US6572889B1 - Controlled release solid dosage carbamazepine formulations - Google Patents
Controlled release solid dosage carbamazepine formulations Download PDFInfo
- Publication number
- US6572889B1 US6572889B1 US10/092,826 US9282602A US6572889B1 US 6572889 B1 US6572889 B1 US 6572889B1 US 9282602 A US9282602 A US 9282602A US 6572889 B1 US6572889 B1 US 6572889B1
- Authority
- US
- United States
- Prior art keywords
- weight
- parts
- composition
- composition according
- combinations
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 62
- FFGPTBGBLSHEPO-UHFFFAOYSA-N carbamazepine Chemical compound C1=CC2=CC=CC=C2N(C(=O)N)C2=CC=CC=C21 FFGPTBGBLSHEPO-UHFFFAOYSA-N 0.000 title claims abstract description 36
- 229960000623 carbamazepine Drugs 0.000 title claims abstract description 35
- 238000013270 controlled release Methods 0.000 title claims abstract description 10
- 239000007787 solid Substances 0.000 title claims description 15
- 238000009472 formulation Methods 0.000 title description 12
- 229920001577 copolymer Polymers 0.000 claims abstract description 37
- 229920000642 polymer Polymers 0.000 claims abstract description 35
- 239000000546 pharmaceutical excipient Substances 0.000 claims abstract description 23
- 239000004094 surface-active agent Substances 0.000 claims abstract description 21
- 238000005550 wet granulation Methods 0.000 claims abstract description 16
- 238000007907 direct compression Methods 0.000 claims abstract description 13
- -1 alkyl vinyl ether Chemical compound 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 28
- 239000000178 monomer Substances 0.000 claims description 22
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 claims description 18
- 125000004432 carbon atom Chemical group C* 0.000 claims description 16
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 15
- 238000000518 rheometry Methods 0.000 claims description 14
- 239000003431 cross linking reagent Substances 0.000 claims description 12
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical group C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 claims description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 10
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 10
- 239000002202 Polyethylene glycol Substances 0.000 claims description 10
- 239000002775 capsule Substances 0.000 claims description 10
- 229920001223 polyethylene glycol Polymers 0.000 claims description 10
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 9
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 9
- 229930006000 Sucrose Natural products 0.000 claims description 9
- 150000002148 esters Chemical class 0.000 claims description 9
- 235000019359 magnesium stearate Nutrition 0.000 claims description 9
- 239000011591 potassium Substances 0.000 claims description 9
- 229910052700 potassium Inorganic materials 0.000 claims description 9
- 239000011734 sodium Substances 0.000 claims description 9
- 229910052708 sodium Inorganic materials 0.000 claims description 9
- 229960004793 sucrose Drugs 0.000 claims description 9
- WSVLPVUVIUVCRA-KPKNDVKVSA-N Alpha-lactose monohydrate Chemical compound O.O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O WSVLPVUVIUVCRA-KPKNDVKVSA-N 0.000 claims description 8
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims description 8
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 8
- 239000000194 fatty acid Substances 0.000 claims description 8
- 229930195729 fatty acid Natural products 0.000 claims description 8
- 235000019333 sodium laurylsulphate Nutrition 0.000 claims description 8
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 claims description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 claims description 7
- 239000005720 sucrose Substances 0.000 claims description 7
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 7
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 6
- 239000004641 Diallyl-phthalate Substances 0.000 claims description 6
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 claims description 6
- 239000001506 calcium phosphate Substances 0.000 claims description 6
- 239000004359 castor oil Substances 0.000 claims description 6
- KUQWZSZYIQGTHT-UHFFFAOYSA-N hexa-1,5-diene-3,4-diol Chemical compound C=CC(O)C(O)C=C KUQWZSZYIQGTHT-UHFFFAOYSA-N 0.000 claims description 6
- 229960001021 lactose monohydrate Drugs 0.000 claims description 6
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 5
- 239000004480 active ingredient Substances 0.000 claims description 5
- 235000019438 castor oil Nutrition 0.000 claims description 5
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 claims description 5
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 5
- 239000011976 maleic acid Substances 0.000 claims description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 4
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 claims description 4
- 229920000168 Microcrystalline cellulose Polymers 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 239000001913 cellulose Chemical class 0.000 claims description 4
- 235000010980 cellulose Nutrition 0.000 claims description 4
- 229920002678 cellulose Chemical class 0.000 claims description 4
- 229960001375 lactose Drugs 0.000 claims description 4
- 239000008101 lactose Substances 0.000 claims description 4
- 235000019813 microcrystalline cellulose Nutrition 0.000 claims description 4
- 229920005862 polyol Polymers 0.000 claims description 4
- 150000003077 polyols Chemical class 0.000 claims description 4
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 claims description 3
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 claims description 3
- MCDQYEUDJIBGFS-UHFFFAOYSA-N 2-octadecoxyethyl hydrogen sulfate Chemical compound CCCCCCCCCCCCCCCCCCOCCOS(O)(=O)=O MCDQYEUDJIBGFS-UHFFFAOYSA-N 0.000 claims description 3
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 3
- SWPLMYYBIPGCRH-UHFFFAOYSA-N 2-tetradecoxyethyl hydrogen sulfate Chemical compound CCCCCCCCCCCCCCOCCOS(O)(=O)=O SWPLMYYBIPGCRH-UHFFFAOYSA-N 0.000 claims description 3
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 claims description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical class OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 claims description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical class OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 3
- 235000019739 Dicalciumphosphate Nutrition 0.000 claims description 3
- 229930195725 Mannitol Chemical class 0.000 claims description 3
- IYFATESGLOUGBX-YVNJGZBMSA-N Sorbitan monopalmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O IYFATESGLOUGBX-YVNJGZBMSA-N 0.000 claims description 3
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 claims description 3
- 239000004147 Sorbitan trioleate Substances 0.000 claims description 3
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 claims description 3
- 229920002472 Starch Chemical class 0.000 claims description 3
- IJCWFDPJFXGQBN-RYNSOKOISA-N [(2R)-2-[(2R,3R,4S)-4-hydroxy-3-octadecanoyloxyoxolan-2-yl]-2-octadecanoyloxyethyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCCCCCCCCCCCC IJCWFDPJFXGQBN-RYNSOKOISA-N 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 150000005215 alkyl ethers Chemical class 0.000 claims description 3
- 150000008064 anhydrides Chemical class 0.000 claims description 3
- ZPOLOEWJWXZUSP-WAYWQWQTSA-N bis(prop-2-enyl) (z)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C/C(=O)OCC=C ZPOLOEWJWXZUSP-WAYWQWQTSA-N 0.000 claims description 3
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 claims description 3
- 229940038472 dicalcium phosphate Drugs 0.000 claims description 3
- 229910000390 dicalcium phosphate Inorganic materials 0.000 claims description 3
- 150000001991 dicarboxylic acids Chemical class 0.000 claims description 3
- VVYDVQWJZWRVPE-UHFFFAOYSA-L dimethyltin(2+);diiodide Chemical compound C[Sn](C)(I)I VVYDVQWJZWRVPE-UHFFFAOYSA-L 0.000 claims description 3
- SSILHZFTFWOUJR-UHFFFAOYSA-N hexadecane-1-sulfonic acid Chemical compound CCCCCCCCCCCCCCCCS(O)(=O)=O SSILHZFTFWOUJR-UHFFFAOYSA-N 0.000 claims description 3
- LPTIRUACFKQDHZ-UHFFFAOYSA-N hexadecyl sulfate;hydron Chemical compound CCCCCCCCCCCCCCCCOS(O)(=O)=O LPTIRUACFKQDHZ-UHFFFAOYSA-N 0.000 claims description 3
- ANGQSOHCVRDFPI-UHFFFAOYSA-L magnesium;dodecane-1-sulfonate Chemical compound [Mg+2].CCCCCCCCCCCCS([O-])(=O)=O.CCCCCCCCCCCCS([O-])(=O)=O ANGQSOHCVRDFPI-UHFFFAOYSA-L 0.000 claims description 3
- HBNDBUATLJAUQM-UHFFFAOYSA-L magnesium;dodecyl sulfate Chemical compound [Mg+2].CCCCCCCCCCCCOS([O-])(=O)=O.CCCCCCCCCCCCOS([O-])(=O)=O HBNDBUATLJAUQM-UHFFFAOYSA-L 0.000 claims description 3
- HXHSBMHLZQUAFK-UHFFFAOYSA-L magnesium;tetradecane-1-sulfonate Chemical compound [Mg+2].CCCCCCCCCCCCCCS([O-])(=O)=O.CCCCCCCCCCCCCCS([O-])(=O)=O HXHSBMHLZQUAFK-UHFFFAOYSA-L 0.000 claims description 3
- 239000000594 mannitol Chemical class 0.000 claims description 3
- 235000010355 mannitol Nutrition 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000008108 microcrystalline cellulose Substances 0.000 claims description 3
- 229940016286 microcrystalline cellulose Drugs 0.000 claims description 3
- CACRRXGTWZXOAU-UHFFFAOYSA-N octadecane-1-sulfonic acid Chemical compound CCCCCCCCCCCCCCCCCCS(O)(=O)=O CACRRXGTWZXOAU-UHFFFAOYSA-N 0.000 claims description 3
- URLJMZWTXZTZRR-UHFFFAOYSA-N sodium myristyl sulfate Chemical compound CCCCCCCCCCCCCCOS(O)(=O)=O URLJMZWTXZTZRR-UHFFFAOYSA-N 0.000 claims description 3
- 229950005425 sodium myristyl sulfate Drugs 0.000 claims description 3
- 229940035044 sorbitan monolaurate Drugs 0.000 claims description 3
- 239000001593 sorbitan monooleate Substances 0.000 claims description 3
- 235000011069 sorbitan monooleate Nutrition 0.000 claims description 3
- 229940035049 sorbitan monooleate Drugs 0.000 claims description 3
- 239000001570 sorbitan monopalmitate Substances 0.000 claims description 3
- 235000011071 sorbitan monopalmitate Nutrition 0.000 claims description 3
- 229940031953 sorbitan monopalmitate Drugs 0.000 claims description 3
- 239000001587 sorbitan monostearate Substances 0.000 claims description 3
- 235000011076 sorbitan monostearate Nutrition 0.000 claims description 3
- 229940035048 sorbitan monostearate Drugs 0.000 claims description 3
- 235000019337 sorbitan trioleate Nutrition 0.000 claims description 3
- 229960000391 sorbitan trioleate Drugs 0.000 claims description 3
- 239000001589 sorbitan tristearate Substances 0.000 claims description 3
- 235000011078 sorbitan tristearate Nutrition 0.000 claims description 3
- 229960004129 sorbitan tristearate Drugs 0.000 claims description 3
- 239000000600 sorbitol Substances 0.000 claims description 3
- 235000010356 sorbitol Nutrition 0.000 claims description 3
- 239000008107 starch Chemical class 0.000 claims description 3
- 235000019698 starch Nutrition 0.000 claims description 3
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 3
- 229940078499 tricalcium phosphate Drugs 0.000 claims description 3
- 229910000391 tricalcium phosphate Inorganic materials 0.000 claims description 3
