US6506929B1 - Process to manufacture simvastatin and intermediates - Google Patents
Process to manufacture simvastatin and intermediates Download PDFInfo
- Publication number
- US6506929B1 US6506929B1 US09/719,606 US71960601A US6506929B1 US 6506929 B1 US6506929 B1 US 6506929B1 US 71960601 A US71960601 A US 71960601A US 6506929 B1 US6506929 B1 US 6506929B1
- Authority
- US
- United States
- Prior art keywords
- compound
- formula
- inert solvent
- simvastatin
- give
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 230000008569 process Effects 0.000 title claims abstract description 47
- RYMZZMVNJRMUDD-UHFFFAOYSA-N SJ000286063 Natural products C12C(OC(=O)C(C)(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 RYMZZMVNJRMUDD-UHFFFAOYSA-N 0.000 title claims abstract description 37
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 title claims abstract description 37
- 229960002855 simvastatin Drugs 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000543 intermediate Substances 0.000 title description 3
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 claims abstract description 27
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 claims abstract description 26
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229960004844 lovastatin Drugs 0.000 claims abstract description 24
- 150000002596 lactones Chemical group 0.000 claims abstract description 10
- 150000001875 compounds Chemical class 0.000 claims description 29
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 28
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 24
- 239000012442 inert solvent Substances 0.000 claims description 21
- 150000002373 hemiacetals Chemical class 0.000 claims description 19
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 14
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 12
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 6
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims description 6
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 6
- 125000004183 alkoxy alkyl group Chemical group 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- ZCSHNCUQKCANBX-UHFFFAOYSA-N lithium diisopropylamide Chemical compound [Li+].CC(C)[N-]C(C)C ZCSHNCUQKCANBX-UHFFFAOYSA-N 0.000 claims description 6
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 5
- BRPMJMJJONIAHU-UHFFFAOYSA-N lithium;pyrrolidine Chemical compound [Li].C1CCNC1 BRPMJMJJONIAHU-UHFFFAOYSA-N 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 4
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 claims description 4
- ZXSQEZNORDWBGZ-UHFFFAOYSA-N 1,3-dihydropyrrolo[2,3-b]pyridin-2-one Chemical group C1=CN=C2NC(=O)CC2=C1 ZXSQEZNORDWBGZ-UHFFFAOYSA-N 0.000 claims description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052744 lithium Inorganic materials 0.000 claims description 3
- ZMJJCODMIXQWCQ-UHFFFAOYSA-N potassium;di(propan-2-yl)azanide Chemical compound [K+].CC(C)[N-]C(C)C ZMJJCODMIXQWCQ-UHFFFAOYSA-N 0.000 claims description 3
- LKZMBDSASOBTPN-UHFFFAOYSA-L silver carbonate Substances [Ag].[O-]C([O-])=O LKZMBDSASOBTPN-UHFFFAOYSA-L 0.000 claims description 3
- 229910001958 silver carbonate Inorganic materials 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- SIPUZPBQZHNSDW-UHFFFAOYSA-N diisobutylaluminium hydride Substances CC(C)C[Al]CC(C)C SIPUZPBQZHNSDW-UHFFFAOYSA-N 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- AZWXAPCAJCYGIA-UHFFFAOYSA-N bis(2-methylpropyl)alumane Chemical compound CC(C)C[AlH]CC(C)C AZWXAPCAJCYGIA-UHFFFAOYSA-N 0.000 claims 1
- 239000007800 oxidant agent Substances 0.000 claims 1
- 238000007069 methylation reaction Methods 0.000 abstract description 8
- 238000010511 deprotection reaction Methods 0.000 abstract description 5
- 238000006798 ring closing metathesis reaction Methods 0.000 abstract 1
- 238000007142 ring opening reaction Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 20
- 239000000203 mixture Substances 0.000 description 17
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 16
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 10
- -1 methyl halide Chemical class 0.000 description 10
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 9
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 0 *I.I.I*(I)I.I*I.[H][C@@](O)(CC[C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@H](OC(=O)[C@@H](C)CC)[C@@]21[H])C[C@@H](O)CC(=O)NCCCC.[H][C@@]1(CC[C@H]2[C@@H](C)C=CC3=C[C@H](C)C[C@H](OC(=O)[C@@H](C)CC)[C@@]32[H])C[C@@H](O)CC(=O)O1.[H][C@](CC[C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@H](OC(=O)C(C)(C)CC)[C@@]21[H])(C[C@H](CC(=O)NCCCC)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C.[H][C@](CC[C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@H](OC(=O)[C@@H](C)CC)[C@@]21[H])(C[C@H](CC(=O)NCCCC)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C Chemical compound *I.I.I*(I)I.I*I.[H][C@@](O)(CC[C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@H](OC(=O)[C@@H](C)CC)[C@@]21[H])C[C@@H](O)CC(=O)NCCCC.[H][C@@]1(CC[C@H]2[C@@H](C)C=CC3=C[C@H](C)C[C@H](OC(=O)[C@@H](C)CC)[C@@]32[H])C[C@@H](O)CC(=O)O1.[H][C@](CC[C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@H](OC(=O)C(C)(C)CC)[C@@]21[H])(C[C@H](CC(=O)NCCCC)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C.[H][C@](CC[C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@H](OC(=O)[C@@H](C)CC)[C@@]21[H])(C[C@H](CC(=O)NCCCC)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C 0.000 description 6
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 6
- 150000001241 acetals Chemical class 0.000 description 6
- 150000002009 diols Chemical class 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 238000004128 high performance liquid chromatography Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 5
- 238000005160 1H NMR spectroscopy Methods 0.000 description 5
- 230000029936 alkylation Effects 0.000 description 5
- 238000005804 alkylation reaction Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000006722 reduction reaction Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- YTRHTEQJTUYMDP-YUYVWUPNSA-N [H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)C(C)(C)CC)C=C[C@H](C)[C@@H]2CCC1CC(O)CC(O)O1 Chemical compound [H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)C(C)(C)CC)C=C[C@H](C)[C@@H]2CCC1CC(O)CC(O)O1 YTRHTEQJTUYMDP-YUYVWUPNSA-N 0.000 description 4
- VSERUPDVGSHFTQ-IVPCOVRTSA-N [H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)[C@@H](C)CC)C=C[C@H](C)[C@@H]2CC[C@@H]1C[C@@H](O)CC(O)O1 Chemical compound [H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)[C@@H](C)CC)C=C[C@H](C)[C@@H]2CC[C@@H]1C[C@@H](O)CC(O)O1 VSERUPDVGSHFTQ-IVPCOVRTSA-N 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- MSZJEPVVQWJCIF-UHFFFAOYSA-N butylazanide Chemical compound CCCC[NH-] MSZJEPVVQWJCIF-UHFFFAOYSA-N 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 239000006188 syrup Substances 0.000 description 4
- 235000020357 syrup Nutrition 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- RYMZZMVNJRMUDD-GUFIVFDUSA-N [H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)C(C)(C)CC)C=C[C@H](C)[C@@H]2CCC1CC(O)CC(=O)O1 Chemical compound [H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)C(C)(C)CC)C=C[C@H](C)[C@@H]2CCC1CC(O)CC(=O)O1 RYMZZMVNJRMUDD-GUFIVFDUSA-N 0.000 description 3
- OAHFCBOYMQARMH-BYEIXKLNSA-N [H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)C(C)(C)CC)C=C[C@H](C)[C@@H]2CC[C@@H]1C[C@@H](O)CC(OC)O1 Chemical compound [H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)C(C)(C)CC)C=C[C@H](C)[C@@H]2CC[C@@H]1C[C@@H](O)CC(OC)O1 OAHFCBOYMQARMH-BYEIXKLNSA-N 0.000 description 3
- MOQHDWCDLFTMAS-MDFIVXQVSA-N [H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)[C@@H](C)CC)C=C[C@H](C)[C@@H]2CC[C@@H]1C[C@@H](O)CC(OC)O1 Chemical compound [H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)[C@@H](C)CC)C=C[C@H](C)[C@@H]2CC[C@@H]1C[C@@H](O)CC(OC)O1 MOQHDWCDLFTMAS-MDFIVXQVSA-N 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000007273 lactonization reaction Methods 0.000 description 3
