US6591200B1 - Method and system for performance testing of rotating machines - Google Patents
Method and system for performance testing of rotating machines Download PDFInfo
- Publication number
- US6591200B1 US6591200B1 US09/719,780 US71978001A US6591200B1 US 6591200 B1 US6591200 B1 US 6591200B1 US 71978001 A US71978001 A US 71978001A US 6591200 B1 US6591200 B1 US 6591200B1
- Authority
- US
- United States
- Prior art keywords
- electric motor
- speed
- torque
- time
- steady state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 87
- 238000012360 testing method Methods 0.000 title claims abstract description 56
- 230000001133 acceleration Effects 0.000 claims abstract description 28
- 238000009795 derivation Methods 0.000 claims abstract description 12
- 238000001228 spectrum Methods 0.000 claims description 54
- 230000003068 static effect Effects 0.000 claims description 45
- 238000005070 sampling Methods 0.000 claims description 41
- 230000001052 transient effect Effects 0.000 claims description 32
- 230000001131 transforming effect Effects 0.000 claims description 11
- 230000008878 coupling Effects 0.000 claims description 10
- 238000010168 coupling process Methods 0.000 claims description 10
- 238000005859 coupling reaction Methods 0.000 claims description 10
- 230000006698 induction Effects 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 7
- 238000012544 monitoring process Methods 0.000 claims description 6
- 230000001419 dependent effect Effects 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 abstract description 18
- 238000013459 approach Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000006872 improvement Effects 0.000 description 5
- 101100129500 Caenorhabditis elegans max-2 gene Proteins 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 241001155433 Centrarchus macropterus Species 0.000 description 1
- 208000035126 Facies Diseases 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P21/00—Testing or calibrating of apparatus or devices covered by the preceding groups
- G01P21/02—Testing or calibrating of apparatus or devices covered by the preceding groups of speedometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L3/00—Measuring torque, work, mechanical power, or mechanical efficiency, in general
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
- G01P3/44—Devices characterised by the use of electric or magnetic means for measuring angular speed
- G01P3/48—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
- G01P3/481—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
- G01P3/489—Digital circuits therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P7/00—Measuring speed by integrating acceleration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/34—Testing dynamo-electric machines
- G01R31/343—Testing dynamo-electric machines in operation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
- H02P6/17—Circuit arrangements for detecting position and for generating speed information
Definitions
- This invention relates generally to the accurate measurement of angular rotation and, in particular, to the performance testing of rotating machines.
- the motor speed is measured using a tachometer coupled to the motor's axis.
- a tachometer coupled to the motor's axis.
- This allows acquisition of the motor speed in analog form and suffers from low resolution and severe noise contamination.
- digital methods are preferred and significant effort has been expended during the last two or three decades to allow more accurate digital sampling of the rotational velocity of motor shafts and the like.
- Many such methods still employ what are essentially analog transducers to derive the speed signal and then digitize the speed signal using AID converters, so as to allow subsequent processing to be performed digitally.
- FIG. 1 shows pictorially a motor test bed 10 wherein a motor is mechanically coupled to a test system according to U.S. Pat. No. 5,218,860 via a test fixture consisting of a rotating shaft 12 supported on high-quality bearings 13 .
- a flywheel 14 mounted on the shaft 12 are a flywheel 14 of known inertia and a high-resolution rotary digital encoder 15 .
- the torque-speed characteristics are sampled at regular known time intervals during the time it takes for the motor to reach full speed from standstill.
- the measurement time interval is fixed by a crystal oscillator and is usually 16.67 ms, corresponding to the period of one 60-Hz power line cycle.
- the change in speed is determined by the rotary encoder which resolves as little as 0.0072° of angular displacement.
- Torque and speed are computed for each 16.67 ms period from the time power is applied until it reaches its maximum no-load speed.
- the inertia of the flywheel attached to the motor is so selected that the motor reaches full speed in about 4 seconds, this being the time it takes to sample some 240 torque and speed results, enough to describe the entire torque-speed curve from standstill to full speed.
- the flywheel attached to the motor shaft loads the motor and, whilst this does not derogate from the static performance of the motor, it substantially eliminates the fluctuations to which the transient effects are subjected. Consequently, loading the motor as taught in U.S. Pat. No. 5,218,860 does not allow measurement of the dynamic performance of the motor.
- the dynamic performance of the motor provides invaluable information about the motor, such that without a knowledge of the dynamic performance of the motor it is impossible to derive fundamental behavior of the motor.
- the dynamic performance data is unattainable during a sample period as large as 16 ms, since during this time period most of the fluctuations on the transient part of the curve are lost.
- any improvement is limited in scope. This follows from the fact that counting pulses during a fixed time period, however small, can never allow optimum results to be achieved.
- sampling time period could be reduced indefinitely (which, of course, it cannot) it can never be reduced to less than the period of a single pulse since, in such case, no data would be obtained during the sample period.
- increasing the sampling time period ensures that sample data will be obtained, it does so at the cost of producing multiple data per sample. This means that the resolution thereby obtained is inevitably less than the theoretical maximum.
- U.S. Pat. No. 4,535.288 to Joseph L. Vitulli, Jr discloses a method for determining the rotational speed of a moving shaft in a spatially limited environment, wherein the time between a sequentially successive pair of encoder (transducer) pulses is used to determine the speed. Updated rotational speed is computed from a flier pair of sequentially successive pulses, which are non-sequential to the earlier pulses.
- the rotary encoder described by Vitulli can be likened to a toothed wheel having sixty equally spaced teeth, each of which gives rise to an output signal having a first voltage level when rotating past a pickup.
- the first and second voltage levels translate to digital signals having logic HIGH and Low levels, respectively, such that a pulse train is produced.
- the angle of rotation corresponding to each logic HIGH level is 2 ⁇ /120 radians.
- JP 59 160766 discloses a speed detecting device of a servo-motor is determined using a rotary encoder in a manner similar to that described in U.S. Pat. No 4,535,288 and thus subject to he same problems of inaccuracies owing to duty cycle errors. The is moreover no suggestion to test the marine when unloaded.
- GB 2 127 549 discloses a test bed for supporting a motor during measurement of the motor's torque.
- the system disclosed thereby appears to be very similar to U.S. Pat. No. 5,218,860 discussed at length above and is subject to the same deficiencies.
- the motor whose steady-state and transient torque are measured by GB 2 127 549 is loaded in order to reduce the acceleration of the motor (loading the motor causes all the dynamic phnomenon spoken at the present application to disappear). It is clear from the description in GB 2 127 549 on page 1 lines 48 to 53 that such loading is necessary in order to record the transient torque-speed characteristics of the motor starting from zero speed to full speed.
- U.S. Pat. No. 4,169,371 discloses a method and apparatus for measuring the torque and/or power of a drive system in dynamic operation based on the time differentiation of the speed of the drive to determine acceleration. The system is loaded and it is therefore apparent that the dynamic characteristics whose determination is the principal objective of the present invention are lost.
- U.S. Pat. No. 5,631,411 discloses an He monitoring apparatus that calculates the speed of a motor. It is clear from FIG. 1 that an inertial load (i.e. a flywheel) is conned to the motor and therefore here, too, the dynamic characteristics whose determination is the principal objective of the present invention are lost.
- an inertial load i.e. a flywheel
- EP 457 086 discloses an apparatus for the contactless measurement of the local dragged-in torque in a worm machine. At least two position sensors or proximity switches are arranged in the worm casing. During the rotation of the worm shank, the sensors scan the worm shank surface and, on the basis of detected characteristics, generate measurement pulses which, together with a speed signal, are suppliable to an electronic analysis circuit, which calculates the local dragged-in torque in a segment of the worm shank, within the product space.
- the apparatus operates in conjunction with a device for measuring the integral torque being arranged between the worm shack drive and the product space of the worm machine. There is no suggestion here either to measure torque of an unloaded machine.
- U.S. Pat. No. 5,390,545 discloses an apparatus for measuring torsional vibrations of rotating machinery wherein a wheel having a plurality of spaced apart teeth is connected to the rotating machinery.
- a sensor detects the speed of wheel rotation and responsively produces a speed signal that has a frequency proportional to the rotational wheel speed.
- a timing deice receives the speed signal, determines the period of the most recent pulse of the speed signal, and responsively produces an instantaneous period signal that has a value representative of the determined period.
- U.S. Pat. No. 4,992,730 discloses a method of computing the rotating speed of a rotating body by setting speed computation reference time periods with respect to a pulse train signal obtained from the output of a rotating speed sensor; measuring time length from the last pulse edge in the previous speed computation reference time period to the last pulse edge in the current speed computation reference time period; and computing the rotating speed of the rotating body on the basis of the result of the time length measurement.
- the invention thus allows an improved approach to testing motor or engine speed according to the time that elapses during a known angular rotation of the shaft.
- the elapsed time is measured for the logical states to change from LOW to HIGH and back to LOW or vice versa.
- the tie interval during which the logic state remains either LOW or HIGH is subject to duty cycle error
- the combined time interval for sequential logic states is an accurate reflection of a known angular rotation.
- the shaft revolutions per minute (rpm) can be determined in a one second degree interval, and in the case of a very high quality encoder (with duty cycle error in the order of ⁇ 10%) will give rise to a measured speed inaccuracy of ⁇ 10%.
- step (c) using the dynamic speed-time characteristic of the unloaded rotating electric motor to derive static torque speed or dynamic torque speed or oscillating torque during steady state or speed and torque specturn during steady state of the unloaded rotating electric motor.
- the invention also contemplates an apparatus for deter dynamic and static speed-time, torque-time and speed-torque characteristics of a rotating machine or of a component thereof.
- a pre-calibrated rotor tests may be performed on identical machines using different stators so as to provide relative performance data (both static and dynamic) of the different stators.
- tests may be performed on identical machines using different rotors so as to provide relative performance data (both static and dynamic) of the different rotors.