- 235000019731 tricalcium phosphate Nutrition 0.000 claims description 3
- HKQRNFNHJGCLST-UHFFFAOYSA-N 2-hexadecoxyethyl hydrogen sulfate Chemical compound CCCCCCCCCCCCCCCCOCCOS(O)(=O)=O HKQRNFNHJGCLST-UHFFFAOYSA-N 0.000 claims description 2
- 125000005907 alkyl ester group Chemical group 0.000 claims description 2
- ZPOLOEWJWXZUSP-AATRIKPKSA-N bis(prop-2-enyl) (e)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C\C(=O)OCC=C ZPOLOEWJWXZUSP-AATRIKPKSA-N 0.000 claims description 2
- 235000013681 dietary sucrose Nutrition 0.000 claims description 2
- 229960001855 mannitol Drugs 0.000 claims description 2
- 229940057847 polyethylene glycol 600 Drugs 0.000 claims description 2
- 229960002920 sorbitol Drugs 0.000 claims description 2
- 229940032147 starch Drugs 0.000 claims description 2
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 claims 4
- 229940100242 glycol stearate Drugs 0.000 claims 4
- 150000005846 sugar alcohols Polymers 0.000 claims 2
- LZDXRPVSAKWYDH-UHFFFAOYSA-N 2-ethyl-2-(prop-2-enoxymethyl)propane-1,3-diol Chemical compound CCC(CO)(CO)COCC=C LZDXRPVSAKWYDH-UHFFFAOYSA-N 0.000 claims 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical group C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 claims 1
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical group C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 claims 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 1
- 230000000379 polymerizing effect Effects 0.000 claims 1
- IUEMQUIQAPPJDL-UHFFFAOYSA-M sodium;2,3-dihydroxypropanoate Chemical compound [Na+].OCC(O)C([O-])=O IUEMQUIQAPPJDL-UHFFFAOYSA-M 0.000 claims 1
- 239000004615 ingredient Substances 0.000 abstract description 9
- 239000007909 solid dosage form Substances 0.000 abstract description 9
- 150000001735 carboxylic acids Chemical class 0.000 abstract description 5
- 239000000945 filler Substances 0.000 abstract description 5
- 239000012729 immediate-release (IR) formulation Substances 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 4
- 238000002156 mixing Methods 0.000 abstract description 3
- 239000003795 chemical substances by application Substances 0.000 abstract description 2
- 239000007939 sustained release tablet Substances 0.000 abstract description 2
- 239000008187 granular material Substances 0.000 description 13
- 238000005469 granulation Methods 0.000 description 10
- 230000003179 granulation Effects 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- 239000003826 tablet Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 229940079593 drug Drugs 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 238000012377 drug delivery Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000013268 sustained release Methods 0.000 description 4
- 239000012730 sustained-release form Substances 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 239000008137 solubility enhancer Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- JVTIXNMXDLQEJE-UHFFFAOYSA-N 2-decanoyloxypropyl decanoate 2-octanoyloxypropyl octanoate Chemical compound C(CCCCCCC)(=O)OCC(C)OC(CCCCCCC)=O.C(=O)(CCCCCCCCC)OCC(C)OC(=O)CCCCCCCCC JVTIXNMXDLQEJE-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 206010010904 Convulsion Diseases 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 229920002582 Polyethylene Glycol 600 Polymers 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 235000019888 Vivapur Nutrition 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 239000013563 matrix tablet Substances 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 239000008177 pharmaceutical agent Substances 0.000 description 2
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 1
- PYHRZPFZZDCOPH-QXGOIDDHSA-N (S)-amphetamine sulfate Chemical compound [H+].[H+].[O-]S([O-])(=O)=O.C[C@H](N)CC1=CC=CC=C1.C[C@H](N)CC1=CC=CC=C1 PYHRZPFZZDCOPH-QXGOIDDHSA-N 0.000 description 1
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 229920003084 Avicel® PH-102 Polymers 0.000 description 1
- 208000033001 Complex partial seizures Diseases 0.000 description 1
- 206010013786 Dry skin Diseases 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 208000034308 Grand mal convulsion Diseases 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- VEPKQEUBKLEPRA-UHFFFAOYSA-N VX-745 Chemical compound FC1=CC(F)=CC=C1SC1=NN2C=NC(=O)C(C=3C(=CC=CC=3Cl)Cl)=C2C=C1 VEPKQEUBKLEPRA-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229940091181 aconitic acid Drugs 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000012674 dispersion polymerization Methods 0.000 description 1
- 238000007922 dissolution test Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000009506 drug dissolution testing Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- IIEWJVIFRVWJOD-UHFFFAOYSA-N ethyl cyclohexane Natural products CCC1CCCCC1 IIEWJVIFRVWJOD-UHFFFAOYSA-N 0.000 description 1
- 238000013265 extended release Methods 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- NKHAVTQWNUWKEO-UHFFFAOYSA-N fumaric acid monomethyl ester Natural products COC(=O)C=CC(O)=O NKHAVTQWNUWKEO-UHFFFAOYSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- NKHAVTQWNUWKEO-NSCUHMNNSA-N monomethyl fumarate Chemical compound COC(=O)\C=C\C(O)=O NKHAVTQWNUWKEO-NSCUHMNNSA-N 0.000 description 1
- 229940005650 monomethyl fumarate Drugs 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- FSAJWMJJORKPKS-UHFFFAOYSA-N octadecyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C=C FSAJWMJJORKPKS-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 229920000191 poly(N-vinyl pyrrolidone) Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000012673 precipitation polymerization Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000015227 regulation of liquid surface tension Effects 0.000 description 1
- 238000009490 roller compaction Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000009491 slugging Methods 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 206010044652 trigeminal neuralgia Diseases 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2072—Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
- A61K9/2077—Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/55—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1635—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/2027—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
Definitions
- the invention is directed to controlled release formulations of solid dosage carbamazepine utilizing a cross-linked polymer or copolymer derived from one or more unsaturated carboxylic acids, which provides controlled release properties at low concentrations, while meeting acceptable release rates as specified by the United States Pharmacopeial Convention (USP).
- USP United States Pharmacopeial Convention
- Carbamazepine is a well-known pharmaceutical agent for the clinical treatment of seizure disorders, including tonic-clonic (grand mal) seizures, complex partial seizures and trigeminal neuralgia.
- tonic-clonic (grand mal) seizures complex partial seizures
- trigeminal neuralgia trigeminal neuralgia.
- a therapeutic system for peroral administration of carbamazepine comprises a wall made of a material permeable to water and impermeable to the components of the drug-containing core; a core containing finely particulate carbamazepine, a protective colloid, a swellable hydrophilic polymer and an optional water-soluble compound; and a passageway through the wall for delivering the core components to the environmental body fluid.
- the passageway is produced by mechanical or laser drilling of the outer wall.
- a drug delivery system for the oral administration of carbamazepine and a method of treating a patient with the drug delivery systems is disclosed in U.S. Pat. No. 5,326,570.
- the drug delivery systems consist of an immediate release unit containing carbamazepine, a sustained release unit containing carbamazepine and an enteric release unit containing carbamazepine.
- the matrix tablet formulation comprises a hydrophilic polymer gel which inhibits transformation of carbamazepine into carbamazepine dihydrate and effectively changes the anhydrous carbamazepine into an amorphous form which can be released from the matrix by zero-order release kinetics.
- an osmotic drug release system for the oral administration of a pharmaceutical agent is disclosed.
- the osmotic drug delivery system consists of a shell and core containing a pharmaceutically active substance, xanthan and a vinyl pyrrolidone-vinyl acetate copolymer. These water-expandable polymers allow for the release of the active substance from the shell in a controlled manner.
- Solid dosage forms of immediate and sustained release tablets containing carbamazepine are formed by wet granulation or by using granules formed by wet granulation mixed with direct compression ingredients.
- the solid dosage form consists of a polymer or copolymer derived from one or more unsaturated carboxylic acids that is cross-linked and carbamazepine in conjunction with conventional materials such as fillers, excipients, and surface active agents.
- the polymer or copolymer as a controlled release agent can enhance controlled-release properties at lower concentrations than prior art systems, while meeting acceptable release rates as specified by the USP.
- the polymer or copolymers of the present invention provides immediate release or controlled release of carbamazepine in sustained release formulations, depending upon the choice of ingredients and processing of the formulation.
- the polymer or copolymers are derived from one or more unsaturated carboxylic acid monomers, (i.e., (di)carboxylic acid) generally having one or two carboxylic acid groups, desirably having one carbon to carbon double bond and containing generally a total of from 3 to about 10 carbon atoms and preferably from 3 to about 5 carbon atoms such as ⁇ - ⁇ -unsaturated monocarboxylic acids, for example, acrylic acid, methacrylic acid, and crotonic acid, and the like, or dicarboxylic acids such as itaconic acid, fumaric acid, maleic acid, aconitic acid, and the like.
- unsaturated carboxylic acid monomers i.e., (di)carboxylic acid
- carboxylic acid groups desirably having one carbon to
- half ester monomers of such diacids with alkanols containing from 1 to about 4 carbon atoms can also be utilized, such as monomethyl fumarate.
- Preferred acids include acrylic acid or maleic acid.
- diacids capable of forming cyclic anhydrides, such as maleic may be polymerized as the anhydride and later reacted with water or alcohols to form the equivalent of maleic acid or monoalkyl maleate copolymer.
- one or more oxygen-containing unsaturated comonomers having a total of from 3 to about 40 carbon atoms such as esters of the above unsaturated (di)carboxylic acids, that is, mono or di, especially alkyl esters containing a total of from 1 to about 30 carbon atoms in the alkyl group can also be utilized as comonomers to form the copolymer.
- esters of the above unsaturated (di)carboxylic acids that is, mono or di
- alkyl esters containing a total of from 1 to about 30 carbon atoms in the alkyl group can also be utilized as comonomers to form the copolymer.