- 230000011987 methylation Effects 0.000 description 3
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- HTSGKJQDMSTCGS-UHFFFAOYSA-N 1,4-bis(4-chlorophenyl)-2-(4-methylphenyl)sulfonylbutane-1,4-dione Chemical compound C1=CC(C)=CC=C1S(=O)(=O)C(C(=O)C=1C=CC(Cl)=CC=1)CC(=O)C1=CC=C(Cl)C=C1 HTSGKJQDMSTCGS-UHFFFAOYSA-N 0.000 description 2
- FKLJPTJMIBLJAV-UHFFFAOYSA-N Compound IV Chemical compound O1N=C(C)C=C1CCCCCCCOC1=CC=C(C=2OCCN=2)C=C1 FKLJPTJMIBLJAV-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 239000007832 Na2SO4 Substances 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 2
- OKJPEAGHQZHRQV-UHFFFAOYSA-N Triiodomethane Natural products IC(I)I OKJPEAGHQZHRQV-UHFFFAOYSA-N 0.000 description 2
- 230000010933 acylation Effects 0.000 description 2
- 238000005917 acylation reaction Methods 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical compound [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- NLFBCYMMUAKCPC-KQQUZDAGSA-N ethyl (e)-3-[3-amino-2-cyano-1-[(e)-3-ethoxy-3-oxoprop-1-enyl]sulfanyl-3-oxoprop-1-enyl]sulfanylprop-2-enoate Chemical compound CCOC(=O)\C=C\SC(=C(C#N)C(N)=O)S\C=C\C(=O)OCC NLFBCYMMUAKCPC-KQQUZDAGSA-N 0.000 description 2
- DEQYTNZJHKPYEZ-UHFFFAOYSA-N ethyl acetate;heptane Chemical compound CCOC(C)=O.CCCCCCC DEQYTNZJHKPYEZ-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- FJDQVJUXXNIHNB-UHFFFAOYSA-N lithium;pyrrolidin-1-ide Chemical compound [Li+].C1CC[N-]C1 FJDQVJUXXNIHNB-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 2
- AOJFQRQNPXYVLM-UHFFFAOYSA-N pyridin-1-ium;chloride Chemical compound [Cl-].C1=CC=[NH+]C=C1 AOJFQRQNPXYVLM-UHFFFAOYSA-N 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- BCNZYOJHNLTNEZ-UHFFFAOYSA-N tert-butyldimethylsilyl chloride Chemical compound CC(C)(C)[Si](C)(C)Cl BCNZYOJHNLTNEZ-UHFFFAOYSA-N 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- FMCAFXHLMUOIGG-JTJHWIPRSA-N (2s)-2-[[(2r)-2-[[(2s)-2-[[(2r)-2-formamido-3-sulfanylpropanoyl]amino]-3-methylbutanoyl]amino]-3-(4-hydroxy-2,5-dimethylphenyl)propanoyl]amino]-4-methylsulfanylbutanoic acid Chemical compound O=CN[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(=O)N[C@@H](CCSC)C(O)=O)CC1=CC(C)=C(O)C=C1C FMCAFXHLMUOIGG-JTJHWIPRSA-N 0.000 description 1
- FMCAFXHLMUOIGG-IWFBPKFRSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2r)-2-formamido-3-sulfanylpropanoyl]amino]-3-methylbutanoyl]amino]-3-(4-hydroxy-2,5-dimethylphenyl)propanoyl]amino]-4-methylsulfanylbutanoic acid Chemical compound O=CN[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(=O)N[C@@H](CCSC)C(O)=O)CC1=CC(C)=C(O)C=C1C FMCAFXHLMUOIGG-IWFBPKFRSA-N 0.000 description 1
- QJXHGXCHNRTNOR-HNUKBKPJSA-M *.[H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)C(C)(C)CC)C=C[C@H](C)[C@@H]2CC[C@@H]1C[C@@H](O)CC(=O)O1.[H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)C(C)(C)CC)C=C[C@H](C)[C@@H]2CC[C@@H]1C[C@@H](O[Si](C)(C)C(C)(C)C)CC(=O)O1.[V]I Chemical compound *.[H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)C(C)(C)CC)C=C[C@H](C)[C@@H]2CC[C@@H]1C[C@@H](O)CC(=O)O1.[H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)C(C)(C)CC)C=C[C@H](C)[C@@H]2CC[C@@H]1C[C@@H](O[Si](C)(C)C(C)(C)C)CC(=O)O1.[V]I QJXHGXCHNRTNOR-HNUKBKPJSA-M 0.000 description 1
- LDJUYMIFFNTKOI-UHFFFAOYSA-N 2,2-dimethylbutanoyl chloride Chemical compound CCC(C)(C)C(Cl)=O LDJUYMIFFNTKOI-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- XJRPMVMHLDXLCK-OOVMAWMYSA-L C.C.C[V]I.[H][C@@](O)(CC[C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@H](OC(=O)C(C)(C)CC)[C@@]21[H])C[C@H](CC(=O)[O-])O[Si](C)(C)C(C)(C)C.[H][C@@]1(CC[C@H]2[C@@H](C)C=CC3=C[C@H](C)C[C@H](OC(=O)C(C)(C)CC)[C@@]32[H])C[C@@H](O)CC(=O)O1.[H][C@@]1(CC[C@H]2[C@@H](C)C=CC3=C[C@H](C)C[C@H](OC(=O)C(C)(C)CC)[C@@]32[H])C[C@@H](O)CC(=O)O1.[NH4+] Chemical compound C.C.C[V]I.[H][C@@](O)(CC[C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@H](OC(=O)C(C)(C)CC)[C@@]21[H])C[C@H](CC(=O)[O-])O[Si](C)(C)C(C)(C)C.[H][C@@]1(CC[C@H]2[C@@H](C)C=CC3=C[C@H](C)C[C@H](OC(=O)C(C)(C)CC)[C@@]32[H])C[C@@H](O)CC(=O)O1.[H][C@@]1(CC[C@H]2[C@@H](C)C=CC3=C[C@H](C)C[C@H](OC(=O)C(C)(C)CC)[C@@]32[H])C[C@@H](O)CC(=O)O1.[NH4+] XJRPMVMHLDXLCK-OOVMAWMYSA-L 0.000 description 1
- NVUCLMHDAYRWPT-CBJHAJCPSA-M C.[H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)C(C)(C)CC)C=C[C@H](C)[C@@H]2CCC1CC(O)CC(=O)O1.[H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)C(C)(C)CC)C=C[C@H](C)[C@@H]2CCC1CC(O)CC(O)O1.[V].[V]I Chemical compound C.[H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)C(C)(C)CC)C=C[C@H](C)[C@@H]2CCC1CC(O)CC(=O)O1.[H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)C(C)(C)CC)C=C[C@H](C)[C@@H]2CCC1CC(O)CC(O)O1.[V].[V]I NVUCLMHDAYRWPT-CBJHAJCPSA-M 0.000 description 1
- FATDTLDFXMGHNV-RKVNKJMUSA-M C.[H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)C(C)(C)CC)C=C[C@H](C)[C@@H]2CCC1CC(O)CC(=O)O1.[V]I Chemical compound C.[H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)C(C)(C)CC)C=C[C@H](C)[C@@H]2CCC1CC(O)CC(=O)O1.[V]I FATDTLDFXMGHNV-RKVNKJMUSA-M 0.000 description 1
- QWOJMRHUQHTCJG-UHFFFAOYSA-N CC([CH2-])=O Chemical compound CC([CH2-])=O QWOJMRHUQHTCJG-UHFFFAOYSA-N 0.000 description 1
- COGWPNGVHKTUBH-XQHSNBLVSA-H CCC(C)(C)C(=O)Cl.CI.I.I[V](I)I.I[V]I.[H][C@@]12C(=C[C@H](C)C[C@@H]1O)C=C[C@H](C)[C@@H]2CC[C@@H](O)C[C@@H](O)CC(=O)O.[H][C@@]12C(=C[C@H](C)C[C@@H]1O)C=C[C@H](C)[C@@H]2CC[C@@H]1C[C@@H](O)CC(=O)O1.[H][C@@]12C(=C[C@H](C)C[C@@H]1O)C=C[C@H](C)[C@@H]2CC[C@@H]1C[C@@H](O[Si](C)(C)C(C)(C)C)CC(=O)O1.[H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)[C@@H](C)CC)C=C[C@H](C)[C@@H]2CC[C@@H]1C[C@@H](O)CC(=O)O1.[Li]O Chemical compound CCC(C)(C)C(=O)Cl.CI.I.I[V](I)I.I[V]I.[H][C@@]12C(=C[C@H](C)C[C@@H]1O)C=C[C@H](C)[C@@H]2CC[C@@H](O)C[C@@H](O)CC(=O)O.[H][C@@]12C(=C[C@H](C)C[C@@H]1O)C=C[C@H](C)[C@@H]2CC[C@@H]1C[C@@H](O)CC(=O)O1.[H][C@@]12C(=C[C@H](C)C[C@@H]1O)C=C[C@H](C)[C@@H]2CC[C@@H]1C[C@@H](O[Si](C)(C)C(C)(C)C)CC(=O)O1.[H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)[C@@H](C)CC)C=C[C@H](C)[C@@H]2CC[C@@H]1C[C@@H](O)CC(=O)O1.[Li]O COGWPNGVHKTUBH-XQHSNBLVSA-H 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- NWTPERRBQXZFHB-AZMXDRHISA-L I.O[K].[H][C@@](O)(CC[C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@H](OC(=O)C(C)(C)CC)[C@@]21[H])C[C@@H](O)CC(=O)O.[H][C@@](O)(CC[C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@H](OC(=O)[C@@H](C)CC)[C@@]21[H])C[C@@H](O)CC(=O)[O-].[H][C@@]1(CC[C@H]2[C@@H](C)C=CC3=C[C@H](C)C[C@H](OC(=O)C(C)(C)CC)[C@@]32[H])C[C@@H](O)CC(=O)O1.[H][C@@]1(CC[C@H]2[C@@H](C)C=CC3=C[C@H](C)C[C@H](OC(=O)[C@@H](C)CC)[C@@]32[H])C[C@@H](O)CC(=O)O1.[K+] Chemical compound I.O[K].[H][C@@](O)(CC[C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@H](OC(=O)C(C)(C)CC)[C@@]21[H])C[C@@H](O)CC(=O)O.[H][C@@](O)(CC[C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@H](OC(=O)[C@@H](C)CC)[C@@]21[H])C[C@@H](O)CC(=O)[O-].[H][C@@]1(CC[C@H]2[C@@H](C)C=CC3=C[C@H](C)C[C@H](OC(=O)C(C)(C)CC)[C@@]32[H])C[C@@H](O)CC(=O)O1.[H][C@@]1(CC[C@H]2[C@@H](C)C=CC3=C[C@H](C)C[C@H](OC(=O)[C@@H](C)CC)[C@@]32[H])C[C@@H](O)CC(=O)O1.[K+] NWTPERRBQXZFHB-AZMXDRHISA-L 0.000 description 1
- UUIQMZJEGPQKFD-UHFFFAOYSA-N Methyl butyrate Chemical group CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 1
- RQNXYRXDUKZMJC-YPPOGPTDSA-N [H][C@@]1(CC[C@H]2[C@@H](C)C=CC3=C[C@H](C)C[C@H](OC(=O)C(C)(C)CC)[C@@]32[H])C[C@@H](O)CC(=O)O1.[H][C@@]1(CC[C@H]2[C@@H](C)C=CC3=C[C@H](C)C[C@H](OC(=O)[C@@H](C)CC)[C@@]32[H])C[C@@H](O)CC(=O)O1 Chemical compound [H][C@@]1(CC[C@H]2[C@@H](C)C=CC3=C[C@H](C)C[C@H](OC(=O)C(C)(C)CC)[C@@]32[H])C[C@@H](O)CC(=O)O1.[H][C@@]1(CC[C@H]2[C@@H](C)C=CC3=C[C@H](C)C[C@H](OC(=O)[C@@H](C)CC)[C@@]32[H])C[C@@H](O)CC(=O)O1 RQNXYRXDUKZMJC-YPPOGPTDSA-N 0.000 description 1