- the method and apparatus according to the invention allow dynamic and static performance data to be derived without requiring the connection of an external inertial load to the machine's axis. This allows the machine to reach steady state (i.e. non-transient) operation more quickly and allows calibration of the machine to be effected more quickly. This is of particular importance when small machines are mass-produced and must be tested on the production line. Moreover, it allows the measurement of fluctuations, which have hitherto eluded measurement.
- the invention also allows measurement of oscillating torque and speed during steady state condition so as to derive speed-time and torque-time characteristics in both the time and frequency domains.
- a flywheel may be used to slow down the time for the machine to reach steady state, thereby producing steady state oscillating torque and speed phenomena during the acceleration. This allows faults with the machine to be highlighted that would not otherwise be apparent.
- the invention also permits greater flexibility of testing the rotating machine.
- a user can control the sampling time and the time from which the sampling begins.
- the user can likewise control x-axis (time and frequency) and y-axis (torque and speed) thus allowing the device to be used as a rotating machine analyzer.
- FIG. 1 shows pictorially a prior art motor test bed
- FIG. 2 is a block diagram showing functionally a motor test system according to the invention.
- FIG. 3 is a block diagram showing a detail of the motor test system depicted in FIG. 2;
- FIG. 4 is a flow diagram showing the principal steps for operating the motor test system shown in FIG. 2;
- FIGS. 5 to 13 show graphically typical a.c. PSC induction motor characteristics measured or computed with the motor test system according to the invention
- FIGS. 14 to 19 show graphically further applications of the invention for highlighting faults on steady state condition
- FIGS. 20 to 23 show graphically further applications of the invention for highlighting faults with an air-conditioning fan
- FIG. 24 is a block diagram showing functionally a dynamic torque and speed analyzer for displaying speed or torque characteristics of a rotating shaft derived according to the invention.
- FIG. 2 shows functionally a motor test system depicted generally as 20 comprising an induction motor 21 having a shaft 22 thereof coupled to a digital shaft encoder 23 of known type.
- the shaft encoder 23 does not require very high resolution and, in practice, may generate 5,000 pulses per revolution of the motor shaft.
- the shaft encoder 23 produces logic levels that are sampled by a sampling unit 24 that measures the elapsed time for the logical states to change from LOW to HIGH and back to LOW or vice versa.
- the successive time intervals are fed to a computer 25 that processes the time data so as to derive the dynamic speed characteristic of the motor 21 as a function of the elapsed time and store in a memory thereof.
- the motor 21 is actuated via a control unit 26 that is responsively coupled to the computer 25 so that, for example, power to the motor 21 may be interrupted once the motor 21 has achieved full steady state speed, thus signifying the completion of the test procedure.
- a display device 27 such as a display monitor or plotter.
- the motor 21 is energized by a power supply 28 which may be actuated at a precisely known time.
- FIG. 3 shows a timing circuit 30 within the sampling unit 24 comprising an oscillator 31 fed to the clock input (CLK) of a first counter 32 and a second counter 33 .
- the output of the shaft encoder 22 is fed to the enable input (ENABLE) of the first counter 32 whose output is fed to the computer 25 .
- the output of the shaft encoder 22 is inverted by an inverter 34 and fed to the enable input (ENABLE) of the second counter 33 whose output is also fed to the computer 25 .
- the reset terminal (RST) of the first counter 32 is responsively coupled to the computer 25 and also the reset terminal (RST) of the second counter 33 is responsively coupled to the computer 25 so as to enable the first counter 32 and the second counter 33 to be reset thereby, as will now be explained.
- the operation of the timing circuit 30 is as follows.
- the oscillator 31 based on a quartz crystal produces high frequency pulses having a known, stable frequency.
- the shaft encoder 23 rotates together with the motor shaft, it produces sequential opposing binary logical LOW and HIGH states of lower frequency than that of the oscillator 31 .
- the relatively low frequency logic levels generated by the shaft encoder 23 are fed to the enable input of the first counter 32 and, after inversion, are fed to the enable input of the second counter 33 .
- the first counter 32 measures the number of relatively high frequency pulses produced by the oscillator 31 when the encoder is at logic HIGH and the second counter 33 measures the number of relatively high frequency pulses produced by the oscillator 31 when the encoder is at logic LOW, both results being fed to the computer 25 .
- the computer 25 is responsive to a change in state of the first counter ENABLE signal for capturing the data on the respective outputs of the first counter 32 and the second counter 33 and to feeding a reset signal to the respective RST inputs thereof. This clears the first counter 32 when the encoder is at logic LOW and clears the second counter 33 when the encoder is at logic EEGH.
- the output of the first counter 32 between successive ENABLE signals is thus accurately representative of the time taken for the shaft encoder 23 to remain at logic HIGH.
- the output of the second counter 32 between successive ENABLE signals is accurately representative of the time taken for the shaft encoder 23 to remain at logic LOW.
- Vitulli, Jr. measures the time for one nominal half cycle of a single pulse and calculates from this the nominal time period of each encoder pulse based on the duty cycle specified by the manufacturer. However, this is subject to inaccuracies owing to the inevitable errors in the duty cycle specified by the manufacturer, which are currently in the order of ⁇ 10%.
- Vitulli, Jr. provides a nominal angular rotation in a single pulse of the rotary encoder, thereby allowing calculation of angular velocity during a single pulse thereof, the actual result is inaccurate.
- FIG. 4 is a flow diagram showing the operation of the motor test system 20 .
- the motor 21 is energized and the output of the shaft encoder 23 is sampled as explained above.
- the sampled data is collected and processed by the computer 25 and the processed data is displayed on the display device 26 . Any departure from an accepted performance range is calculated and allows a warning signal to be output by the computer 25 for warning of a faulty motor.
- a warning signal may, of course, be rendered audible or visual in known manner.
- the fluctuations on the transient effects produced during acceleration of the motor 21 may be removed so as to produce the conventional static speed characteristic.
- FIG. 5 shows graphically the dynamic motor speed characteristic for an a.c. PSC induction motor as computed from the measured successive time periods of pulses produced by the shaft encoder 23 .
- the incremental motor speed between successive pulses may be calculated since the angular rotation commensurate with each pulse is known. It is noted that the motor speed and therefore torque do not continually increase with time but, rather, climb and then fall for a short time, whereafter they again climb. After approximately 0.04 s, this effect ceases and the motor speed and torque increase with time until the steady state condition is approached. In particular, it is to be noted that even when the motor reaches steady state, there are still continuous fluctuations in its speed. These fluctuations are only apparent by measuring the angular rotation of the motor as a function of pulse period of the rotary encoder and are missed altogether in hitherto proposed methods based on averaging data over a large number of pulses.
- M(t) instantaneous Torque at time t
- ⁇ angular speed of motor
- FIG. 6 shows graphically the run-up torque characteristics which are derived from the speed characteristics of the motor 21 as follows.
- the motor is operated without any external load and the dynamic speed characteristic is derived and stored in the computer 25 .
- the time derivative of the dynamic speed characteristic is then calculated and the result multiplied by the known moment of inertia of the rotor. Seeing that the speed is determined in rpm, the result must be further multiplied by a factor 2 ⁇ /60 to convert to the equivalent angular speed in radians per second relate to the dynamic torque from starting the unloaded motor to its reaching full speed.
- This characteristic is repeatable providing that care is taken always to start the motor at a predetermined point in the a.c. cycle of the supply voltage. For example, in a particular system reduced to practice, the motor was started at the point in the a.c. cycle where the voltage climbed through 0 volt.
- the run-up no-load torque characteristic of the motor shown in FIG. 6 allows determination of dynamic motor characteristics which are unattainable with conventional systems providing static speed and torque characteristics only.
- the dynamic characteristics allow identification of motor faults not detectable from static data only as well as permitting classification of motor characteristics. Moreover, it has been found that:
- the dynamic torque characteristic gives an indication of the noise amplitude in the motor torque during acceleration thereof; and likewise provides an indication of the strength of mechanical noise in the motor arising from changes in the torque during acceleration;
- the above discussion has concentrated, so far, on the dynamic characteristics of the motor during run-up. However, if desired fluctuations in the transient effects can be removed so as to provide the smoothed speed-time characteristic shown graphically in FIG. 7, from which may be derived the conventional torque-speed characteristic (shown in FIG. 11 ). Removal of fluctuations in the transient effects can be achieved in several ways.
- the motor shaft can be mechanically locked and released only when the stator current achieves a steady state value.
- the motor 21 is a Permanent Split Capacitor (PSC) type induction motor wherein the stator comprises a main coil and an auxiliary coil which may be switched in parallel with the main coil, then the rotor will rotate only when current is fed to both coils.
- PSC Permanent Split Capacitor
- both the main and auxiliary stator coils are switched in circuit only when the a.c. supply voltage equals zero on its upward climb. More generally, repeatability may be ensured by supplying power at any other known angle in the a.c. voltage supply cycle.
- Yet another way to neutralize the fluctuations of transients is to process the dynamic speed characteristic of the motor using a suitable algorithm.
- the dynamic speed characteristic shown in FIG. 5 is sampled so as to determine changes in speed as a function of time during acceleration of the motor.
- the resulting signal is Fourier transformed from the time domain to the frequency domain so as to derive the frequency spectrum.
- the frequency spectrum is filtered so as to remove the higher frequency harmonics and the resulting spectrum is transformed back to the time domain.
- obtaining the frequency spectrum is rendered possible by virtue of the fact that the time resolution is sufficiently high in the time domain. Hitherto-proposed methods employing coarse time resolution are not capable of resolving the frequency spectrum.
- FIG. 8 shows graphically the change in speed for an unloaded 4-pole PSC induction motor idling at steady state.
- FIG. 9 shows the result of transforming the speed characteristics of the motor to the frequency domain.
- the frequency spectrum shown in FIG. 9 provides clearer information regarding the motor than may be resolved in the time domain. Specifically, clearer information is derived regarding torque and speed fluctuations.
- the moment of inertia of the rotor may be determined by deriving two separate speed characteristics: one for the unloaded motor, and the other wherein a known inertial load is applied to the motor shaft. Thus, the following sums are performed:
- M max is the maximum motor torque
- ⁇ is the angular velocity of the motor.
