handling losses during manufacture.
- liquid permeability of WAHPs Yet another important factor that has to be considered is the liquid permeability of WAHPs. It has been discovered that the permeability or flow conductivity of the gel layer formed by swelling in the presence of body fluids is extremely important when these absorbent polymers are used in absorbent cores or members at a high concentration in localized or throughout regions thereof. It should be noted that lack of liquid permeability or flow conductivity of absorbent polymers may directly impact on the ability of resultant gel layers to acquire and distribute body fluids.
- WAHPs used in thinner absorbent article are jelly and mushy feel when touching and handling the absorbent article after usage.
- WAHP is dispersed in region or regions at a high concentration
- the swollen gel formed by absorbing body fluids is a gel layer, in which the particulate is mobile and the gel layer collapses when subjected to forces such as pushing, squeezing, etc. when handling the absorbent article after usage.
- absorbent articles having high concentration of WAHP give users or consumers “wet/mushy” feel when touching or handling them from outside.
- the present invention seeks to resolve the above problems by providing an absorbent material having improved structural stability in dry and wet status.
- the present invention relates to absorbent materials having improved structural stability in dry and wet states.
- These absorbent materials comprise (a) absorbent gelling particles comprising a water-insoluble absorbent hydrogel-forming polymer; (b) a polycationic polymer; (c) glue microfibers; and (d) a carrier layer; wherein the polycationic polymer is bonded to the absorbent gelling particles; and the glue microfibers act as an adhesive between the absorbent gelling particles and the carrier layer. Because the glue microfibers are tacky, the absorbent gelling particles comprising a WAHP fix to the desired location on the carrier layer and do not shift to the another area in dry state.
- the absorbent gelling particles contained in the absorbent material fix to the location first applied due to bonding of the polycationic polymer to the absorbent gelling particles comprising a WAHP, and the absorbent material does not shift.
- the polycationic polymer bonded to the absorbent gelling particles prevents the particles from shifting after they swell with liquid. Consequently, the absorbent material of the invention has improved liquid acquisition speed and low rewetness when in use. It has been found that when the absorbent material is contacted with liquids, the absorbent material swells, imbibes such liquids into the absorbent gelling particles, and absorbs even under moderate confining pressures.
- the carrier layer is selected from the group consisting of a woven material and a nonwoven material.
- absorbent materials may further comprise the cellulose fibers dispersed in the absorbent gelling particles, wherein the cellulose fibers are adhered to the absorbent gelling particles by the glue microfibers.
- the absorbent material of present invention comprises from about 50% to about 90% of the absorbent gelling particle, from about 0.1% to about 10% of the polycationic polymer, from about 1% to about 10% of the thermoplastic polymeric microfiber and from about 5% to about 50% of the carrier layer by weight.
- the invention further relates to a method of make the absorbent materials, and the absorbent articles comprising the absorbent materials.
- FIG. 1 is a schematic view of an apparatus for making the absorbent materials of the present invention.
- “Dry state” means the state of the absorbent material during manufacture.
- “Wet state” means the swollen absorbent materials due to absorption of large quantities of liquids such as water, body fluids, industrial fluids and household fluids, when the absorbent materials of the present invention are used in, e.q., a diaper and worn.
- “Structural stability” means immobilizing(fixing) the absorbent materials onto the right position in a diaper where first located.
- WAHP means a water-insoluble absorbent hydrogel-forming polymer.
- the absorbent material of the present invention is capable of absorbing large quantities of liquids such as water, body fluids, industrial fluids and household fluids at a rapid rate and is capable of retaining such fluids under moderate pressures.
- the absorbent material of the present invention has an improved structural stability in the dry and wet states, while the absorbent material has a high concentration of WAHPs.
- the absorbent material comprises greater than about 50% by weight of a WAHP.
- the absorbent materials are no shifting in the dry and wet states.
- the absorbent gelling particles tend to shift during manufacturing process, resulting in, e.g., clumping of absorbent gelling particles and a lack of uniform distribution of the particles.
- the particles may shift, resulting in insufficient urine storage capacity in one area and over-capacity in other areas. Subsequently the absorbent article will leak during use(wearing).
- the shifting of wet absorbent gelling particles of WAHP can cause core shifting and more incidence of gel leakage when in use or wearing, especially from an absorbent article using absorbent materials comprising a high concentration of WAHP.
- the absorbent material of the present invention comprises: (a) absorbent gelling particles comprising a WAHP; (b) a polycationic polymer; (c) glue microfibers; and (d) a carrier layer; wherein the polycationic polymer is bonded to the absorbent gelling particles; and the glue microfibers act as an adhesive between the absorbent gelling particles and the carrier layer.
- the present invention in its aspects contemplates the absorbent materials comprising the absorbent gelling particles, the polycationic polymer bonded to the absorbent gelling particles, the glue microfibers dispersed in the absorbent gelling particles and the carrier layer.
- its object is to fix the absorbent gelling particles to the desired location of the carrier layer by an adhesive glue microfiber in the dry state and to fix the absorbent gelling particles bonding to the polycationic polymer on the surface, when the absorbent materials contact liquids such as body fluids in the wet state.
- the glue microfiber used herein can be meltblown to form fibers that are tacky in at least one step of the manufacture of the absorbent materials. It is possible that the glue microfiber are initially fixed the absorbent gelling particles to the desired location of the absorbent materials during the manufacturing process.
- the melt blown adhesive polymers which can be utilized for forming the absorbent materials include the elastomeric and non-elastomeric polymers. These polymers must be tacky enough to be blown into fiber forms.
- the tackiness can be modified with the usage of tackifying resins, which include rosin esters, mixed polyalkenes, polyterpenes, waxes, or incorporating carboxylic acid contained polymers or oligomers within the adhesive resin.
- tackifying resins which include rosin esters, mixed polyalkenes, polyterpenes, waxes, or incorporating carboxylic acid contained polymers or oligomers within the adhesive resin.
- blends of adhesive polymers, or blends of adhesive polymers and other polymers are also contemplated by the invention.
- Useful elastomeric polymers include polyolefins and blends (e.g., polypropylene, polybutylene, or ethyleneacrylic acid copolymers), ethylenevinyl acetate copolymers, polyamides, polyesters, and reactive polyamide and polyesters.
- polyolefins and blends e.g., polypropylene, polybutylene, or ethyleneacrylic acid copolymers
- ethylenevinyl acetate copolymers e.g., polyamides, polyesters, and reactive polyamide and polyesters.
- Pressure sensitive adhesives are also useful for forming the absorbent structure of this invention. They are permanently tacky and do not change their physical state from an initial liquid to a solid after final bond formation.
- Exemplified elastomeric polymers are ethylenevinyl acetate copolymer, styrene/diene triblock copolymer, poly(vinylether)s, polyacrylates, and silicones.
- Thermoplastic elastomeric triblock copolymers of the ABA type have great adhesive capability and processing convenience in this invention.
- the end block (A) in these polymers are plastic in nature with a high glass transition (or melt) temperature, which the block (B) is rubbery.
- styrene-butadiene-styrene styrene-isoprene-styrene
- styrene-ethylene-co-propylene-styrene copolymers are very useful in this invention.
- the non-elastomeric polymer may be a non-elastomeric fiber forming resin or blend containing the same.
- such polymers include polyolefins, non-elastomeric polyamides, cellulosic derived polymers, vinyl chlorides, and polyvinyl alcohols.
- the types of elastomeric Styrene-Isoprene-Styrene block copolymers are HL-1358 or Finely H-6752A supplied by Fuller Co.
- the types of non-elastomeric glue microfiber include polyethyloxazoline, for example XR-2676 (Fuller Co.,), polyvinylpyrolidone, for example H-1716 (Fuller Co.,) and ethylenevinyacetate copolymer, for example HT480 (Fuller Co.,).
- the glue microfibers comprising polyethyloxazoline would provide the absorbent article comprising the absorbent material of the present invention sufficient structural integrity in the dry state, while in the wet state the polycationic polymers comprising polyethyleneimine are activated to maintain the structural integrity of the absorbent article.
- the polycationic polymer used herein is a polymer which has multiple functional groups that are capable of bonding to the surface of the absorbent gelling particles.
- an amino-group or iminegroup containing polymer is used as the polycationic polymer.
- Such polycationic polymers include polyamines, polyimines and mixtures thereof. More preferably, the polyamine is selected from the group consisting of polymers having primary amine groups (e.g., polyvinylamine, polyallylamine), polymers having secondary amine groups (e.g., polyethyleneamines) and polymers having tertiary amine groups (e.g., poly-N, N-dimethylalkyl amine, poly-N-alkylamine).
- the polyimines preferably used include polyethyleneimines, modified polyethyleneimines crosslinked with epihalohydrine, polyamidoamines grafted with ethyleneimine and mixtures thereof.
- Other suitable polycationic polymers include modified polyamidoamine grafted with ethyleneimine, polyetheramine, polyvinylamine, polyallylamine, polyamidopolyamine and mixtures thereof.
- the polycationic polymer is a cationic polymer having an average molecular weight of at least about 200, more preferably of at least more than 5,000, and most preferably of more than about 10,000.
- the polycationic polymers useful in the invention include those polymers having a single maximum value (a peak) in molecular weight distribution, as well as those polycationic polymers having one or more maximum values.
- the molecular weight distribution can be analyzed by, for example, gel permeation chromatography.
- the amount of polycationic polymer used in the absorbent material is from about 0.1% to 10% by weight of the absorbent materials.
- the polycationic polymer used for the present invention has a concentration of from about 80% to 99% by weight so that it can be tacky by itself.
- the polycationic polymers having the characteristic of tackiness can be meltblown without glue microfibers, consequently acting as an adhesive between the absorbent gelling particles and the carrier layer.
- the polycationic polymer fiber has a molecular weight of at least about 70,000.
- the WAHPs useful in the present invention are commonly referred to as “hydrogel-forming”, “hydrocolloid”, or “superabsorbent” polymers and can include polysaccharides such as carboxymethyl starch, carboxymethyl cellulose, and hydroxypropyl cellulose; nonionic types such as polyvinyl alcohol, and polyvinyl ethers; cationic types such as polyvinyl pyridine, polyvinyl morpholinione, and N,N-dimethylaminoethyl or N,N-diethylaminopropyl acrylates and methacrylates, and the respective quaternary salts thereof.
- polysaccharides such as carboxymethyl starch, carboxymethyl cellulose, and hydroxypropyl cellulose
- nonionic types such as polyvinyl alcohol, and polyvinyl ethers
- cationic types such as polyvinyl pyridine, polyvinyl morpholinione, and N,N-dimethylaminoethy
- WAHPs useful in the present invention have a plurality of anionic, functional groups, such as sulfonic acid, and more typically carboxy, groups.
- polymers suitable for use herein include those which are prepared from polymerizable, unsaturated, acid-containing monomers.
- such monomers include the olefinically unsaturated acids and anhydrides that contain at least one carbon to carbon olefinic double bond. More specifically, these monomers can be selected from olefinically unsaturated carboxylic acids and acid anhydrides, olefinically unsaturated sulfonic acids, and mixtures thereof.
