US6605349B2 - Deformable, shrinkable fiber and a process for the making thereof - Google Patents
Deformable, shrinkable fiber and a process for the making thereof Download PDFInfo
- Publication number
- US6605349B2 US6605349B2 US10/224,439 US22443902A US6605349B2 US 6605349 B2 US6605349 B2 US 6605349B2 US 22443902 A US22443902 A US 22443902A US 6605349 B2 US6605349 B2 US 6605349B2
- Authority
- US
- United States
- Prior art keywords
- fiber
- glass transition
- wet
- fibers
- transition temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/253—Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2927—Rod, strand, filament or fiber including structurally defined particulate matter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2929—Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/30—Woven fabric [i.e., woven strand or strip material]
- Y10T442/3065—Including strand which is of specific structural definition
Definitions
- the present invention relates to a deformable, shrinkable fiber that is stable at body temperatures in the dry state but shrinks and distorts when it contacts body fluids such as urine and menses which are at body temperature in the wet state.
- the present invention also relates to a process for making the fiber and articles made of the fiber.
- Gel blocking occurs when particles of a superabsorbent polymer (“SAP”) are wetted and the particles swell, inhibiting fluid transmission to other regions of the absorbent article. Leakage from the absorbent article can occur before achieving maximum use of the SAP or before the fluid can diffuse past the blocking particles into the remainder of the absorbent article. Gel blocking typically occurs in absorbent articles containing high levels, typically 30 to 40%, of SAP and higher.
- SAP superabsorbent polymer
- SAP is typically blended with cellulose fluff pulp or modified cellulose pulps.
- the problem is most prevalent when the level of SAP exceeds 40% by weight in these blends.
- the continuous barrier formed by the gel prohibits additional penetration of the structure by more fluid, thus sealing much of the SAP from the fluid. The end result is that the maximum benefit of the product is not achieved.
- the articles of the present invention employ shrinkable fibers yet eliminate gel blocking. Attempts have been made in the past to use shrinkable fibers in products such as diapers but such attempts have been unsuccessful in eliminating the problem of gel blocking.
- U.S. Pat. No. 4,357,938 discloses a disposable diaper comprising a water-absorbing layer located between a liquid-permeable surface sheet and a liquid impermeable backing sheet, wherein water-absorbing shrinkable fibers are fixed to and extend along the central portion in the lengthwise direction of the disposable diaper in such a manner that the water-absorbing shrinkable fibers are not placed on top of the water-absorbing layer, and wherein means is provided so that the water-absorbing shrinkable fibers become wetted when the diaper is wetted, the water-absorbing shrinkable fibers exhibiting a percent shrinkage of at least 15% and a shrinking force of at least 100 g when the fibers are wetted.
- U.S. Pat. No. 4,447,240 discloses a disposable diaper which comprises a liquid-permeable surface sheet, a liquid-impermeable back face sheet and a water-absorbing layer disposed between said sheets, wherein water-absorbing shrinkable fibers, the length of which is reduced on contact with water to impart elasticity to the fibers, are fixed across the central portion in the lengthwise direction of the disposable diaper without being lapped over the water-absorbing layer and the water-absorbing layer is connected to said water-absorbing shrinkable fibers by cellulose fibers.
- U.S. Pat. No. 4,942,089 discloses a rapidly shrinking fiber made from modified polyvinyl alcohol wherein the fiber is capable of rapidly shrinking when coming into contact with water at ordinary temperature and capable of maintaining the fiber form and exhibiting rubber elasticity.
- U.S. Pat. No. 5,567,796 discloses a polyester filament or fiber, when drawn under selected conditions, has a high shrinkage ratio but also a high shrinkage stress.
- the present invention relates to a deformable, shrinkable fiber that is dimensionally stable at normal body temperatures of approximately 37° C. in the dry state, but is dimensionally unstable (i.e. shrinks and distorts) when wet at the same temperature.