- VPWKZXBQFCOFNT-SDKOVTOOSA-N [H][C@@]12C(=C[C@H](C)C[C@@H]1O)C=C[C@H](C)[C@@H]2CCC1CC(O)CC(O)O1.[H][C@@]12C(=C[C@H](C)C[C@@H]1O)C=C[C@H](C)[C@@H]2CC[C@@H](O)C[C@@H](O)CCO Chemical compound [H][C@@]12C(=C[C@H](C)C[C@@H]1O)C=C[C@H](C)[C@@H]2CCC1CC(O)CC(O)O1.[H][C@@]12C(=C[C@H](C)C[C@@H]1O)C=C[C@H](C)[C@@H]2CC[C@@H](O)C[C@@H](O)CCO VPWKZXBQFCOFNT-SDKOVTOOSA-N 0.000 description 1
- ORYXWEJTVIXQHS-WMVJRHARSA-N [H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)C(C)(C)CC)C=C[C@H](C)[C@@H]2CCC1CC(O)CC(=C)O1 Chemical compound [H][C@@]12C(=C[C@H](C)C[C@@H]1OC(=O)C(C)(C)CC)C=C[C@H](C)[C@@H]2CCC1CC(O)CC(=C)O1 ORYXWEJTVIXQHS-WMVJRHARSA-N 0.000 description 1
- XXFXTBNFFMQVKJ-UHFFFAOYSA-N [diphenyl(trityloxy)methyl]benzene Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)OC(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 XXFXTBNFFMQVKJ-UHFFFAOYSA-N 0.000 description 1
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 1
- 239000012346 acetyl chloride Substances 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000001315 anti-hyperlipaemic effect Effects 0.000 description 1
- 239000003529 anticholesteremic agent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 238000010961 commercial manufacture process Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- RUSXXJKVMARGOF-UHFFFAOYSA-N cyclohexane;heptane Chemical compound C1CCCCC1.CCCCCCC RUSXXJKVMARGOF-UHFFFAOYSA-N 0.000 description 1
- 238000005828 desilylation reaction Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010931 ester hydrolysis Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000003818 flash chromatography Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- AFRJJFRNGGLMDW-UHFFFAOYSA-N lithium amide Chemical compound [Li+].[NH2-] AFRJJFRNGGLMDW-UHFFFAOYSA-N 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- AGJSNMGHAVDLRQ-HUUJSLGLSA-N methyl (2s)-2-[[(2r)-2-[[(2s)-2-[[(2r)-2-amino-3-sulfanylpropanoyl]amino]-3-methylbutanoyl]amino]-3-(4-hydroxy-2,3-dimethylphenyl)propanoyl]amino]-4-methylsulfanylbutanoate Chemical compound SC[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(=O)N[C@@H](CCSC)C(=O)OC)CC1=CC=C(O)C(C)=C1C AGJSNMGHAVDLRQ-HUUJSLGLSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- ZAEQTGTVGUJEFV-UHFFFAOYSA-N phenylmethanesulfonate;pyridin-1-ium Chemical compound C1=CC=[NH+]C=C1.[O-]S(=O)(=O)CC1=CC=CC=C1 ZAEQTGTVGUJEFV-UHFFFAOYSA-N 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000006884 silylation reaction Methods 0.000 description 1
- RSIJVJUOQBWMIM-UHFFFAOYSA-L sodium sulfate decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[O-]S([O-])(=O)=O RSIJVJUOQBWMIM-UHFFFAOYSA-L 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D309/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
- C07D309/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
- C07D309/08—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D309/10—Oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D309/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
- C07D309/16—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
- C07D309/28—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D309/30—Oxygen atoms, e.g. delta-lactones
Definitions
- This invention relates to novel processes for the manufacturing of simvastatin using lovastatin as staring material.
- Simvastatin is an antihypercholesterolemic agents which inhibits cholesterol biosynthesis by inhibiting the enzyme HMG-Co A reductase.
- Animal and clinical data suggest simvastatin is twice as potent as lovastatin.
- the pharmacology and clinical use of simvastatin has been reviewed (V. E. Mauro, J. L. ⁇ overscore (M) ⁇ acDonald, DICP, The Annuals of Pharmacotherapy, 1991, 25, 257).
- the synthesis of simvastatin and related compounds was reviewed by Y. Chapleur in Recent Prog. Chem. Synth. Antibiot. Relat. Mircob. Product, 1993, p.829-937; editor: Lukacs, Gabor; publisher: Springer, Berlin, Germany.
- Simvastain is an approved oral antihyperlipidemic medication and has been prepared by two general methods taught in Canadian patents 1,199,322 and 1,287,063. In a strict chemical sense, there are three potential methylation sites in lovastatin. These are 13-OH, 14-C and 2′-C. In its open form the 11-OH function provides an additional methylation site. A successful process requires the selective C-methylation of the 2′-position of side chain of lovastatin with minimum protection of other potentially reactive functional groups in lovastatin.
- lovastatin is first treated with LiOH to give the triol VII which is re-lactonized to diol VIII.
- Selective silylation of the hydroxyl function at C-13 produces the silyl ether IX which is treated with 2-dimethylbutyryl chloride to give compound X.
- Desilylation of compound X leads to simvastatin VI (Scheme 1).
- lovastatin is reacted with potassium hydroxide ant is converted into a potassium salt of a dihydroxy acid compound.
- the potassium salt is then enolized with lithium pyrrolidide and the enolate intermediate is alkylated with methyl iodide to produce a dihydroxy acid compound with the 2,2-dimethylated side chain.
- the dihydroxy acid is then heated and water is azeotropically removed to produce simvastatin (Scheme 2).
- a selective hydrolysis is necessary to reduce the level of unmethylated starting material to less than 0.7%. This step is time consuming since the hydrolysis of unconverted starting material is very slow and normally requires 20 hours.
- the overall yield of the process is low when the starting material is mevinolin.
- a number of other impurities are generated during the methylation and hydrolysis steps. These include, when the starting material is mevinolin, des-butyratemevinolin and bis-methylated compounds wherein the ⁇ -lactone carbon is methylated in addition to that on the ⁇ -C-ester side chain, and a methyl ether wherein the ring oxygen of the lactone now in the open form has been methylated.
- the purity of the final product isolated from the overall process is close to be unsatisfactory for use as a drug substance.
- Canadian patent 1,287,063 discloses that lovastatin is specifically reacted with butylamine to produce lovastatin buytlamide XI.
- the two hydroxy groups in the butylamide are protected with tert-butyldimethylsilyl chloride to produce a disilyated lovastatin buytlamide XII.
- the disilyated lovastatin buytlamide is enolized with lithium pyrrolidide and the enolate is alkylated with methyl iodide to produce a disilyated simvastatin butylamide on aqueous work up XIII.
- silyl protecting groups are removed using hydrofluoric acid to produce simvastatin butylamide XIV.
- the simvastatin butylamide is hydrolysed using sodium hydroxide and following acidification, the dihydroxyacid form of simvastatin XV is obtained.
- the dihydroxy acid compound XV is reacted with ammonium hydoxide to produce an ammonium salt XVI which is then relactonized by heating to produce simvastatin.
- phenyl boronic acid was used by Kubela, et al. for the protection of the diol resulting in a solid phenylboronate which can be subjected to purification by crystallization (U.S. Pat. No. 5,393,893).
- the 13-OH is protected as a silyl ether.
- the silyl group is removed after the introduction of the acyl group at the 1-OH position.
- the silyl group is removed after the introduction the methyl group at 2′-position.
- the object of the present invention is to overcome these disadvantages.
- the process of the present invention is illustrated in Scheme 5.
- an object of the invention is to reduce the number of steps thereby allowing the production of simvastatin in higher yields (Process A, three steps).
- the C-methylation of the 2′-position group is highly regioselective and does not require the protection/deprotection of 13-OH group of lovastatin (processes A and B), nor does it involve the hydrolysis of the lactone moiety and re-lactonization.