- esters include ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, hexadecyl acrylate, and octadecyl acrylate, and the like, with the C 10 to C 30 acrylates
- Another optional class of comonomers are the various anhydrides of the above-noted carboxylic acids such as maleic anhydride, and the like.
- another optional class of suitable comonomers are the various alkyl vinyl ethers wherein the alkyl group contains from 1 to about 20 carbon atoms with examples including ethyl vinyl ether, methyl vinyl ether, and the like.
- suitable cross-linked commercially available rheology modifying polymers or copolymers include Carbopol® 941, 971 PNF, 981 and 71G manufactured by Noveon, Inc., as well as Synthalen L made by 3V/Sigma, Aqupec HV-501 and HG 501E made by Sumitomo Seika.
- the amount of the one or more oxygen-containing acid comonomers when utilized is generally a minor amount, such as from about 0.01% to about 40% by weight, desirably from about 0.5% to about 35% by weight, and preferably from about 1% to about 25% by weight based upon the total weight of all the rheology modifying polymer or copolymer forming monomers and comonomers.
- the amount of the one or more unsaturated (di)carboxylic acid monomers, half ester thereof, or combinations thereof is generally from about 60% to about 99.99% by weight, desirably from about 65% to about 99.5% by weight, and preferably from about 75% to about 99% by weight based upon the total weight of all rheology modifying polymer or copolymer forming monomers or comonomers.
- the various polymers or copolymers of the present invention are generally anhydrous. That is, they generally contain 5 parts by weight or less, desirably 3 parts or 2 parts by weight or less, and preferably 1 part or less by weight, and even nil, that is no parts by weight, of water per 100 parts by weight of the one or more rheology modifying polymers or copolymers.
- the polymer or copolymer be cross-linked with one or more polyunsaturated monomers or comonomers.
- Suitable cross-linking agents are known to the art and literature and generally include the various allyl ethers of sucrose or pentaerythritol, or derivatives thereof, or various polyols. Specific examples include diallylphthalate, divinyl glycol, divinyl benzene, allyl (meth)acrylate, ethylene glycol di(meth)acrylate, diallyl itaconate, diallyl fumarate, or diallyl maleate.
- Preferred cross-linking agents include divinyl glycol, allyl ether of sucrose, allyl ether of pentaerythritol, diallylphthalate, and combinations thereof.
- the amount of the cross-linking agent is from about 0.01 to about 2 parts by weight, desirably from about 0.02 to about 1.5 parts by weight, and preferably from about 0.03 to about 1 part by weight per 100 total parts by weight of the one or more rheology monomers or comonomers.
- the rheology modifying polymers or copolymers of the present invention are produced by conventional methods known to the art and to the literature such as by dispersion or precipitation polymerization utilizing suitable organic solvents such as various hydrocarbons, esters, halogenated hydrocarbon compounds and the like, with specific examples including aromatic solvents such as benzene, or toluene; various cycloaliphatic solvents such as cyclohexane; various esters such as ethyl acetate and methyl formate, ethyl formate; various chlorinated hydrocarbons such as dichloromethane; and combinations thereof.
- Preferred solvents generally include benzene, methylene chloride, blends of ethyl acetate and cyclohexane, or ethyl acetate, and the like.
- the solid dosage formulation will contain various fillers, excipients, surfactants, and the like, as are known to those skilled in the art.
- the excipients are generally utilized to give a desirable slow release profile as well as other desirable attributes of a solid dosage tablet, including color, hardness, crushing strength, and low friability. Accordingly, such excipients can be one or more of fillers, binders, colorants, coating agents, slow release compounds, and the like.
- suitable excipients can include microcrystalline cellulose such as Avicel® PH101, Avicel PH102, Avicel PH200, Avicel PH301, and Avicel PH302 available from FMC Corporation, Vivapur 101, Vivapur 102 available from Rettenmaier and Sohne GMbH, Emcocel 50 M and Emcocel 90 M available from Penwest Company; dicalcium phosphate such as Elcema® available from Degussa; A-Tab®; DiTab® available from Rhodia; lactose monohydrate such as Flow-Lac® 100; Pharmatose® DCL11, Pharmatose DCL15, Pharmatose DCL21 available from DMC International; Tablettose® 80 available from Meggle; and tricalcium phosphate such as Tri-Tab®; Fast Flo Lactose from Foremost; and Pro
- the amount of one or more excipients utilized will generally be from about 1 to about 90 parts by weight, with from about 5 to about 60 parts by weight of the total dosage formulation being preferred, based upon tablet performance. Higher levels of excipient are generally used with highly active drugs or where only a low dose of drug is being dispensed. This enables the preparation of a tablet which can be easily picked up, handled, counted, etc. Tablets which are too small are difficult to pick up, are easily dropped and lost, and are otherwise inconvenient.
- excipients utilized are those customarily used in tableting for the preparation of granulates, including binders, lubricants, glidants, dispersants, fillers and the like.
- binders binders
- lubricants glidants, dispersants, fillers and the like.
- conventional materials such as lactose, saccharose, sorbitol, mannitol, starch, cellulose, or magnesium stearate, in addition to the excipients listed hereinabove.
- solubility enhancers and surface active agents in the practice of the present invention.
- One class of solubility enhancers which have little surfactant activity is the polyethylene glycol series, such as PEG 600.
- Other useful types in this series range in molecular weight from 200 to 7,000,000.
- Suitable surface active agents and solubility enhancers include anionic surfactants such as sodium lauryl sulfate, sodium, potassium or magnesium n-dodecyl sulfate, n-tetradecylsulfate, n-hexadecyl sulfate, n-tetradecyloxyethyl sulfate, n-hexadecyloxyethyl sulfate or n-octadecyloxyethyl sulfate; or sodium, potassium or magnesium n-dodecanesulfonate; sodium, potassium or magnesium n-tetradecanesulfonate, n-hexadecanesulfonate or n-octadecanesulfonate, and the like.
- anionic surfactants such as sodium lauryl sulfate, sodium, potassium or magnesium n-dodecyl sulf
- Additional suitable surfactants are non-ionic surfactants of the fatty acid polyhydroxy alcohol ester type such as sorbitan monolaurate, sorbitan monooleate, sorbitan monostearate or sorbitan monopalmitate, sorbitan tri-stearate or trioleate, polyethylene glycol fatty acid ester such as polyoxyethyl stearate, polyethylene glycol 600 stearate, and the like.
- Further additional surfactants include polyoxyethylene alkyl ethers, polyoxyethylene castor oil derivatives, sorbitan polyoxyethylene fatty acid esters, polyoxyethylene fatty acid esters, and polyoxyethylene stearates, such as defined in “Handbook of Pharmaceutical Excipients,” (American Pharmaceutical Association Pub.; 3 rd Ed., 2000).
- a preferred surface active agent is sodium lauryl sulfate which is generally present in an amount from about 0.1 to about 10 parts by weight, and preferably from about 1 to about 5 parts by weight per 100 parts by weight of the total dosage formulation.
- the polymers or copolymers may be utilized in combination with the active ingredient in either powder or granulated form.
- the powder mixture containing the active When in powder form, the powder mixture containing the active must be granulated to further process properly.
- Granulation can be accomplished by processes known to the art and in the literature, such as, for example, by roller compaction, by slugging, or utilizing wet methods such as a fluidized bed.
- the polymer is in granular form, it can either be incorporated with the active before granulation, or combined with the active or granules containing the active just before tableting or capsule filling.
- the granulated polymer or copolymer desirably has a specific particle size range so that when blended with the carbamazepine or granules containing carbamazepine, a flowable mixture is produced. This is so the mixture can either be tableted on a high-speed tablet press, or easily filled into capsules on automatic equipment.
- the particle size of the polymer or copolymer powder will be from about 1 to about 20 microns, and preferably from about 2 to about 10 microns.
- the particle size of the polymer or copolymer granules will be from about 74 to about 1,000 microns, and preferably from about 149 to about 425 microns.
- the granulated cross-linked rheology modifying polymer or copolymers, carbamazepine, as well as the one or more excipients and surface active agents can be mixed in any conventional manner to produce a blend.
- it can be mixed in a shell blender, a Vee blender, a double cone blender, a ribbon mixer, and the like.
- the polymer or copolymers of the present invention are suitable for producing solid dosage forms by generally all conventional processes, including granulation, grinding, compression, casting in a mold, tableting under pressure, and the like.
- preferred processes for production of the solid dosage form of the present invention are wet granulation and direct compression.
- the solid dosage form is prepared in the presence of either a granulation solvent or solution of a granulation binder, as is known in the art.
- the granulation binder may be the polymer or copolymer of the present invention, or any other polymer known to the art as a granulation binder, such as polyvinyl pyrrolidone, hydroxypropylmethyl cellulose, and the like.
- a direct compression method the mixture containing the polymer or copolymer and active is directly fed into any conventional tablet making machine wherein a desired amount of the mixture or blend is fed through an orifice or opening into a tablet die. The die is closed and compresses the mixture to produce a suitably sized and shaped solid dosage article such as a tablet. This method is more fully described in U.S. patent application Ser. No. 09/559,687, which is incorporated by reference herein.
- Anhydrous carbamazepine is weighed and placed in an Erweka Planetary Mixer. While operating the mixer at a speed of 150 rpm, polyethylene glycol (PEG) is slowly added and mixed for approximately 10 minutes. The remaining formulation ingredients except the magnesium stearate are combined with this mixture and mixed for an additional 5 minutes at 140 rpm. Deionized water is then added to the formulation in 20 milliliter (ml) increments every 2 minutes and the mixing speed is increased by 10 rpm, up to a maximum of 270 rpm, after the water additions. The endpoint is determined by observing the appearance of the granulation and by hand-squeezing a handful of the granulation and observing its compaction and cohesion behavior upon this treatment, a technique well known to those skilled in the art.
- PEG polyethylene glycol
- the wet granulation particles are removed from the mixer and passed through a US Standard #6 mesh.
- the sized particles are laid out on an aluminum baking tray in a thin layer not to exceed 0.25′′ thick and placed in a Blue-M Circulated Air Oven Model OV-55C-2 and dried for at least 8 hours at 60° C.
- the granules are removed from the oven, cooled, weighed, and dried further in the oven for an additional hour, followed by cooling and weighing a second time. This process is repeated until there is no weight loss between dryings.
- the granules are ground through a sieve stack to the desired particle size.
- a sieve stack of 8 mesh, 14 mesh, and 20 mesh was utilized.
- a sieve stack of 8 mesh and 14 mesh was utilized.
- Magnesium stearate was then added to the formulation following sizing of the particles.