- non-acid monomers can also be included, preferably in minor amounts, in preparing the WAHPs herein.
- Such non-acid monomers can include, for example, the water-soluble or water-dispersible esters of the acid-containing monomers, as well as monomers that contain no carboxylic or sulfonic acid groups at all.
- Optional non-acid monomers can thus include monomers containing the following types of functional groups: carboxylic acid or sulfonic acid esters, hydroxyl groups, amide-groups, amino groups, nitrile groups, quaternary ammonium salt groups, aryl groups (e.g., phenyl groups, such as those derived from styrene monomer).
- non-acid monomers are well-known materials and are described in greater detail, for example, in U.S. Pat. No. 4,076,663 (Masuda et. al), issued Feb. 28, 1978, and in U.S. Pat. No. 4,062,817 (Westerman), issued December 13, 1977.
- Olefinically unsaturated carboxylic acid and carboxylic acid anhydride monomers include the acrylic acids typified by acrylic acid itself, methacrylic acid, ethacrylic acid, -chloroacrylic acid, -cyanoacrylic acid, -methylacrylic acid (crotonic acid), -phenylacrylic acid, -acryloxypropionic acid, sorbic acid, -chlorosorbic acid, angelic acid, cinnamic acid, p-chlorocinnamic acid, -sterylacrylic acid, itaconic acid, citroconic acid, mesaconic acid, glutaconic acid, aconitic acid, maleic acid, fumaric acid, tricarboxyethylene and maleic acid anhydride.
- acrylic acids typified by acrylic acid itself, methacrylic acid, ethacrylic acid, -chloroacrylic acid, -cyanoacrylic acid, -methylacrylic acid (crotonic acid), -phenyl
- Olefinically unsaturated sulfonic acid monomers include aliphatic or aromatic vinyl sulfonic acids such as vinylsulfonic acid, allyl sulfonic acid, vinyl toluene sulfonic acid and styrene sulfonic acid; acrylic and methacrylic sulfonic acid such as sulfoethyl acrylate, sulfoethyl methacrylate, sulfopropyl acrylate, sulfopropyl methacrylate, 2-hydroxy-3-methacryloxypropyl sulfonic acid and 2-acrylamide-2-methylpropane sulfonic acid.
- Preferred WAHPs for use in the present invention contain carboxy groups.
- These polymers include hydrolyzed starch-acrylonitrile graft copolymers, partially neutralized hydrolyzed starch-acrylonitrile graft copolyrners, starch-acrylic acid graft copolymers, partially neutralized starch-acrylic acid graft copolymers, saponified vinyl acetate-acrylic ester copolymers, hydrolyzed acrylonitrile or acrylamide copolymers, slightly network crosslinked polymers of any of the foregoing copolymers, partially neutralized polyacrylic acid, and slightly network crosslinked polymers of partially neutralized polyacrylic acid.
- polymers can be used either solely or in the form of a mixture of two or more different polymers. Examples of these polymer materials are disclosed in U.S. Pat. No. 4,076,663 (Masuda et. al), issued Feb. 28, 1978, U.S. Pat. No. 4,093,776 (Aoki et. al), issued Jun. 6, 1978, U.S. Pat. No. 4,666,983 (Tsubakimoto et. al), issued May 19, 1987, and U.S. Pat. No. 4,734,478 (Tsubakimoto et. al), issued Mar. 29, 1988.
- polymer materials used in making the WAHPs are slightly network crosslinked polymers of partially neutralized polyacrylic acids and starch derivatives thereof. More preferably still, the WAHPs comprise from about 50 to about 95%, more preferably about 75%, neutralized, slightly network crosslinked, polyacrylic acid (i.e., poly (sodium acrylate/acrylic acid)). Network crosslinking renders the polymer substantially water-insoluble and, in part, determines the absorptive capacity and extractable polymer content characteristics of the WAHPs. Processes for network crosslinking these polymers and typical network crosslinking agents are described in greater detail in U.S. Pat. No. 4,076,663 (Masuda et. al), issued February 28.
- Surface crosslinked WAHPs are used in a preferred embodiment of the present invention. They have a higher level of crosslinking in the vicinity of the surface than in the interior.
- surface describes the outer-facing boundaries of, e.g., the particle, fiber.
- exposed internal boundaries can also be included.
- a higher level of crosslinking at the surface it is meant that the level of functional crosslinks for the WAHP in the vicinity of the surface is generally higher than the level of functional crosslinks for the WAHP in the interior.
- the gradation in crosslinking from surface to interior can vary, both in depth and profile.
- the depth of surface crosslinking can be shallow, with a relatively sharp transition to a lower level of crosslinking.
- the depth of surface crosslinking can be a significant fraction of the dimensions of the WAHP, with a broader transition.
- the degree and gradient of surface crosslinking can vary within a given WAHP.
- surface crosslinking can vary with particle size, porosity, etc.
- the overall level of crosslinking it is not unusual for the overall level of crosslinking to vary within the material (e.g., be greater for smaller particles).
- Surface crosslinking is generally accomplished after the final boundaries of the WAHP is essentially established (e.g., by grinding, extruding, foaming, etc.) However, it is also possible to effect surface crosslinking concurrent with the creation of final boundaries. Furthermore, some additional changes in boundaries can occur even after surface crosslinks are introduced.
- the surface crosslinking can be accomplished before or, simultaneously, with the covalent bonding of the polycationic polymer to the surface of the absorbent gelling particles.
- WAHP is preferably of one type (i.e., homogeneous)
- mixtures of polymers can also be used in the present invention.
- mixtures of starch-acrylic acid graft copolymers and slightly network crosslinked polymers of partially neutralized polyacrylic acid can be used in the present invention.
- the absorbent gelling particles used in the present invention can have a size, shape and/or morphology varying over a wide range.
- the absorbent gelling particles may have a large ratio of greatest dimension to smallest dimension (e.g., granules, flakes, pulverulents, interparticle aggregates, interparticle crosslinked aggregates, and the like) and can be in the form of fibers, foams, and the like.
- the particle size is in the range of from about 10 to about 1000 microns.
- the WAHPs can also comprise mixtures with low levels of one or more additives, such as, for example, powdered silica, surfactants, celloluse microfiber and the like.
- the components in this mixture can be physically and/or chemically associated in a form such that the WAHP component and the non-hydrogel-forming polymer additive are not readily physically separable.
- the WAHPs can be essentially non-porous or have substantial internal porosity.
- particle size is defined as the dimension determined by sieve size analysis.
- a particle that is retained on a U.S.A. Standard Testing Sieve with 710 micron openings (e.g., No. 25 U.S. Series Alternate Sieve Designation) is considered to have a size greater than 710 microns;
- a particle that passes through a sieve with 710 micron openings and is retained on a sieve with 500 micron openings e.g., No. 35 U.S, Series Alternate Sieve Designation
- a particle that passes through a sieve with 500 micron openings is considered to have a size less than 500 microns.
- the absorbent materials according to the present invention can be used for many purposes in many fields of use.
- the absorbent material can be used for packing containers; drug delivery devices; wound cleaning devices; bum treatment devices; ion exchange column materials; construction materials; agricultural or horticultural materials such as seed sheets or water-retentive materials; and industrial uses such as sludge or oil dewatering agents, materials for the prevention of dew formation, desiccants, and humidity control materials.
- the absorbent material of the invention can have a number of shapes and sizes.
- the absorbent material can be in the form of sheets, films, cylinders, blocks or other shaped elements.
- the absorbent material can comprise a cellulosic material for enhancing absorbency and/or be in a form amenable to these and other applications as described hereinafter.
- absorbent material of the present invention Because of the unique absorbent properties of the absorbent material of the present invention, it is especially suitable for use as an absorbent core in absorbent articles, especially disposable absorbent articles.
- absorbent article refers to articles which absorb and contain body fluids and more specifically refers to articles which are placed against or in proximity to the body of the wearer to absorb and contain the various fluids discharged from the body.
- dispenser absorbent articles are those which are intended to be discarded after a single use (i.e., the original absorbent article in its whole is not intended to be laundered or otherwise restored or reused as an absorbent article, although certain materials or all of the absorbent article may be recycled, reused, or composted).
- an absorbent article comprise (a) a liquid pervious topsheet; (b) a liquid impervious backsheet; and (c) an absorbent core positioned between the topsheet and the backsheet wherein the absorbent core comprises at least one absorbent material.
- the term “absorbent core” refers to the component of the absorbent article that is primarily responsible for fluid handling properties of the article, including acquiring, transporting, distributing and storing body fluids. As such, the absorbent core preferably does not include the topsheet or backsheet of the absorbent article.
- the absorbent core or absorbent member can further comprise fibers or fluff pulp (fibrous or fiber material); more specifically, non-absorbent-gelling fibers.
- fiber material can be used as a reinforcing or absorbent member in the absorbent core, improving fluid handling of the core, as well as serving as a co-absorbent with the absorbent polymers.
- the term “absorbent member” refers to the components of the absorbent core that typically provide one or more fluid handling properties, e.g., fluid acquisition, fluid distribution, fluid transportation, fluid storage, etc.
- the absorbent member can comprise the entire absorbent core or only a portion of the absorbent core, i.e., the absorbent core can comprise one or more absorbent members.
- any type of fiber material which is suitable for use in conventional absorbent products can be used in the absorbent core or absorbent member herein.
- fiber material include cellulose fibers, improved cellulose fibers, rayon, polypropylene, and polyester fibers such as polyethylene terephthalate (DACRON), hydrophilic nylon (HYDROFIL), and the like.
- DACRON polyethylene terephthalate
- HODROFIL hydrophilic nylon
- other fiber materials for use in the present invention in addition to some already discussed are hydrophilized hydrophobic fibers, such as surfactant-treated or silica-treated thermoplastic fibers derived, for example, from polyolefins such as polyethylene or polypropylene, polyacrylics, polyamides, polystyrenes, polyurethanes and the like.
- hydrophilized hydrophobic fibers which are in and of themselves not very absorbent and which, therefore, do not provide webs of sufficient absorbent capacity to be useful in conventional absorbent structures, are suitable for use in the absorbent core by virtue of their good wicking properties.
- the wicking propensity of the fibers is as important, if not more important, than the absorbent capacity of the fiber material itself due to the high rate of fluid uptake and lack of gel blocking properties of the absorbent core.
- Synthetic fibers are generally preferred for use herein as the fiber component of the absorbent core. More preferred are polyolefin fibers, preferably polyethylene fibers.
- cellulosic fiber materials which can be useful in certain absorbent cores or absorbent members herein are chemically stiffened cellulosic fibers.
- Preferred chemically stiffened cellulosic fibers are the stiffened, twisted, curled cellulosic fibers which can be produced by internally crosslinking cellulose fibers with a crosslinking agent.
- Suitable stiffened, twisted, curled cellulose fibers useful as the hydrophilic fiber materials herein are described in greater detail in U.S. Pat. No. 4,888,093 (Dean et. al), issued Dec. 19, 1989; U.S. Pat. No. 4,889,596 (Herron et. al), issued Dec. 26, 1989; U.S. Pat. No.