- a process for the manufacture of simvastatin which comprises:
- step 1 Selectively reducing the carbonyl function of the lactone moiety of lovastatin to a hemiacetal of formula II:
- step 2 reacting the compound of formula II with a strong base and methyl iodide in an inert solvent to give a compound of formula V:
- step 3 oxidizing the compound of formula V to give simvastatin:
- step 1 Selectively reducing the carbonyl function of the lactone moiety of lovastatin to a hemiacetal of formula II:
- step 2 reacting the compound of formula II with an alkanol ROH and an acid in which R is a lower alkyl or lower alkoxyalkyl to give a compound of formula III:
- step 3 reacting the compound of formula III with a strong base and methyl iodide in an inert solvet to give a compound of formula IV:
- R is as defined above;
- step 4 reacting the compound of formula IV with a mild acid in an inert solvent to give a compound of formula V:
- step 5 oxidizing the compound of formula V to give simvastatin:
- the most preferred reagent for this reduction is i-Bu 2 AlH.
- the reaction is normally carried out in an inert solvent such as toluene, heptane, dichloromethane or tetrahydrofuram.
- the reaction temperature is normally kept at ⁇ 35° C. to ⁇ 78° C.
- the reduction reaction of lovastatin would be expected to afford the tetraol XVII and its partial reduction the diol XVII.
- lovastatin undergoes selective reduction with i-Bu 2 AlH to give the hemiacetal II as the the main product.
- the preferred condition requires the use of 2.0 to 2.5 equivalents of i-Bu 2 AlH, in inert solvent such as toluene, heptane, tetrahydrofuran, preferably tetrahydrofuran, at ⁇ 35° C. for a period of 1-4 hrs, preferably for 2 hrs.
- inert solvent such as toluene, heptane, tetrahydrofuran, preferably tetrahydrofuran, at ⁇ 35° C. for a period of 1-4 hrs, preferably for 2 hrs.
- the hemiacetal II is isolated by conventional means.
- the hemiacetal II is directly methylated at the C2′ position with methyl iodide in an inert solvent such as tetrahydrofuran, 1,2-dimethoxyethane, in the presence of a strong base to give the hemiacetal V.
- a strong base include: lithium diisopropylamide, lithium hexamethyldisilylamide, lithium pyrrolidine, sodium hexamethyldisilylamide, and potassium diisopropylamide.
- the most preferred condition for this transformation requires the mixing of n-butyl lithium and pyrrolidine at about ⁇ 25° C.
- the alkylation product can be isolated by conventional methods.
- the hemiacetal II is converted to acetal III with catalytic amounts of HCl in an alcohol of formula ROH wherein R is lower alkyl.
- ROH alcohol of formula
- the most preferred condition for this transformation requires the mixing of hemiacetal II and a solution of HCl in methanol at ambient temperatures for 1 to 4 hours. This gives an acetal of formula III wherein R is methyl.
- compound II is converted to a compound of formula III wherein R is lower alkoxyalkyl with 2-alkoxypropene, or alkoxyethene with pyridine hydrochloride or pyridine toluenesulfonic acid salt in an inert solvent such as methylene chloride.
- the terms lower alkyl and lower alkoxyalkyl refer to radicals having chains (straight or branched) consisting of C 1 -C 6 carbon atoms.
- the resulting acetal IV is then converted to hemiacetal V with mild acid.
- the reaction takes place in 5% to 20% HCl in a mixture of water and inert solvent such as tetrahydrofuran or acetonitrile at 0 to 25° C. over a period of 1 to 4 hours.
- the product is isolated by conventional means.
- Process A consists of a three step synthesis of simvastatin from lovastatin. Since both 13-OH and 15-OH remain unprotected, the reaction consumes two additional moles of base in the C2′-methylation reaction.
- Process B involves the conversion of hemiacetal II to acetal III, which upon C2′-methylation is converted to hemiacetal V. This is a common penultimate intermediate to both processes. Although process B is a five step synthesis, the conversion of II to III and III to V are simple and proceed in high yields.
- Diisobutylaluminum hydride (1.0 M solution in dichloromethane, 99.0 ml, 99 mmol) was added dropwise to a stirred and cooled ( ⁇ 35° C.) solution of lovastatin (20.0 g, 49.4 mmol) in tetahydrofuran (200 ml) in a period of 1 hours. Stirring was continued for 1 hour at ⁇ 35° C. Celite (20 g) and sodium sulphate decahydrate (30 g) were added. The mixture was stirred for 20 min. Cooling bath was removed and stirring was continued for 1 hour. The mixture was filtered through a pad of Celite (8.0 ⁇ 1.5 cm) and the solid was washed with ethyl acetate. Evaporation of the combined filtrate gave crude hemiacetals II (19.0 g, yield 99%) as a white foam (HPLC purity>96%). This was used without further purification in the next step.
- Acetyl chloride 200 ⁇ L, 2.8 mmol was added to a stirred solution of hemiacetals II (19.0 g, 46.7 mmol) in methanol (100 ml). The solution was stirred for 15 min at ambient temperature. Sodium bicarbonate (1.0 g) was added and the mixture was stirred for another 15 min. The mixture was filtered through a pad of Celite (5.5 ⁇ 1 cm) and washed with toluene. Evaporation of solvent of the filtrate gave crude acetals III (19.4 g, yield 98%) as a colorless syrup (HPLC purity >95%). This was used without further purification in the next step.
- n-Butyl lithium (2.5M solution in hexane, 53.1 ml, 132.7 mmol) was added slowly to a stirred and cooled ( ⁇ 30° C.) solution of pyrrolidine (11.0 ml, 132.7 mmol) in dry tetrahydrofuran (100 ml). The solution was stirred at ⁇ 25° C. for 1 hour. The above freshly prepared solution of lithium pyrrolidine was transferred slowly by cannula to a stirred and cooled ( ⁇ 35° C.) solution of the acetals III (18.7 g, 44.2 mmol) in dry tetrahydrofuran (200 ml). The mixture was stirred for 1 hour at ⁇ 35° C.
- n-Butyl lithium (2.5 M solution in hexane, 37.8 ml, 95.4 mmol) was added slowly to a stirred and cooled ( ⁇ 30° C.) solution of pyrrolidine (8.0 ml, 95.4 mmol) in dry tetrahydrofuran (150 ml), The solution was stirred at ⁇ 25° C. for 1 hour. The above fresh made lithium pyrrolidine was transferred slowly by cannula to a stirred and cooled ( ⁇ 35° C.) solution of the hemiacetals II (8.6 g, 21.2 mmol) in dry tetrahydrofuran (150 ml). The mixture was stirred for 1 hour at ⁇ 35° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pyrane Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
A process is disclosed for the preparation of simvastatin which enables highly regio selective C-methylation of the 2′-position group of lovastatin without requiring protection/deprotection of 13-OH of lovastatin and lactone ring opening/closure.
Description
This invention relates to novel processes for the manufacturing of simvastatin using lovastatin as staring material.
Simvastatin is an antihypercholesterolemic agents which inhibits cholesterol biosynthesis by inhibiting the enzyme HMG-Co A reductase. Animal and clinical data suggest simvastatin is twice as potent as lovastatin. The pharmacology and clinical use of simvastatin has been reviewed (V. E. Mauro, J. L. {overscore (M)}acDonald, DICP, The Annuals of Pharmacotherapy, 1991, 25, 257). The synthesis of simvastatin and related compounds was reviewed by Y. Chapleur in Recent Prog. Chem. Synth. Antibiot. Relat. Mircob. Product, 1993, p.829-937; editor: Lukacs, Gabor; publisher: Springer, Berlin, Germany.
Simvastain is an approved oral antihyperlipidemic medication and has been prepared by two general methods taught in Canadian patents 1,199,322 and 1,287,063. In a strict chemical sense, there are three potential methylation sites in lovastatin. These are 13-OH, 14-C and 2′-C. In its open form the 11-OH function provides an additional methylation site. A successful process requires the selective C-methylation of the 2′-position of side chain of lovastatin with minimum protection of other potentially reactive functional groups in lovastatin.
In the method taught in Canadian Patent 1,199,322, lovastatin is first treated with LiOH to give the triol VII which is re-lactonized to diol VIII. Selective silylation of the hydroxyl function at C-13 produces the silyl ether IX which is treated with 2-dimethylbutyryl chloride to give compound X. Desilylation of compound X leads to simvastatin VI (Scheme 1).
The overall yield is less than 40%. Variations of his method are disclosed in U.S. Pat. Nos. 5,159,104, 4,450,171, and 4,444,784.
In U.S. Pat. No. 4,582,915, lovastatin is reacted with potassium hydroxide ant is converted into a potassium salt of a dihydroxy acid compound. The potassium salt is then enolized with lithium pyrrolidide and the enolate intermediate is alkylated with methyl iodide to produce a dihydroxy acid compound with the 2,2-dimethylated side chain. The dihydroxy acid is then heated and water is azeotropically removed to produce simvastatin (Scheme 2).
The process is laborious and affords simvastatin only moderate yields. Furthermore, from the teachings of a subsequent U.S. Pat. No. 4,820,850 at column 1, lines 53 to 68 to column 2, lines 1 to 20 and its corresponding Canadian patent 1,287,063 at page 3, this process appears to have numerous disadvantages.
Canadian patent 1,287,063 states at page 3 that U.S. Pat. No. 4,582,915 “disclosed a novel route to the dimethylbutyate side chain via direct alkylation of the α-carbon of the naturally available methylbutyrate side-chain using a metal amide and a methyl halide. However this process has been found to have certain disadvantages in the commercial manufacture of a pharmaceutical”.
Repeated addition of the amide base and methyl halide are necessary to improve the yield of the alkylation step. This is costly, inefficient and time-consuming.
A selective hydrolysis is necessary to reduce the level of unmethylated starting material to less than 0.7%. This step is time consuming since the hydrolysis of unconverted starting material is very slow and normally requires 20 hours.
The overall yield of the process is low when the starting material is mevinolin.