- To a Patterson-Kelly Twin Shell Mixer was added 95.5 grams (g) of each particle size together with 0.5 g of magnesium stearate. The mixture was then mixed for 2 minutes. After checking the flow index, the mixture was then either tableted or made into capsules.
- Example 1 Preparation of wet granulation granules is as described in Example 1.
- the appropriate weights of the wet granulation granules were mixed with the direct compression ingredients in a Patterson-Kelly Twin Shell Mixer and mixed for 25 minutes.
- the wet granulation/direct compression mixture was then either tableted or made into capsules.
- Each dissolution test was performed in accordance to the USP method for Carbamazepine Extended-Release Tablets (Apparatus 1, 1000 RPM, 900 mL water).
- a Hanson SR-8 unit was used to run the tests, and six capsules were tested during each run.
- a sample was taken from each of the 6 vessels every 15 minutes for 24 hours and directly scanned using a Perkin-Elmer UV/VIS model Lambda 2. The data was collected using Perkin-Elmer Dissolution Software.
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
A polymer or copolymer composition derived from one or more unsaturated carboxylic acids that is cross-linked and carbamazepine in conjunction with conventional materials such as fillers, excipients, and surface active agents is disclosed. Solid dosage forms of immediate and sustained release tablets containing the polymer or copolymer composition can be formed by wet granulation or wet granulation followed by blending with direct compression ingredients. The polymer or copolymer, as a controlled release agent, can enhance controlled-release properties while meeting acceptable release rates as specified by the USP.
Description
1. Field of the Invention
The invention is directed to controlled release formulations of solid dosage carbamazepine utilizing a cross-linked polymer or copolymer derived from one or more unsaturated carboxylic acids, which provides controlled release properties at low concentrations, while meeting acceptable release rates as specified by the United States Pharmacopeial Convention (USP).
2. Description of the Prior Art
Carbamazepine is a well-known pharmaceutical agent for the clinical treatment of seizure disorders, including tonic-clonic (grand mal) seizures, complex partial seizures and trigeminal neuralgia. Currently, however, there are a limited number of oral therapeutic systems containing carbamazepine in solid dosage form.
In U.S. Pat. No. 4,857,336 and RE 34,990 to Khanna, et al, there is disclosed a therapeutic system for peroral administration of carbamazepine. The system comprises a wall made of a material permeable to water and impermeable to the components of the drug-containing core; a core containing finely particulate carbamazepine, a protective colloid, a swellable hydrophilic polymer and an optional water-soluble compound; and a passageway through the wall for delivering the core components to the environmental body fluid. The passageway is produced by mechanical or laser drilling of the outer wall.
A drug delivery system for the oral administration of carbamazepine and a method of treating a patient with the drug delivery systems is disclosed in U.S. Pat. No. 5,326,570. The drug delivery systems consist of an immediate release unit containing carbamazepine, a sustained release unit containing carbamazepine and an enteric release unit containing carbamazepine.
In U.S. Pat. No. 5,912,013 to Rudnic, et al, there is taught a composition for treating a patient with carbamazepine in a pharmaceutical dosage form which comprises a single dosage form containing multiple units within it capable of releasing their contents at varying times, i.e., a sustained release unit and an immediate release unit.
In U.S. Pat. No. 5,980,942, there is described a zero order sustained release matrix tablet formulation of carbamazepine. The matrix tablet formulation comprises a hydrophilic polymer gel which inhibits transformation of carbamazepine into carbamazepine dihydrate and effectively changes the anhydrous carbamazepine into an amorphous form which can be released from the matrix by zero-order release kinetics.
In U.S. Pat. No. 6,294,201 an osmotic drug release system for the oral administration of a pharmaceutical agent is disclosed. The osmotic drug delivery system consists of a shell and core containing a pharmaceutically active substance, xanthan and a vinyl pyrrolidone-vinyl acetate copolymer. These water-expandable polymers allow for the release of the active substance from the shell in a controlled manner.
These prior art methods of carbamazepine delivery, however, have the inherent drawbacks of being expensive and require time-consuming methods of production. Additionally, in order to achieve and maintain a therapeutic range, a higher concentration of carbamazepine is necessary.
Solid dosage forms of immediate and sustained release tablets containing carbamazepine are formed by wet granulation or by using granules formed by wet granulation mixed with direct compression ingredients. The solid dosage form consists of a polymer or copolymer derived from one or more unsaturated carboxylic acids that is cross-linked and carbamazepine in conjunction with conventional materials such as fillers, excipients, and surface active agents. The polymer or copolymer as a controlled release agent can enhance controlled-release properties at lower concentrations than prior art systems, while meeting acceptable release rates as specified by the USP.
The polymer or copolymers of the present invention provides immediate release or controlled release of carbamazepine in sustained release formulations, depending upon the choice of ingredients and processing of the formulation. The polymer or copolymers are derived from one or more unsaturated carboxylic acid monomers, (i.e., (di)carboxylic acid) generally having one or two carboxylic acid groups, desirably having one carbon to carbon double bond and containing generally a total of from 3 to about 10 carbon atoms and preferably from 3 to about 5 carbon atoms such as α-β-unsaturated monocarboxylic acids, for example, acrylic acid, methacrylic acid, and crotonic acid, and the like, or dicarboxylic acids such as itaconic acid, fumaric acid, maleic acid, aconitic acid, and the like. Moreover, half ester monomers of such diacids with alkanols containing from 1 to about 4 carbon atoms can also be utilized, such as monomethyl fumarate. Preferred acids include acrylic acid or maleic acid. Additionally, diacids capable of forming cyclic anhydrides, such as maleic, may be polymerized as the anhydride and later reacted with water or alcohols to form the equivalent of maleic acid or monoalkyl maleate copolymer.
Optionally, one or more oxygen-containing unsaturated comonomers having a total of from 3 to about 40 carbon atoms, such as esters of the above unsaturated (di)carboxylic acids, that is, mono or di, especially alkyl esters containing a total of from 1 to about 30 carbon atoms in the alkyl group can also be utilized as comonomers to form the copolymer. Examples of such esters include ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, hexadecyl acrylate, and octadecyl acrylate, and the like, with the C10 to C30 acrylates being preferred.
Another optional class of comonomers are the various anhydrides of the above-noted carboxylic acids such as maleic anhydride, and the like. Moreover, another optional class of suitable comonomers are the various alkyl vinyl ethers wherein the alkyl group contains from 1 to about 20 carbon atoms with examples including ethyl vinyl ether, methyl vinyl ether, and the like. Examples of suitable cross-linked commercially available rheology modifying polymers or copolymers include Carbopol® 941, 971 PNF, 981 and 71G manufactured by Noveon, Inc., as well as Synthalen L made by 3V/Sigma, Aqupec HV-501 and HG 501E made by Sumitomo Seika.
The amount of the one or more oxygen-containing acid comonomers when utilized is generally a minor amount, such as from about 0.01% to about 40% by weight, desirably from about 0.5% to about 35% by weight, and preferably from about 1% to about 25% by weight based upon the total weight of all the rheology modifying polymer or copolymer forming monomers and comonomers. Thus, the amount of the one or more unsaturated (di)carboxylic acid monomers, half ester thereof, or combinations thereof, is generally from about 60% to about 99.99% by weight, desirably from about 65% to about 99.5% by weight, and preferably from about 75% to about 99% by weight based upon the total weight of all rheology modifying polymer or copolymer forming monomers or comonomers.
The various polymers or copolymers of the present invention are generally anhydrous. That is, they generally contain 5 parts by weight or less, desirably 3 parts or 2 parts by weight or less, and preferably 1 part or less by weight, and even nil, that is no parts by weight, of water per 100 parts by weight of the one or more rheology modifying polymers or copolymers.
It is an important aspect of the present invention that the polymer or copolymer be cross-linked with one or more polyunsaturated monomers or comonomers. Suitable cross-linking agents are known to the art and literature and generally include the various allyl ethers of sucrose or pentaerythritol, or derivatives thereof, or various polyols. Specific examples include diallylphthalate, divinyl glycol, divinyl benzene, allyl (meth)acrylate, ethylene glycol di(meth)acrylate, diallyl itaconate, diallyl fumarate, or diallyl maleate. Derivatives of castor oils or polyols such as esterified with an ethylenically unsaturated carboxylic acid and the like can be used. Preferred cross-linking agents include divinyl glycol, allyl ether of sucrose, allyl ether of pentaerythritol, diallylphthalate, and combinations thereof.
The amount of the cross-linking agent is from about 0.01 to about 2 parts by weight, desirably from about 0.02 to about 1.5 parts by weight, and preferably from about 0.03 to about 1 part by weight per 100 total parts by weight of the one or more rheology monomers or comonomers.
The rheology modifying polymers or copolymers of the present invention are produced by conventional methods known to the art and to the literature such as by dispersion or precipitation polymerization utilizing suitable organic solvents such as various hydrocarbons, esters, halogenated hydrocarbon compounds and the like, with specific examples including aromatic solvents such as benzene, or toluene; various cycloaliphatic solvents such as cyclohexane; various esters such as ethyl acetate and methyl formate, ethyl formate; various chlorinated hydrocarbons such as dichloromethane; and combinations thereof. Preferred solvents generally include benzene, methylene chloride, blends of ethyl acetate and cyclohexane, or ethyl acetate, and the like.
In addition to containing the rheology modifying polymer or copolymer and carbamazepine as active ingredient, the solid dosage formulation will contain various fillers, excipients, surfactants, and the like, as are known to those skilled in the art. The excipients are generally utilized to give a desirable slow release profile as well as other desirable attributes of a solid dosage tablet, including color, hardness, crushing strength, and low friability. Accordingly, such excipients can be one or more of fillers, binders, colorants, coating agents, slow release compounds, and the like.
In order to produce a flowable mixture which contains the cross-linked polymer or copolymer of the present invention, as well as the active ingredient, suitable excipients can include microcrystalline cellulose such as Avicel® PH101, Avicel PH102, Avicel PH200, Avicel PH301, and Avicel PH302 available from FMC Corporation, Vivapur 101, Vivapur 102 available from Rettenmaier and Sohne GMbH, Emcocel 50 M and Emcocel 90 M available from Penwest Company; dicalcium phosphate such as Elcema® available from Degussa; A-Tab®; DiTab® available from Rhodia; lactose monohydrate such as Flow-Lac® 100; Pharmatose® DCL11, Pharmatose DCL15, Pharmatose DCL21 available from DMC International; Tablettose® 80 available from Meggle; and tricalcium phosphate such as Tri-Tab®; Fast Flo Lactose from Foremost; and Prosolve® (Silicified MCC) from Penwest. The amount of one or more excipients utilized will generally be from about 1 to about 90 parts by weight, with from about 5 to about 60 parts by weight of the total dosage formulation being preferred, based upon tablet performance. Higher levels of excipient are generally used with highly active drugs or where only a low dose of drug is being dispensed. This enables the preparation of a tablet which can be easily picked up, handled, counted, etc. Tablets which are too small are difficult to pick up, are easily dropped and lost, and are otherwise inconvenient.