- a preferred embodiment of the disposable absorbent article is a diaper.
- the term “diaper” refers to a garment, generally worn by infants and incontinent persons, that is worn about the lower torso of the wearer.
- a preferred diaper configuration for a diaper comprising an absorbent core is described generally in U.S. Pat. No. 3,860,003 (Buell), issued Jan. 14, 1975.
- Alternatively preferred configurations for disposable diapers herein are also disclosed in U.S. Pat. No. 4,808,178 (Aziz et. al), issued Feb. 28, 1989; U.S. Pat. No. 4,695,278 (Lawson), issued Sep. 22, 1987; U.S. Pat. No. 4,816,025 (Foreman), issued Mar. 28, 1989; and U.S. Pat. No. 5,151,092 (Buell et. al.), issued Sep. 29, 1992.
- catamenial product comprises a formed-film, apertured topsheet as disclosed in U.S. Pat. No. 4,285,343 (McNair), issued Aug. 25, 1981; U.S. Pat. No. 4,608,047 (Mattingly), issued Aug. 26, 1986; and U.S. Pat. No. 4,687,478 (Van Tilburg), issued Aug. 18, 1987.
- Preferred catamenial products can comprise wings, side flaps, and other structures and elements, as described in co-pending, commonly assigned U.S. application Ser. No. 984,071, to Yasuko Morita, entitled “Absorbent Article Having Elasticized Side Flaps”, filed Nov. 30, 1992.
- FIG. 1 illustrates a preferred apparatus useful in the process of the present invention.
- the forming apparatus generally indicated as 1 , is composed of a particle applying unit 10 , and a carrier layer apparatus 11 .
- the particle applying unit 10 includes an absorbent gelling particles applying unit 12 , a glue microfibers applying unit 16 and a polycationic polymer spray unit 17 .
- the absorbent gelling particles are first loaded in, for example, a K-tron screw feeder 12 for continuously feeding absorbent gelling particles to Vibratory feeder 13 and then hopper 14 . After absorbent gelling particles are carried away from the outlet of hopper 14 into an eductor 15 , absorbent gelling particles leave the nozzle 16 as the first air stream 21 by about 50-psi air stream.
- the eductor 15 and the nozzle 16 concentrates the absorbent gelling particles into a constant flow in order to inject the absorbent gelling particles through the glue microfibers.
- the average diameter of the absorbent gelling particle is usually from about 10 microns to about 1,000 microns. While the absorbent gelling particles are predominately discontinuous, they generally have a length exceeding that normally associated with particles.
- the glue microfibers are extruded via glue gun 17 (J&M Co.) with rate between about 0.2 to about 2.0 Kgcm ⁇ 1 hr ⁇ 1 as the second air stream 22 .
- the glue microfibers extrusion thins out when guided through a second air stream.
- the temperature range is set up enough to solute and spray the glue microfibers.
- the air gap is preferably kept about 0.18 mm.
- the second air stream of glue microfibers is controlled to preferably deliver about 10 g/m 2 basis weight of the resulting absorbent material and the operation range is preferably from about 3.0 gm/m 2 to about 50.0 gm/m 2 .
- the first air stream 21 is merged with the second air stream 22 to form an integrated air stream 23 .
- the integrated air stream 23 is injected onto a carrier layer in mechanical direction, preferably about 70 meter/min.
- the injection rate of integrated air stream 23 preferably is about 1.0 m/sec which is adjusted to match the carrier unit's speed.
- a vacuum conveyor 19 is placed beneath the nozzle 16 and the glue gun 17 . As the carrier layer 25 is run through the vacuum conveyor 19 , the incoming integrated air stream 23 is attracted and firmly attached to the carrier layer 25 .
- the absorbent gelling particles cover the center line of the carrier layer, preferably at least one half of the width.
- a third air stream containing pre-agitated polycationic polymer is located after laydown of the absorbent gelling particles applying unit 18 .
- the third air stream is sprayed onto the absorbent gelling particles attached to the carrier layer and the polycationic polymer bonds to the absorbent gelling particles on the surface.
- the line speed is controlled preferably at about 8 gm/m 2 .
- a folding board 20 is placed adjacent to the polycationic polymer unit 18 .
- the absorbent material comprising the absorbent gelling particles, the glue microfibers, the polycationic polymer and the carrier layer are folded to form an edge closed laminate structure of final width.
- the laminated product of absorbent material is wound at the end of the line.
- the present invention also provides a method for making the absorbent material.
- the method comprises (a) applying absorbent gelling particles comprising a WAHP onto a carrier layer; (b) applying glue microfibers onto the carrier layer; and (c) applying a polycationic polymer onto the absorbent gelling particles to form a bond between the absorbent gelling particles and the polycationic polymer; wherein the absorbent gelling particles adhere to the glue microfibers prior to the glue microfibers adhering to the carrier layer.
- the method further comprises the step of dispersing cellulose fibers into the absorbent gelling particles, wherein the glue microfibers act as an adhesive between the cellulose fibers and the absorbent gelling particles.
- the absorbent gelling particles are applied via a first air stream on a carrier layer.
- the glue microfibers are applied via the second air stream.
- the second air stream comprising glue microfibers preferably has a temperature of from about 10° C. to about 400° C.
- the polycationic polymer is applied via the third air stream.
- the third air stream comprising the polycationic polymer is used as a solution having a concentration preferably from about 0.1% to about 10% by weight.
- the solution containing the polycationic polymer is then applied to a plurality of the absorbent gelling particles.
- at least two, preferably all, of the absorbent gelling particles have at least some portion covered with the solution.
- at least 70% of the surface area of the gelling particles are covered with the solution applied thereon.
- the solution can be applied using any of the various techniques and apparatus well known in the art which are suitable for applying a solution to a material including coating, dumping, pouring, dropping, spraying, atomizing, condensing, or immersing the solution onto the absorbent gelling particles.
- the polycationic polymer is applied, preferably greater than about 90% of the surface area of the gelling particles is covered with the solution.
- the method further comprises the step of heating the resulting material of step (c) at a temperature of from about 50° C. to about 300° C. so as to covalently bond the polycationic polymer to the WAHP of the absorbent gelling particles.
- the polycationic polymer are reacted with the absorbent gelling particles such that the polyeationic polymer becomes covalently bonded to the absorbent gelling particles at the surface area of the absorbent gelling particles. More preferably, the covalent bonds are made between the surface-located carboxy groups of the absorbent gelling particles and the amino groups of the polycationic polymer. Preferably, at least about 80% more preferably more than about 90% by weight of the polycationic polymer is covalently bonded to the absorbent gelling particles.
- the absorbent articles comprising the absorbent material have more fluid permeable. With the improved fluid permeability the spreading of, e.g., urine throughout the absorbent articles comprising the absorbent material is increased, and therefore the absorbent gelling particles fluid absorption efficiency can be raised.
- the present invention also relates to a method of making an absorbent material.
- the method comprises (a) forming a first air stream comprising absorbent gelling particles comprising a WAHP; (b) forming a second air stream comprising glue microfibers; (c) merging the second air stream with the first air stream to form an integrated air stream comprising a through mixture of the glue microfibers and the absorbent gelling particles; (d) directing the integrated air stream onto a carrier layer, (e) forming a third air stream comprising a polycationic polymer; and (f) directing the third air stream onto the carrier layer so the polycationic polymer bonds to the absorbent gelling particles.
- the method of forming an absorbent material comprises (a) forming a first air stream comprising absorbent gelling particles comprising a WAHP; (b) forming a second air stream comprising a polycationic polymer, (c) merging the second air stream with the first air stream to form an integrated air stream, wherein the polycationic polymer bonds to the absorbent gelling particles; (d) forming a third air stream comprising glue microfibers; (e) merging the integrated air stream with the third air stream to form a mixture air stream; and (f) directing the mixture air stream onto a carrier layer so the absorbent gelling particles bonded to the polycationic polymer adhere to the glue microfibers, and the glue microfibers adhere to the carrier layer.
- the second air stream is formed a temperature of at least about 400° C. and about 50 psi air pressure at sonic velocity.
- the method comprises (a) applying polycationic polymer fibers comprising a polycationic polymer having a concentration of from about 80% to about 99% by weight onto absorbent gelling particles comprising a WAHP; and (b) applying the absorbent gelling particles onto a carrier layer; wherein the polycationic polymer fibers act as an adhesive between the absorbent gelling particles and the carrier layer.
- the polycationic polymer fiber has the molecular weight of at least about 70,000.
- the polycationic polymer fibers form a first air stream containing the polycationic polymer fibers and the absorbent gelling particles from the second air stream to form an integrated air stream containing a thorough mixture of the polycationic polymer fibers and the absorbent gelling particles.
- the method comprises (a) forming a first air stream containing polycationic polymer fibers; (b) forming a second air stream containing absorbent gelling particles comprising a WAHP; (c) merging the second air stream with the first air stream to form an integrated air stream, wherein the polycationic polymer fibers bond to the absorbent gelling particles; and (d) directing the integrated air stream onto a carrier layer so that the absorbent gelling particles bond to the polycationic polymer fibers on the carrier layer.
- the specific synthetic urine used in the test methods set forth herein is referred to as “Synthetic Urine”.
- the Synthetic Urine is commonly known as Jayco SynUrine or Jayco Synthetic Urine and is available from Jayco Pharmaceuticals Company of Camp Hill, Pa.
- the formula for the Synthetic Urine is: 2.0 g/l of KCl; 2.0 g/l of Na 2 SO 4 ; 0.85 g/l of (NH 4 )H 2 PO 4 ; 0.15 g/l (NH 4 )H 2 PO 4 ; 0.19 g/l of CaCl 2 and 0.23 g/l of MgCl 2 . All of the chemicals are of reagent grade.
- the PH of the Synthetic Urine is in the range of 6.0 to 6.4.
- the standard burst test program measures load, deflection and energy at peak load, and fail load at test end.
- the purpose of this test is to evaluate the gram force of a absorbent-gelling-particle-contained laminate structure after subjecting to a constant loading of synthetic urine.
- Laminate samples with a dimension of 10 cm ⁇ 10 cm and of 310 gm/m2 absorbent gelling particle basis weights, typically weigh at 3.6 ⁇ 0.3 gm and are allowed to soak in 70 mL of synthetic urine. Synthetic urine is fully absorbed by the absorbent-gelling-particle contained laminate, with 20 times synthetic urine loading of its original weight A burst tester, Thwing-Albert instrument Co. No.
- the sample holder is a plexi glass disk of 4.5-inch diameter and 0.125 inch of thickness, and with a hole of 0.75 inch diameter in the center of plexiglass.
- a stainless ball head of 0.25-inch diameter is used to puncture the samples.