- a fiber forming polymer is selected that has a dry glass transition temperature (“dry Tg”) of greater than or equal to 42° C. and a wet glass transition temperature (“wet Tg”) of less than or equal to 32° C.
- dry Tg dry glass transition temperature
- wet Tg wet glass transition temperature
- the present invention also relates to a method of preparing said shrinkable fiber, and an absorbent article(s) comprising said fiber.
- FIG. 1A is a partial sectional view showing bore detail for an aperture of a spinneret that may be used in accordance with the present invention.
- FIG. 1B is a plan view showing a bore and an aperture of a spinneret that may be used in accordance with the present invention.
- FIG. 1C is a schematic showing the relative dimensions of an aperture of a spinneret that may be used in accordance with the present invention.
- FIG. 1D is a plan view of an interior face of the spinneret showing a bore and an aperture pattern that may be used in accordance with present invention.
- the present invention relates to a deformable, shrinkable fiber that changes dimensions when becoming wet at normal body temperatures and to absorbent articles made therefrom.
- the present invention relates to a short, oriented shrinkable fiber.
- the use of these fibers reduces gel blocking in absorbent articles such as diapers, feminine hygiene products, and adult incontinent products.
- the fiber of the present invention has a dry glass transition temperature (dry TG) equal to or greater than 42° C. and a wet glass transition temperature (wet TG) of less than or equal to 32° C.
- dry TG dry glass transition temperature
- wet TG wet glass transition temperature
- the fiber is shrinkable by at least 10% when exposed to the wet state. The lower the wet TG, the better the desired behavior.
- the dimensional changes that occur upon shrinkage need to happen in less than thirty seconds and preferably less than ten seconds, and the forces generated during the shrinking need to be greater than 100 mg/denier. These forces are required to overcome the frictional resistance to movement experienced by the fiber when blended with SAP and/or fluff pulp, and thereby, open up the pathways to allow the fluid to defeat gel blocking.
- Shrinkage forces can be measured on standard Instron testing machines with controlled temperature/environment chambers for the samples. Also numerous methods are available to measure the glass transition temperatures in polymers. ASTM test method NO. D3418 describes procedures for measuring both dry Tg and wet Tg.
- the fiber of the present invention preferably has a denier per filament (“dpf”) between about 3 and 100.
- dpf denier per filament
- the shape of the fiber may be round or nonround. However, nonround shapes are preferred. Examples of preferred nonround shapes include, but are not limited to, those disclosed in U.S. Pat. No. 5,200,248, U.S. Pat. No. 5,242,644, U.S. Pat. No. 5,268,229, U.S. Pat. No. 5,611,981, U.S. Pat. No. 5,723,159, U.S. Pat. No. 5,753,166, U.S. Pat. No. 5,855,798, U.S. Pat. No. 5,972,505, U.S. Pat. No. 5,977,429, and U.S. Pat. No. 6,103,376, which are incorporated herein by reference.
- FIG. 1A is a partial sectional view showing the bore 2 for an aperture of the spinneret 1 that may be used in Example 1 in accordance with the present invention.
- FIG. 1B shows an aperture 3 in the bore 2 and having the arms 4 A, 4 B and 4 C.
- FIG. 1C is a schematic showing the dimension of aperture 3 of the spinneret 1 that may be used in Example 1.
- FIG. 1C shows that the arms 4 A, 4 B and 4 C all radiate from a common axis 4 D and radiate at angles spaced by 120° from one another.
- FIG. 1C also shows that the arms 4 A, 4 B and 4 C have lengths that are 150 times their width, W.
- the width W is 0.067 millimeters in aperture 3 .
- FIG. 1D shows a spinneret 1 that may be used in example 1 having the bores 2 and the apertures 3 in the aperture pattern 5 .
- the apertures 3 in the pattern 5 are aligned in three rows such that the center points for apertures in each row define a line.