Further excipients utilized are those customarily used in tableting for the preparation of granulates, including binders, lubricants, glidants, dispersants, fillers and the like. Thus, it is possible to include conventional materials such as lactose, saccharose, sorbitol, mannitol, starch, cellulose, or magnesium stearate, in addition to the excipients listed hereinabove.
Owing to the difficulty in solubilizing carbamazepine, it is contemplated to utilize various solubility enhancers and surface active agents in the practice of the present invention. One class of solubility enhancers which have little surfactant activity is the polyethylene glycol series, such as PEG 600. Other useful types in this series range in molecular weight from 200 to 7,000,000. Suitable surface active agents and solubility enhancers include anionic surfactants such as sodium lauryl sulfate, sodium, potassium or magnesium n-dodecyl sulfate, n-tetradecylsulfate, n-hexadecyl sulfate, n-tetradecyloxyethyl sulfate, n-hexadecyloxyethyl sulfate or n-octadecyloxyethyl sulfate; or sodium, potassium or magnesium n-dodecanesulfonate; sodium, potassium or magnesium n-tetradecanesulfonate, n-hexadecanesulfonate or n-octadecanesulfonate, and the like.
Additional suitable surfactants are non-ionic surfactants of the fatty acid polyhydroxy alcohol ester type such as sorbitan monolaurate, sorbitan monooleate, sorbitan monostearate or sorbitan monopalmitate, sorbitan tri-stearate or trioleate, polyethylene glycol fatty acid ester such as polyoxyethyl stearate, polyethylene glycol 600 stearate, and the like. Further additional surfactants include polyoxyethylene alkyl ethers, polyoxyethylene castor oil derivatives, sorbitan polyoxyethylene fatty acid esters, polyoxyethylene fatty acid esters, and polyoxyethylene stearates, such as defined in “Handbook of Pharmaceutical Excipients,” (American Pharmaceutical Association Pub.; 3rd Ed., 2000). A preferred surface active agent is sodium lauryl sulfate which is generally present in an amount from about 0.1 to about 10 parts by weight, and preferably from about 1 to about 5 parts by weight per 100 parts by weight of the total dosage formulation.
The polymers or copolymers may be utilized in combination with the active ingredient in either powder or granulated form. When in powder form, the powder mixture containing the active must be granulated to further process properly. Granulation can be accomplished by processes known to the art and in the literature, such as, for example, by roller compaction, by slugging, or utilizing wet methods such as a fluidized bed. Where the polymer is in granular form, it can either be incorporated with the active before granulation, or combined with the active or granules containing the active just before tableting or capsule filling. The granulated polymer or copolymer desirably has a specific particle size range so that when blended with the carbamazepine or granules containing carbamazepine, a flowable mixture is produced. This is so the mixture can either be tableted on a high-speed tablet press, or easily filled into capsules on automatic equipment. Desirably, the particle size of the polymer or copolymer powder will be from about 1 to about 20 microns, and preferably from about 2 to about 10 microns. Desirably, the particle size of the polymer or copolymer granules will be from about 74 to about 1,000 microns, and preferably from about 149 to about 425 microns.
The granulated cross-linked rheology modifying polymer or copolymers, carbamazepine, as well as the one or more excipients and surface active agents can be mixed in any conventional manner to produce a blend. For example, it can be mixed in a shell blender, a Vee blender, a double cone blender, a ribbon mixer, and the like. The polymer or copolymers of the present invention are suitable for producing solid dosage forms by generally all conventional processes, including granulation, grinding, compression, casting in a mold, tableting under pressure, and the like. However, preferred processes for production of the solid dosage form of the present invention are wet granulation and direct compression. In a wet granulation technique, the solid dosage form is prepared in the presence of either a granulation solvent or solution of a granulation binder, as is known in the art. The granulation binder may be the polymer or copolymer of the present invention, or any other polymer known to the art as a granulation binder, such as polyvinyl pyrrolidone, hydroxypropylmethyl cellulose, and the like. In a direct compression method, the mixture containing the polymer or copolymer and active is directly fed into any conventional tablet making machine wherein a desired amount of the mixture or blend is fed through an orifice or opening into a tablet die. The die is closed and compresses the mixture to produce a suitably sized and shaped solid dosage article such as a tablet. This method is more fully described in U.S. patent application Ser. No. 09/559,687, which is incorporated by reference herein.
The invention will be better understood by reference to the following examples which serve to illustrate but not to limit the present invention.
Ingredients | Source | % w/w | Actual Weight (g) |
Carbamazepine | Noveon | 65.0 | 650 |
PEG 600 | Union Carbide | 8.0 | 8 |
Kollidon ® CL | BASF | 23.0 | 230 |
Carbopol 971P | Noveon | 3.0 | 30 |
Talc | Aldrich | 0.5 | 5 |
Mg Stearate | Synpro | 0.5 | 5 |
Anhydrous carbamazepine is weighed and placed in an Erweka Planetary Mixer. While operating the mixer at a speed of 150 rpm, polyethylene glycol (PEG) is slowly added and mixed for approximately 10 minutes. The remaining formulation ingredients except the magnesium stearate are combined with this mixture and mixed for an additional 5 minutes at 140 rpm. Deionized water is then added to the formulation in 20 milliliter (ml) increments every 2 minutes and the mixing speed is increased by 10 rpm, up to a maximum of 270 rpm, after the water additions. The endpoint is determined by observing the appearance of the granulation and by hand-squeezing a handful of the granulation and observing its compaction and cohesion behavior upon this treatment, a technique well known to those skilled in the art.
The wet granulation particles are removed from the mixer and passed through a US Standard #6 mesh. The sized particles are laid out on an aluminum baking tray in a thin layer not to exceed 0.25″ thick and placed in a Blue-M Circulated Air Oven Model OV-55C-2 and dried for at least 8 hours at 60° C. In order to ensure removal of all water from the granules, the granules are removed from the oven, cooled, weighed, and dried further in the oven for an additional hour, followed by cooling and weighing a second time. This process is repeated until there is no weight loss between dryings.
Following drying, the granules are ground through a sieve stack to the desired particle size. For a 20 mesh particle size, a sieve stack of 8 mesh, 14 mesh, and 20 mesh was utilized. For a 14 mesh particle size, a sieve stack of 8 mesh and 14 mesh was utilized.
Magnesium stearate was then added to the formulation following sizing of the particles. To a Patterson-Kelly Twin Shell Mixer was added 95.5 grams (g) of each particle size together with 0.5 g of magnesium stearate. The mixture was then mixed for 2 minutes. After checking the flow index, the mixture was then either tableted or made into capsules.
Ingredients | Source | % w/w | Actual wt. (g) |
Granules of Example 1 | Noveon | 60 | 12 |
Granulated Lactose | Foremost | 20 | 4 |
Carbopol 71G Polymer | Noveon | 15 | 3 |
Sodium lauryl sulfate | Fisher | 5 | 1 |
Preparation of wet granulation granules is as described in Example 1. The appropriate weights of the wet granulation granules were mixed with the direct compression ingredients in a Patterson-Kelly Twin Shell Mixer and mixed for 25 minutes. The wet granulation/direct compression mixture was then either tableted or made into capsules.
USP requirements for dissolution rates of carbamazepine are as follows:
Time (minutes) | Amount Dissolved |
180 | Between 10% and 35% |
360 | Between 35% and 65% |
720 | Between 65% and 90% |
1440 | Not less than 75% |
Each dissolution test was performed in accordance to the USP method for Carbamazepine Extended-Release Tablets (Apparatus 1, 1000 RPM, 900 mL water). A Hanson SR-8 unit was used to run the tests, and six capsules were tested during each run. A sample was taken from each of the 6 vessels every 15 minutes for 24 hours and directly scanned using a Perkin-Elmer UV/VIS model Lambda 2. The data was collected using Perkin-Elmer Dissolution Software.
TABLE 1 |
(Wet Granulation - Capsules) |
Time (minutes) | 180 | 360 | 720 | 1440 | ||
% Dissolved | 32.03 | 46.71 | 64.04 | 75.7 | ||
Std Deviation | 2.8 | 2.32 | 1.82 | 1.41 | ||
TABLE 2 |
(Wet Granulation granules with Direct Compression Ingredients - |
Capsules) |
Time (minutes) | 180 | 360 | 720 | 1440 | ||
% Dissolved | 32.93 | 48.2 | 65.19 | 77.65 | ||
Std. Deviation | 3.66 | 1.74 | 3.2 | 4.96 | ||
The above results clearly indicate that the solid dosage form of the present invention meets the USP criteria for dissolution rates of extended release carbamazepine.
While in accordance with the Patent Statutes the best mode and preferred embodiment have been set forth, the scope of the invention is not limited thereto but rather by the scope of the claims.
Claims (32)
1. A controlled release solid dosage carbamazepine composition, comprising:
a rheology modifying copolymer composition derived from one unsaturated (d)carboxylic acid monomer having a total of from 3 to about 10 carbon atoms, or at least one half ester monomer of said unsaturated dicarboxylic acid with an alkanol having from 1 to about 4 carbon atoms, or combinations thereof, and optionally one or more oxygen-containing comonomers having from 3 to about 40 carbon atoms;
a cross-linking agent;
carbamazepine as an active ingredient, wherein said carbamazepine is in anhydrous form;
one or more excipients; and
optionally, one or more surface active agents.
2. A composition according to claim 1 , including from about 0.5% to about 40.5% by weight of said one or more oxygen containing unsaturated comonomers in an amount from about 0.5% to about 40.5% by weight based upon the total weight of said rheology modifying polymer or copolymer forming monomers and comonomers, wherein said oxygen containing comonomers comprise an anhydride of said unsaturated (di)carboxylic acid, or an alkyl ester of said unsaturated carboxylic acid wherein said alkyl group has from 1 to about 30 carbon atoms, or an alkyl vinyl ether wherein said alkyl group has from 1 to about 20 carbon atoms, or combinations thereof.
3. A composition according to claim 2 , wherein said unsaturated (di)carboxylic acid has from 3 to about 5 carbon atoms, and wherein the amount of said unsaturated (di)carboxylic acid monomer or said half ester monomer or combination thereof is from about 60 to about 99.99 percent by weight based upon the total weight of all rheology modifying polymer or copolymer forming monomers and comonomers.