- the motor test system 10 also allows derivation of the ripple torque of the motor when idling, i.e. under no-load steady-state conditions. For example, an indication of the magnitude of the strength of magnetic noise created by an a.c. PSC induction motor when idling, may be thus determined.
- the motor runs at a basically constant speed having superimposed thereon a slight ripple on account of the changing torques created by the varying rotating magnetic field.
- FIG. 10 shows graphically the product of the time derivative of the speed-time characteristic with the moment of inertia of the rotor indicative of the strength of the changing torque created by the motor when idling under steady state conditions.
- the motor test system 10 also allows derivation of the varying torque of the loaded motor at working speed giving, for example, an indication of the magnitude of the strength of magnetic noise created by the motor when running at working speed. Likewise, this provides an indication of the magnitude of the strength of mechanical noise resulting from impacts against the load resulting from variations in motor torque.
- the speed of the motor and applied load vary owing to the variations in torque arising from:
- the product of the time derivative of the speed characteristic with the moment of inertia of the rotor added to that of the external load gives an indication of the strength of the changing torque created by the loaded motor when running at working speed.
- the varying torque also provides an indication of the magnitude of the strength of electrical and mechanical noise at working conditions of the loaded motor.
- FIG. 11 shows graphically the static torque-speed characteristic of the unloaded motor.
- an external load is coupled to the motor and the speed-time characteristics of the loaded motor is determined.
- Q 1 is the moment of inertia of the rotor
- Q L is the moment of inertia of the external load
- M L is the load torque
- FIG. 12 shows graphically the static torque-speed characteristic depicted in FIG. 11 together with the speed-torque characteristic of the load, M L , being an air-conditioner fan.
- M L the speed-torque characteristic
- the speed-torque characteristic is generally parabolic in shape, passes through the origin and intersects the motor torque-speed characteristic at the actual working speed of the motor.
- the graph shown in FIG. 13 is derived during acceleration of the motor from startup to its full working speed under load. This characteristic is repeatable in respect of like loaded motors providing that the motor is started from the same point in the a.c. cycle of the supply voltage. For example, in a particular system reduced to practice, the motor was started at the point in the a.c. cycle where the voltage climbed through 0 volt.
- the characteristic shown in FIG. 13 serves as an excellent tool for effecting a GO-NOGO test of a batch of similar loaded motors, so as to indicate which motor-load couples (air conditioner, water pumps, etc.) meet the design specification It should be noted that no previous use of the characteristic shown in FIG. 13 is known for establishing the functionality of a loaded machine.
- the static torque-speed characteristic of the motor shown in FIGS. 11 and 12 may be subtracted in order to derive the torque-speed characteristic of the load shown graphically in FIG. 12 .
- the run-up state torque-speed characteristic of the loaded motor before the removal of fluctuations on the transient part of the characteristic has a generally similar shape to that of the unloaded motor as shown in FIG. 6 and is derived as follows.
- the dynamic speed characteristic is derived directly as explained above and its time derivative is computed. Multiplication of the time derivative by the total moment of inertia of the rotor and external load together gives the dynamic torque-speed characteristic of the motor less the load, as is clear from equation (9).
- this characteristic serves as an excellent tool for comparing the dynamic performance of a batch of similar motors.
- the product of the time derivative of the speed characteristic with the moment of inertia of the rotor added to that of the external load gives an indication of the strength of the changing torque created by the loaded motor when running at working speed.
- the varying torque also provides an indication of the magnitude of the strength of electrical and mechanical noise at working conditions of the loaded motor.
- the invention also contemplates the testing of components of a machine by comparison to a nominal “ideal” machine.
- a pre-calibrated, high performance stator is used and the above tests may be performed so as to derive both the static and dynamic performance of the motor.
- the performance of the rotors may be compared.
- the performance of the stators may be compared.
- the methods which have been described relate to the measurement of the transient part of the speed-time or speed-torque characteristics, from start-up of the machine until steady sate is reached.
- the speed-time or speed-torque characteristics can be determined with much finer resolution than can be resolved by measuring the average rotation in a fixed time period.
- fluctuations which occur during the transient part of the motor characteristics can also be resolved, thus providing information regarding motor performance which has eluded hitherto proposed approaches.
- the nominally constant speed is found to have a dynamic ripple component which serves as a valuable indicator of the performance of the motor and applied load. Specifically, too much ripple is indicative of a working motor which is improperly functioning and therefore the amount of ripple serves as a yardstick as to whether the performance of the working motor is acceptable or not. Therefore, by constantly monitoring the steady state performance of the loaded motor under working conditions and comparing the magnitude of the ripple component to a predetermined threshold, a warning can be given in the event that the loaded motor or any component thereof does not meet the design specification.
- the invention also allows measurement of oscillating torque and speed during steady state condition so as to derive speed-time and torque-time characteristics in both the time and frequency domains.
- it is possible either to wait until the rotating shaft has reached to its steady state speed or, alternatively, to couple a high inertia flywheel to the rotating shaft so as deliberately to slow down the time to reach steady-state.
- steady state oscillating torque and speed phenomena will appear during the acceleration, these being discernible owing to the fact that many more sampling points are available than in hitherto-proposed test beds. It has been found that the dynamic ripple highlights faults with the machine that would not otherwise be apparent
- FIG. 14 shows the speed-time characteristics of a motor when a flywheel having a high moment of inertia is coupled to its shaft.
- the motor speed climbs slowly from zero reaching idling speed after approximately 0.35 sec as against 0.1 sec without the flywheel. It will be noticed that superimposed on the steady state speed-time characteristics are oscillations depicted small changes in the steady state speed of the motor. These are always present but are unnoticeable when the motor speed rises to steady state speed quickly.
- FIG. 15 shows the effect of zooming the motor speed-time characteristics shown in FIG. 14 centered at a speed of 1,260 rpm, showing more clearly the periodic rise and fall in steady-state motor speed. This curve serves as a yardstick for categorizing steady-state performance of a loaded motor at a speed of 1,260 rpm.
- FIG. 16 shows the speed spectrum derived from the speed-time characteristics shown in FIG. 15 centered around a speed of 1,260 rpm. It will be noticed that the speed spectrum indicates a fundamental frequency of 100 Hz, this corresponding to twice the frequency of the a.c. supply.
- FIG. 17 shows the torque-time characteristics derived by differentiating the speed-time characteristics shown in FIG. 14 with respect to time and multiplying by the combined moment of inertia of the flywheel and motor. The figure shows similar oscillations in torque as are observed in the speed-time curve of FIG. 14 .
- FIG. 18 shows the effect of zooming the motor torque-time characteristics shown in FIG. 17 centered at a speed of 1,260 rpm, showing more clearly the periodic rise and fall in steady-state motor torque.
- FIG. 19 shows the torque spectrum derived from the torque-time characteristics shown in FIG. 18 centered around a speed of 1,260 rpm. It will again be noticed that the torque spectrum indicates a fundamental frequency of 100 Hz, this corresponding to twice the frequency of the a.c. supply.
- FIG. 20 the steady state frequency speed spectrum curve for an air conditioner displaying a gust problem, which manifests itself as a large 3 Hz component.
- FIG. 21 shows the steady state frequency speed spectrum curve for a good air conditioner showing a small 3 Hz component.
- FIG. 22 shows the regular steady state speed time characteristic for an air conditioner produced by repeatedly adjusting the shutter and deriving and displaying the speed-time characteristic of the fan for different shutter positions. This shows that fluctuations in the speed of the fan are small, indicative of high quality performance of the air conditioner.
- FIG. 23 shows the speed time characteristic for a faulty air conditioner produced by repeatedly adjusting the shutter and deriving and displaying the speed-time characteristic of the fan for different shutter positions. In this case, sharp fluctuations in the speed of the fan are shown, indicative of low quality performance of the air conditioner.
- FIG. 24 is a block diagram showing functionally a dynamic torque and speed analyzer 40 for displaying speed or torque characteristics of a rotating shaft as derived according to the invention.
- the dynamic torque and speed analyzer 40 comprises a sampling unit 41 for sampling measured speed or torque over a time interval and from an initial sampling time both selected by the user.
- a display 42 is coupled to the sampling unit 41 for displaying sampled speed and/or torque characteristics.
- a control panel 43 allows control of a first x-axis scale in respect of time or frequency, and of a second orthogonal y-axis scale in respect of torque or speed Typically, the x-axis is horizontal and the y-axis is vertical, although this is a matter of convention and, if desired, the axis may be reversed.
- the control panel 43 allows the sampling time interval of the sampling unit 41 to be adjusted by the user, thus providing greater flexibility, since the longer the sampling time interval, the more samples are obtained.
- the time periods of successive pulses generated by the rotary shaft encoder are measured.