- Gel volume of a WAHP is defined as its retention absorbent capacity after swollen in an excess of Jaycee Synthetic Urine. It provides a measure of the maximum absorbent capacity of the polymer under conditions of use where the pressures on the polymer are relatively low. Gel volume is determined by centrifuge capacity method described below by using the Jaycee Synthetic Urine. The gel volume is calculated on a dry-weight basis. The dry weight used in the gel volume calculation is determined by oven drying the WAHP at 105° C. for three hours. All of the chemicals are of reagent grade. The pH of the Jaycee Synthetic Urine is in the range of 8.0 to 6.4.
- Heat-sealable tea-bag paper is cut into 6 cm ⁇ 12 cm, folded in half lengthwise and sealed close to the edge along two sides with a T-bar sealer to produce 6 cm ⁇ 6 cm tea bag squares.
- 0.200( ⁇ 0.005) gm of a WAHP is transferred into a tea-bag, and the top of the bag is sealed at its edge. The top of an empty tea-bag is sealed and is used as a blank.
- Approximately 300 ml of Jayco Synthetic Urine is poured into a 1,000 ml beaker, and the tea-bag containing WAHP and the blank are submerged into the beaker. After being soaked for 30 minutes, the blank and the WAHP-filled tea bag are removed from the solution by using tongs.
- a centrifuge (H-122 type, Kokusan Enshinki Co. Ltd., Tokyo, Japan) with a direct read tachometer, electric timer is used for this measurement.
- the sample tea bags and the blank tea bags are positioned in the centrifuge basket and centrifuged at 1100 rpm for three minutes.
- Gel volume is calculated as follows:
- Ws is the sample tea bag weight after centrifuge
- Wb is the blank tea bag weight after centrifuge
- Wo is the WAHP weight (0.200 g).
- the Acquisition Speed and Rewetness which are the laminate production properties comprising this absorbent material made according to present invention, are evaluated in diapers.
- the typical diaper design includes airfilt as the acquisition layer and the laminate production as fluid storage core of at least 310 gm/m2 absorbent gelling particle basis weight.
- the acquisition speed and rewet measurements are performed with 0.30 psi external pressure in a flat configuration. After continuous loading of 200 mL synthetic urine, several pieces of fitter papers are placed on the wet pad and allowed to soak for 30 min under 0.40 psi.
- the rewet values as measured from the weight increase of filter paper, are summed up from front, middle, to back part of diaper.
- a composite in accordance with the present invention is prepared on a process line for laminate production illustrated in FIG. 1 .
- Styrene-Isoprene-Styrene block copolymer (HL-1358-XZP) produced by H.B. Fuller Co. is used as a glue microfiber, and is heated and kept at least 350° C. during laminate production process.
- L76lf produced by Nippon Shokubai Co. Ltd. is used as absorbent gelling particles, and has particle size distribution ranging from 300 ⁇ m to 600 ⁇ m.
- the Polyethyleneimine produced by Wako Chem Co. is used as a polycationic polymer, and is a 30% solid and has molecular weight of 70,000 Daltons.
- a tissue produced by Havix Company LTD is used as a wet laid tissue of 18 gms and has the tensile strength of 1.1 Kg/in in mechanical direction.
- L76lf is prepared in K-tron screw feeder.
- L76lf is loaded in a K-tron screw feeder for continuously feeding L76lf into a vibrator feeder and then a hopper.
- a compressed air stream is kept at 50 psi air pressure.
- L76lf is carried away from the outlet of the hopper into an educator and is combined with the compressed air stream, so as to provide a first air stream.
- Injection rate of the first air stream of L76lf is kept about 1.0 msec ⁇ 1 which is adjusted to match the web line speed.
- Styrene-Isoprene-Styrene block copolymer (HL-1358-XZP), is prepared in the apparatus of glue gun (J&M Co.). HL-1358-XZP is extruded through glue gun at a rate between about 0.2 to about 2.0 Kgcm ⁇ 1 hr ⁇ 1 . The air gap of the glue gun is kept at about 0.18 mm, as the glue block-copolymer becomes thin fibers.
- the extruded HL-1358-XZP is combined with an air stream, so as to provide a second air stream.
- the second air stream is kept at a temperature of about 400° C. and about 50 psi air pressure at about sonic velocity.
- the second air stream of HL-1358-XZP is controlled to deliver 10 g/m 2 basis weight of the laminate production.
- the operation range of the second air stream can be between about 3.0 gm/m 2 and about 50.0 gm/m 2 .
- the first air stream of L76lf is subsequently injected through the second air stream of HL-1358-XZP, to form an integrated air stream, onto a vacuum conveyer.
- the vacuum conveyor is placed beneath the glue gun and the educator.
- a tissue is introduced to the vacuum conveyor at a typical speed of about 70 meter/min. As the tissue is run over the vacuum conveyor, the incoming integrated air stream is attracted and firmly attached to the tissue.
- the tissue width is at least about 23 cm and a coverage width of the integrated air stream is at least about 9.50 cm.
- a polyethyleneimine is dissolved in distilled water at a concentration of from about 10 to about 20% by weight.
- a third air stream spray is forwarded an air pressure spray system (B1 ⁇ 8 BAU ⁇ SS+SUV 67 ⁇ SS from Spraying System Co. of 0.5-1.2 Kg/cm 2 ) containing a pre-agitated solution of polyethyleneimine and water is located after the integrated air stream containing HL-1358-XZP and L76lf laydown.
- the speed of spraying and the level of polyethyleneimine solution is controlled at 8 gm/m2, which is equal to about 2.0% by weight of the laminate production.
- a folding board is placed next to the third air stream spray of polyethyleneimine solution.
- Tissue, L76lf, HL-1358-XZP and polyethyleneimine are folded to form an edge closed laminate structure of about 10 cm final width.
- the laminate production is wound at the end of the line.
- the thickness of a formed laminate of about 310 gm/m2 absorbent gelling particle is about 1.3 mm.
- the laminate production properties comprising this absorbent material made according to this example are evaluated.
- the Wet Burst Strength and The Tea Bag gel Volume is 61 gm and 33 g/g.
- the basic composition of sample is similar to Example 1, except no third air stream spray of polyethyleneimine additive is used.
- the laminate production properties comprising this absorbent material made according to this example are evaluated.
- the Wet Burst Strength and The Tea Bag gel Volume is 25 gm and 35 g/g.
- Example 2 the basic composition of sample is similar to Example 1, except as set forth below.
- URIC absorbent gelling particle is prepared in K-tron screw feeder for use in the first air stream.
- URIC absorbent gelling particle is an absorbent gelling particle having improved absorbent property by the absorbent property modification polymer, such as the polycationic polymer, bonded to the absorbent gelling particles.
- the laminate production properties comprising this absorbent material made according to this example are evaluated.
- the Wet Burst Strength and The Tea Bag gel Volume is 45 gm and 31 g/g.
- the basic composition of the sample is similar to Example 1, except no second air stream of the thermoplastic polymeric microfiber and the third air stream spray of polyethyleneimine additive are used.
- the laminate production properties comprising this, absorbent material made according to this example are evaluated.
- the Wet Burst Strength and The Tea Bag gel Volume is 0 gm and 38 g/g.
- the acquisition speeds and rewet values are evaluated in a diaper.
- the diaper is made of by laminate production comprising the absorbent material according to above examples.
- the properties of the diaper are evaluated and presented in Table 2.
- Diapers of this invention show faster acquisition speeds at high urine loading, e.g., urine volume levels of at least 150 mL than the Sample #2.
- the improved acquisition speeds are caused by faster fluid transportation among the well-bonded absorbent gelling particle particulate in the wet state.
- Sample #3 where absorbent gelling particle is treated with polyethyleneimine alternatively during absorbent gelling particle production process, the laminate shows even faster acquisition speeds.
- the degree of bonding forces in Sample #3 is higher than that of Sample #1.
- the rewet values of the invention maintain control diaper that is used to the absorbent material of no polycationic polymer.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Hematology (AREA)
- Textile Engineering (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Absorbent Articles And Supports Therefor (AREA)
Abstract
Description
TABLE 1 |
Tea bag gel volume and effects on wet strength by adding |
polyethyleneimine |
Polyethylene- | Wet Burst | Tea bag gel | ||
Samples | imine (%) | Strength (gm) | volume (g/g) | |
|
Polycationic polymer is added in situ | 2 | 61 | 33 |
during laminate making process. | ||||
Sample #2 | No polycationic polymer is included. | 0 | 25 | 35 |
|
Polycationic polymer is added during | 2 | 45 | 31 |
absorbent gelling particle making | ||||
process. Subsequently this absorbent | ||||
gelling particle is used to make | ||||
laminate structure. | ||||
Sample #4 | No glue microfiber. | 0 | 0 | 38 |
TABLE 2 |
Acquisition and rewet performances of the invention in diaper |
application. |
Acquisition Speed (sec) | Pad Rewet (gm) | |
50 mL, 100 mL, 150 mL, 200mL of | at 200 mL loading of | |
Samples | synthetic urine loading | synthetic |
Sample # |
1 | 20 | 31 | 35 | 43 | 0.50 |
Sample #2 | 18 | 28 | 39 | 55 | 0.50 |
|
16 | 20 | 23 | 28 | 0.50 |
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/171,049 US6730387B2 (en) | 1996-04-24 | 1997-04-24 | Absorbent materials having improved structural stability in dry and wet states and making methods therefor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPH8-102736 | 1996-04-24 | ||
JP10273696A JP3720118B2 (en) | 1996-04-24 | 1996-04-24 | Absorbent material with improved structural stability in dry and wet conditions and process for its preparation |
US09/171,049 US6730387B2 (en) | 1996-04-24 | 1997-04-24 | Absorbent materials having improved structural stability in dry and wet states and making methods therefor |
PCT/US1997/006603 WO1997039780A1 (en) | 1996-04-24 | 1997-04-24 | Absorbent materials having improved structural stability in dry and wet states and making methods therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030060112A1 US20030060112A1 (en) | 2003-03-27 |