4. A composition according to claim 3 , wherein said cross-linking agent is an allyl ether of sucrose or pentaerythritol, or a derivative thereof, a polyalcohol, divinyl glycol, diallylphthalate, divinyl benzene, allyl (meth)acrylate, ethylene glycol di(meth)acrylate, diallyl itaconate, diallyl fumarate, diallyl maleate, castor oil or a polyol esterified with an ethylenically unsaturated carboxylic acid, or combinations thereof.
5. A composition according to claim 4 , wherein said polymer or copolymer is derived from acrylic acid or maleic acid, or combinations thereof, wherein said cross-linking agent is divinyl glycol, an allyl ether of sucrose, an allyl ether of pentaerythritol, diallylphthalate, or combinations thereof, and wherein the amount of said cross-linking agent is from about 0.03 to about 1.0 part by weight per 100 parts by weight of all of said monomers or comonomers.
6. A composition according to claim 2 , wherein the amount of said one or more oxygen-containing comonomers when utilized is from about 1 to about 25 percent by weight based upon the total weight of all of said rheology modifying polymer or copolymer forming monomers and comonomers.
7. A composition according to claim 5 , wherein said excipients are one or more of microcrystalline cellulose, dicalcium phosphate, lactose monohydrate, tricalcium phosphate, lactose, sacchrose, sorbitol, mannitol, starch, cellulose, cellulose derivatives, or magnesium stearate, or combinations thereof, and said excipients are present in an amount from about 1 to about 90 parts by weight per 100 parts by weight of said total dosage composition.
8. A composition according to claim 7 , wherein said excipient is lactose monohydrate or magnesium stearate and said excipient is present in an amount from about 1 to about 90 parts by weight per 100 parts by weight of said total dosage composition.
9. A composition according to claim 1 , further including said surface active agent, and wherein said surface active agent is one or more of sodium lauryl sulfate, sodium, potassium or magnesium n-dodecyl sulfate, n-tetradecylsulfate, n-hexadecyl sulfate, n-tetradecyloxyethyl sulfate, n-hexadecyloxyehtyl sulfate or n-octadecyloxyethyl sulfate; or sodium, potassium or magnesium n-dodecanesulfonate, e.g. sodium, potassium or magnesium n-tetradecanesulfonate, n-hexadecanesulfonate or n-octadecanesulfonate, sorbitan monolaurate, sorbitan monooleate, sorbitan monostearate or sorbitan monopalmitate, sorbitan tri-stearate or trioleate, polyethylene glycol fatty acid ester such as polyoxyethyl stearate, polyoxyethylene alkyl ethers, polyoxyethylene castor oil derivatives, sorbitan polyoxyethylene fatty acid esters, polyethylene glycol stearate, and said surface active agent is present in an amount from about 0.1 to about 10 parts by weight per 100 parts by weight of said total dosage composition.
10. A composition according to claim 9 , wherein said surface active agent is sodium lauryl sulfate or polyethylene glycol stearate, and said surface active agent is present in an amount from about 1 to about 5 parts by weight per 100 parts by weight of said total dosage composition.
11. A composition according to claim 1 , wherein said polymer or copolymer is derived from acrylic acid or maleic acid, or combinations thereof, wherein said cross-linking agent is divinyl glycol, an allyl ether of sucrose, an allyl ether of pentaerythritol, or diallylphthalate, wherein said excipient is magnesium stearate or lactose monohydrate, or combinations thereof, and wherein said surface active agent is sodium lauryl sulfate or polyethylene glycol 600 stearate, or combinations thereof.
12. A composition according to claim 1 , wherein said composition is in tablet form.
13. A composition according to claim 12 , wherein said tablet is formed by direct compression.
14. A composition according to claim 11 , wherein said composition is in tablet form.
15. A composition according to claim 14 , wherein said tablet is formed by direct compression.
16. A composition according to claim 1 , wherein said composition is in capsule form.
17. A composition according to claim 11 , wherein said composition is in capsule form.
18. A process for preparing a controlled release solid dosage carbamazepine composition comprising the steps of:
a. forming a mixture comprising one unsaturated (d)carboxylic acid monomer having a total of from 3 to about 10 carbon atoms, or at least one half ester monomer of said unsaturated dicarboxylic acid with an alkanol having from 1 to about 4 carbon atoms, or combinations thereof, and optionally one or more oxygen-containing comonomers having from 3 to about 40 carbon atoms, a cross-linking agent;
b. polymerizing said mixture to form a rheology modifying polymer or copolymer;
c. adding an active ingredient comprising carbamazepine in anhydrous form, one or more excipients, and one or more surface active agents to said polymer or copolymer; and
d. forming a solid dosage article therefrom.
19. A process according to claim 18 , wherein said unsaturated (di)carboxylic acid monomer has from about 3 to about 5 carbon atoms, and wherein the amount of said unsaturated (di)carboxylic acid monomer is from about 60% to about 99.99% by weight based upon the total weight of all of said rheology modifying polymer or copolymer forming monomers or comonomers.
20. A process according to claim 18 , wherein said cross-linking agents is an allyl ether of sucrose or pentaerythritol, or a derivative thereof, a polyalcohol, diallylphthalate, divinyl glycol, divinyl benzene, allyl (meth)acrylate, ethylene glycol di(meth)acrylate, diallyl itaconate, diallyl sumarate, diallyl maleate, castor oil or a polyol esterifaed with an ethylenically unsaturated carboxylic acid, or combinations thereof.
21. A process according to claim 19 , wherein said unsaturated carboxylic acid monomer is acrylic acid or methacyrlic acid, and wherein said cross-linking agent is an allyl ether of sucrose, an allyl ether of pentaerythritol, trimethylolpropane allyl ether, trimethoxypropylallyl ether, divinyl glycol, or combinations thereof and wherein said cross-linking agent is present in an amount from about 0.01 to about 5 parts by weight per 100 parts by weight of all of said monomers.
22. A process according to claim 21 , wherein said excipients are one or more of microcrystalline cellulose, dicalcium phosphate, lactose monohydrate, tricalcium phosphate, lactose, saccharose, sorbitol, mannitol, starch, cellulose, or magnesium stearate, or combinations thereof, and said excipients are present in an amount from about 1 to about 90 parts by weight per 100 parts by weight of said total dosage composition.
23. A process according to claim 22 , wherein said excipient is lactose monohydrate or magnesium stearate and said excipient is present in an amount form about 1 to about 90 parts by weight per 100 parts by weight of said total dosage composition.
24. A process according to claim 22 , wherein said surface active agent is one or more of sodium lauryl sulfate, sodium monoglycerate; sodium, potassium or magnesium n-dodecyl sulfate, n-tetradecylsulfate, n-hexadecyl sulfate, n-tetradecyloxyethyl sulfate, n-hexadecyloxyethyl sulfate or n-octadecyloxyethyl sulfate; or sodium, potassium or magnesium n-dodecanesulfonate, sodium, potassium or magnesium n-tetradecanesulfonate, n-hexadecanesulfonate or n-octadecanesulfonate, sorbitan monolaurate, sorbitan monooleate, sorbitan monostearate or sorbitan monopalmitate, sorbitan tri-stearate or trioleate, polyoxyethylene alkyl ether, polyoxyethylene castor oil derivative, sorbitan polyoxyethylene fatty acid ester, polyethylene glycol fatty acid ester such as polyoxyethyl stearate, polyethylene glycol stearate, and said surface active agent is present in an amount from about 0.1 to about 10 parts by weight per 100 parts by weight of the total dosage composition.
25. A process according to claim 24 , wherein said surface active agent is sodium lauryl sulfate or polyethylene glycol stearate, and said surface active agent is present in an amount from about 1 to about 5 parts by weight per 100 parts by weight of the total dosage composition.
26. The process of claim 18 , wherein said solid dosage article is formed by one or more of wet granulation and direct compression.