- the invention typically offers a thousand-fold improvement in resolution of tie dynamic effects of the speed and torque characteristics over conventional methods, it is clear that significant improvement is still achieved, even if the periods of only every second or third pulse are measured, for example.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Control Of Electric Motors In General (AREA)
- Manufacture Of Motors, Generators (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Testing Of Balance (AREA)
- Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IL12493298A IL124932A0 (en) | 1998-06-16 | 1998-06-16 | Method and apparatus for testing rotating machines |
IL124932 | 1998-06-16 | ||
PCT/IL1999/000290 WO1999066335A1 (fr) | 1998-06-16 | 1999-06-01 | Methode et systeme d'essai de performance de machines tournantes |
Publications (1)
Publication Number | Publication Date |
---|---|
US6591200B1 true US6591200B1 (en) | 2003-07-08 |
Family
ID=11071631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/719,780 Expired - Lifetime US6591200B1 (en) | 1998-06-16 | 1999-06-01 | Method and system for performance testing of rotating machines |
Country Status (19)
Country | Link |
---|---|
US (1) | US6591200B1 (fr) |
EP (2) | EP1103815A3 (fr) |
JP (2) | JP2002518681A (fr) |
KR (1) | KR100710761B1 (fr) |
CN (2) | CN1497257A (fr) |
AT (1) | ATE292804T1 (fr) |
AU (1) | AU748970B2 (fr) |
BR (1) | BR9911338A (fr) |
CA (1) | CA2334962A1 (fr) |
DE (1) | DE69924609T2 (fr) |
ES (1) | ES2243058T3 (fr) |
HK (1) | HK1035401A1 (fr) |
HU (1) | HUP0104326A3 (fr) |
IL (1) | IL124932A0 (fr) |
MX (1) | MXPA00012588A (fr) |
PL (1) | PL345001A1 (fr) |
RU (1) | RU2229135C2 (fr) |
TR (2) | TR200003747T2 (fr) |
WO (1) | WO1999066335A1 (fr) |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020183948A1 (en) * | 2000-04-19 | 2002-12-05 | National Instruments Corporation | Time varying harmonic analysis including determination of order components |
US20030184170A1 (en) * | 2002-03-27 | 2003-10-02 | Alexander Kurnia | Method and apparatus for measuring torque and flux current in a synchronous motor |
US20040174126A1 (en) * | 2003-03-03 | 2004-09-09 | Chapman Danny Keith | Motor speed and position control |
US20050067991A1 (en) * | 2003-09-30 | 2005-03-31 | Yehia El-Ibiary | System and method for identifying operational parameters of a motor |
US20050102766A1 (en) * | 2003-11-17 | 2005-05-19 | Maytag Corporation | Method and apparatus for spinning fabrics |
EP1607759A1 (fr) | 2004-06-14 | 2005-12-21 | E.D.C. Electrical Dynamic Company S.r.l. | Appareil pour détecter les caractéristiques de fonctionnement des moteurs électriques |
US20060070457A1 (en) * | 2004-09-29 | 2006-04-06 | Raytheon Company | Dynamic load fixture for application of torsion loads for rotary mechanical systems |
US20060187930A1 (en) * | 2005-02-18 | 2006-08-24 | Broadcom Corporation | Dynamic table sharing of memory space within a network device |
US20060187935A1 (en) * | 2005-02-18 | 2006-08-24 | Broadcom Corporation | Bookkeeping memory use in a search engine of a network device |
US20060187827A1 (en) * | 2005-02-18 | 2006-08-24 | Broadcom Corporation | Programmable metering behavior based on table lookup |
US20060187917A1 (en) * | 2005-02-18 | 2006-08-24 | Broadcom Corporation | Pre-learning of values with later activation in a network device |
US20060187839A1 (en) * | 2005-02-18 | 2006-08-24 | Broadcom Corporation | Timestamp metering and rollover protection in a network device |
WO2006114785A3 (fr) * | 2005-04-25 | 2006-12-14 | M E A Testing Systems Ltd | Methode d'entretien predictif |
US20070118307A1 (en) * | 2003-09-30 | 2007-05-24 | Yehia El-Ibiary | Motor parameter estimation method and apparatus |
US20090030545A1 (en) * | 2007-07-23 | 2009-01-29 | Fanuc Ltd | Numeric control device of machine tool |
US20090082999A1 (en) * | 2007-09-20 | 2009-03-26 | General Electric Company | Method and system for automatically determining an operating mode of a generator |
US7592727B1 (en) | 2005-08-01 | 2009-09-22 | The United States Of America As Represented By The Secretary Of The Navy | Quiet load for motor testing |
US20100000320A1 (en) * | 2008-07-07 | 2010-01-07 | Siemens Aktiengesellschaft | Method and apparatus for quantitatively detecting unbalanced state and method for detecting clamping state of a workpiece |
US20100310373A1 (en) * | 2007-10-24 | 2010-12-09 | Ecotecnia Energias Renovables, S.L. | Method for determining fatigue damage in a power train of a wind turbine |
US20110001637A1 (en) * | 2008-02-29 | 2011-01-06 | Deutsches Zentrum Fur Luft- Und Ramfahrt E.V. | Method for indicating a noise level of a rotary-wing aircraft |
US20110186758A1 (en) * | 2010-02-01 | 2011-08-04 | Calbrandt, Inc. | Hydraulic Motor With Non-Contact Encoder System |
WO2012007393A1 (fr) * | 2010-07-16 | 2012-01-19 | Robert Bosch Gmbh | Procédé ou système de détection de tension pour déterminer un paramètre de correction pour un canal de mesure et pour détecter une tension aux bornes d'un moteur électrique |
US20120105053A1 (en) * | 2010-10-28 | 2012-05-03 | Hon Hai Precision Industry Co., Ltd. | Fan speed testing system |
CN102735399A (zh) * | 2012-07-12 | 2012-10-17 | 杭州电子科技大学 | 直流电机飞轮惯量检测电路 |
US20120285243A1 (en) * | 2011-05-09 | 2012-11-15 | Matsushima Machinery Laboratory Co., Ltd. | Rotation measuring device |
RU2496115C1 (ru) * | 2012-03-11 | 2013-10-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный технический университет" | Способ диагностирования электрических цепей, содержащих активное сопротивление и индуктивность |
US8566337B2 (en) | 2005-02-18 | 2013-10-22 | Broadcom Corporation | Pipeline architecture for a network device |
US20160043776A1 (en) * | 2008-12-23 | 2016-02-11 | Keyssa, Inc. | Contactless replacement for cabled standards-based interfaces |
US20160169755A1 (en) * | 2014-12-09 | 2016-06-16 | Okuma Corporation | Cogging torque measuring apparatus for motor |
CN105738807A (zh) * | 2016-02-04 | 2016-07-06 | 北京航天控制仪器研究所 | 一种高速动压陀螺电机触地转速测试系统 |
US9705519B1 (en) * | 2016-06-29 | 2017-07-11 | Hrl Laboratories, Llc | Correction technique for analog pulse processing time encoder |
US20170342920A1 (en) * | 2015-01-12 | 2017-11-30 | Tula Technology, Inc. | Engine torque smoothing |
CN108270380A (zh) * | 2017-12-29 | 2018-07-10 | 南京钢铁股份有限公司 | 一种变频器无速度编码器时的速度控制方法 |
US10142728B2 (en) | 2008-12-23 | 2018-11-27 | Keyssa, Inc. | Contactless audio adapter, and methods |
US10221786B2 (en) | 2015-01-12 | 2019-03-05 | Tula Technology, Inc. | Noise, vibration and harshness reduction in a skip fire engine control system |
US20190135273A1 (en) * | 2017-11-09 | 2019-05-09 | Robert Bosch Gmbh | Vehicle Electronic Stability Control System including Improved Wheel Speed Detection |
US10344692B2 (en) | 2015-01-12 | 2019-07-09 | Tula Technology, Inc. | Adaptive torque mitigation by micro-hybrid system |
US10375221B2 (en) | 2015-04-30 | 2019-08-06 | Keyssa Systems, Inc. | Adapter devices for enhancing the functionality of other devices |
US10436133B2 (en) | 2015-01-12 | 2019-10-08 | Tula Technology, Inc. | Engine torque smoothing |
US10578037B2 (en) | 2015-01-12 | 2020-03-03 | Tula Technology, Inc. | Adaptive torque mitigation by micro-hybrid system |
CN110988685A (zh) * | 2019-12-13 | 2020-04-10 | 青岛丰光精密机械股份有限公司 | 一种用于电机轴检验的装置 |
WO2020135603A1 (fr) * | 2018-12-29 | 2020-07-02 | 深圳市越疆科技有限公司 | Procédé de mesure d'un faible régime moteur et système de mesure d'un régime moteur |
US10753976B2 (en) * | 2017-10-13 | 2020-08-25 | Schweitzer Engineering Laboratories, Inc. | Detection of transient high torque events associated with rotating machinery in electric power systems |
US10954877B2 (en) | 2017-03-13 | 2021-03-23 | Tula Technology, Inc. | Adaptive torque mitigation by micro-hybrid system |
CN112730873A (zh) * | 2021-01-29 | 2021-04-30 | 戴海泉 | 一种电机转速检测器及其检测方法 |
US20220170809A1 (en) * | 2019-04-15 | 2022-06-02 | Covidien Lp | Method of calibrating torque sensors of instrument drive units of a surgical robot |
CN115236510A (zh) * | 2022-09-21 | 2022-10-25 | 西北工业大学 | 一种直线电机性能测试试验台 |