In addition to unconverted starting material a number of other impurities are generated during the methylation and hydrolysis steps. These include, when the starting material is mevinolin, des-butyratemevinolin and bis-methylated compounds wherein the α-lactone carbon is methylated in addition to that on the δ-C-ester side chain, and a methyl ether wherein the ring oxygen of the lactone now in the open form has been methylated.
The purity of the final product isolated from the overall process is close to be unsatisfactory for use as a drug substance.
In an attempt to overcome the shortcomings of U.S. Pat. No. 4,582,915, another method disclosed in Canadian patent 1,287,063 was devised.
Canadian patent 1,287,063 teaches that the lactone ring of lovastatin is reacted with an amine to give the amide XI. The diol of the amide XI is protected as a disilyated ether XII. Alkylation of compound XII with methyl iodide and base produces compound XIII. Deprotection of the diol XIII, followed by lactonization afforded simvastatin (Scheme 3).
More particularly, Canadian patent 1,287,063 discloses that lovastatin is specifically reacted with butylamine to produce lovastatin buytlamide XI. The two hydroxy groups in the butylamide are protected with tert-butyldimethylsilyl chloride to produce a disilyated lovastatin buytlamide XII. The disilyated lovastatin buytlamide is enolized with lithium pyrrolidide and the enolate is alkylated with methyl iodide to produce a disilyated simvastatin butylamide on aqueous work up XIII. The silyl protecting groups are removed using hydrofluoric acid to produce simvastatin butylamide XIV. The simvastatin butylamide is hydrolysed using sodium hydroxide and following acidification, the dihydroxyacid form of simvastatin XV is obtained. The dihydroxy acid compound XV is reacted with ammonium hydoxide to produce an ammonium salt XVI which is then relactonized by heating to produce simvastatin.
In an improved variation of this approach, phenyl boronic acid was used by Kubela, et al. for the protection of the diol resulting in a solid phenylboronate which can be subjected to purification by crystallization (U.S. Pat. No. 5,393,893).
Other variations of the method depicted in Scheme 3 are reported in U.S. Pat. Nos. 4,820,850, and 5,223,415.
In both methods discussed above the 13-OH is protected as a silyl ether. In the first process, the silyl group is removed after the introduction of the acyl group at the 1-OH position. In the second process, the silyl group is removed after the introduction the methyl group at 2′-position.
In Canadian patent 1,287,639 and its U.S. equivalent U.S. Pat. No. 4,916,239 a process for the lactonization of XVI produced as illustrated in Scheme 3 to simvastatin is disclosed. The ammonium salt XVI is suspended in an organic solvent with a strong acid catalyst. After the hydroxy acid-lactone equilibrium is established, water is gradually added to effect complete crystallization of simvastatin from the reaction medium (Scheme 4).
All the processes disclosed in the prior art involves numerous steps thereby contributing to the obtention of simvastatin in relatively low yield. Accordingly, a process that will overcome the disadvantages taught by the prior art will represent a considerable advance in the art.
The object of the present invention is to overcome these disadvantages. The process of the present invention is illustrated in Scheme 5.
Accordingly, an object of the invention is to reduce the number of steps thereby allowing the production of simvastatin in higher yields (Process A, three steps).
Furthermore, by the process developed in the present invention, the C-methylation of the 2′-position group is highly regioselective and does not require the protection/deprotection of 13-OH group of lovastatin (processes A and B), nor does it involve the hydrolysis of the lactone moiety and re-lactonization.
Other advantages of the process of the present invention can be briefly listed:
(i) it avoids the use of expensive reagents such as tert-butyldimethylsilyl chloride and lachrymators such as 2,2-dimethylbutyryl chloride and hydrofluoric acid;
(ii) as the number of steps has been reduced, the process generates fewer impurities which simplifies the isolation of simvastatin of desirable level of purity;
(iii) it provides a simpler and a more economical method of manufacturing simvastatin and is therefore amendable to industrial scale production.
A process for the manufacture of simvastatin which comprises:
(A) step 1. Selectively reducing the carbonyl function of the lactone moiety of lovastatin to a hemiacetal of formula II:
step 2. reacting the compound of formula II with a strong base and methyl iodide in an inert solvent to give a compound of formula V:
or
(B) step 1. Selectively reducing the carbonyl function of the lactone moiety of lovastatin to a hemiacetal of formula II:
step 2. reacting the compound of formula II with an alkanol ROH and an acid in which R is a lower alkyl or lower alkoxyalkyl to give a compound of formula III:
step 3. reacting the compound of formula III with a strong base and methyl iodide in an inert solvet to give a compound of formula IV:
wherein R is as defined above;
step 4. reacting the compound of formula IV with a mild acid in an inert solvent to give a compound of formula V:
The carbonyl function of the lactone ring of lovastatin I is reduced in an inert solvent to the hemiacetal II (Scheme 5). Examples of such reducing agent are well documented in the art and include, for example: i-Bu2AlH (Helv., 46, 2799; J. Org. Chem., 1965, 30, 3564; J. Am. Chem. Soc., 1969, 5675, 91; Synthesis 1975, 671); (Me2CHCHMe)2BH(J. Org. Chem., 1986, 51, 5032; Tet. Lett. 1987, 1073); NaH2Al(OCH2CH2OCH3)2 (Synthesis, 526, 1976). The most preferred reagent for this reduction is i-Bu2AlH. The reaction is normally carried out in an inert solvent such as toluene, heptane, dichloromethane or tetrahydrofuram. The reaction temperature is normally kept at −35° C. to −78° C. The reduction reaction of lovastatin would be expected to afford the tetraol XVII and its partial reduction the diol XVII. However, lovastatin undergoes selective reduction with i-Bu2AlH to give the hemiacetal II as the the main product. The preferred condition requires the use of 2.0 to 2.5 equivalents of i-Bu2AlH, in inert solvent such as toluene, heptane, tetrahydrofuran, preferably tetrahydrofuran, at −35° C. for a period of 1-4 hrs, preferably for 2 hrs. The hemiacetal II is isolated by conventional means.
In Process A, the hemiacetal II is directly methylated at the C2′ position with methyl iodide in an inert solvent such as tetrahydrofuran, 1,2-dimethoxyethane, in the presence of a strong base to give the hemiacetal V. Example of such bases include: lithium diisopropylamide, lithium hexamethyldisilylamide, lithium pyrrolidine, sodium hexamethyldisilylamide, and potassium diisopropylamide. The most preferred condition for this transformation requires the mixing of n-butyl lithium and pyrrolidine at about −25° C. in an inert solvent such as tetrahydrofuran to generate the lithium amide which is then further cooled to a lower temperature, preferably −35° C., and added slowly to a solution of hemiacetal II in an inert solvent such as tetrahydrofuran at the same temperature so as to maintain to internal temperature at −30 to −35° C. This is followed by the addition of methyl iodide. The alkylation product can be isolated by conventional methods.
In process B, the hemiacetal II is converted to acetal III with catalytic amounts of HCl in an alcohol of formula ROH wherein R is lower alkyl. The most preferred condition for this transformation requires the mixing of hemiacetal II and a solution of HCl in methanol at ambient temperatures for 1 to 4 hours. This gives an acetal of formula III wherein R is methyl. Alternatively, compound II is converted to a compound of formula III wherein R is lower alkoxyalkyl with 2-alkoxypropene, or alkoxyethene with pyridine hydrochloride or pyridine toluenesulfonic acid salt in an inert solvent such as methylene chloride. The terms lower alkyl and lower alkoxyalkyl refer to radicals having chains (straight or branched) consisting of C1-C6 carbon atoms.
Compound III reacts with methyl iodide in an inert solvent such as tetahydrofuran, 1,2-dimethoxyethane, in the presence of a base to give the compound IV, in the same manner as described above for the conversion of compound II to V. The alkylation product can be isolated by conventional methods.
The resulting acetal IV is then converted to hemiacetal V with mild acid. The reaction takes place in 5% to 20% HCl in a mixture of water and inert solvent such as tetrahydrofuran or acetonitrile at 0 to 25° C. over a period of 1 to 4 hours. The product is isolated by conventional means.
Oxidation of acetal hemiacetal V, derived from either process (A or B), with silver carbonate on Celite in an inert solvent such as toluene at 80 to 120° C. affords simvastatin which is isolated in pure form by coventional means.
Process A consists of a three step synthesis of simvastatin from lovastatin. Since both 13-OH and 15-OH remain unprotected, the reaction consumes two additional moles of base in the C2′-methylation reaction.
Process B involves the conversion of hemiacetal II to acetal III, which upon C2′-methylation is converted to hemiacetal V. This is a common penultimate intermediate to both processes. Although process B is a five step synthesis, the conversion of II to III and III to V are simple and proceed in high yields.
Other potential approaches for the synthesis of simvastatin are shown in Schemes 6, 7 and 8. In Scheme 6, compound I may be reduced to the tetraol XVII. The 15-OH could be protected as a trityl ether, and the 11, 13-diol protected as an acetonide.
Acylation of the protected triol XIX would be expected to afford compound XX which upon deprotection at C-15 and oxidition would afford aldehyde XIX. Further deprotection of the C-11 and C-13 diol, followed by oxidation of the C-15 hemiacetal would provide simvastatin (VI).
In the approach shown in Scheme 7, compound I would be subjected to oxidation to afford ketone XXII. Ester hydrolysis of XXII would give XXIII, which upon reacylation would provide XXIV. Reduction of XXIV would be expected to afford simvastatin.
In the third approach shown in Scheme 8, compound III from our Process B could be hydrolyzed to give the diol XXV which upon selective acylation would provide compound IV. The later compound may subsequently converted to simvastatin according to the procedure outlined in Scheme 5.