- short in reference to the fiber means that the length of the fiber is less than one inch. A length of a half inch or a quarter inch is particularly preferred.
- shrinkable means that the fiber will shrink at least 10% when exposed to water at 37° C. Preferably, the fiber will shrink greater than 25%.
- oriented as used in the context of the present invention means the relative alignment of the polymer molecules in the fiber. This orientation is developed in the fiber by attenuating the fiber as it cools through the dry Tg during spinning and by stretching the fiber during classic drawing of the fiber. The relaxing of the orientation trapped within the fiber by applying wet heat (temperature of body fluids) allows for shrinkage to occur.
- nonround refers to the non-circular nature of the fiber cross section.
- P is the perimeter of the cross section of the fiber
- a f is the cross sectional area of the fiber
- Round fibers have a shape factor of 1.
- the preferred fibers of the present invention have shape factors greater than 2 and more preferably in the 3-6 range.
- polymers suitable for use in the present invention include, but are not limited to, polyamides and polyesters having a dry glass transition temperature (dry Tg) equal to or greater than 42° C. and a wet glass transition temperature (wet Tg) of less than or equal to 32° C.
- preferred polymers include nylons such as nylon-6,10, modified nylons, polyesters and modified polyesters.
- PET polyethylene terephthalate
- isothalate polyesters may be modified with diethylene glycol to produce the desired glass transition temperatures.
- variations in the polymers of which these fibers are comprised are also possible within the teachings of the present invention.
- the fibers of the present invention are particularly useful in blends of fluff pulp and superabsorbent polymer.
- blends comprise up to 50% by weight of the fiber.
- the fluff pulp is preferably cellulose fluff pulp.
- the fluff pulp may be chemically modified. More preferably, the blend comprises 5% to 25% of the fiber.
- An advantage of the fibers of the present invention is that these fibers when blended up to 50% by weight with SAP and fluff pulp, distort and form open channels which allow additional fluid to penetrate the absorbent structure and reduce gel blocking.
- the use of a blend comprising the fiber of the present invention in an absorbent product is one method of reducing gel blocking.
- the fibers of the present invention can be made on conventional PET staple fiber production equipment or similar polyamide staple fiber production equipment.
- the polymer must be dried, heated above its melting point for polymers with crystalline melting points or heated to a viscosity suitable for fiber formation for amorphous polymers, extruded through a spinneret with the cross section of choice, quenched and attenuated, lubricated, further attenuated if necessary, cut to the final desired length and packaged for shipment.
- the fibers of the present invention can be blended with other fibers and polymers including, but not limited to, SAP, cellulose fluff pulp, and modified cellulose fluff pulp.
- the blend comprises at least 40% SAP.
- Polyethylene terephthalate modified with 45 mole % diethylene glycol (DEG) having an IV of 0.60 may be melt spun into fiber at 150° C. using conventional PET fiber production equipment and a spinneret such as shown in FIGS. 1A-1D. Fibers having a dpf of twenty-five may be taken up at 1000 m/min. These fibers may be lubricated and cut to 1 ⁇ 2 inch length. These fibers may then be blended at the 25% level with 50% SAP powder and 25% fluff pulp. The blend is expected to have a reduced tendency to gel block when compared to a 50/50 blend of SAP and fluff pulp.
- DEG diethylene glycol
- Prophetic Example 1 may be repeated except that a round cross sectional fiber is produced.