US11555461B2 (en) | 2020-10-20 | 2023-01-17 | Tula Technology, Inc. | Noise, vibration and harshness reduction in a skip fire engine control system |
TWI823557B (zh) * | 2022-09-13 | 2023-11-21 | 威剛科技股份有限公司 | 定子測試治具及定子檢測系統 |
CN118131042A (zh) * | 2024-05-06 | 2024-06-04 | 青岛智和精密科技有限公司 | 一种dd马达线圈测试装置及其测试方法 |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3501737B2 (ja) | 2000-07-19 | 2004-03-02 | キヤノン株式会社 | エンコーダー信号制御回路と該回路の制御方法 |
FR2892516B1 (fr) * | 2005-10-21 | 2008-01-25 | Snecma Sa | Procede et systeme de detection et de mesure des perturbations en frequence de la vitesse de rotation d'un rotor |
US7840372B2 (en) | 2007-07-06 | 2010-11-23 | The University Of British Columbia | Self-calibration method and apparatus for on-axis rotary encoders |
RU2391680C1 (ru) * | 2008-12-15 | 2010-06-10 | Научно-производственное объединение "ЭЛСИБ" Открытое акционерное общество | Способ определения параметров и рабочих характеристик асинхронного двигателя без сопряжения с нагрузочным устройством |
KR101467208B1 (ko) * | 2008-12-23 | 2014-12-01 | 국방과학연구소 | 선박용 레이더 구동장치 시험용 시뮬레이터 |
US8358095B2 (en) * | 2009-07-31 | 2013-01-22 | GM Global Technology Operations LLC | Method and system for testing electric motors |
DE102010046880A1 (de) | 2010-09-29 | 2012-03-29 | Phoenix Contact Gmbh & Co. Kg | Verfahren und Anordnung zur Frequenzbestimmung |
CN102928612A (zh) * | 2011-08-08 | 2013-02-13 | 西门子公司 | 一种测算风力发电机转子转速的方法及系统 |
CN103308854A (zh) * | 2012-03-08 | 2013-09-18 | 深圳市蓝韵实业有限公司 | 电机运动故障监控方法及系统 |
RU2498334C1 (ru) * | 2012-06-06 | 2013-11-10 | Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации | Устройство для испытаний частотно-управляемого гребного электропривода системы электродвижения в условиях стенда |
RU2502079C1 (ru) * | 2012-07-27 | 2013-12-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" | Способ определения параметров асинхронного электродвигателя |
RU2522733C1 (ru) * | 2012-12-11 | 2014-07-20 | Российская Федерация, от имени которой выступает государственный заказчик-Министерство промышленности и торговли Российской Федерации (Минпромторг России) | Судовая система электродвижения с двухвинтовым двигательно-движительным модулем с двигателями кольцевой конструкции |
KR101340449B1 (ko) | 2012-12-13 | 2013-12-11 | 현대중공업 주식회사 | 선박의 최고 속력 도달 시간 추정 방법 |
TWI456229B (zh) * | 2012-12-22 | 2014-10-11 | Metal Ind Res & Dev Ct | 永磁馬達鐵芯損失量測方法及其裝置 |
CN104280681B (zh) * | 2013-07-12 | 2017-11-10 | 广东美的制冷设备有限公司 | 电机动态负载模拟系统 |
KR101448670B1 (ko) * | 2013-08-14 | 2014-10-08 | 한전케이피에스 주식회사 | 전동기 운전변수 부가 테스트 장비 |
CN103604952B (zh) * | 2013-11-01 | 2016-04-13 | 哈尔滨汽轮机厂有限责任公司 | 危急遮断转速表静态性能检测方法 |
CN103698548A (zh) * | 2013-12-14 | 2014-04-02 | 苏州市新虞仪表成套设备有限公司 | 智能累加计数器 |
CN103868635B (zh) * | 2014-03-11 | 2016-02-03 | 扬州电力设备修造厂 | 一种电动执行机构的测试系统的加载方法 |
RU2559174C1 (ru) * | 2014-04-10 | 2015-08-10 | федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) | Устройство для контроля погрешности преобразователя поворота вала в код |
RU2570363C1 (ru) * | 2014-07-18 | 2015-12-10 | федеральное государственное автономное образовательное учреждение профессионального образования "Национальный исследовательский Томский политехнический университет" | Способ определения параметров асинхронного электродвигателя |
JPWO2016030948A1 (ja) * | 2014-08-25 | 2017-06-22 | 株式会社エスジー | 回転検出装置 |
CN104215371B (zh) * | 2014-08-27 | 2017-02-15 | 湖北开特汽车电子电器系统股份有限公司 | 一种汽车空调步进电机力矩输出特性的测量系统 |
JP6595755B2 (ja) * | 2014-12-02 | 2019-10-23 | 日本電産サンキョー株式会社 | 補正テーブル作成装置、エンコーダ、及び補正テーブル作成方法 |
CN104808011A (zh) * | 2015-05-06 | 2015-07-29 | 成都诚邦动力测试仪器有限公司 | 一种基于自增益控制的电机转速测试系统 |
CN104808010A (zh) * | 2015-05-06 | 2015-07-29 | 成都诚邦动力测试仪器有限公司 | 一种基于三极管双触发电路的电机转速测试系统 |
CN105241680B (zh) * | 2015-08-26 | 2018-01-02 | 电子科技大学 | 一种基于概率密度函数的旋转机械健康状态评估方法 |
CN105182238B (zh) * | 2015-10-09 | 2019-03-01 | 天津市英贝特航天科技有限公司 | 步进电机堵转检测装置及检测方法 |
CN105352856B (zh) * | 2015-12-02 | 2018-06-15 | 宁波新边界科学仪器有限公司 | 测量液体在固体表面的前进接触角、后退接触角以及滞留力的方法及其装置 |
US9859826B2 (en) * | 2016-02-03 | 2018-01-02 | Infineon Technologies Ag | Intelligent detection unit (iDU) to detect the position of a rotor controlled by pulse modulation |
US11314241B2 (en) * | 2016-06-07 | 2022-04-26 | Mitsubishi Electric Corporation | Abnormality diagnosis apparatus and abnormality diagnosis method |
CN106124985B (zh) * | 2016-06-16 | 2020-03-13 | 北京航空航天大学 | 一种无刷直流电机的退化特征趋势提取方法 |
CN106441375B (zh) * | 2016-09-28 | 2019-04-09 | 中车株洲电力机车研究所有限公司 | 一种角速度计算方法及装置 |
CN106646228A (zh) * | 2016-11-29 | 2017-05-10 | 张宁 | 一种电机电路控制器检测仪 |
CN108226560A (zh) * | 2016-12-21 | 2018-06-29 | 杭州海康威视数字技术股份有限公司 | 一种获取电机低转速角速度的方法及装置 |
CN108241071A (zh) * | 2016-12-23 | 2018-07-03 | 大陆汽车电子(连云港)有限公司 | 具有方向检测功能的速度传感器的测试系统和方法 |
US10928814B2 (en) * | 2017-02-24 | 2021-02-23 | General Electric Technology Gmbh | Autonomous procedure for monitoring and diagnostics of machine based on electrical signature analysis |
CN107490762B (zh) * | 2017-08-09 | 2019-11-12 | 杭州电子科技大学 | 基于电枢电流与转速信号的负载转矩检测电路 |
DE102017222837A1 (de) * | 2017-12-15 | 2019-06-19 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Bestimmung einer Drehzahl einer Kurbelwelle einer Brennkraftmaschine |
DE102018101457A1 (de) * | 2018-01-23 | 2019-07-25 | Eppendorf Ag | Verfahren und Vorrichtung zur Überwachung der Drehzahl eines Elements |
CN108453733B (zh) * | 2018-03-05 | 2020-04-21 | 北京镁伽机器人科技有限公司 | 具有反馈控制功能的机器人、运动控制系统、方法和介质 |
RU2716172C2 (ru) * | 2018-03-14 | 2020-03-06 | Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) | Способ диагностики асинхронных двигателей с короткозамкнутым ротором |
CN109164386B (zh) * | 2018-09-14 | 2020-07-03 | 蚌埠高灵传感系统工程有限公司 | 一种电机转角、转矩和转速的集成检测系统、方法及装置 |
CN109085501B (zh) * | 2018-09-20 | 2020-07-03 | 蚌埠高灵传感系统工程有限公司 | 一种直流有刷电机转矩转角和转速的检测方法 |
CN109342760B (zh) * | 2018-10-09 | 2020-11-24 | 佛山市顺德区和而泰电子科技有限公司 | 直流变频空调室外风机的初始转速检测方法 |
RU2709749C1 (ru) * | 2018-11-07 | 2019-12-19 | ГКОУ ВО "Российская таможенная академия" | Способ контроля и диагностики технического состояния системы "источник питания - нагрузка" |
DE102018221272B4 (de) * | 2018-12-07 | 2020-07-30 | Lenze Automation Gmbh | Verfahren zum Bestimmen von Eigenschaften eines elektrischen Antriebssystems und ein elektrisches Antriebssystem |
CN109541468B (zh) * | 2018-12-28 | 2024-03-26 | 杭州沃镭智能科技股份有限公司 | Mgu电机检测装置及方法 |
CN109847952B (zh) * | 2019-01-25 | 2020-11-03 | 哈尔滨工业大学 | 一种基于驱动电流的双轴精密离心机回转台动平衡方法 |
DE102019201985B4 (de) * | 2019-02-14 | 2024-03-07 | Vitesco Technologies GmbH | Verfahren zum Erkennen eines Fehlers einer elektrischen Maschine für ein Fahrzeug |
RU2711647C1 (ru) * | 2019-04-08 | 2020-01-17 | ОАО "Научно-исследовательский институт технологии, контроля и диагностики железнодорожного транспорта" (ОАО "НИИТКД") | Устройство и способ оценки технического состояния асинхронных двигателей |
CN112557901B (zh) * | 2020-12-01 | 2024-08-20 | 重庆智车勤行科技有限公司 | 一种基于多相磁电感应的精密微电机检测装置及方法 |
CN112763910A (zh) * | 2020-12-30 | 2021-05-07 | 广东电网有限责任公司清远供电局 | 一种用于电动设备负荷监测的装置和方法 |
CN115372706A (zh) * | 2021-05-19 | 2022-11-22 | 航天科工惯性技术有限公司 | 一种直流电机电枢电阻测试装置及方法 |
CN113670358B (zh) * | 2021-08-11 | 2024-10-22 | 北京小米移动软件有限公司 | 补偿方法、装置及存储介质 |
CN114838855B (zh) * | 2022-05-10 | 2024-03-01 | 上海电机系统节能工程技术研究中心有限公司 | 电机对拖试验的测功机装置及系统 |
CN117469152B (zh) * | 2023-12-27 | 2024-04-12 | 宁德时代新能源科技股份有限公司 | 流体泵异常检测方法、装置、电子设备和存储介质 |
CN117781994B (zh) * | 2024-02-27 | 2024-05-07 | 南京新紫峰电子科技有限公司 | 旋变传感器的测试方法、装置、介质 |
Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2674125A (en) | 1951-07-14 | 1954-04-06 | Allis Chalmers Mfg Co | Speed-torque curve tracing device |
DE1232774B (de) | 1961-10-18 | 1967-01-19 | Bbc Brown Boveri & Cie | Digitalanaloge Anordnung zur Erzeugung einer der Drehzahl einer Maschine proportionalen Gleichspannung |
US3651690A (en) | 1968-08-02 | 1972-03-28 | Gkn Transmissions Ltd | Apparatus for measuring output characteristics of a rotary moving part |
US3888116A (en) | 1973-10-11 | 1975-06-10 | Massachusetts Inst Technology | Digital torquemeter and the like |
DE2623494A1 (de) | 1976-05-26 | 1977-12-15 | Bosch Gmbh Robert | Anordnung zur fortlaufenden messung der impulsfolgefrequenz |