US6730387B2 true US6730387B2 (en) | 2004-05-04 |
Family
ID=32232533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/171,049 Expired - Fee Related US6730387B2 (en) | 1996-04-24 | 1997-04-24 | Absorbent materials having improved structural stability in dry and wet states and making methods therefor |
Country Status (1)
Country | Link |
---|---|
US (1) | US6730387B2 (en) |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050070867A1 (en) * | 2003-09-25 | 2005-03-31 | The Procter & Gamble Company | Absorbent articles comprising fluid acquisition zones with superabsorbent polymers |
US20060024433A1 (en) * | 2004-07-28 | 2006-02-02 | The Procter & Gamble Company | Indirect printing of AGM |
US20070134492A1 (en) * | 2002-08-26 | 2007-06-14 | Bruno Ehrnsperger | Absorbent cores for absorbent diapers having reduced thickness and improved liquid handling and retention performance and comprising a super absorbent polymer |
US20080032888A1 (en) * | 2004-05-07 | 2008-02-07 | Masatoshi Nakamura | Water Absorbing Agent and Production Method Thereof |
US20080311815A1 (en) * | 2003-06-19 | 2008-12-18 | Eastman Chemical Company | Nonwovens produced from multicomponent fibers |
US7635745B2 (en) | 2006-01-31 | 2009-12-22 | Eastman Chemical Company | Sulfopolyester recovery |
US20100224311A1 (en) * | 2004-07-28 | 2010-09-09 | Horst Blessing | Process For Producing Absorbent Core Structures |
US20100269995A1 (en) * | 2009-04-24 | 2010-10-28 | Eastman Chemical Company | Sulfopolyesters for paper strength and process |
US7892993B2 (en) | 2003-06-19 | 2011-02-22 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US7902094B2 (en) | 2003-06-19 | 2011-03-08 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US20110162989A1 (en) * | 2010-01-06 | 2011-07-07 | Ducker Paul M | Ultra thin laminate with particulates in dense packages |
US20110166540A1 (en) * | 2010-01-06 | 2011-07-07 | Ching-Yun Morris Yang | Ultra-thin absorbent article |
US20130174959A1 (en) * | 2012-01-11 | 2013-07-11 | Nordson Corporation | Method of manufacturing a composite superabsorbent core structure |
US8840757B2 (en) | 2012-01-31 | 2014-09-23 | Eastman Chemical Company | Processes to produce short cut microfibers |
US8952116B2 (en) | 2009-09-29 | 2015-02-10 | Nippon Shokubai Co., Ltd. | Particulate water absorbent and process for production thereof |
US9062140B2 (en) | 2005-04-07 | 2015-06-23 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin |
US9066838B2 (en) | 2011-06-10 | 2015-06-30 | The Procter & Gamble Company | Disposable diaper having reduced absorbent core to backsheet gluing |
US9090718B2 (en) | 2006-03-24 | 2015-07-28 | Nippon Shokubai Co., Ltd. | Water-absorbing resin and method for manufacturing the same |
US9216116B2 (en) | 2012-12-10 | 2015-12-22 | The Procter & Gamble Company | Absorbent articles with channels |
US9241845B2 (en) | 2007-06-18 | 2016-01-26 | The Procter & Gamble Company | Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material |
US9273417B2 (en) | 2010-10-21 | 2016-03-01 | Eastman Chemical Company | Wet-Laid process to produce a bound nonwoven article |
US9303357B2 (en) | 2013-04-19 | 2016-04-05 | Eastman Chemical Company | Paper and nonwoven articles comprising synthetic microfiber binders |
US9333120B2 (en) | 2005-05-20 | 2016-05-10 | The Procter & Gamble Company | Disposable absorbent article having breathable side flaps |
US9375358B2 (en) | 2012-12-10 | 2016-06-28 | The Procter & Gamble Company | Absorbent article with high absorbent material content |
US9468566B2 (en) | 2011-06-10 | 2016-10-18 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
US9532910B2 (en) | 2012-11-13 | 2017-01-03 | The Procter & Gamble Company | Absorbent articles with channels and signals |
US9598802B2 (en) | 2013-12-17 | 2017-03-21 | Eastman Chemical Company | Ultrafiltration process for producing a sulfopolyester concentrate |
US9605126B2 (en) | 2013-12-17 | 2017-03-28 | Eastman Chemical Company | Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion |
US9713556B2 (en) | 2012-12-10 | 2017-07-25 | The Procter & Gamble Company | Absorbent core with high superabsorbent material content |
US9713557B2 (en) | 2012-12-10 | 2017-07-25 | The Procter & Gamble Company | Absorbent article with high absorbent material content |
US9763835B2 (en) | 2003-02-12 | 2017-09-19 | The Procter & Gamble Company | Comfortable diaper |
US9789011B2 (en) | 2013-08-27 | 2017-10-17 | The Procter & Gamble Company | Absorbent articles with channels |
US9789009B2 (en) | 2013-12-19 | 2017-10-17 | The Procter & Gamble Company | Absorbent articles having channel-forming areas and wetness indicator |
US9926449B2 (en) | 2005-12-22 | 2018-03-27 | Nippon Shokubai Co., Ltd. | Water-absorbent resin composition, method of manufacturing the same, and absorbent article |
US9968497B2 (en) | 2014-05-27 | 2018-05-15 | The Procter & Gamble Company | Absorbent core with curved channel-forming areas |
US9974698B2 (en) | 2014-05-27 | 2018-05-22 | The Procter & Gamble Company | Absorbent core with curved and straight absorbent material areas |
US9974699B2 (en) | 2011-06-10 | 2018-05-22 | The Procter & Gamble Company | Absorbent core for disposable absorbent articles |
US9987176B2 (en) | 2013-08-27 | 2018-06-05 | The Procter & Gamble Company | Absorbent articles with channels |
US10052242B2 (en) | 2014-05-27 | 2018-08-21 | The Procter & Gamble Company | Absorbent core with absorbent material pattern |
US10071002B2 (en) | 2013-06-14 | 2018-09-11 | The Procter & Gamble Company | Absorbent article and absorbent core forming channels when wet |
US10130527B2 (en) | 2013-09-19 | 2018-11-20 | The Procter & Gamble Company | Absorbent cores having material free areas |
US10137039B2 (en) | 2013-12-19 | 2018-11-27 | The Procter & Gamble Company | Absorbent cores having channel-forming areas and C-wrap seals |
US10149788B2 (en) | 2011-06-10 | 2018-12-11 | The Procter & Gamble Company | Disposable diapers |
US10292875B2 (en) | 2013-09-16 | 2019-05-21 | The Procter & Gamble Company | Absorbent articles with channels and signals |
US10322040B2 (en) | 2015-03-16 | 2019-06-18 | The Procter & Gamble Company | Absorbent articles with improved cores |
US10441481B2 (en) | 2014-05-27 | 2019-10-15 | The Proctre & Gamble Company | Absorbent core with absorbent material pattern |
US10470948B2 (en) | 2003-02-12 | 2019-11-12 | The Procter & Gamble Company | Thin and dry diaper |
US10507144B2 (en) | 2015-03-16 | 2019-12-17 | The Procter & Gamble Company | Absorbent articles with improved strength |
US10543129B2 (en) | 2015-05-29 | 2020-01-28 | The Procter & Gamble Company | Absorbent articles having channels and wetness indicator |
US10561546B2 (en) | 2011-06-10 | 2020-02-18 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
US10632029B2 (en) | 2015-11-16 | 2020-04-28 | The Procter & Gamble Company | Absorbent cores having material free areas |
US10639215B2 (en) | 2012-12-10 | 2020-05-05 | The Procter & Gamble Company | Absorbent articles with channels and/or pockets |
US10736795B2 (en) | 2015-05-12 | 2020-08-11 | The Procter & Gamble Company | Absorbent article with improved core-to-backsheet adhesive |
US10842690B2 (en) | 2016-04-29 | 2020-11-24 | The Procter & Gamble Company | Absorbent core with profiled distribution of absorbent material |
US10888469B2 (en) | 2017-05-24 | 2021-01-12 | The Procter & Gamble Company | Absorbent article with raisable topsheet |
US11123240B2 (en) | 2016-04-29 | 2021-09-21 | The Procter & Gamble Company | Absorbent core with transversal folding lines |
US11207220B2 (en) | 2013-09-16 | 2021-12-28 | The Procter & Gamble Company | Absorbent articles with channels and signals |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4795612B2 (en) * | 2000-05-23 | 2011-10-19 | 株式会社リブドゥコーポレーション | Ultra-thin absorbent sheet body, disposable absorbent article provided with ultra-thin absorbent sheet body, and ultra-thin absorbent sheet body manufacturing apparatus |
US7638570B2 (en) * | 2003-02-10 | 2009-12-29 | Nippon Shokubai Co., Ltd. | Water-absorbing agent |
EP1512417B1 (en) * | 2003-09-02 | 2013-06-19 | Nippon Shokubai Co., Ltd. | Particulate water-absorbent resin composition |
ATE391518T1 (en) * | 2003-09-25 | 2008-04-15 | Procter & Gamble | ABSORBENT ARTICLES CONTAINING SUPERABSORBENT POLYMER PARTICLES, WITH A NON-COVALENTLY BONDED COATING |
US7662745B2 (en) | 2003-12-18 | 2010-02-16 | Kimberly-Clark Corporation | Stretchable absorbent composites having high permeability |
US20050288182A1 (en) * | 2004-06-18 | 2005-12-29 | Kazushi Torii | Water absorbent resin composition and production method thereof |
US7938813B2 (en) * | 2004-06-30 | 2011-05-10 | Kimberly-Clark Worldwide, Inc. | Absorbent article having shaped absorbent core formed on a substrate |
US7772456B2 (en) * | 2004-06-30 | 2010-08-10 | Kimberly-Clark Worldwide, Inc. | Stretchable absorbent composite with low superaborbent shake-out |
US7247215B2 (en) * | 2004-06-30 | 2007-07-24 | Kimberly-Clark Worldwide, Inc. | Method of making absorbent articles having shaped absorbent cores on a substrate |
EP1616583B1 (en) * | 2004-07-16 | 2008-06-25 | Collano AG | Hot-melt composition comprising a hydrocolloid |
EP2286776B1 (en) † | 2004-07-28 | 2017-07-12 | The Procter and Gamble Company | Process for producing absorbent core structures |
US20060069365A1 (en) * | 2004-09-30 | 2006-03-30 | Sperl Michael D | Absorbent composite having selective regions for improved attachment |
US20060135932A1 (en) * | 2004-12-21 | 2006-06-22 | Abuto Frank P | Stretchable absorbent core and wrap |
JP2008545598A (en) * | 2005-06-10 | 2008-12-18 | ザ・グラッド・プロダクツ・カンパニー | Bag with leak prevention function |
EP1776966A1 (en) * | 2005-10-21 | 2007-04-25 | The Procter and Gamble Company | Absorbent article having improved absorption and retention capacity for proteinaceous or serous body fluids |
DE602006013565D1 (en) * | 2005-10-21 | 2010-05-27 | Procter & Gamble | Absorbent article with increased ability to absorb and retain proteinaceous or serous body fluids |
US20070135785A1 (en) * | 2005-12-12 | 2007-06-14 | Jian Qin | Absorbent articles comprising thermoplastic coated superabsorbent polymer materials |
EP1829563B1 (en) * | 2006-03-03 | 2013-05-01 | The Procter and Gamble Company | Thermoplastic absorbent material having increased absorption and retention capacity for proteinaceous or serous body fluid |
CN102698719B (en) | 2006-03-27 | 2016-04-27 | 株式会社日本触媒 | Water absorbing agent, use the water absorbent core of described water absorbing agent and prepare the method for water absorbing agent |
