US6440893B1 - Method and catalyst composition for producing aromatic carbonates - Google Patents
Method and catalyst composition for producing aromatic carbonates Download PDFInfo
- Publication number
- US6440893B1 US6440893B1 US09/822,158 US82215801A US6440893B1 US 6440893 B1 US6440893 B1 US 6440893B1 US 82215801 A US82215801 A US 82215801A US 6440893 B1 US6440893 B1 US 6440893B1
- Authority
- US
- United States
- Prior art keywords
- group
- catalyst composition
- carbonylation catalyst
- source
- effective amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 105
- 239000000203 mixture Substances 0.000 title claims abstract description 88
- -1 aromatic carbonates Chemical class 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title abstract description 21
- 238000005810 carbonylation reaction Methods 0.000 claims abstract description 68
- 230000006315 carbonylation Effects 0.000 claims abstract description 64
- 229910052751 metal Inorganic materials 0.000 claims abstract description 52
- 239000002184 metal Substances 0.000 claims abstract description 52
- 239000003426 co-catalyst Substances 0.000 claims abstract description 39
- 150000003839 salts Chemical class 0.000 claims abstract description 31
- 150000004820 halides Chemical class 0.000 claims abstract description 13
- 229910052747 lanthanoid Inorganic materials 0.000 claims abstract description 12
- 150000002602 lanthanoids Chemical class 0.000 claims abstract description 12
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 93
- 229910052763 palladium Inorganic materials 0.000 claims description 32
- 239000002585 base Substances 0.000 claims description 23
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 21
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 claims description 19
- 239000010936 titanium Substances 0.000 claims description 17
- 239000010949 copper Substances 0.000 claims description 14
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 13
- 239000011572 manganese Substances 0.000 claims description 13
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 claims description 9
- 150000004703 alkoxides Chemical class 0.000 claims description 9
- 150000001412 amines Chemical class 0.000 claims description 9
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 9
- 229910052800 carbon group element Inorganic materials 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- LLNAMUJRIZIXHF-CLFYSBASSA-N (z)-2-methyl-3-phenylprop-2-en-1-ol Chemical compound OCC(/C)=C\C1=CC=CC=C1 LLNAMUJRIZIXHF-CLFYSBASSA-N 0.000 claims description 8
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 8
- 150000001768 cations Chemical class 0.000 claims description 8
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical group [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 claims description 8
- 239000001632 sodium acetate Substances 0.000 claims description 8
- 235000017281 sodium acetate Nutrition 0.000 claims description 8
- WGYONVRJGWHMKV-UHFFFAOYSA-M tetrabutylazanium;benzoate Chemical compound [O-]C(=O)C1=CC=CC=C1.CCCC[N+](CCCC)(CCCC)CCCC WGYONVRJGWHMKV-UHFFFAOYSA-M 0.000 claims description 8
- ZXUCBXRTRRIBSO-UHFFFAOYSA-L tetrabutylazanium;sulfate Chemical compound [O-]S([O-])(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC.CCCC[N+](CCCC)(CCCC)CCCC ZXUCBXRTRRIBSO-UHFFFAOYSA-L 0.000 claims description 8
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 claims description 8
- PCZOZSATUTWXIC-UHFFFAOYSA-N tetraethylazanium;cyanide Chemical compound N#[C-].CC[N+](CC)(CC)CC PCZOZSATUTWXIC-UHFFFAOYSA-N 0.000 claims description 8
- 229910002651 NO3 Inorganic materials 0.000 claims description 7
- 239000007795 chemical reaction product Substances 0.000 claims description 7
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical group [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims description 7
- 229910052783 alkali metal Inorganic materials 0.000 claims description 6
- RDMHXWZYVFGYSF-LNTINUHCSA-N (z)-4-hydroxypent-3-en-2-one;manganese Chemical compound [Mn].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O RDMHXWZYVFGYSF-LNTINUHCSA-N 0.000 claims description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 5
- 150000007942 carboxylates Chemical class 0.000 claims description 5
- ZKXWKVVCCTZOLD-FDGPNNRMSA-N copper;(z)-4-hydroxypent-3-en-2-one Chemical compound [Cu].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O ZKXWKVVCCTZOLD-FDGPNNRMSA-N 0.000 claims description 5
- 150000004679 hydroxides Chemical class 0.000 claims description 5
- 235000010215 titanium dioxide Nutrition 0.000 claims description 5
- MRMOZBOQVYRSEM-UHFFFAOYSA-N Tetraaethyl-plumban Natural products CC[Pb](CC)(CC)CC MRMOZBOQVYRSEM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 4
- AHGQVCBMBCKNFG-KJVLTGTBSA-N cerium;(z)-4-hydroxypent-3-en-2-one;hydrate Chemical compound O.[Ce].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O AHGQVCBMBCKNFG-KJVLTGTBSA-N 0.000 claims description 4
- 125000005207 tetraalkylammonium group Chemical group 0.000 claims description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 3
- 150000008052 alkyl sulfonates Chemical class 0.000 claims description 3