Although these proposed syntheses do not fall within the scope of the two previously reported general processes for the synthesis of simvastatin, they involve manipulation of the lactone/ester function and therefore do not represent any advantage over the process of the present invention.
The following examples serve to illustrate certain aspects of the art thought in the present invention and should not be considered as limiting to the scope of the invention.
[1S-[1α(R*),3α,7β,8β(2S*,4S*,6R*),8aβ,]]-1,2,3,7,8,8a-Hexahydro-3,7-dimethyl-8-[2-(tetrahydro-4,6-dihydroxy-2H-pyran-2-yl)ethyl]-1-naphthalenyl 2-Methylbutanoate and [1S-[1α(R*),3α,7β,8β(2S*,4S*,6S*),8aβ,]]-1,2,3,7,8,8a-Hexahydro-3,7-dimethyl-8-[2-(tetrahydro-4,6-dihydroxy-2H-pyran-2-yl)ethyl]-1-naphthalenyl 2-Methylbutanoate (II)
Diisobutylaluminum hydride (1.0 M solution in dichloromethane, 99.0 ml, 99 mmol) was added dropwise to a stirred and cooled (−35° C.) solution of lovastatin (20.0 g, 49.4 mmol) in tetahydrofuran (200 ml) in a period of 1 hours. Stirring was continued for 1 hour at −35° C. Celite (20 g) and sodium sulphate decahydrate (30 g) were added. The mixture was stirred for 20 min. Cooling bath was removed and stirring was continued for 1 hour. The mixture was filtered through a pad of Celite (8.0×1.5 cm) and the solid was washed with ethyl acetate. Evaporation of the combined filtrate gave crude hemiacetals II (19.0 g, yield 99%) as a white foam (HPLC purity>96%). This was used without further purification in the next step.
IR(KBr) 3439, 2850-3050, 1726, 1600 cm−1; 1H NMR (CDCl3, 300.133 MHz) δ 5.96 (d, J=9.6 Hz, 1H), 5.76 (dd, J=6.0, 9.4 Hz, 1H), 5.47 (br, 1H), 5.36-5.37 (m, 1H), 5.27 (br, 0.7H), 5.10 (d, 0.3H), 4.95 (d, 0.7H, OH), 4.41 (br, 1H, OH), 4.27 (br, 1H), 4.05-4.16 (m, 0.7H), 3.86 (d, 0.3H, OH), 3.71-3.80 (m, 0.3H), 2.28-2.41 (m, 3H), 2.21 (d, J=11.9 Hz, 1H), 1.58-1.98 (m, 9H), 1.10-1.47(m, 4H), 1.08 (d, J=7.0 Hz, 3H), 1.04 (d, J=7.4 Hz, 3H), 0.83-0.90 (m, 6H); 13C NMR(CDCl3, 75.47 MHz) δ 177.0, 133.3, 131.7, 129.3, 128.1, 92.7, 92.3, 70.9, 68.0, 65.2, 64.8, 63.1, 41.4, 39.6, 38.2, 37.8, 37.4, 37.3, 36.5, 35.2, 32.8, 32.7, 32.6, 30.6, 30.5, 27.4, 26.7, 24.5, 24.3, 22.8, 16.1, 13.8, 11.6; mass, m/z 406 (calcd for C24H38O5, m/z 406).
[1S-[1α(R*),3α,7β,8β(2S*,4S*,6R*),8aβ,]]-1,2,3,7,8,8a-Hexahydro-3,7-dimethyl-8-[2-(tetrahydro-4-hydroxy-6-methoxy-2H-pyran-2-yl)ethyl]-1-naphthalenyl 2-Methylbutanoate and [1S-[1α(R*),3α,7β,8β(2S*,4S*,6S*),8aβ,]]-1,2,3,7,8,8a-Hexabydro-3,7dimethyl-8-[2-(tetrahydro-4-hydroxy-6-methoxy-2H-pyran-2-yl)ethyl]-1-naphthalenyl 2-Methylbutanoate (III)
Acetyl chloride (200 μL, 2.8 mmol) was added to a stirred solution of hemiacetals II (19.0 g, 46.7 mmol) in methanol (100 ml). The solution was stirred for 15 min at ambient temperature. Sodium bicarbonate (1.0 g) was added and the mixture was stirred for another 15 min. The mixture was filtered through a pad of Celite (5.5×1 cm) and washed with toluene. Evaporation of solvent of the filtrate gave crude acetals III (19.4 g, yield 98%) as a colorless syrup (HPLC purity >95%). This was used without further purification in the next step.
IR (KBr) 3478, 2850-3050, 1726 cm−1; 1H NMR (CDCl3, 300.133 MHz) δ 5.98 (d, J=9.7 Hz, 1 H), 5.78 (dd, J=6.0, 9.4 Hz, 1H), 5.50 (br, 1H), 5.32-5.36 (m, 1H), 4.81 (d, J=2.8 Hz, 0.3H), 4.69 (dd, J=2.1, 9.8 Hz, 0.7H), 4.26-4.28 (m, 0.7H), 4.01(br, 0.3H), 3.84-3.90(m, 0.3H), 3.69-3.77(m, 0.7H), 3.48 (s, 2.1H), 3.36 (s, 0.9H) 2.39-2.42 (m, 2H), 2.33 (q, J=6.9 Hz), 2.24 (dd, J=2.21, 11.9 Hz, 1H), 1.53-2.03 (m, 9H), 1.33-1.49(m, 4H), 1.09 (d, J=6.9 Hz, 3H), 1.06 (d, J=7.4 Hz, 3H), 0.84-0.91 (m, 6H); 13C NMR (CDCl3, 75.47 MHz) δ 176.6, 133.4, 133.3, 131.8, 129.3, 128.2, 128.1, 99.2, 99.1, 70.8, 67.9, 67.8, 65.3, 64.1, 63.6, 56.0, 54.9, 41.4, 38.3, 37.3, 37.0, 36.8, 35.1, 33.0, 32.9, 32.6, 30.6, 27.4, 26.8, 24.7, 24.5, 22.7, 16.1, 13.8, 11.6; mass, m/z 420 (calcd for C25H40O5, m/z 420).
[1S-[1α(R*),3α,7β,8β(2S*,4S*,6R*),8aβ,]]-1,2,3,7,8,8a-Hexahydro-3,7-dimethy-8-[2-(tetrahydro-4-hydroxy-6-methoxy-2H-pyran-2-yl)ethyl]-1-naphthalenyl 2,2-Dimethylbutanoate and [1S-[1α(R*),3α,7β,8β(2S*,4S*,6S*),8aβ,]]-1,2,3,7,8,8a-Hexahydro-3,7-dimethyl-8-[2-(tetrahydro-4-hydroxy-6-methoxy-2H-pyran-2-yl)ethyl]-1-naphthalenyl 2,2-Dimethylbutanoate (IV)
n-Butyl lithium (2.5M solution in hexane, 53.1 ml, 132.7 mmol) was added slowly to a stirred and cooled (−30° C.) solution of pyrrolidine (11.0 ml, 132.7 mmol) in dry tetrahydrofuran (100 ml). The solution was stirred at −25° C. for 1 hour. The above freshly prepared solution of lithium pyrrolidine was transferred slowly by cannula to a stirred and cooled (−35° C.) solution of the acetals III (18.7 g, 44.2 mmol) in dry tetrahydrofuran (200 ml). The mixture was stirred for 1 hour at −35° C. Iodomethane (6.9 ml, 110.6 mmol) was added slowly and the mixture was stirred for another 1 hour. Water (20 ml) was added to quench the reaction. After the cold bath was removed, saturated aqueous ammonium chloride solution (300 ml) was added and the mixture was stirred for 30 min. The mixture was extracted with toluene (3×250 ml). The combined organic extracts were washed with water (2×250 ml) and dried (Na2SO4). Evaporation of solvent gave crude acetal dimethylbutanoates IV (18.5 g, yield 96%) as a light brown syrup (HPLC purity >93%). This was used without further purification in the next step.
IR (KBr) 3519, 2850-3050, 1699 cm−1; 1H NMR (CDCl3, 300.133 MHz) δ 5.98 (d, J=9.6 Hz, 1H), 5.78 (dd, J=6.0, 9.4 Hz, 1H), 5.50 (m, 1H), 5.31-5.34 (m, 1H), 4.82 (d, J=2.6 Hz, 0.3H), 4.70 (dd, J=2.0, 9.7 Hz, 0.7H), 4.29-4.30 (m, 0.7H), 4.01-4.04 (m, 0.3H), 3.88-3.89(m, 0.31H), 3.69-3.78(m, 0.7 H), 3.61 (d, 1H, OH), 3.50 (s, 2.1H), 3.37 (s, 0.9H) 2.40-2.43 (m, 2H), 2.25 (d, J=11.9 Hz, 1H), 1.51-2.06 (m, 9H), 1.16-1.44(m, 4H), 1.12 (s, 6H), 1.07 (d, J=7.4 Hz, 3H), 0.89 (d, J=7.0 Hz, 3H), 0.83 (t, J=7.5 Hz, 3H); 13C NMR (CDCl3, 75.47 MHz) δ 177.7, 133.3, 133.2, 131.8, 129.4, 128.3, 128.2, 99.2, 99.1, 70.8, 68.1, 68.0, 65.5, 64.2, 63.6, 56.1, 56.0, 42.9, 38.4, 37.5, 37.4, 37.1, 36.9, 35, 33.1, 33.0, 32.8, 32.7, 30.6, 27.3, 24.8, 24.7, 24.5, 23.0, 22.9, 13.8, 9.3; mass, m/z 434(calcd for C26H42O5, m/z 434 ); elemental analysis, C: 71.60%, H: 9.70% (calcd for C26H42O5, C: 71.84%. H: 9.75%).