US4125295A (en) | 1976-08-04 | 1978-11-14 | Wabco Westinghouse Gmbh | Digital speed detecting circuit for a rotating member having a wide speed range |
US4169371A (en) | 1977-08-08 | 1979-10-02 | Walter Ruegg | Method and apparatus for measuring drive system characteristic data in dynamic operation |
US4204425A (en) | 1978-06-29 | 1980-05-27 | Westinghouse Electric Corp. | Method of testing induction motors |
US4245322A (en) | 1978-04-13 | 1981-01-13 | Lucas Industries Limited | Transducer circuit for use in the measurement of the rotary speed of a shaft or other rotary member |
GB2127549A (en) | 1982-09-16 | 1984-04-11 | Wai Sun Leung | Measuring and recording system for steady-state and transient torques |
JPS59160766A (ja) | 1983-03-04 | 1984-09-11 | Fanuc Ltd | 速度検出装置 |
US4535288A (en) | 1982-07-19 | 1985-08-13 | Magnetic Analysis Corporation | Method and system for rotary speed determination |
US4550618A (en) | 1982-06-17 | 1985-11-05 | Nippon Soken, Inc. | Torque detector |
FR2566132A1 (fr) | 1984-06-18 | 1985-12-20 | Aerospatiale | Procede et dispositif pour la mesure de la periode d'un signal pseudosinusoidal et leurs applications |
SU1275336A1 (ru) | 1984-03-11 | 1986-12-07 | Всесоюзный научно-исследовательский проектно-конструкторский и технологический институт электромашиностроения | Устройство дл контрол статора электрической машины |
US4811238A (en) | 1984-11-22 | 1989-03-07 | Battelle-Institut E.V. | Torque measurment system |
US4992730A (en) | 1988-08-05 | 1991-02-12 | Akebono Brake Industry Co., Ltd. | Method of computing the rotating speed of a rotating body based upon pulse train signals from a rotating speed sensor |
US5039028A (en) | 1986-09-26 | 1991-08-13 | Akerstroms Bjorbo Ab | Overload protection |
EP0457086A2 (fr) | 1990-05-12 | 1991-11-21 | Bayer Ag | Mesure sans contact de propagation du couple locale sur des machines à vis sans fin |
US5218860A (en) | 1991-09-25 | 1993-06-15 | Automation Technology, Inc. | Automatic motor testing method and apparatus |
US5239490A (en) | 1989-09-20 | 1993-08-24 | Hitachi, Ltd. | Device for detecting rotation of rotary shaft and rotation controlling apparatus using the same |
US5297044A (en) | 1991-03-25 | 1994-03-22 | Mazda Motor Corporation | Torque and rotating speed sensor |
US5345171A (en) | 1993-01-11 | 1994-09-06 | Caterpillar Inc. | Apparatus including a selectively connectable isolation transformer for determining the speed and direction of a rotating object |
US5390545A (en) | 1993-01-11 | 1995-02-21 | Caterpillar Inc. | Apparatus for measuring torsional vibrations of rotating machinery |
US5440915A (en) | 1994-09-09 | 1995-08-15 | Storar; Robert C. | Method and apparatus for measuring friction torque |
US5530343A (en) | 1994-10-07 | 1996-06-25 | Computational Systems, Inc. | Induction motor speed determination by flux spectral analysis |
US5616999A (en) | 1994-02-10 | 1997-04-01 | Nippondenso Co., Ltd. | Torque detecting apparatus for reducing torque ripple in an AC motor |
US5631411A (en) | 1992-04-30 | 1997-05-20 | Avl Gesellschaft Fuer Verbrennungskraftmaschinen Und Messtechnik M.B.H. Prof. Dr. Dr. H.C. Hans List | Method and apparatus for engine monitoring |
US5744723A (en) | 1996-05-10 | 1998-04-28 | Csi Technology, Inc. | Method for determining rotational speed from machine vibration data |
US5757676A (en) | 1995-10-02 | 1998-05-26 | Asea Brown Boveri Ag | Method for measuring speed |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2085961C1 (ru) * | 1994-10-14 | 1997-07-27 | Кравец Вадим Аркадьевич | Автоматический способ повышенной точности контроля качества электродвигателя |
-
1998
- 1998-06-16 IL IL12493298A patent/IL124932A0/xx unknown
-
1999
- 1999-06-01 WO PCT/IL1999/000290 patent/WO1999066335A1/fr active IP Right Grant
- 1999-06-01 MX MXPA00012588A patent/MXPA00012588A/es unknown
- 1999-06-01 CN CNA011168161A patent/CN1497257A/zh active Pending
- 1999-06-01 HU HU0104326A patent/HUP0104326A3/hu unknown
- 1999-06-01 AT AT99923842T patent/ATE292804T1/de not_active IP Right Cessation
- 1999-06-01 EP EP01100141A patent/EP1103815A3/fr not_active Withdrawn
- 1999-06-01 CA CA002334962A patent/CA2334962A1/fr not_active Abandoned
- 1999-06-01 ES ES99923842T patent/ES2243058T3/es not_active Expired - Lifetime
- 1999-06-01 US US09/719,780 patent/US6591200B1/en not_active Expired - Lifetime
- 1999-06-01 AU AU40569/99A patent/AU748970B2/en not_active Ceased
- 1999-06-01 TR TR2000/03747T patent/TR200003747T2/xx unknown
- 1999-06-01 EP EP99923842A patent/EP1088237B1/fr not_active Expired - Lifetime
- 1999-06-01 PL PL99345001A patent/PL345001A1/xx not_active IP Right Cessation
- 1999-06-01 TR TR2001/00035T patent/TR200100035T2/xx unknown
- 1999-06-01 DE DE69924609T patent/DE69924609T2/de not_active Expired - Lifetime
- 1999-06-01 JP JP2000555102A patent/JP2002518681A/ja active Pending
- 1999-06-01 CN CNB998088501A patent/CN1149399C/zh not_active Expired - Fee Related
- 1999-06-01 RU RU2001101526/28A patent/RU2229135C2/ru not_active IP Right Cessation
- 1999-06-01 BR BR9911338-4A patent/BR9911338A/pt not_active IP Right Cessation
- 1999-06-01 KR KR1020007014334A patent/KR100710761B1/ko not_active Expired - Fee Related
-
2001
- 2001-03-02 JP JP2001058317A patent/JP2001324395A/ja active Pending
- 2001-06-28 HK HK01104463A patent/HK1035401A1/xx not_active IP Right Cessation
Patent Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2674125A (en) | 1951-07-14 | 1954-04-06 | Allis Chalmers Mfg Co | Speed-torque curve tracing device |
DE1232774B (de) | 1961-10-18 | 1967-01-19 | Bbc Brown Boveri & Cie | Digitalanaloge Anordnung zur Erzeugung einer der Drehzahl einer Maschine proportionalen Gleichspannung |
US3651690A (en) | 1968-08-02 | 1972-03-28 | Gkn Transmissions Ltd | Apparatus for measuring output characteristics of a rotary moving part |
US3888116A (en) | 1973-10-11 | 1975-06-10 | Massachusetts Inst Technology | Digital torquemeter and the like |
DE2623494A1 (de) | 1976-05-26 | 1977-12-15 | Bosch Gmbh Robert | Anordnung zur fortlaufenden messung der impulsfolgefrequenz |
US4125295A (en) | 1976-08-04 | 1978-11-14 | Wabco Westinghouse Gmbh | Digital speed detecting circuit for a rotating member having a wide speed range |
US4169371A (en) | 1977-08-08 | 1979-10-02 | Walter Ruegg | Method and apparatus for measuring drive system characteristic data in dynamic operation |
US4245322A (en) | 1978-04-13 | 1981-01-13 | Lucas Industries Limited | Transducer circuit for use in the measurement of the rotary speed of a shaft or other rotary member |
US4204425A (en) | 1978-06-29 | 1980-05-27 | Westinghouse Electric Corp. | Method of testing induction motors |
US4550618A (en) | 1982-06-17 | 1985-11-05 | Nippon Soken, Inc. | Torque detector |
US4535288A (en) | 1982-07-19 | 1985-08-13 | Magnetic Analysis Corporation | Method and system for rotary speed determination |
GB2127549A (en) | 1982-09-16 | 1984-04-11 | Wai Sun Leung | Measuring and recording system for steady-state and transient torques |
JPS59160766A (ja) | 1983-03-04 | 1984-09-11 | Fanuc Ltd | 速度検出装置 |
SU1275336A1 (ru) | 1984-03-11 | 1986-12-07 | Всесоюзный научно-исследовательский проектно-конструкторский и технологический институт электромашиностроения | Устройство дл контрол статора электрической машины |
FR2566132A1 (fr) | 1984-06-18 | 1985-12-20 | Aerospatiale | Procede et dispositif pour la mesure de la periode d'un signal pseudosinusoidal et leurs applications |
US4811238A (en) | 1984-11-22 | 1989-03-07 | Battelle-Institut E.V. | Torque measurment system |
US5039028A (en) | 1986-09-26 | 1991-08-13 | Akerstroms Bjorbo Ab | Overload protection |
US4992730A (en) | 1988-08-05 | 1991-02-12 | Akebono Brake Industry Co., Ltd. | Method of computing the rotating speed of a rotating body based upon pulse train signals from a rotating speed sensor |
US5239490A (en) | 1989-09-20 | 1993-08-24 | Hitachi, Ltd. | Device for detecting rotation of rotary shaft and rotation controlling apparatus using the same |
EP0457086A2 (fr) | 1990-05-12 | 1991-11-21 | Bayer Ag | Mesure sans contact de propagation du couple locale sur des machines à vis sans fin |