27. The process of claim 26 , wherein said solid dosage article is a capsule.
28. The process of claim 26 wherein said solid dosage article is a tablet.
29. The process of claim 20 , wherein said solid dosage article is formed by wet granulation.
30. The process of claim 23 , wherein said solid dosage article is formed by wet granulation.
31. The process of claim 20 , wherein said solid dosage article is formed by direct compression.
32. The process of claim 23 , wherein said solid dosage article is formed by direct compression.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/092,826 US6572889B1 (en) | 2002-03-07 | 2002-03-07 | Controlled release solid dosage carbamazepine formulations |
PCT/US2003/005111 WO2003084513A1 (en) | 2002-03-07 | 2003-02-20 | Controlled release solid dosage carbamazepine formulations |
AU2003213151A AU2003213151A1 (en) | 2002-03-07 | 2003-02-20 | Controlled release solid dosage carbamazepine formulations |
ARP030100727A AR038872A1 (en) | 2002-03-07 | 2003-03-05 | DOSAGE CARBAMAZEPIN FORMULATIONS CONTROLLED RELEASE SOLITY |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/092,826 US6572889B1 (en) | 2002-03-07 | 2002-03-07 | Controlled release solid dosage carbamazepine formulations |
Publications (1)
Publication Number | Publication Date |
---|---|
US6572889B1 true US6572889B1 (en) | 2003-06-03 |
Family
ID=22235330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/092,826 Expired - Fee Related US6572889B1 (en) | 2002-03-07 | 2002-03-07 | Controlled release solid dosage carbamazepine formulations |
Country Status (4)
Country | Link |
---|---|
US (1) | US6572889B1 (en) |
AR (1) | AR038872A1 (en) |
AU (1) | AU2003213151A1 (en) |
WO (1) | WO2003084513A1 (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060115527A1 (en) * | 2003-07-17 | 2006-06-01 | Hassan Emadeldin M | Controlled release preparation |
US20060275367A1 (en) * | 2005-04-25 | 2006-12-07 | Shubha Chungi | Extended release formulations |
EP1929997A1 (en) * | 2006-12-08 | 2008-06-11 | Sun Pharmaceutical Industries LTD | Oxcarbazepine formulations |
US20080305186A1 (en) * | 2007-06-11 | 2008-12-11 | Board Of Regents, The University Of Texas System | Method and Composition for the Treatment of Cardiac Hypertrophy |
US20110020451A1 (en) * | 2009-07-22 | 2011-01-27 | Grunenthal Gmbh | Tamper-resistant dosage form for oxidation-sensitive opioids |
US20120065220A1 (en) * | 2010-09-02 | 2012-03-15 | Grunenthal Gmbh | Tamper Resistant Dosage Form Comprising An Anionic Polymer |
US8722086B2 (en) | 2007-03-07 | 2014-05-13 | Gruenenthal Gmbh | Dosage form with impeded abuse |
US8821930B2 (en) | 2006-04-26 | 2014-09-02 | Supernus Pharmaceuticals, Inc. | Modified release preparations containing oxcarbazepine and derivatives thereof |
US9161917B2 (en) | 2008-05-09 | 2015-10-20 | Grünenthal GmbH | Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet |
US9629807B2 (en) | 2003-08-06 | 2017-04-25 | Grünenthal GmbH | Abuse-proofed dosage form |
US9655853B2 (en) | 2012-02-28 | 2017-05-23 | Grünenthal GmbH | Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer |
US9675610B2 (en) | 2002-06-17 | 2017-06-13 | Grünenthal GmbH | Abuse-proofed dosage form |
US9737490B2 (en) | 2013-05-29 | 2017-08-22 | Grünenthal GmbH | Tamper resistant dosage form with bimodal release profile |
US9750701B2 (en) | 2008-01-25 | 2017-09-05 | Grünenthal GmbH | Pharmaceutical dosage form |
US9855263B2 (en) | 2015-04-24 | 2018-01-02 | Grünenthal GmbH | Tamper-resistant dosage form with immediate release and resistance against solvent extraction |
US9872835B2 (en) | 2014-05-26 | 2018-01-23 | Grünenthal GmbH | Multiparticles safeguarded against ethanolic dose-dumping |
US9913814B2 (en) | 2014-05-12 | 2018-03-13 | Grünenthal GmbH | Tamper resistant immediate release capsule formulation comprising tapentadol |
US10058548B2 (en) | 2003-08-06 | 2018-08-28 | Grünenthal GmbH | Abuse-proofed dosage form |
US10064945B2 (en) | 2012-05-11 | 2018-09-04 | Gruenenthal Gmbh | Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc |
US10080721B2 (en) | 2009-07-22 | 2018-09-25 | Gruenenthal Gmbh | Hot-melt extruded pharmaceutical dosage form |
US10130591B2 (en) | 2003-08-06 | 2018-11-20 | Grünenthal GmbH | Abuse-proofed dosage form |
US10154966B2 (en) | 2013-05-29 | 2018-12-18 | Grünenthal GmbH | Tamper-resistant dosage form containing one or more particles |
US10201502B2 (en) | 2011-07-29 | 2019-02-12 | Gruenenthal Gmbh | Tamper-resistant tablet providing immediate drug release |
US10300141B2 (en) | 2010-09-02 | 2019-05-28 | Grünenthal GmbH | Tamper resistant dosage form comprising inorganic salt |
US10335373B2 (en) | 2012-04-18 | 2019-07-02 | Grunenthal Gmbh | Tamper resistant and dose-dumping resistant pharmaceutical dosage form |
US10449547B2 (en) | 2013-11-26 | 2019-10-22 | Grünenthal GmbH | Preparation of a powdery pharmaceutical composition by means of cryo-milling |
US10624862B2 (en) | 2013-07-12 | 2020-04-21 | Grünenthal GmbH | Tamper-resistant dosage form containing ethylene-vinyl acetate polymer |
US10695297B2 (en) | 2011-07-29 | 2020-06-30 | Grünenthal GmbH | Tamper-resistant tablet providing immediate drug release |
US10729658B2 (en) | 2005-02-04 | 2020-08-04 | Grünenthal GmbH | Process for the production of an abuse-proofed dosage form |
US10842750B2 (en) | 2015-09-10 | 2020-11-24 | Grünenthal GmbH | Protecting oral overdose with abuse deterrent immediate release formulations |
US11224576B2 (en) | 2003-12-24 | 2022-01-18 | Grünenthal GmbH | Process for the production of an abuse-proofed dosage form |
US11844865B2 (en) | 2004-07-01 | 2023-12-19 | Grünenthal GmbH | Abuse-proofed oral dosage form |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2342144C1 (en) * | 2007-04-05 | 2008-12-27 | Открытое акционерное общество "Химико-фармацевтический комбинат "АКРИХИН" (ОАО "АКРИХИН") | Pharmaceutical composition with anticonvulsive and psychotropic action |
CN113244197B (en) * | 2021-05-24 | 2023-02-28 | 天方药业有限公司 | Carbamazepine sustained-release capsule and preparation method thereof |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4857336A (en) | 1986-08-07 | 1989-08-15 | Ciba-Geigy Corporation | Oral therapeutic system having systemic action |
US5326570A (en) * | 1991-07-23 | 1994-07-05 | Pharmavene, Inc. | Advanced drug delivery system and method of treating psychiatric, neurological and other disorders with carbamazepine |
USRE34990E (en) | 1986-08-07 | 1995-07-04 | Ciba-Geigy Corporation | Oral therapeutic system having systemic action |
US5773025A (en) * | 1993-09-09 | 1998-06-30 | Edward Mendell Co., Inc. | Sustained release heterodisperse hydrogel systems--amorphous drugs |
US5840329A (en) * | 1997-05-15 | 1998-11-24 | Bioadvances Llc | Pulsatile drug delivery system |
US5980942A (en) * | 1997-01-23 | 1999-11-09 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Zero-order sustained release matrix tablet formulations of carbamazepine |
US6039980A (en) * | 1996-01-29 | 2000-03-21 | Edward Mendell Co., Inc. | Sustained release excipient |
US6048547A (en) * | 1996-04-15 | 2000-04-11 | Seth; Pawan | Process for manufacturing solid compositions containing polyethylene oxide and an active ingredient |
US6284803B1 (en) | 1998-09-24 | 2001-09-04 | Basf Aktiengesellschaft | Solid dosage form with polymeric binder |
US6294201B1 (en) | 1997-10-12 | 2001-09-25 | Bayer Aktiengesellschaft | Osmotic medicament releasing system |
US6297337B1 (en) * | 1999-05-19 | 2001-10-02 | Pmd Holdings Corp. | Bioadhesive polymer compositions |
US6296873B1 (en) * | 1997-01-23 | 2001-10-02 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Zero-order sustained release delivery system for carbamazephine derivatives |
US6306789B1 (en) * | 1995-03-13 | 2001-10-23 | Reckitt Benckiser Healthcare (Uk) Limited | Mucoadhesive granules of carbomer suitable for oral administration of drugs |
US6312728B1 (en) | 1998-07-07 | 2001-11-06 | Cascade Development, Inc. | Sustained release pharmaceutical preparation |
US6328994B1 (en) * | 1998-05-18 | 2001-12-11 | Takeda Chemical Industries, Ltd. | Orally disintegrable tablets |
US6338857B1 (en) * | 2000-05-26 | 2002-01-15 | Pharma Pass Llc | Sustained release carbamazepine pharmaceutical composition free of food effect and a method for alleviating food effect in drug release |
US6355273B1 (en) * | 1998-02-06 | 2002-03-12 | Eurand International, S.P.A. | Pharmaceutical compositions in form of polymeric microparticles obtained by extrusion and spheronization |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3686085T2 (en) * | 1985-05-02 | 1993-01-07 | Ciba Geigy Ag | HYDROGELS WITH INCREASED LOAD CAPACITY REGARDING AN ACTIVE SUBSTANCE SOLUBLE IN AN ORGANIC SOLVENT, THEIR PRODUCTION AND THEIR USE. |
JPH0759521B2 (en) * | 1985-09-30 | 1995-06-28 | 藤沢薬品工業株式会社 | Gel layer-forming sustained-release preparation |
US6162466A (en) * | 1999-04-15 | 2000-12-19 | Taro Pharmaceutical Industries Ltd. | Sustained release formulation of carbamazepine |
-
2002
- 2002-03-07 US US10/092,826 patent/US6572889B1/en not_active Expired - Fee Related
-
2003
- 2003-02-20 WO PCT/US2003/005111 patent/WO2003084513A1/en not_active Application Discontinuation
- 2003-02-20 AU AU2003213151A patent/AU2003213151A1/en not_active Abandoned
- 2003-03-05 AR ARP030100727A patent/AR038872A1/en not_active Application Discontinuation
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE34990E (en) | 1986-08-07 | 1995-07-04 | Ciba-Geigy Corporation | Oral therapeutic system having systemic action |
US4857336A (en) | 1986-08-07 | 1989-08-15 | Ciba-Geigy Corporation | Oral therapeutic system having systemic action |
US5326570A (en) * | 1991-07-23 | 1994-07-05 | Pharmavene, Inc. | Advanced drug delivery system and method of treating psychiatric, neurological and other disorders with carbamazepine |
US5912013A (en) * | 1991-07-23 | 1999-06-15 | Shire Laboratories, Inc. | Advanced drug delivery system and method of treating psychiatric, neurological and other disorders with carbamazepine |
US5773025A (en) * | 1993-09-09 | 1998-06-30 | Edward Mendell Co., Inc. | Sustained release heterodisperse hydrogel systems--amorphous drugs |
US6306789B1 (en) * | 1995-03-13 | 2001-10-23 | Reckitt Benckiser Healthcare (Uk) Limited | Mucoadhesive granules of carbomer suitable for oral administration of drugs |