- the same blend level experiment as shown in Prophetic Example 1 is expected to confirm the reduced tendency to gel block although not as much as using the nonround cross sectional fibers of Prophetic Example 1.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Absorbent Articles And Supports Therefor (AREA)
Abstract
Description
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/224,439 US6605349B2 (en) | 2001-08-30 | 2002-08-19 | Deformable, shrinkable fiber and a process for the making thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US31619501P | 2001-08-30 | 2001-08-30 | |
US10/224,439 US6605349B2 (en) | 2001-08-30 | 2002-08-19 | Deformable, shrinkable fiber and a process for the making thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030044601A1 US20030044601A1 (en) | 2003-03-06 |
US6605349B2 true US6605349B2 (en) | 2003-08-12 |
Family
ID=26918711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/224,439 Expired - Fee Related US6605349B2 (en) | 2001-08-30 | 2002-08-19 | Deformable, shrinkable fiber and a process for the making thereof |
Country Status (1)
Country | Link |
---|---|
US (1) | US6605349B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080065035A1 (en) * | 2004-11-08 | 2008-03-13 | Sca Hygiene Products Ab | Absorbing Article Comprising An Absorbing Structure Comprising A Deformation Layer |
US10486136B2 (en) | 2016-10-25 | 2019-11-26 | Kimberly-Clark Worldwide, Inc. | Porous, wet-triggered shrinkable materials |
US10632223B2 (en) | 2015-09-29 | 2020-04-28 | Kimberly-Clark Worldwide, Inc. | Materials that shrink in one dimension and expand in another dimension |
US12102516B2 (en) | 2018-03-22 | 2024-10-01 | Kimberly-Clark Worldwide, Inc. | Products with materials that shrink in one dimension and expand in another dimension |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4235237A (en) | 1978-05-08 | 1980-11-25 | Johnson & Johnson | Absorbent open network structure |
US4357938A (en) | 1980-08-07 | 1982-11-09 | Kao Soap Co., Ltd. | Disposable diaper |
US4381782A (en) | 1981-04-21 | 1983-05-03 | Kimberly-Clark Corporation | Highly absorbent materials having good wicking characteristics which comprise hydrogel particles and surfactant treated filler |
US4447240A (en) | 1980-09-22 | 1984-05-08 | Kao Soap Co., Ltd. | Disposable diaper |
US4500315A (en) | 1982-11-08 | 1985-02-19 | Personal Products Company | Superthin absorbent product |
US4573988A (en) | 1983-06-20 | 1986-03-04 | Personal Products Company | Superthin absorbent product |
US4699823A (en) | 1985-08-21 | 1987-10-13 | Kimberly-Clark Corporation | Non-layered absorbent insert having Z-directional superabsorbent concentration gradient |
US4935022A (en) | 1988-02-11 | 1990-06-19 | The Procter & Gamble Company | Thin absorbent articles containing gelling agent |
US4942089A (en) | 1985-11-01 | 1990-07-17 | Kuraray Company Limited | Rapidly shrinking fiber and water-absorbing shrinkable yarn and other materials comprising same |
US5180622A (en) | 1990-04-02 | 1993-01-19 | The Procter & Gamble Company | Absorbent members containing interparticle crosslinked aggregates |
US5200248A (en) | 1990-02-20 | 1993-04-06 | The Procter & Gamble Company | Open capillary channel structures, improved process for making capillary channel structures, and extrusion die for use therein |
US5242644A (en) | 1990-02-20 | 1993-09-07 | The Procter & Gamble Company | Process for making capillary channel structures and extrusion die for use therein |
US5268229A (en) | 1992-07-23 | 1993-12-07 | Eastman Kodak Company | Spinneret orifices and filament cross-sections with stabilizing legs therefrom |
US5567796A (en) | 1993-08-06 | 1996-10-22 | Kuraray Co., Ltd. | Polyester fiber |
US5611981A (en) | 1989-04-04 | 1997-03-18 | Eastman Chemical Company | Process of making fibers |