US20070255243A1 (en) * | 2006-04-28 | 2007-11-01 | Kaun James M | Dimensionally stable stretchable absorbent composite |
JP5751998B2 (en) | 2010-09-29 | 2015-07-22 | ユニ・チャーム株式会社 | State quantity distribution measuring apparatus and method for measuring state quantity distribution of sample |
Citations (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3669103A (en) | 1966-05-31 | 1972-06-13 | Dow Chemical Co | Absorbent product containing a hydrocelloidal composition |
US3670731A (en) | 1966-05-20 | 1972-06-20 | Johnson & Johnson | Absorbent product containing a hydrocolloidal composition |
US3860003A (en) | 1973-11-21 | 1975-01-14 | Procter & Gamble | Contractable side portions for disposable diaper |
US4062817A (en) | 1977-04-04 | 1977-12-13 | The B.F. Goodrich Company | Water absorbent polymers comprising unsaturated carboxylic acid, acrylic ester containing alkyl group 10-30 carbon atoms, and another acrylic ester containing alkyl group 2-8 carbon atoms |
US4076663A (en) | 1975-03-27 | 1978-02-28 | Sanyo Chemical Industries, Ltd. | Water absorbing starch resins |
US4093776A (en) | 1976-10-07 | 1978-06-06 | Kao Soap Co., Ltd. | Process for preparation of spontaneously-crosslinked alkali metal acrylate polymers |
US4285343A (en) | 1979-10-16 | 1981-08-25 | Mcnair Rosetta M | Sanitary napkin |
US4468428A (en) * | 1982-06-01 | 1984-08-28 | The Procter & Gamble Company | Hydrophilic microfibrous absorbent webs |
EP0156160A2 (en) * | 1981-11-24 | 1985-10-02 | Kimberly-Clark Limited | Microfibre web product |
US4608047A (en) | 1985-05-28 | 1986-08-26 | Personal Products Company | Sanitary napkin attachment means |
US4666983A (en) | 1982-04-19 | 1987-05-19 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Absorbent article |
US4687478A (en) | 1984-03-20 | 1987-08-18 | The Procter & Gamble Company | Shaped sanitary napkin with flaps |
US4695278A (en) | 1985-10-11 | 1987-09-22 | The Procter & Gamble Company | Absorbent article having dual cuffs |
US4734478A (en) | 1984-07-02 | 1988-03-29 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Water absorbing agent |
US4808178A (en) | 1981-07-17 | 1989-02-28 | The Proctor & Gamble Company | Disposable absorbent article having elasticized flaps provided with leakage resistant portions |
US4816025A (en) | 1986-10-10 | 1989-03-28 | The Procter & Gamble Company | Absorbent article having a containment pocket |
US4834735A (en) | 1986-07-18 | 1989-05-30 | The Proctor & Gamble Company | High density absorbent members having lower density and lower basis weight acquisition zones |
US4842666A (en) | 1987-03-07 | 1989-06-27 | H. B. Fuller Company | Process for the permanent joining of stretchable threadlike or small ribbonlike elastic elements to a flat substrate, as well as use thereof for producing frilled sections of film or foil strip |
US4888093A (en) | 1986-06-27 | 1989-12-19 | The Procter & Gamble Cellulose Company | Individualized crosslinked fibers and process for making said fibers |
US4889597A (en) | 1986-06-27 | 1989-12-26 | The Procter & Gamble Cellulose Company | Process for making wet-laid structures containing individualized stiffened fibers |
US4889596A (en) | 1986-06-27 | 1989-12-26 | The Proter & Gamble Cellulose Company | Process for making individualized, crosslinked fibers and fibers thereof |
US4898647A (en) | 1985-12-24 | 1990-02-06 | Gould, Inc. | Process and apparatus for electroplating copper foil |
US4898642A (en) | 1986-06-27 | 1990-02-06 | The Procter & Gamble Cellulose Company | Twisted, chemically stiffened cellulosic fibers and absorbent structures made therefrom |
EP0493011A2 (en) | 1990-12-21 | 1992-07-01 | Nippon Shokubai Co., Ltd. | Water absorbent matter and method for producing it as well as water absorbent and method for producing it |
US5151092A (en) | 1991-06-13 | 1992-09-29 | The Procter & Gamble Company | Absorbent article with dynamic elastic waist feature having a predisposed resilient flexural hinge |
EP0612533A1 (en) | 1993-02-24 | 1994-08-31 | SANYO CHEMICAL INDUSTRIES, Ltd. | Water absorbent composition and material |
WO1995022356A1 (en) | 1994-02-17 | 1995-08-24 | The Procter & Gamble Company | Absorbent materials having improved absorbent property and methods for making the same |
WO1995026209A1 (en) | 1994-03-29 | 1995-10-05 | The Procter & Gamble Company | Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer |
US5542941A (en) | 1991-11-29 | 1996-08-06 | The Procter & Gamble Company | Absorbent article having elasticized side flaps |
US5645542A (en) * | 1994-12-29 | 1997-07-08 | Kimberly-Clark Worldwide, Inc. | Elastomeric absorbent structure |
US5733629A (en) * | 1996-10-28 | 1998-03-31 | Minnesota Mining And Manufacturing Company | Wet slip resistant sorbent article |
US5849405A (en) * | 1994-08-31 | 1998-12-15 | The Procter & Gamble Company | Absorbent materials having improved absorbent property and methods for making the same |
-
1997
- 1997-04-24 US US09/171,049 patent/US6730387B2/en not_active Expired - Fee Related
Patent Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3670731A (en) | 1966-05-20 | 1972-06-20 | Johnson & Johnson | Absorbent product containing a hydrocolloidal composition |
US3669103A (en) | 1966-05-31 | 1972-06-13 | Dow Chemical Co | Absorbent product containing a hydrocelloidal composition |
US3860003B1 (en) | 1973-11-21 | 1989-04-18 | ||
US3860003A (en) | 1973-11-21 | 1975-01-14 | Procter & Gamble | Contractable side portions for disposable diaper |
US3860003B2 (en) | 1973-11-21 | 1990-06-19 | Contractable side portions for disposable diaper | |
US4076663A (en) | 1975-03-27 | 1978-02-28 | Sanyo Chemical Industries, Ltd. | Water absorbing starch resins |
US4093776A (en) | 1976-10-07 | 1978-06-06 | Kao Soap Co., Ltd. | Process for preparation of spontaneously-crosslinked alkali metal acrylate polymers |
US4062817A (en) | 1977-04-04 | 1977-12-13 | The B.F. Goodrich Company | Water absorbent polymers comprising unsaturated carboxylic acid, acrylic ester containing alkyl group 10-30 carbon atoms, and another acrylic ester containing alkyl group 2-8 carbon atoms |
US4285343A (en) | 1979-10-16 | 1981-08-25 | Mcnair Rosetta M | Sanitary napkin |
US4808178A (en) | 1981-07-17 | 1989-02-28 | The Proctor & Gamble Company | Disposable absorbent article having elasticized flaps provided with leakage resistant portions |
EP0156160A2 (en) * | 1981-11-24 | 1985-10-02 | Kimberly-Clark Limited | Microfibre web product |
US4666983A (en) | 1982-04-19 | 1987-05-19 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Absorbent article |
US4468428A (en) * | 1982-06-01 | 1984-08-28 | The Procter & Gamble Company | Hydrophilic microfibrous absorbent webs |
US4687478A (en) | 1984-03-20 | 1987-08-18 | The Procter & Gamble Company | Shaped sanitary napkin with flaps |
US4734478A (en) | 1984-07-02 | 1988-03-29 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Water absorbing agent |
US4608047A (en) | 1985-05-28 | 1986-08-26 | Personal Products Company | Sanitary napkin attachment means |
US4695278A (en) | 1985-10-11 | 1987-09-22 | The Procter & Gamble Company | Absorbent article having dual cuffs |
US4898647A (en) | 1985-12-24 | 1990-02-06 | Gould, Inc. | Process and apparatus for electroplating copper foil |
US4888093A (en) | 1986-06-27 | 1989-12-19 | The Procter & Gamble Cellulose Company | Individualized crosslinked fibers and process for making said fibers |
US4889597A (en) | 1986-06-27 | 1989-12-26 | The Procter & Gamble Cellulose Company | Process for making wet-laid structures containing individualized stiffened fibers |
US4889596A (en) | 1986-06-27 | 1989-12-26 | The Proter & Gamble Cellulose Company | Process for making individualized, crosslinked fibers and fibers thereof |
US4898642A (en) | 1986-06-27 | 1990-02-06 | The Procter & Gamble Cellulose Company | Twisted, chemically stiffened cellulosic fibers and absorbent structures made therefrom |
US4834735A (en) | 1986-07-18 | 1989-05-30 | The Proctor & Gamble Company | High density absorbent members having lower density and lower basis weight acquisition zones |
US4816025A (en) | 1986-10-10 | 1989-03-28 | The Procter & Gamble Company | Absorbent article having a containment pocket |
US4842666A (en) | 1987-03-07 | 1989-06-27 | H. B. Fuller Company | Process for the permanent joining of stretchable threadlike or small ribbonlike elastic elements to a flat substrate, as well as use thereof for producing frilled sections of film or foil strip |
US4842666B1 (en) | 1987-03-07 | 1992-10-13 | Fuller H B Co | |
EP0493011A2 (en) | 1990-12-21 | 1992-07-01 | Nippon Shokubai Co., Ltd. | Water absorbent matter and method for producing it as well as water absorbent and method for producing it |
US5151092A (en) | 1991-06-13 | 1992-09-29 | The Procter & Gamble Company | Absorbent article with dynamic elastic waist feature having a predisposed resilient flexural hinge |
US5542941A (en) | 1991-11-29 | 1996-08-06 | The Procter & Gamble Company | Absorbent article having elasticized side flaps |
EP0612533A1 (en) | 1993-02-24 | 1994-08-31 | SANYO CHEMICAL INDUSTRIES, Ltd. | Water absorbent composition and material |
WO1995022356A1 (en) | 1994-02-17 | 1995-08-24 | The Procter & Gamble Company | Absorbent materials having improved absorbent property and methods for making the same |
WO1995026209A1 (en) | 1994-03-29 | 1995-10-05 | The Procter & Gamble Company | Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer |
US5669894A (en) * | 1994-03-29 | 1997-09-23 | The Procter & Gamble Company | Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer |
US5849405A (en) * | 1994-08-31 | 1998-12-15 | The Procter & Gamble Company | Absorbent materials having improved absorbent property and methods for making the same |
US5645542A (en) * | 1994-12-29 | 1997-07-08 | Kimberly-Clark Worldwide, Inc. | Elastomeric absorbent structure |
US5733629A (en) * | 1996-10-28 | 1998-03-31 | Minnesota Mining And Manufacturing Company | Wet slip resistant sorbent article |
Cited By (148)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070134492A1 (en) * | 2002-08-26 | 2007-06-14 | Bruno Ehrnsperger | Absorbent cores for absorbent diapers having reduced thickness and improved liquid handling and retention performance and comprising a super absorbent polymer |
US7488535B2 (en) | 2002-08-26 | 2009-02-10 | The Procter & Gamble Company | Absorbent cores for absorbent diapers having reduced thickness and improved liquid handling and retention performance and comprising a super absorbent polymer |