US6039980A (en) * | 1996-01-29 | 2000-03-21 | Edward Mendell Co., Inc. | Sustained release excipient |
US6048547A (en) * | 1996-04-15 | 2000-04-11 | Seth; Pawan | Process for manufacturing solid compositions containing polyethylene oxide and an active ingredient |
US6296873B1 (en) * | 1997-01-23 | 2001-10-02 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Zero-order sustained release delivery system for carbamazephine derivatives |
US5980942A (en) * | 1997-01-23 | 1999-11-09 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Zero-order sustained release matrix tablet formulations of carbamazepine |
US5840329A (en) * | 1997-05-15 | 1998-11-24 | Bioadvances Llc | Pulsatile drug delivery system |
US6294201B1 (en) | 1997-10-12 | 2001-09-25 | Bayer Aktiengesellschaft | Osmotic medicament releasing system |
US6355273B1 (en) * | 1998-02-06 | 2002-03-12 | Eurand International, S.P.A. | Pharmaceutical compositions in form of polymeric microparticles obtained by extrusion and spheronization |
US6328994B1 (en) * | 1998-05-18 | 2001-12-11 | Takeda Chemical Industries, Ltd. | Orally disintegrable tablets |
US6312728B1 (en) | 1998-07-07 | 2001-11-06 | Cascade Development, Inc. | Sustained release pharmaceutical preparation |
US6284803B1 (en) | 1998-09-24 | 2001-09-04 | Basf Aktiengesellschaft | Solid dosage form with polymeric binder |
US6297337B1 (en) * | 1999-05-19 | 2001-10-02 | Pmd Holdings Corp. | Bioadhesive polymer compositions |
US6338857B1 (en) * | 2000-05-26 | 2002-01-15 | Pharma Pass Llc | Sustained release carbamazepine pharmaceutical composition free of food effect and a method for alleviating food effect in drug release |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10369109B2 (en) | 2002-06-17 | 2019-08-06 | Grünenthal GmbH | Abuse-proofed dosage form |
US9675610B2 (en) | 2002-06-17 | 2017-06-13 | Grünenthal GmbH | Abuse-proofed dosage form |
US20060115527A1 (en) * | 2003-07-17 | 2006-06-01 | Hassan Emadeldin M | Controlled release preparation |
EP2279729A2 (en) | 2003-07-17 | 2011-02-02 | Banner Pharmacaps, Inc. | Controlled release preparations |
US9629807B2 (en) | 2003-08-06 | 2017-04-25 | Grünenthal GmbH | Abuse-proofed dosage form |
US10130591B2 (en) | 2003-08-06 | 2018-11-20 | Grünenthal GmbH | Abuse-proofed dosage form |
US10058548B2 (en) | 2003-08-06 | 2018-08-28 | Grünenthal GmbH | Abuse-proofed dosage form |
US11224576B2 (en) | 2003-12-24 | 2022-01-18 | Grünenthal GmbH | Process for the production of an abuse-proofed dosage form |
US11844865B2 (en) | 2004-07-01 | 2023-12-19 | Grünenthal GmbH | Abuse-proofed oral dosage form |
US10729658B2 (en) | 2005-02-04 | 2020-08-04 | Grünenthal GmbH | Process for the production of an abuse-proofed dosage form |
US10675278B2 (en) | 2005-02-04 | 2020-06-09 | Grünenthal GmbH | Crush resistant delayed-release dosage forms |
US20060275367A1 (en) * | 2005-04-25 | 2006-12-07 | Shubha Chungi | Extended release formulations |
US11896599B2 (en) | 2006-04-26 | 2024-02-13 | Supernus Pharmaceuticals, Inc. | Modified release preparations containing oxcarbazepine and derivatives thereof |
US8821930B2 (en) | 2006-04-26 | 2014-09-02 | Supernus Pharmaceuticals, Inc. | Modified release preparations containing oxcarbazepine and derivatives thereof |
US9351975B2 (en) | 2006-04-26 | 2016-05-31 | Supernus Pharmaceuticals, Inc. | Modified release preparations containing oxcarbazepine and derivatives thereof |
US10220042B2 (en) | 2006-04-26 | 2019-03-05 | Supernus Pharmaceuticals, Inc. | Modified release preparations containing oxcarbazepine and derivatives thereof |
US9370525B2 (en) | 2006-04-26 | 2016-06-21 | Supernus Pharmaceuticals, Inc. | Modified release preparations containing oxcarbazepine and derivatives thereof |
US9119792B2 (en) | 2006-04-26 | 2015-09-01 | Supernus Pharmaceuticals, Inc. | Modified release preparations containing oxcarbazepine and derivatives thereof |
US11166960B2 (en) | 2006-04-26 | 2021-11-09 | Supernus Pharmaceuticals, Inc. | Modified release preparations containing oxcarbazepine and derivatives thereof |
US9855278B2 (en) | 2006-04-26 | 2018-01-02 | Supernus Pharmaceuticals, Inc. | Modified release preparations containing oxcarbazepine and derivatives thereof |
US9119791B2 (en) | 2006-04-26 | 2015-09-01 | Supernus Pharmaceuticals, Inc. | Modified release preparations containing oxcarbazepine and derivatives thereof |
EP1929997A1 (en) * | 2006-12-08 | 2008-06-11 | Sun Pharmaceutical Industries LTD | Oxcarbazepine formulations |
US8722086B2 (en) | 2007-03-07 | 2014-05-13 | Gruenenthal Gmbh | Dosage form with impeded abuse |
US20080305186A1 (en) * | 2007-06-11 | 2008-12-11 | Board Of Regents, The University Of Texas System | Method and Composition for the Treatment of Cardiac Hypertrophy |
US9750701B2 (en) | 2008-01-25 | 2017-09-05 | Grünenthal GmbH | Pharmaceutical dosage form |
US9161917B2 (en) | 2008-05-09 | 2015-10-20 | Grünenthal GmbH | Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet |
US9925146B2 (en) | 2009-07-22 | 2018-03-27 | Grünenthal GmbH | Oxidation-stabilized tamper-resistant dosage form |
US10493033B2 (en) | 2009-07-22 | 2019-12-03 | Grünenthal GmbH | Oxidation-stabilized tamper-resistant dosage form |
US10080721B2 (en) | 2009-07-22 | 2018-09-25 | Gruenenthal Gmbh | Hot-melt extruded pharmaceutical dosage form |
US20110020451A1 (en) * | 2009-07-22 | 2011-01-27 | Grunenthal Gmbh | Tamper-resistant dosage form for oxidation-sensitive opioids |
US10300141B2 (en) | 2010-09-02 | 2019-05-28 | Grünenthal GmbH | Tamper resistant dosage form comprising inorganic salt |
US20120065220A1 (en) * | 2010-09-02 | 2012-03-15 | Grunenthal Gmbh | Tamper Resistant Dosage Form Comprising An Anionic Polymer |
US9636303B2 (en) * | 2010-09-02 | 2017-05-02 | Gruenenthal Gmbh | Tamper resistant dosage form comprising an anionic polymer |
US10201502B2 (en) | 2011-07-29 | 2019-02-12 | Gruenenthal Gmbh | Tamper-resistant tablet providing immediate drug release |
US10695297B2 (en) | 2011-07-29 | 2020-06-30 | Grünenthal GmbH | Tamper-resistant tablet providing immediate drug release |
US10864164B2 (en) | 2011-07-29 | 2020-12-15 | Grünenthal GmbH | Tamper-resistant tablet providing immediate drug release |
US9655853B2 (en) | 2012-02-28 | 2017-05-23 | Grünenthal GmbH | Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer |
US10335373B2 (en) | 2012-04-18 | 2019-07-02 | Grunenthal Gmbh | Tamper resistant and dose-dumping resistant pharmaceutical dosage form |
US10064945B2 (en) | 2012-05-11 | 2018-09-04 | Gruenenthal Gmbh | Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc |
US10154966B2 (en) | 2013-05-29 | 2018-12-18 | Grünenthal GmbH | Tamper-resistant dosage form containing one or more particles |
US9737490B2 (en) | 2013-05-29 | 2017-08-22 | Grünenthal GmbH | Tamper resistant dosage form with bimodal release profile |
US10624862B2 (en) | 2013-07-12 | 2020-04-21 | Grünenthal GmbH | Tamper-resistant dosage form containing ethylene-vinyl acetate polymer |
US10449547B2 (en) | 2013-11-26 | 2019-10-22 | Grünenthal GmbH | Preparation of a powdery pharmaceutical composition by means of cryo-milling |
US9913814B2 (en) | 2014-05-12 | 2018-03-13 | Grünenthal GmbH | Tamper resistant immediate release capsule formulation comprising tapentadol |
US9872835B2 (en) | 2014-05-26 | 2018-01-23 | Grünenthal GmbH | Multiparticles safeguarded against ethanolic dose-dumping |
US9855263B2 (en) | 2015-04-24 | 2018-01-02 | Grünenthal GmbH | Tamper-resistant dosage form with immediate release and resistance against solvent extraction |
US10842750B2 (en) | 2015-09-10 | 2020-11-24 | Grünenthal GmbH | Protecting oral overdose with abuse deterrent immediate release formulations |
Also Published As
Publication number | Publication date |
---|---|
WO2003084513A1 (en) | 2003-10-16 |
AU2003213151A1 (en) | 2003-10-20 |
AR038872A1 (en) | 2005-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6572889B1 (en) | Controlled release solid dosage carbamazepine formulations | |
RU2311903C2 (en) | Tamzulosin tablets | |
RU2122413C1 (en) | Form of pharmaceutical dosing providing the prolonged release of an active component | |
CA2529746A1 (en) | Oral extended-release composition | |
JP5420590B2 (en) | pH independent extended release pharmaceutical composition | |
US20090196923A1 (en) | Controlled release formulation comprising anti-epileptic drugs | |
CA2644179C (en) | Novel pharmaceutical composition comprising a disintegration matrix | |
EP2726064A1 (en) | Controlled release oral dosage form comprising oxycodone | |
US20120010213A1 (en) | Oral controlled release dosage forms for water soluble drugs | |
WO2019219823A1 (en) | Solid dispersion containing ritonavir | |
US20060147530A1 (en) | Sustained release compositions containing alfuzosin | |
CZ284869B6 (en) | Cylindrical micro-tablet exhibiting retardation effect and containing beta-phenylpropiophenone derivative | |
US20050118256A1 (en) | Extended release alpha-2 agonist pharmaceutical dosage forms | |
EP2010158B1 (en) | Controlled release formulations comprising uncoated discrete unit(s) and an extended release matrix | |
US20070160667A1 (en) | Controlled release formulation of divalproex sodium | |
JP2003267889A (en) | Sustainable pharmaceutical preparation | |
US20040219210A1 (en) | Controlled release solid dosage nifedipine formulations | |
US20120178810A1 (en) | Extended release formulation of an antiepileptic agent | |
US9333175B2 (en) | Controlled release levetiracetam formulations and methods for producing the same | |
US11260055B2 (en) | Oral pharmaceutical composition of lurasidone and preparation thereof | |
US20120329831A1 (en) | Pharmaceutical composition of donepezil | |
EP1815850A1 (en) | Controlled release formulation of divalproic acid and its derivatives | |
US20080182908A1 (en) | Pharmaceutical compositions comprising memantine | |
US20090175934A1 (en) | Extended Release Pharmaceutical Formulation of Venlafaxine and Method of Manufacturing the Same | |
CZ20012228A3 (en) | Pharmaceutical mixture containing profen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NOVEON IP HOLDINGS CORP., OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GUO, JIAN-HWA;REEL/FRAME:012680/0608 Effective date: 20020306 |
|
AS | Assignment |
Owner name: NOVEON, INC., OHIO Free format text: MERGER;ASSIGNOR:NOVEON IP HOLDINGS CORP.;REEL/FRAME:017957/0694 Effective date: 20050630 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20070603 |