US5297044A (en) | 1991-03-25 | 1994-03-22 | Mazda Motor Corporation | Torque and rotating speed sensor |
US5218860A (en) | 1991-09-25 | 1993-06-15 | Automation Technology, Inc. | Automatic motor testing method and apparatus |
US5631411A (en) | 1992-04-30 | 1997-05-20 | Avl Gesellschaft Fuer Verbrennungskraftmaschinen Und Messtechnik M.B.H. Prof. Dr. Dr. H.C. Hans List | Method and apparatus for engine monitoring |
US5345171A (en) | 1993-01-11 | 1994-09-06 | Caterpillar Inc. | Apparatus including a selectively connectable isolation transformer for determining the speed and direction of a rotating object |
US5390545A (en) | 1993-01-11 | 1995-02-21 | Caterpillar Inc. | Apparatus for measuring torsional vibrations of rotating machinery |
US5616999A (en) | 1994-02-10 | 1997-04-01 | Nippondenso Co., Ltd. | Torque detecting apparatus for reducing torque ripple in an AC motor |
US5440915A (en) | 1994-09-09 | 1995-08-15 | Storar; Robert C. | Method and apparatus for measuring friction torque |
US5530343A (en) | 1994-10-07 | 1996-06-25 | Computational Systems, Inc. | Induction motor speed determination by flux spectral analysis |
US5757676A (en) | 1995-10-02 | 1998-05-26 | Asea Brown Boveri Ag | Method for measuring speed |
US5744723A (en) | 1996-05-10 | 1998-04-28 | Csi Technology, Inc. | Method for determining rotational speed from machine vibration data |
Non-Patent Citations (5)
Title |
---|
Brochure of DIGITORQUE, Automations Technology. |
Chan, "Determination of the Torque-Speed Characteristic of an induction motor using a curve-fitting technique", Publication Unknown, Date Unknown, pp. 360-365. |
Chrisco, "Automated, Full Load Motor Testing at Production Speeds", Appliance, (1998), pp. 116-119. |
Jin, "Design and Implementations of DSP-Based Personal Instrumentations system for testing performance of electrical motors", IEEE, (1993), pp. 75-80. |
Szabodos et al., "Measurement of the Torque-Speed Characteristics of Induction Motors Using an Improved New Digital Approach", Transactions of Energy Conversion, (1990), vol. 5 No. 3, pp. 565-570. |
Cited By (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6810341B2 (en) * | 2000-04-19 | 2004-10-26 | National Instruments Corporation | Time varying harmonic analysis including determination of order components |
US20020183948A1 (en) * | 2000-04-19 | 2002-12-05 | National Instruments Corporation | Time varying harmonic analysis including determination of order components |
US20030184170A1 (en) * | 2002-03-27 | 2003-10-02 | Alexander Kurnia | Method and apparatus for measuring torque and flux current in a synchronous motor |
US6738718B2 (en) * | 2002-03-27 | 2004-05-18 | Motorola, Inc. | Method and apparatus for measuring torque and flux current in a synchronous motor |
US20040174126A1 (en) * | 2003-03-03 | 2004-09-09 | Chapman Danny Keith | Motor speed and position control |
US7245103B2 (en) * | 2003-03-03 | 2007-07-17 | Lexmark International, Inc. | Motor speed and position control |
US20050067991A1 (en) * | 2003-09-30 | 2005-03-31 | Yehia El-Ibiary | System and method for identifying operational parameters of a motor |
US7135830B2 (en) * | 2003-09-30 | 2006-11-14 | Reliance Electric Technologies, Llc | System and method for identifying operational parameters of a motor |
US20070118307A1 (en) * | 2003-09-30 | 2007-05-24 | Yehia El-Ibiary | Motor parameter estimation method and apparatus |
US20050102766A1 (en) * | 2003-11-17 | 2005-05-19 | Maytag Corporation | Method and apparatus for spinning fabrics |
EP1607759A1 (fr) | 2004-06-14 | 2005-12-21 | E.D.C. Electrical Dynamic Company S.r.l. | Appareil pour détecter les caractéristiques de fonctionnement des moteurs électriques |
US20060070457A1 (en) * | 2004-09-29 | 2006-04-06 | Raytheon Company | Dynamic load fixture for application of torsion loads for rotary mechanical systems |
US7165465B2 (en) * | 2004-09-29 | 2007-01-23 | Raytheon Company | Dynamic load fixture for application of torsion loads for rotary mechanical systems |
US7577096B2 (en) | 2005-02-18 | 2009-08-18 | Broadcom Corporation | Timestamp metering and rollover protection in a network device |
US20100046373A1 (en) * | 2005-02-18 | 2010-02-25 | Broadcom Corporation | Timestamp metering and rollover protection in a network device |
US8331380B2 (en) | 2005-02-18 | 2012-12-11 | Broadcom Corporation | Bookkeeping memory use in a search engine of a network device |
US20060187917A1 (en) * | 2005-02-18 | 2006-08-24 | Broadcom Corporation | Pre-learning of values with later activation in a network device |
US20060187827A1 (en) * | 2005-02-18 | 2006-08-24 | Broadcom Corporation | Programmable metering behavior based on table lookup |
US20060187935A1 (en) * | 2005-02-18 | 2006-08-24 | Broadcom Corporation | Bookkeeping memory use in a search engine of a network device |
US8566337B2 (en) | 2005-02-18 | 2013-10-22 | Broadcom Corporation | Pipeline architecture for a network device |
US8085668B2 (en) | 2005-02-18 | 2011-12-27 | Broadcom Corporation | Timestamp metering and rollover protection in a network device |
US20060187930A1 (en) * | 2005-02-18 | 2006-08-24 | Broadcom Corporation | Dynamic table sharing of memory space within a network device |
US20060187839A1 (en) * | 2005-02-18 | 2006-08-24 | Broadcom Corporation | Timestamp metering and rollover protection in a network device |
US7983169B2 (en) | 2005-02-18 | 2011-07-19 | Broadcom Corporation | Programmable metering behavior based on a table lookup |
US20100202295A1 (en) * | 2005-02-18 | 2010-08-12 | Broadcom Corporation | Programmable metering behavior based on a table lookup |
US20080203956A1 (en) * | 2005-04-25 | 2008-08-28 | M.E.A. Testing Systems Ltd. | Predictive Maintenance Method |
WO2006114785A3 (fr) * | 2005-04-25 | 2006-12-14 | M E A Testing Systems Ltd | Methode d'entretien predictif |
US7592727B1 (en) | 2005-08-01 | 2009-09-22 | The United States Of America As Represented By The Secretary Of The Navy | Quiet load for motor testing |
US20090030545A1 (en) * | 2007-07-23 | 2009-01-29 | Fanuc Ltd | Numeric control device of machine tool |
US20090082999A1 (en) * | 2007-09-20 | 2009-03-26 | General Electric Company | Method and system for automatically determining an operating mode of a generator |
US20100310373A1 (en) * | 2007-10-24 | 2010-12-09 | Ecotecnia Energias Renovables, S.L. | Method for determining fatigue damage in a power train of a wind turbine |
US8332164B2 (en) | 2007-10-24 | 2012-12-11 | Alstom Wind S.L. | Method for determining fatigue damage in a power train of a wind turbine |
US20110001637A1 (en) * | 2008-02-29 | 2011-01-06 | Deutsches Zentrum Fur Luft- Und Ramfahrt E.V. | Method for indicating a noise level of a rotary-wing aircraft |
US20100000320A1 (en) * | 2008-07-07 | 2010-01-07 | Siemens Aktiengesellschaft | Method and apparatus for quantitatively detecting unbalanced state and method for detecting clamping state of a workpiece |
US8225657B2 (en) * | 2008-07-07 | 2012-07-24 | Siemens Aktiengesellschaft | Method and apparatus for quantitatively detecting unbalanced state and method for detecting clamping state of a workpiece |
US9525463B2 (en) * | 2008-12-23 | 2016-12-20 | Keyssa, Inc. | Contactless replacement for cabled standards-based interfaces |
US10142728B2 (en) | 2008-12-23 | 2018-11-27 | Keyssa, Inc. | Contactless audio adapter, and methods |
US10236938B2 (en) * | 2008-12-23 | 2019-03-19 | Keyssa, Inc. | Contactless replacement for cabled standards-based interfaces |
US10595124B2 (en) | 2008-12-23 | 2020-03-17 | Keyssa, Inc. | Full duplex contactless communication systems and methods for the use thereof |
US20180069598A1 (en) * | 2008-12-23 | 2018-03-08 | Keyssa, Inc. | Contactless replacement for cabled standards-based interfaces |
US9819397B2 (en) * | 2008-12-23 | 2017-11-14 | Keyssa, Inc. | Contactless replacement for cabled standards-based interfaces |
US20160043776A1 (en) * | 2008-12-23 | 2016-02-11 | Keyssa, Inc. | Contactless replacement for cabled standards-based interfaces |