US5643238A (en) | 1995-09-29 | 1997-07-01 | Paragon Trade Brands, Inc. | Absorbent core structure comprised of storage and acquisition cells |
US5753166A (en) | 1996-04-29 | 1998-05-19 | Eastman Chemical Company | Process of making a non-circular cross-sectional fiber |
US5977429A (en) | 1996-08-22 | 1999-11-02 | Eastman Chemical Company | Synthetic polyester absorbent materials |
US6103376A (en) | 1996-08-22 | 2000-08-15 | Eastman Chemical Company | Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles |
-
2002
- 2002-08-19 US US10/224,439 patent/US6605349B2/en not_active Expired - Fee Related
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4235237A (en) | 1978-05-08 | 1980-11-25 | Johnson & Johnson | Absorbent open network structure |
US4357938A (en) | 1980-08-07 | 1982-11-09 | Kao Soap Co., Ltd. | Disposable diaper |
US4447240A (en) | 1980-09-22 | 1984-05-08 | Kao Soap Co., Ltd. | Disposable diaper |
US4381782A (en) | 1981-04-21 | 1983-05-03 | Kimberly-Clark Corporation | Highly absorbent materials having good wicking characteristics which comprise hydrogel particles and surfactant treated filler |
US4500315A (en) | 1982-11-08 | 1985-02-19 | Personal Products Company | Superthin absorbent product |
US4573988A (en) | 1983-06-20 | 1986-03-04 | Personal Products Company | Superthin absorbent product |
US4699823A (en) | 1985-08-21 | 1987-10-13 | Kimberly-Clark Corporation | Non-layered absorbent insert having Z-directional superabsorbent concentration gradient |
US4942089A (en) | 1985-11-01 | 1990-07-17 | Kuraray Company Limited | Rapidly shrinking fiber and water-absorbing shrinkable yarn and other materials comprising same |
US4935022A (en) | 1988-02-11 | 1990-06-19 | The Procter & Gamble Company | Thin absorbent articles containing gelling agent |
US5972505A (en) | 1989-04-04 | 1999-10-26 | Eastman Chemical Company | Fibers capable of spontaneously transporting fluids |
US5611981A (en) | 1989-04-04 | 1997-03-18 | Eastman Chemical Company | Process of making fibers |
US5855798A (en) | 1989-04-04 | 1999-01-05 | Eastman Chemical Company | Process for spontaneouly transporting a fluid |
US5723159A (en) | 1989-04-04 | 1998-03-03 | Eastman Chemical Company | Spinnerets for making fibers capable of spontaneously transporting fluids |
US5200248A (en) | 1990-02-20 | 1993-04-06 | The Procter & Gamble Company | Open capillary channel structures, improved process for making capillary channel structures, and extrusion die for use therein |
US5242644A (en) | 1990-02-20 | 1993-09-07 | The Procter & Gamble Company | Process for making capillary channel structures and extrusion die for use therein |
US5200248B1 (en) | 1990-02-20 | 1999-02-09 | Procter & Gamble | Open capillary channel structures improved process for making capillary channel structures and extrusion die for use therein |
US5180622A (en) | 1990-04-02 | 1993-01-19 | The Procter & Gamble Company | Absorbent members containing interparticle crosslinked aggregates |
US5268229A (en) | 1992-07-23 | 1993-12-07 | Eastman Kodak Company | Spinneret orifices and filament cross-sections with stabilizing legs therefrom |
US5567796A (en) | 1993-08-06 | 1996-10-22 | Kuraray Co., Ltd. | Polyester fiber |
US5643238A (en) | 1995-09-29 | 1997-07-01 | Paragon Trade Brands, Inc. | Absorbent core structure comprised of storage and acquisition cells |
US5753166A (en) | 1996-04-29 | 1998-05-19 | Eastman Chemical Company | Process of making a non-circular cross-sectional fiber |
US5977429A (en) | 1996-08-22 | 1999-11-02 | Eastman Chemical Company | Synthetic polyester absorbent materials |