[1S-[1α(R*),3α,7β,8β(2S*,4S*,6R*),8aβ,]]-1-1,2,3,7,8,8a-Hexahydro-3,7-dimethyl-8-[2-(tetrahydro-4,6-dihydroxy-2H-pyran-2-yl)ethyl]-1-naphthalenyl 2,2-Dimethylbutanonte and [1S-[1α(R*),3α,7β,8β(2S*,4S*,6R*),8aβ,]]-1,2,3,7,8,8a-Hexahydro-3,7-dimethyl-8-[2-(tetrahydro-4,6-dihydroxy-2H-pyran-2-yl)ethyl]-1-naphthalenyl 2,2-Dimethyl-butanoate (V from IV)
Hydrochloric acid (10%, 150 ml) was added to a stirred solution of acetal dimethylbutanoates IV (18.2 g, 45.1 mmol) in tetrahydrofuran (150 ml). The mixture was stirred for 1.5 hour at ambient temperature. Saturated aqueous sodium hydrogen carbonate solution was added slowly to adjust the reaction mixture to pH ca 7. The mixture was extracted with toluene (3×300 ml). The combined organic extracts were washed with brine (400 ml) and dried (Na2SO4). Evaporation of solvent gave crude hemiacetal dimethylbutanoates V (17.6 g, yield, quantitative) as a brown syrup (HPLC purity >75%). This was used without further purification in the next step. Part of the crude hemiacetal dimethylbutanoates V (0.6 g) was purified by flash chromatography over silica gel (2×12 cm) with ethyl acetate-heptane (1:1). The collected fractions were concentrated and crystallized from ethyl acetate-heptane to give a white powder (260 mg) which contained only one isomer.
m.p. 155-157° C.; IR (KBr) 3435, 3223, 2850-3050, 1714 cm−1; 1H NMR (CDCl3, 300.133 MHz) δ 5.98 (d, J=9.6 Hz, 1H), 5.78 (dd, J=6.1, 9.4 Hz, 1H), 5.47-5.49 (m, 1H), 5.35-5.36 (m, 1H), 5.29-5.32 (m, 1H), 4.67 (d, 1H, OH), 4.10-4.20 (m, 2H), 3.63 (d, 1H, OH), 2.35-2.41 (m, 2H), 2.20-2.25 (m, 1H), 1.15-1.98 (m, 13H), 1.12 (s, 3H), 1.11 (s, 3H), 1.07 (d, J=7.5 Hz, 3H), 0.86 (d, J=7.1 Hz 3H). 0.82 (t, J=7.5 Hz, 3H); 13C NMR (CDCl3, 75.47 MHz) δ178.1, 133.2, 131.7, 129.4, 128.2, 92.9, 68.2, 64.9, 63.0, 43.0, 38.3, 37.8, 36.4, 35.2, 33.0, 32.8, 30.5, 27.2, 24.7, 24.6, 24.3, 23.0, 13.9, 9.2; mass, m/z 420 (calcd for C25H40O5, m/z 434); elemental analysis, C: 71.27% H: 9.42% (calcd for C26H42O5, C: 71.38%, H: 9.49%).
[1S-[1α(R*),3α,7β,8β (2S*,4S*,6R*),8aβ,]]-1,2,3,7,8,8a-Hexahydro-3,7-dimethyl -8-[2-(tetrahydro-4,6-dihydroxy-2H-pyran-2-yl)ethyl-1-naphthalenyl 2,2-Dimethylbutanoate and [1S-1α(R*),3α,7β,8β(2S*,4S*,6S*),8aβ,]]-1,2,3,7,8,8a-Hexahydro-3,7-dimethyl-8-[2-(tetrahydro-4,6-dihydroxy-2pyran-2-yl)ethyl]-1-naphthalenyl 2,2-Dimethyl-butanoate (V from II)
n-Butyl lithium (2.5 M solution in hexane, 37.8 ml, 95.4 mmol) was added slowly to a stirred and cooled (−30° C.) solution of pyrrolidine (8.0 ml, 95.4 mmol) in dry tetrahydrofuran (150 ml), The solution was stirred at −25° C. for 1 hour. The above fresh made lithium pyrrolidine was transferred slowly by cannula to a stirred and cooled (−35° C.) solution of the hemiacetals II (8.6 g, 21.2 mmol) in dry tetrahydrofuran (150 ml). The mixture was stirred for 1 hour at −35° C. Iodomethane (4.8 ml, 76.5 mmol) was added slowly and the mixture was stirred for another 1 hour. Water (20 ml) was added to quench the reaction. After the cold bath was removed, saturated aqueous ammonium chloride solution (200 ml) was added and the mixture was stirred for 30 min. The mixture was extracted with ethyl acetate (3×250 ml). The combined organic extracts were washed with brine (2×200 ml) and dried (MgSO4). Evaporation of solvent gave crude acetal dimethylbutanoates V (8.8 g, quantitative) as a light brown syrup (HPLC purity >85%). This was used without further purification in the next step.
[1S-[1α(R*),3α,7β,8β(2S*,4S*),8aβ,]]-1,2,3,7,8,8a-Hexahydro-3,7-dimethyl-8-[2tetrahydro-4-hydroxy6-oxo-2H-pyran-2-yl)ethyl]-1-naphthalenyl 2,2-Dimethylbutanoate (Simvastatin, VI)
Celite (29.4 g) and silver carbonate (14.7 g, 53.2 mmol) were added to a solution of crude hemiacetal dimethylbutanoate V (15.0 g, 35.7 mmol) in toluene (300 ml). The mixture was refluxed in a preheated oil bath (130° C.) for 2 hours. The reaction was protected from light. After cooling to room temperature, the mixture was filtered through a pad of Celite (8×2 cm) and washed with ethyl acetate (400 ml). The combined filtrates were treated with charcoal (3.0 g) for 30 min. at ambient temperature. The suspension was filtered through a pad of Celite (8×2 cm) and washed with ethyl acetate (200 ml). Evaporation of the solvent of the combined filtrate gave a light yellow oil. Crystallization of the crude product from cyclohexane-heptane(1:1) gave simvastatin (7.2 g, yield 48%) as a white solid. Its analytical data including TLC, HPLC, 1H NMR, 13C NMR and IR are identical with an authentic sample.
Claims (17)
1. A process for the manufacture of simvastatin which comprises:
Process (A) step 1. selectively reducing the carbonyl function of the lactone moiety of lovastatin to a hemiacetal of formula II:
step 2. reacting the compound of formula II with a strong base and methyl iodide in an inert solvent to give a compound of formula V:
Process (B) step 1. selectively reducing the carbonyl function of the lactone moiety of lovastatin to a hemiacetal of formula II:
step 2. reacting the compound of formula II with an alkanol ROH and an acid in which R is a lower alkyl or lower alkoxyalkyl to give a compound of formula III:
step 3. reacting the compound of formula III with a strong base and methyl iodide in an inert solvent to give a compound of formula IV:
wherein R is as defined above:
step 4. reacting the compound of formula IV with a mild acid in an inert solvent to give a compound of formula V:
2. The process of claim 1 which is A.
3. The process of claim 1 which is B.
4. The process of claim 1 , 2 or 3 wherein the selective reduction in step 1 is conducted with 2.0 to 2.5 equivalents diisobutylaluminium hydride in an inert solvent at a temperature in the range of −35° C. to 78° C. for about 2 hours.
5. The process of claim 4 wherein the inert solvent is selected from the group consisting of toluene, heptane, dichloromethane or tetrahydrofuran.
6. The process of claim 1 (A) or 2 in which the strong base in step 2 is selected from the group consisting of lithium diisopropylamide, lithium hexamethyldisilylamide, lithium pyrrolidine, soldium hexomethyldisilylamide or potassium diisopropylamide.
7. The process of claim 1 (A) or 2 in which step 2 is conducted in an inert solvent.
8. The process of claim 7 wherein the inert solvent is tetrahydrofuran or 1,2-dimethoxyethane.
9. The process of claim 1 (B) or 3 in which the alkanol in step 2 is methanol.
10. The process of claim 1 (B) or 3 in which the acid in step 2 is hydrochloric acid.
11. The process of claim 1 (B) or 3 in which the strong base in step 3 is selected from the group consisting of lithium diisopropylamide, lithium hexamethyldisilylamide, lithium pyrrolidine, sodium hexomethyldisilyl-amide or potassium diisopropylamide.