US11135096B2 (en) | 2003-02-12 | 2021-10-05 | The Procter & Gamble Company | Comfortable diaper |
US10470948B2 (en) | 2003-02-12 | 2019-11-12 | The Procter & Gamble Company | Thin and dry diaper |
US11793682B2 (en) | 2003-02-12 | 2023-10-24 | The Procter & Gamble Company | Thin and dry diaper |
US11234868B2 (en) | 2003-02-12 | 2022-02-01 | The Procter & Gamble Company | Comfortable diaper |
US9763835B2 (en) | 2003-02-12 | 2017-09-19 | The Procter & Gamble Company | Comfortable diaper |
US10660800B2 (en) | 2003-02-12 | 2020-05-26 | The Procter & Gamble Company | Comfortable diaper |
US8262958B2 (en) | 2003-06-19 | 2012-09-11 | Eastman Chemical Company | Process of making woven articles comprising water-dispersible multicomponent fibers |
US8216953B2 (en) | 2003-06-19 | 2012-07-10 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8557374B2 (en) | 2003-06-19 | 2013-10-15 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US20080311815A1 (en) * | 2003-06-19 | 2008-12-18 | Eastman Chemical Company | Nonwovens produced from multicomponent fibers |
US7892993B2 (en) | 2003-06-19 | 2011-02-22 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US7902094B2 (en) | 2003-06-19 | 2011-03-08 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US20110089595A1 (en) * | 2003-06-19 | 2011-04-21 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US20110089600A1 (en) * | 2003-06-19 | 2011-04-21 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US20110089601A1 (en) * | 2003-06-19 | 2011-04-21 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US20110105975A1 (en) * | 2003-06-19 | 2011-05-05 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8444896B2 (en) | 2003-06-19 | 2013-05-21 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8444895B2 (en) | 2003-06-19 | 2013-05-21 | Eastman Chemical Company | Processes for making water-dispersible and multicomponent fibers from sulfopolyesters |
US20110168625A1 (en) * | 2003-06-19 | 2011-07-14 | Eastman Chemical Company | Nonwovens produced from multicomponent fibers |
US8148278B2 (en) | 2003-06-19 | 2012-04-03 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8158244B2 (en) | 2003-06-19 | 2012-04-17 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8163385B2 (en) | 2003-06-19 | 2012-04-24 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8178199B2 (en) | 2003-06-19 | 2012-05-15 | Eastman Chemical Company | Nonwovens produced from multicomponent fibers |
US8435908B2 (en) | 2003-06-19 | 2013-05-07 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8227362B2 (en) | 2003-06-19 | 2012-07-24 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8236713B2 (en) | 2003-06-19 | 2012-08-07 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8247335B2 (en) | 2003-06-19 | 2012-08-21 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8257628B2 (en) | 2003-06-19 | 2012-09-04 | Eastman Chemical Company | Process of making water-dispersible multicomponent fibers from sulfopolyesters |
US8513147B2 (en) | 2003-06-19 | 2013-08-20 | Eastman Chemical Company | Nonwovens produced from multicomponent fibers |
US8273451B2 (en) | 2003-06-19 | 2012-09-25 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8277706B2 (en) | 2003-06-19 | 2012-10-02 | Eastman Chemical Company | Process of making water-dispersible multicomponent fibers from sulfopolyesters |
US8314041B2 (en) | 2003-06-19 | 2012-11-20 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US8691130B2 (en) | 2003-06-19 | 2014-04-08 | Eastman Chemical Company | Process of making water-dispersible multicomponent fibers from sulfopolyesters |
US8623247B2 (en) | 2003-06-19 | 2014-01-07 | Eastman Chemical Company | Process of making water-dispersible multicomponent fibers from sulfopolyesters |
US8388877B2 (en) | 2003-06-19 | 2013-03-05 | Eastman Chemical Company | Process of making water-dispersible multicomponent fibers from sulfopolyesters |
US8398907B2 (en) | 2003-06-19 | 2013-03-19 | Eastman Chemical Company | Process of making water-dispersible multicomponent fibers from sulfopolyesters |
US20050070867A1 (en) * | 2003-09-25 | 2005-03-31 | The Procter & Gamble Company | Absorbent articles comprising fluid acquisition zones with superabsorbent polymers |
US7847144B2 (en) | 2003-09-25 | 2010-12-07 | The Procter & Gamble Company | Absorbent articles comprising fluid acquisition zones with superabsorbent polymers |
US8846823B2 (en) | 2004-05-07 | 2014-09-30 | Nippon Shokubai Co., Ltd. | Water absorbing agent and production method thereof |
US20080032888A1 (en) * | 2004-05-07 | 2008-02-07 | Masatoshi Nakamura | Water Absorbing Agent and Production Method Thereof |
US8784594B2 (en) | 2004-07-28 | 2014-07-22 | The Procter & Gamble Company | Process for producing absorbent core structures |
US20100224311A1 (en) * | 2004-07-28 | 2010-09-09 | Horst Blessing | Process For Producing Absorbent Core Structures |
US20060024433A1 (en) * | 2004-07-28 | 2006-02-02 | The Procter & Gamble Company | Indirect printing of AGM |
US8364451B2 (en) | 2004-07-28 | 2013-01-29 | The Proctor & Gamble Company | Process for producing sandwich structures with particulate material pattern |
US8343296B2 (en) | 2004-07-28 | 2013-01-01 | The Procter & Gamble Company | Process for producing absorbent core structures |
US8735645B2 (en) | 2004-07-28 | 2014-05-27 | The Procter & Gamble Company | Indirect printing of AGM |
US9782307B2 (en) | 2004-07-28 | 2017-10-10 | The Procter & Gamble Company | Indirect printing of AGM |
US9492334B2 (en) | 2004-07-28 | 2016-11-15 | The Procter & Gamble Company | Process for producing absorbent core structures |
US11185451B2 (en) | 2004-07-28 | 2021-11-30 | The Procter & Gamble Company | Indirect printing of AGM |
US7838722B2 (en) * | 2004-07-28 | 2010-11-23 | The Procter & Gamble Company | Indirect printing of AGM |
US8855979B2 (en) | 2004-07-28 | 2014-10-07 | The Procter & Gamble Company | Process for producing sandwich structures with particulate material pattern |
US20110017398A1 (en) * | 2004-07-28 | 2011-01-27 | The Procter & Gamble Company | Indirect Printing of AGM |
US9062140B2 (en) | 2005-04-07 | 2015-06-23 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin |
US11096839B2 (en) | 2005-05-20 | 2021-08-24 | The Procter & Gamble Company | Disposable absorbent article having breathable side flaps |
US9333120B2 (en) | 2005-05-20 | 2016-05-10 | The Procter & Gamble Company | Disposable absorbent article having breathable side flaps |
US9974697B2 (en) | 2005-05-20 | 2018-05-22 | The Procter & Gamble Company | Disposable absorbent article having breathable side flaps |
US10039676B2 (en) | 2005-05-20 | 2018-08-07 | The Procter & Gamble Company | Disposable absorbent article comprising pockets |
US11779495B2 (en) | 2005-05-20 | 2023-10-10 | The Procter And Gamble Company | Disposable absorbent article having breathable side flaps |
US9926449B2 (en) | 2005-12-22 | 2018-03-27 | Nippon Shokubai Co., Ltd. | Water-absorbent resin composition, method of manufacturing the same, and absorbent article |
US10358558B2 (en) | 2005-12-22 | 2019-07-23 | Nippon Shokubai Co., Ltd. | Water-absorbent resin composition, method of manufacturing the same, and absorbent article |
US7635745B2 (en) | 2006-01-31 | 2009-12-22 | Eastman Chemical Company | Sulfopolyester recovery |
US9090718B2 (en) | 2006-03-24 | 2015-07-28 | Nippon Shokubai Co., Ltd. | Water-absorbing resin and method for manufacturing the same |
US9241845B2 (en) | 2007-06-18 | 2016-01-26 | The Procter & Gamble Company | Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material |
US20100269995A1 (en) * | 2009-04-24 | 2010-10-28 | Eastman Chemical Company | Sulfopolyesters for paper strength and process |
US8512519B2 (en) | 2009-04-24 | 2013-08-20 | Eastman Chemical Company | Sulfopolyesters for paper strength and process |
US8952116B2 (en) | 2009-09-29 | 2015-02-10 | Nippon Shokubai Co., Ltd. | Particulate water absorbent and process for production thereof |
US9775927B2 (en) | 2009-09-29 | 2017-10-03 | Nippon Shokubai Co., Ltd. | Particulate water absorbent and process for production thereof |
US20110166540A1 (en) * | 2010-01-06 | 2011-07-07 | Ching-Yun Morris Yang | Ultra-thin absorbent article |
US20110162989A1 (en) * | 2010-01-06 | 2011-07-07 | Ducker Paul M | Ultra thin laminate with particulates in dense packages |
US9549858B2 (en) | 2010-01-06 | 2017-01-24 | Ching-Yun Morris Yang | Ultra-thin absorbent article |
US10940055B2 (en) | 2010-01-06 | 2021-03-09 | Edgewell Personal Care Brands, Llc | Ultra-thin absorbent article |
US11432969B2 (en) | 2010-01-06 | 2022-09-06 | Eam Corporation | Ultra thin laminate with particulates in dense packages |
US9273417B2 (en) | 2010-10-21 | 2016-03-01 | Eastman Chemical Company | Wet-Laid process to produce a bound nonwoven article |
US10893987B2 (en) | 2011-06-10 | 2021-01-19 | The Procter & Gamble Company | Disposable diapers with main channels and secondary channels |
US10130525B2 (en) | 2011-06-10 | 2018-11-20 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
US10149788B2 (en) | 2011-06-10 | 2018-12-11 | The Procter & Gamble Company | Disposable diapers |
US11135105B2 (en) | 2011-06-10 | 2021-10-05 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
US9173784B2 (en) | 2011-06-10 | 2015-11-03 | The Procter & Gamble Company | Disposable diaper having reduced absorbent core to backsheet gluing |
US11911250B2 (en) | 2011-06-10 | 2024-02-27 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
US9066838B2 (en) | 2011-06-10 | 2015-06-30 | The Procter & Gamble Company | Disposable diaper having reduced absorbent core to backsheet gluing |
US9468566B2 (en) | 2011-06-10 | 2016-10-18 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
US11110011B2 (en) | 2011-06-10 | 2021-09-07 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
US10517777B2 (en) | 2011-06-10 | 2019-12-31 | The Procter & Gamble Company | Disposable diaper having first and second absorbent structures and channels |
US10561546B2 (en) | 2011-06-10 | 2020-02-18 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
US9649232B2 (en) | 2011-06-10 | 2017-05-16 | The Procter & Gamble Company | Disposable diaper having reduced absorbent core to backsheet gluing |
US11602467B2 (en) | 2011-06-10 | 2023-03-14 | The Procter & Gamble Company | Absorbent structure for absorbent articles |
US9974699B2 (en) | 2011-06-10 | 2018-05-22 | The Procter & Gamble Company | Absorbent core for disposable absorbent articles |
US20130174959A1 (en) * | 2012-01-11 | 2013-07-11 | Nordson Corporation | Method of manufacturing a composite superabsorbent core structure |