US6103376A (en) | 1996-08-22 | 2000-08-15 | Eastman Chemical Company | Bundles of fibers useful for moving liquids at high fluxes and acquisition/distribution structures that use the bundles |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080065035A1 (en) * | 2004-11-08 | 2008-03-13 | Sca Hygiene Products Ab | Absorbing Article Comprising An Absorbing Structure Comprising A Deformation Layer |
CN101052366B (en) * | 2004-11-08 | 2011-01-05 | Sca卫生产品股份公司 | Absorbent products having absorbing structure containing deformed layers |
US8267910B2 (en) | 2004-11-08 | 2012-09-18 | Sca Hygiene Products Ab | Absorbing article comprising an absorbing structure comprising a deformation layer |
US10632223B2 (en) | 2015-09-29 | 2020-04-28 | Kimberly-Clark Worldwide, Inc. | Materials that shrink in one dimension and expand in another dimension |
US12076445B2 (en) | 2015-09-29 | 2024-09-03 | Kimberly-Clark Worldwide, Inc. | Materials that shrink in one dimension and expand in another dimension |
US10486136B2 (en) | 2016-10-25 | 2019-11-26 | Kimberly-Clark Worldwide, Inc. | Porous, wet-triggered shrinkable materials |
US11602730B2 (en) | 2016-10-25 | 2023-03-14 | Kimberly-Clark Worldwide, Inc. | Porous, wet-triggered shrinkable materials |
US12102516B2 (en) | 2018-03-22 | 2024-10-01 | Kimberly-Clark Worldwide, Inc. | Products with materials that shrink in one dimension and expand in another dimension |
Also Published As
Publication number | Publication date |
---|---|
US20030044601A1 (en) | 2003-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1257703B1 (en) | Biodegradable thermoplastic nonwoven webs for fluid management | |
EP1959037B1 (en) | Thermally extensible fiber | |
CA2159073C (en) | Fluid-pervious plastic web having improved fluid drainage | |
CA1304570C (en) | Water absorbing rapidly shrinking fibers | |
EP0651829B1 (en) | Filament cross-sections with stabilizing legs, process of making same and absorbent articles made therefrom | |
US6686303B1 (en) | Bicomponent nonwoven webs containing splittable thermoplastic filaments and a third component | |
US6441267B1 (en) | Heat bondable biodegradable fiber | |
KR101913447B1 (en) | Actualized crimped composite short fiber and process for production thereof, fiber assembly, and sanitary article | |
US20030118814A1 (en) | Absorbent structures having low melting fibers | |
AU6339796A (en) | Water-degradable multicomponent fibers and nonwovens | |
CN103429278B (en) | Disposable absorbent article | |
EP1985729B1 (en) | Heat-bondable conjugated fiber and process for production thereof | |
JP5933603B2 (en) | Disposable absorbent article | |
CN102802576A (en) | Fluid permeable structured fibrous web | |
EP2279293B1 (en) | Conjugate fiber for air-laid nonwoven fabric manufacture and method for manufacturing a high-density air-laid nonwoven fabric | |
JP2012528682A (en) | Structured fibrous web | |
CA1193155A (en) | Nonwoven fabric composed of polyester/polyethylene conjugate fibers | |
KR830003606A (en) | Method for producing self crimp polyamide fibers | |
KR20010034314A (en) | Composite-fiber nonwoven fabric | |
US6605349B2 (en) | Deformable, shrinkable fiber and a process for the making thereof | |
JP2003003334A (en) | Crimped conjugate fiber, method for manufacturing the same and nonwoven fabric using the same | |
EP3604639B1 (en) | Heat-fusible composite fiber and nonwoven fabric using same | |
WO2001048291A1 (en) | Biodegradable nonwoven webs for fluid management | |
JP4131852B2 (en) | Heat-sealable composite fiber | |
WO1992000407A1 (en) | Absorbant fibers capable of spontaneously transporting fluids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CLEMSON UNIVERSITY RESEARCH FOUNDATION, SOUTH CARO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PHILLIPS, BOBBY MAL;REEL/FRAME:013263/0964 Effective date: 20010830 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20150812 |