12. The process of claim 1 (B) or 3 in which the mild acid in step 4 is a solution of 5% to 20% of hydrochloric acid.
13. The process of claim 12 wherein the inert solvent is tetrahydrofuran or acetonitrile.
14. The process of claim 1 , 2 or 3 wherein the oxidizing agent is silver carbonate on Celite.
15. The process of claim 14 wherein the oxidation is conducted in the presence of an inert solvent.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2240983 | 1998-06-18 | ||
CA002240983A CA2240983A1 (en) | 1998-06-18 | 1998-06-18 | Process to manufacture simvastatin and intermediates |
Publications (1)
Publication Number | Publication Date |
---|---|
US6506929B1 true US6506929B1 (en) | 2003-01-14 |
Family
ID=4162564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/719,606 Expired - Fee Related US6506929B1 (en) | 1998-06-18 | 2001-04-24 | Process to manufacture simvastatin and intermediates |
Country Status (7)
Country | Link |
---|---|
US (1) | US6506929B1 (en) |
EP (1) | EP1087958B1 (en) |
AT (1) | ATE223397T1 (en) |
CA (1) | CA2240983A1 (en) |
DE (1) | DE69902788T2 (en) |
ES (1) | ES2183559T3 (en) |
WO (1) | WO1999065892A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005058861A1 (en) * | 2003-12-16 | 2005-06-30 | Uk Chemipharm Co., Ltd. | Process for preparing simvastatin. |
US20090043115A1 (en) * | 2004-09-30 | 2009-02-12 | Pficker Pharmaceuticals Ltd. | Process for Producing Simvastatin |
US20090311330A1 (en) * | 2006-04-26 | 2009-12-17 | Phillip Driver | Liquid oral compositions |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0940395A1 (en) * | 1998-03-05 | 1999-09-08 | Synthon B.V. | Process for producing simvastatin and/or its derivatives |
KR100435142B1 (en) * | 2002-01-09 | 2004-06-09 | 한미약품 주식회사 | Improved process for the preparation of simvastatin |
CN103254076A (en) * | 2008-05-09 | 2013-08-21 | 上海医药工业研究院 | Synthesis method for simvastatin ammonium salt, used intermediate and preparation methods for both |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4444784A (en) * | 1980-08-05 | 1984-04-24 | Merck & Co., Inc. | Antihypercholesterolemic compounds |
US4450171A (en) | 1980-08-05 | 1984-05-22 | Merck & Co., Inc. | Antihypercholesterolemic compounds |
CA1199322A (en) | 1980-02-04 | 1986-01-14 | Robert L. Smith | Antihypercholesterolemic compounds |
US4582915A (en) * | 1983-10-11 | 1986-04-15 | Merck & Co., Inc. | Process for C-methylation of 2-methylbutyrates |
US4820850A (en) * | 1987-07-10 | 1989-04-11 | Merck & Co., Inc. | Process for α-C-alkylation of the 8-acyl group on mevinolin and analogs thereof |
US4916239A (en) | 1988-07-19 | 1990-04-10 | Merck & Co., Inc. | Process for the lactonization of mevinic acids and analogs thereof |
US5072002A (en) * | 1989-07-18 | 1991-12-10 | The Governors Of The University Of Alberta | Synthesis of cholesterol-lowering agents |
US5159104A (en) | 1991-05-01 | 1992-10-27 | Merck & Co., Inc. | Process to simvastatin ester |
US5223415A (en) | 1990-10-15 | 1993-06-29 | Merck & Co., Inc. | Biosynthetic production of 7-[1',2',6',7',8',8a'(R)-hexahydro-2'(S),6'(R)-dimethyl-8'(S)-hydroxy-1'(S)-naphthyl]-3(R),5(R)-dihydroxyheptanoic acid (triol acid) |
US5393893A (en) * | 1993-11-08 | 1995-02-28 | Apotex, Inc. | Process for producing simvastatin and analogs thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3480923D1 (en) * | 1983-10-11 | 1990-02-08 | Merck & Co Inc | METHOD FOR THE C-METHYLATION OF 2-METHYLBUTYRATES. |
-
1998
- 1998-06-18 CA CA002240983A patent/CA2240983A1/en not_active Abandoned
-
1999
- 1999-06-10 ES ES99924627T patent/ES2183559T3/en not_active Expired - Lifetime
- 1999-06-10 WO PCT/CA1999/000540 patent/WO1999065892A1/en active IP Right Grant
- 1999-06-10 EP EP99924627A patent/EP1087958B1/en not_active Expired - Lifetime
- 1999-06-10 DE DE69902788T patent/DE69902788T2/en not_active Expired - Fee Related
- 1999-06-10 AT AT99924627T patent/ATE223397T1/en not_active IP Right Cessation
-
2001
- 2001-04-24 US US09/719,606 patent/US6506929B1/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1199322A (en) | 1980-02-04 | 1986-01-14 | Robert L. Smith | Antihypercholesterolemic compounds |
US4444784A (en) * | 1980-08-05 | 1984-04-24 | Merck & Co., Inc. | Antihypercholesterolemic compounds |
US4450171A (en) | 1980-08-05 | 1984-05-22 | Merck & Co., Inc. | Antihypercholesterolemic compounds |
US4582915A (en) * | 1983-10-11 | 1986-04-15 | Merck & Co., Inc. | Process for C-methylation of 2-methylbutyrates |
US4820850A (en) * | 1987-07-10 | 1989-04-11 | Merck & Co., Inc. | Process for α-C-alkylation of the 8-acyl group on mevinolin and analogs thereof |
US4916239A (en) | 1988-07-19 | 1990-04-10 | Merck & Co., Inc. | Process for the lactonization of mevinic acids and analogs thereof |
US5072002A (en) * | 1989-07-18 | 1991-12-10 | The Governors Of The University Of Alberta | Synthesis of cholesterol-lowering agents |
US5223415A (en) | 1990-10-15 | 1993-06-29 | Merck & Co., Inc. | Biosynthetic production of 7-[1',2',6',7',8',8a'(R)-hexahydro-2'(S),6'(R)-dimethyl-8'(S)-hydroxy-1'(S)-naphthyl]-3(R),5(R)-dihydroxyheptanoic acid (triol acid) |
US5159104A (en) | 1991-05-01 | 1992-10-27 | Merck & Co., Inc. | Process to simvastatin ester |
US5393893A (en) * | 1993-11-08 | 1995-02-28 | Apotex, Inc. | Process for producing simvastatin and analogs thereof |
Non-Patent Citations (4)
Title |
---|
Article "Simvastatin: A review of its Pharmacology and Clinical Use" Mauro, et al, The Annuals of Pharmacotherapy, 1991, vol. 25, pp. 257-264. |
Article "The Chemistry and Total Snthesis of Mevinolin and Related Compounds" Y. Chapleur, Recent Prog. Chem. Synth. Antiobiot, Relat. Microb. Product, 1993, p. 829-937. |
Clive et al, Journal of American Chemistry Society, 1988, v 110 pp. 6914-6916.* * |
Clive et al, Journal of American Chemistry Society, 1990, v 112, pp. 3018-3028.* * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005058861A1 (en) * | 2003-12-16 | 2005-06-30 | Uk Chemipharm Co., Ltd. | Process for preparing simvastatin. |
US20090043115A1 (en) * | 2004-09-30 | 2009-02-12 | Pficker Pharmaceuticals Ltd. | Process for Producing Simvastatin |
US20090311330A1 (en) * | 2006-04-26 | 2009-12-17 | Phillip Driver | Liquid oral compositions |
US9597289B2 (en) | 2006-04-26 | 2017-03-21 | Rosemont Pharmaceuticals Ltd. | Liquid oral simvastatin compositions |
US10300041B2 (en) | 2006-04-26 | 2019-05-28 | Rosemont Pharmaceuticals Ltd | Liquid oral simvastatin compositions |
Also Published As
Publication number | Publication date |
---|---|
ES2183559T3 (en) | 2003-03-16 |
EP1087958B1 (en) | 2002-09-04 |
WO1999065892A1 (en) | 1999-12-23 |
DE69902788T2 (en) | 2003-08-14 |
DE69902788D1 (en) | 2002-10-10 |
ATE223397T1 (en) | 2002-09-15 |
EP1087958A1 (en) | 2001-04-04 |
CA2240983A1 (en) | 1999-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1199322A (en) | Antihypercholesterolemic compounds | |
US4282155A (en) | Antihypercholesterolemic compounds | |
US4450171A (en) | Antihypercholesterolemic compounds | |
CZ20003149A3 (en) | Process for preparing simvastatin | |
US4857547A (en) | Novel HMG-CoA reductase inhibitors | |
US4503072A (en) | Antihypercholesterolemic compounds | |
US6278001B1 (en) | Method for preparing (+) compactin and (+) mevinolin analog compounds having a β-hydroxy-δ-lactone grouping | |
Lee et al. | Structural modification of mevinolin | |
US6506929B1 (en) | Process to manufacture simvastatin and intermediates | |
KR840002170B1 (en) | Method for preparing substituted pyranone cholesterol synthesis inhibitor | |
US5099035A (en) | Mevinic acid derivatives useful as antihypercholesterolemic agents and method for preparing same | |
AU606203B2 (en) | Novel hmg-coa reductase inhibitors | |
AU619563B2 (en) | 5-oxygenated HMG-CoA reductase inhibitors | |
US4611068A (en) | Process for the preparation of HMG-CoA reductase inhibitors and intermediate compounds employed therein | |
HRP20000467A2 (en) | Process for the preparation of simvastatin and derivatives thereof | |
US5166364A (en) | Mevinic acid derivatives useful as antihypercholesterolemic agents and method for preparing same | |
EP0113881B1 (en) | Antihypercholesterolemic compounds | |
JPH03184940A (en) | 7-substituted hmg-coa reductase inhibiting agent | |
JPS62277377A (en) | Antihypercholesteremic compound | |
CA2027765C (en) | Mevinic acid derivatives | |
US6573392B1 (en) | Process for manufacturing simvastatin and the novel intermediates | |
EP0306263B1 (en) | Novel hmg-coa reductase inhibitors | |
JPH04234379A (en) | Process for stereoselectively preparing 5- substituted delta-lactone and ues thereof | |
US5149835A (en) | Substituted mevalonolactones, and methods for stereoselective preparation thereof and desmethyl homologues thereof | |
EP0402154A1 (en) | Antihypercholesterolemic compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
CC | Certificate of correction | ||
AS | Assignment |
Owner name: APOTEX TECHNOLOGIES INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:APOTEX INC.;REEL/FRAME:017546/0220 Effective date: 20060120 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20070114 |