US8986474B2 (en) * | 2012-01-11 | 2015-03-24 | Nordson Corporation | Method of manufacturing a composite superabsorbent core structure |
US8871052B2 (en) | 2012-01-31 | 2014-10-28 | Eastman Chemical Company | Processes to produce short cut microfibers |
US8840757B2 (en) | 2012-01-31 | 2014-09-23 | Eastman Chemical Company | Processes to produce short cut microfibers |
US8840758B2 (en) | 2012-01-31 | 2014-09-23 | Eastman Chemical Company | Processes to produce short cut microfibers |
US8882963B2 (en) | 2012-01-31 | 2014-11-11 | Eastman Chemical Company | Processes to produce short cut microfibers |
US8906200B2 (en) | 2012-01-31 | 2014-12-09 | Eastman Chemical Company | Processes to produce short cut microfibers |
US9175440B2 (en) | 2012-01-31 | 2015-11-03 | Eastman Chemical Company | Processes to produce short-cut microfibers |
US9532910B2 (en) | 2012-11-13 | 2017-01-03 | The Procter & Gamble Company | Absorbent articles with channels and signals |
US10449097B2 (en) | 2012-11-13 | 2019-10-22 | The Procter & Gamble Company | Absorbent articles with channels and signals |
US10639215B2 (en) | 2012-12-10 | 2020-05-05 | The Procter & Gamble Company | Absorbent articles with channels and/or pockets |
US10966885B2 (en) | 2012-12-10 | 2021-04-06 | The Procter & Gamble Company | Absorbent article with high absorbent material content |
US12274609B2 (en) | 2012-12-10 | 2025-04-15 | The Procter & Gamble Company | Absorbent article with high absorbent material content |
US12016761B2 (en) | 2012-12-10 | 2024-06-25 | The Procter & Gamble Company | Absorbent article with high absorbent material content |
US9713557B2 (en) | 2012-12-10 | 2017-07-25 | The Procter & Gamble Company | Absorbent article with high absorbent material content |
US9713556B2 (en) | 2012-12-10 | 2017-07-25 | The Procter & Gamble Company | Absorbent core with high superabsorbent material content |
US10022280B2 (en) | 2012-12-10 | 2018-07-17 | The Procter & Gamble Company | Absorbent article with high absorbent material content |
US9375358B2 (en) | 2012-12-10 | 2016-06-28 | The Procter & Gamble Company | Absorbent article with high absorbent material content |
US9216116B2 (en) | 2012-12-10 | 2015-12-22 | The Procter & Gamble Company | Absorbent articles with channels |
US9303357B2 (en) | 2013-04-19 | 2016-04-05 | Eastman Chemical Company | Paper and nonwoven articles comprising synthetic microfiber binders |
US9617685B2 (en) | 2013-04-19 | 2017-04-11 | Eastman Chemical Company | Process for making paper and nonwoven articles comprising synthetic microfiber binders |
US10071002B2 (en) | 2013-06-14 | 2018-09-11 | The Procter & Gamble Company | Absorbent article and absorbent core forming channels when wet |
US11273086B2 (en) | 2013-06-14 | 2022-03-15 | The Procter & Gamble Company | Absorbent article and absorbent core forming channels when wet |
US11759376B2 (en) | 2013-08-27 | 2023-09-19 | The Procter & Gamble Company | Absorbent articles with channels |
US9987176B2 (en) | 2013-08-27 | 2018-06-05 | The Procter & Gamble Company | Absorbent articles with channels |
US10736794B2 (en) | 2013-08-27 | 2020-08-11 | The Procter & Gamble Company | Absorbent articles with channels |
US10765567B2 (en) | 2013-08-27 | 2020-09-08 | The Procter & Gamble Company | Absorbent articles with channels |
US11612523B2 (en) | 2013-08-27 | 2023-03-28 | The Procter & Gamble Company | Absorbent articles with channels |
US9789011B2 (en) | 2013-08-27 | 2017-10-17 | The Procter & Gamble Company | Absorbent articles with channels |
US11406544B2 (en) | 2013-08-27 | 2022-08-09 | The Procter & Gamble Company | Absorbent articles with channels |
US10335324B2 (en) | 2013-08-27 | 2019-07-02 | The Procter & Gamble Company | Absorbent articles with channels |
US11957551B2 (en) | 2013-09-16 | 2024-04-16 | The Procter & Gamble Company | Absorbent articles with channels and signals |
US11207220B2 (en) | 2013-09-16 | 2021-12-28 | The Procter & Gamble Company | Absorbent articles with channels and signals |
US10292875B2 (en) | 2013-09-16 | 2019-05-21 | The Procter & Gamble Company | Absorbent articles with channels and signals |
US11944526B2 (en) | 2013-09-19 | 2024-04-02 | The Procter & Gamble Company | Absorbent cores having material free areas |
US10130527B2 (en) | 2013-09-19 | 2018-11-20 | The Procter & Gamble Company | Absorbent cores having material free areas |
US11154437B2 (en) | 2013-09-19 | 2021-10-26 | The Procter & Gamble Company | Absorbent cores having material free areas |
US9605126B2 (en) | 2013-12-17 | 2017-03-28 | Eastman Chemical Company | Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion |
US9598802B2 (en) | 2013-12-17 | 2017-03-21 | Eastman Chemical Company | Ultrafiltration process for producing a sulfopolyester concentrate |
US10675187B2 (en) | 2013-12-19 | 2020-06-09 | The Procter & Gamble Company | Absorbent articles having channel-forming areas and wetness indicator |
US10828206B2 (en) | 2013-12-19 | 2020-11-10 | Procter & Gamble Company | Absorbent articles having channel-forming areas and wetness indicator |
US12226292B2 (en) | 2013-12-19 | 2025-02-18 | The Procter & Gamble Company | Absorbent articles having channel-forming areas and wetness indicator |
US9789009B2 (en) | 2013-12-19 | 2017-10-17 | The Procter & Gamble Company | Absorbent articles having channel-forming areas and wetness indicator |
US10137039B2 (en) | 2013-12-19 | 2018-11-27 | The Procter & Gamble Company | Absorbent cores having channel-forming areas and C-wrap seals |
US11191679B2 (en) | 2013-12-19 | 2021-12-07 | The Procter & Gamble Company | Absorbent articles having channel-forming areas and wetness indicator |
US9974698B2 (en) | 2014-05-27 | 2018-05-22 | The Procter & Gamble Company | Absorbent core with curved and straight absorbent material areas |
US10441481B2 (en) | 2014-05-27 | 2019-10-15 | The Proctre & Gamble Company | Absorbent core with absorbent material pattern |
US9968497B2 (en) | 2014-05-27 | 2018-05-15 | The Procter & Gamble Company | Absorbent core with curved channel-forming areas |
US10052242B2 (en) | 2014-05-27 | 2018-08-21 | The Procter & Gamble Company | Absorbent core with absorbent material pattern |
US10507144B2 (en) | 2015-03-16 | 2019-12-17 | The Procter & Gamble Company | Absorbent articles with improved strength |
US10322040B2 (en) | 2015-03-16 | 2019-06-18 | The Procter & Gamble Company | Absorbent articles with improved cores |
US10736795B2 (en) | 2015-05-12 | 2020-08-11 | The Procter & Gamble Company | Absorbent article with improved core-to-backsheet adhesive |
US11918445B2 (en) | 2015-05-12 | 2024-03-05 | The Procter & Gamble Company | Absorbent article with improved core-to-backsheet adhesive |
US10543129B2 (en) | 2015-05-29 | 2020-01-28 | The Procter & Gamble Company | Absorbent articles having channels and wetness indicator |
US11497657B2 (en) | 2015-05-29 | 2022-11-15 | The Procter & Gamble Company | Absorbent articles having channels and wetness indicator |
US10632029B2 (en) | 2015-11-16 | 2020-04-28 | The Procter & Gamble Company | Absorbent cores having material free areas |
US11123240B2 (en) | 2016-04-29 | 2021-09-21 | The Procter & Gamble Company | Absorbent core with transversal folding lines |
US10842690B2 (en) | 2016-04-29 | 2020-11-24 | The Procter & Gamble Company | Absorbent core with profiled distribution of absorbent material |
US10888469B2 (en) | 2017-05-24 | 2021-01-12 | The Procter & Gamble Company | Absorbent article with raisable topsheet |
Also Published As
Publication number | Publication date |
---|---|
US20030060112A1 (en) | 2003-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6730387B2 (en) | Absorbent materials having improved structural stability in dry and wet states and making methods therefor | |
CA2251931C (en) | Absorbent materials having improved structural stability in dry and wet states and making methods therefor | |
US6224961B1 (en) | Absorbent macrostructure made from mixtures of different hydrogel-forming absorbent polymers for improved fluid handling capability | |
KR100297891B1 (en) | Porous Absorption Macrostructure of Absorbent Particles Crosslinked with Cationic Amino-Epichlorohydrin Adducts | |
EP0691133B2 (en) | Absorbent gelling material comprising a dry mixture of at least two types of hydrogel-forming particles and method for making the same | |
KR100240359B1 (en) | Absorbent structure with specific particle size distribution of superabsorbent hydrogel-forming material | |
JP3071471B2 (en) | Hydrogel-forming absorbent polymer coated with antimicrobial agent | |
CA2138197C (en) | Absorbent composition including a microfiber | |
JP3345001B2 (en) | Porous absorbent polymer macrostructure and method for producing the same | |
EP0689817A2 (en) | Absorbent structure including an adhesive | |
US20030129915A1 (en) | Process for making a super absorbent polymer-impregnated non-woven absorbent core for personal hygiene products | |
GB2214201A (en) | Microfiber-containing absorbent structures and absorbent articles using such structures | |
WO1998006364A9 (en) | Absorbent macrostructure made from mixtures of different hydrogel-forming absorbent polymers for improved fluid handling capability | |
WO1998006364A1 (en) | Absorbent macrostructure made from mixtures of different hydrogel-forming absorbent polymers for improved fluid handling capability | |
US7351302B2 (en) | Method for binding particulate, water-absorbing, acid group-containing polymers to a base material | |
EP3936098A1 (en) | Absorbent article with improved core and method of making | |
US20230248580A1 (en) | Absorbent article with improved core and method of making | |
US20230240913A1 (en) | Absorbent article with improved core and method of making | |
EP3936096B1 (en) | Absorbent article with improved core and method of making | |
MXPA98008793A (en) | Absorbent materials that have improved structural stability in the dry and wet states, and methods to make myself | |
EP4011344B1 (en) | Absorbent articles | |
JPS63246159A (en) | Absorbable article | |
US20240000628A1 (en) | Absorbent articles and methods of making | |
EP3936097A1 (en) | Apparatus and method for the production of absorbent articles with improved core | |
MXPA98002684A (en) | Absorbent material that has improved absorbent permeability and method to make my |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PROCTER & GAMBLE COMPANY, THE, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REZAI, EBRAHIM;HSUEH, KESYIN;REEL/FRAME:010763/0048 Effective date: 19980317 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20160504 |