US20170099082A1 (en) * | 2008-12-23 | 2017-04-06 | Keyssa, Inc. | Contactless replacement for cabled standards-based interfaces |
US20110186758A1 (en) * | 2010-02-01 | 2011-08-04 | Calbrandt, Inc. | Hydraulic Motor With Non-Contact Encoder System |
WO2012007393A1 (fr) * | 2010-07-16 | 2012-01-19 | Robert Bosch Gmbh | Procédé ou système de détection de tension pour déterminer un paramètre de correction pour un canal de mesure et pour détecter une tension aux bornes d'un moteur électrique |
US9285428B2 (en) | 2010-07-16 | 2016-03-15 | Robert Bosch Gmbh | Method or voltage detection system for determining a correction parameter for a measurement channel and for detecting a terminal voltage of an electric motor |
US8717008B2 (en) * | 2010-10-28 | 2014-05-06 | Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. | Fan speed testing system |
US20120105053A1 (en) * | 2010-10-28 | 2012-05-03 | Hon Hai Precision Industry Co., Ltd. | Fan speed testing system |
US20120285243A1 (en) * | 2011-05-09 | 2012-11-15 | Matsushima Machinery Laboratory Co., Ltd. | Rotation measuring device |
RU2496115C1 (ru) * | 2012-03-11 | 2013-10-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный технический университет" | Способ диагностирования электрических цепей, содержащих активное сопротивление и индуктивность |
CN102735399B (zh) * | 2012-07-12 | 2014-07-09 | 杭州电子科技大学 | 直流电机飞轮惯量检测电路 |
CN102735399A (zh) * | 2012-07-12 | 2012-10-17 | 杭州电子科技大学 | 直流电机飞轮惯量检测电路 |
US20160169755A1 (en) * | 2014-12-09 | 2016-06-16 | Okuma Corporation | Cogging torque measuring apparatus for motor |
US10302511B2 (en) * | 2014-12-09 | 2019-05-28 | Okuma Corporation | Cogging torque measuring method for motor |
US10196995B2 (en) * | 2015-01-12 | 2019-02-05 | Tula Technology, Inc. | Engine torque smoothing |
US10787979B2 (en) | 2015-01-12 | 2020-09-29 | Tula Technology, Inc. | Engine torque smoothing |
US11359562B2 (en) | 2015-01-12 | 2022-06-14 | Tula Technology, Inc. | Noise, vibration and harshness reduction in a skip fire engine control system |
US10221786B2 (en) | 2015-01-12 | 2019-03-05 | Tula Technology, Inc. | Noise, vibration and harshness reduction in a skip fire engine control system |
US11208964B2 (en) | 2015-01-12 | 2021-12-28 | Tula Technology, Inc. | Engine torque smoothing |
US11136928B2 (en) | 2015-01-12 | 2021-10-05 | Tula Technology, Inc. | Noise, vibration and harshness reduction in a skip fire engine control system |
US20170342920A1 (en) * | 2015-01-12 | 2017-11-30 | Tula Technology, Inc. | Engine torque smoothing |
US10344692B2 (en) | 2015-01-12 | 2019-07-09 | Tula Technology, Inc. | Adaptive torque mitigation by micro-hybrid system |
US10830166B2 (en) | 2015-01-12 | 2020-11-10 | Tula Technology, Inc. | Noise, vibration and harshness reduction in a skip fire engine control system |
US10436133B2 (en) | 2015-01-12 | 2019-10-08 | Tula Technology, Inc. | Engine torque smoothing |
US10578037B2 (en) | 2015-01-12 | 2020-03-03 | Tula Technology, Inc. | Adaptive torque mitigation by micro-hybrid system |
US10375221B2 (en) | 2015-04-30 | 2019-08-06 | Keyssa Systems, Inc. | Adapter devices for enhancing the functionality of other devices |
US10764421B2 (en) | 2015-04-30 | 2020-09-01 | Keyssa Systems, Inc. | Adapter devices for enhancing the functionality of other devices |
CN105738807A (zh) * | 2016-02-04 | 2016-07-06 | 北京航天控制仪器研究所 | 一种高速动压陀螺电机触地转速测试系统 |
CN105738807B (zh) * | 2016-02-04 | 2018-06-01 | 北京航天控制仪器研究所 | 一种高速动压陀螺电机触地转速测试系统 |
US9705519B1 (en) * | 2016-06-29 | 2017-07-11 | Hrl Laboratories, Llc | Correction technique for analog pulse processing time encoder |
US10954877B2 (en) | 2017-03-13 | 2021-03-23 | Tula Technology, Inc. | Adaptive torque mitigation by micro-hybrid system |
US10753976B2 (en) * | 2017-10-13 | 2020-08-25 | Schweitzer Engineering Laboratories, Inc. | Detection of transient high torque events associated with rotating machinery in electric power systems |
US11091149B2 (en) * | 2017-11-09 | 2021-08-17 | Robert Bosch Gmbh | Vehicle electronic stability control system including improved wheel speed detection |
US20190135273A1 (en) * | 2017-11-09 | 2019-05-09 | Robert Bosch Gmbh | Vehicle Electronic Stability Control System including Improved Wheel Speed Detection |
CN108270380A (zh) * | 2017-12-29 | 2018-07-10 | 南京钢铁股份有限公司 | 一种变频器无速度编码器时的速度控制方法 |
WO2020135603A1 (fr) * | 2018-12-29 | 2020-07-02 | 深圳市越疆科技有限公司 | Procédé de mesure d'un faible régime moteur et système de mesure d'un régime moteur |
US20220170809A1 (en) * | 2019-04-15 | 2022-06-02 | Covidien Lp | Method of calibrating torque sensors of instrument drive units of a surgical robot |
US12044586B2 (en) * | 2019-04-15 | 2024-07-23 | Covidien Lp | Method of calibrating torque sensors of instrument drive units of a surgical robot |
CN110988685A (zh) * | 2019-12-13 | 2020-04-10 | 青岛丰光精密机械股份有限公司 | 一种用于电机轴检验的装置 |
CN110988685B (zh) * | 2019-12-13 | 2022-05-13 | 青岛丰光精密机械股份有限公司 | 一种用于电机轴检验的装置 |
US11555461B2 (en) | 2020-10-20 | 2023-01-17 | Tula Technology, Inc. | Noise, vibration and harshness reduction in a skip fire engine control system |
CN112730873A (zh) * | 2021-01-29 | 2021-04-30 | 戴海泉 | 一种电机转速检测器及其检测方法 |
CN112730873B (zh) * | 2021-01-29 | 2023-01-24 | 东莞市赛仑特实业有限公司 | 一种电机转速检测器及其检测方法 |
TWI823557B (zh) * | 2022-09-13 | 2023-11-21 | 威剛科技股份有限公司 | 定子測試治具及定子檢測系統 |
CN115236510A (zh) * | 2022-09-21 | 2022-10-25 | 西北工业大学 | 一种直线电机性能测试试验台 |
CN118131042A (zh) * | 2024-05-06 | 2024-06-04 | 青岛智和精密科技有限公司 | 一种dd马达线圈测试装置及其测试方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2002518681A (ja) | 2002-06-25 |
EP1088237B1 (fr) | 2005-04-06 |
IL124932A0 (en) | 1999-01-26 |
MXPA00012588A (es) | 2002-05-08 |
AU4056999A (en) | 2000-01-05 |
TR200003747T2 (tr) | 2001-03-21 |
BR9911338A (pt) | 2001-03-13 |
ATE292804T1 (de) | 2005-04-15 |
HUP0104326A2 (hu) | 2002-03-28 |
HUP0104326A3 (en) | 2002-05-28 |
PL345001A1 (en) | 2001-11-19 |
EP1103815A2 (fr) | 2001-05-30 |
RU2229135C2 (ru) | 2004-05-20 |
CN1310800A (zh) | 2001-08-29 |
DE69924609D1 (de) | 2005-05-12 |
KR100710761B1 (ko) | 2007-04-24 |
JP2001324395A (ja) | 2001-11-22 |
AU748970B2 (en) | 2002-06-13 |
ES2243058T3 (es) | 2005-11-16 |
EP1103815A3 (fr) | 2002-12-04 |
CN1149399C (zh) | 2004-05-12 |
HK1035401A1 (en) | 2001-11-23 |
CA2334962A1 (fr) | 1999-12-23 |
TR200100035T2 (tr) | 2001-09-21 |
WO1999066335A1 (fr) | 1999-12-23 |
EP1088237A1 (fr) | 2001-04-04 |
KR20010071503A (ko) | 2001-07-28 |
DE69924609T2 (de) | 2006-03-02 |
CN1497257A (zh) | 2004-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6591200B1 (en) | Method and system for performance testing of rotating machines | |
JP3278452B2 (ja) | 回転体連結部の調整支援装置 | |
JPH0227717B2 (fr) | ||
CN103221791A (zh) | 用于监测风力涡轮机的机械传动装置中的旋转部件的方法 | |
JP2003504003A (ja) | 多相電動ステッパーモータの設定方法 | |
Liu et al. | Robust motor current signature analysis (mcsa)-based fault detection under varying operating conditions | |
JPH04270935A (ja) | 機械の回転部分の運動状態をモニターする方法及び装置 | |
KR100941467B1 (ko) | 선형 시변 각속도 모델을 이용한 동적 발란싱 장치 및 방법 | |
AU765356B2 (en) | Method and apparatus for testing of rotating machines | |
JPH073360B2 (ja) | 軸ねじり振動監視装置 | |
JP2981465B1 (ja) | 慣性モーメントを測定する方法とその装置 | |
US20240322653A1 (en) | Method for measuring the rotor angle-based expansion of a rotating rotor under centrifugal stress | |
JP3836984B2 (ja) | クランクシャフトの回転フリクション測定装置 | |
JPH02212732A (ja) | 動釣合い試験機における被試験体停止制御装置 | |
JP2005098258A (ja) | タービン発電機の軸ねじり振動検出方法 | |
CN110849414A (zh) | 转子弯曲方向的识别方法、装置、设备及存储介质 | |
JPH06307922A (ja) | 捩じり振動計 | |
CN113820055A (zh) | 一种永磁电机齿槽转矩测量方法 | |
JPH051959A (ja) | 計測装置 | |
JP4081241B2 (ja) | 原動機のトルク計測装置、原動機のトルク計測方法、及びその制御プログラム | |
CN116026524A (zh) | 正弦扭矩校准中的动态扭矩计算方法、装置和计算系统 | |
CN113405652A (zh) | 一种基于键相的水轮发电机组振摆波形等相位处理方法 | |
JPH0720075U (ja) | 回転子のコイルエンドモニター装置 | |
JPS6348177A (ja) | トルク制御式回転電動機械 | |
JPH01311885A (ja) | 誘導モータのスリップ測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: M.E.A. MOTOR INSPECTION LTD., ISRAEL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COHEN, MENACHEM;COHEN, EYAL;REEL/FRAME:011981/0008;SIGNING DATES FROM 20010103 TO 20010104 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
SULP | Surcharge for late payment |
Year of fee payment: 11 |