- 150000001450 anions Chemical class 0.000 claims description 3
- 125000005228 aryl sulfonate group Chemical group 0.000 claims description 3
- ZRALSGWEFCBTJO-UHFFFAOYSA-O guanidinium Chemical compound NC(N)=[NH2+] ZRALSGWEFCBTJO-UHFFFAOYSA-O 0.000 claims description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-M phenolate Chemical compound [O-]C1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-M 0.000 claims description 3
- 150000005622 tetraalkylammonium hydroxides Chemical class 0.000 claims description 3
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 claims 2
- OFZKYQYOBLPIPO-UHFFFAOYSA-N guanidine;hydrate Chemical compound O.NC(N)=N OFZKYQYOBLPIPO-UHFFFAOYSA-N 0.000 claims 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 21
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 21
- 229910052760 oxygen Inorganic materials 0.000 abstract description 15
- 239000001301 oxygen Substances 0.000 abstract description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 5
- 239000011541 reaction mixture Substances 0.000 abstract description 4
- 230000003197 catalytic effect Effects 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 23
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 14
- 239000007789 gas Substances 0.000 description 14
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 12
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 12
- 125000003118 aryl group Chemical group 0.000 description 12
- 229910052684 Cerium Inorganic materials 0.000 description 11
- 125000000217 alkyl group Chemical group 0.000 description 9
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 9
- 239000003446 ligand Substances 0.000 description 9
- 229910019142 PO4 Inorganic materials 0.000 description 7
- 150000001336 alkenes Chemical class 0.000 description 7
- 230000000977 initiatory effect Effects 0.000 description 7
- 150000002527 isonitriles Chemical class 0.000 description 7
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 7
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 7
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 7
- 239000010452 phosphate Substances 0.000 description 7
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 7
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000007306 turnover Effects 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 2
- 150000002611 lead compounds Chemical class 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 150000002940 palladium Chemical class 0.000 description 2
- 150000002941 palladium compounds Chemical class 0.000 description 2
- 229910003445 palladium oxide Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000012429 reaction media Substances 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 2
- MGAXYKDBRBNWKT-UHFFFAOYSA-N (5-oxooxolan-2-yl)methyl 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)OCC1OC(=O)CC1 MGAXYKDBRBNWKT-UHFFFAOYSA-N 0.000 description 1
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 1
- GZFGOTFRPZRKDS-UHFFFAOYSA-N 4-bromophenol Chemical class OC1=CC=C(Br)C=C1 GZFGOTFRPZRKDS-UHFFFAOYSA-N 0.000 description 1
- 125000000041 C6-C10 aryl group Chemical group 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical class [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052773 Promethium Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000003842 bromide salts Chemical class 0.000 description 1
- 150000001785 cerium compounds Chemical class 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- DRVWBEJJZZTIGJ-UHFFFAOYSA-N cerium(3+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[Ce+3].[Ce+3] DRVWBEJJZZTIGJ-UHFFFAOYSA-N 0.000 description 1
- VGBWDOLBWVJTRZ-UHFFFAOYSA-K cerium(3+);triacetate Chemical group [Ce+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VGBWDOLBWVJTRZ-UHFFFAOYSA-K 0.000 description 1
- OZECDDHOAMNMQI-UHFFFAOYSA-H cerium(3+);trisulfate Chemical compound [Ce+3].[Ce+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O OZECDDHOAMNMQI-UHFFFAOYSA-H 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 229940046892 lead acetate Drugs 0.000 description 1
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 1
- ATYRGLVPAWGOJM-UHFFFAOYSA-N lead(2+);methanolate Chemical compound CO[Pb]OC ATYRGLVPAWGOJM-UHFFFAOYSA-N 0.000 description 1
- XAVQZBGEXVFCJI-UHFFFAOYSA-M lithium;phenoxide Chemical compound [Li+].[O-]C1=CC=CC=C1 XAVQZBGEXVFCJI-UHFFFAOYSA-M 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 150000002697 manganese compounds Chemical class 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical class [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- YBVAXJOZZAJCLA-UHFFFAOYSA-N nitric acid nitrous acid Chemical compound ON=O.O[N+]([O-])=O YBVAXJOZZAJCLA-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- LXNAVEXFUKBNMK-UHFFFAOYSA-N palladium(II) acetate Substances [Pd].CC(O)=O.CC(O)=O LXNAVEXFUKBNMK-UHFFFAOYSA-N 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- ZGJADVGJIVEEGF-UHFFFAOYSA-M potassium;phenoxide Chemical compound [K+].[O-]C1=CC=CC=C1 ZGJADVGJIVEEGF-UHFFFAOYSA-M 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- VQMWBBYLQSCNPO-UHFFFAOYSA-N promethium atom Chemical compound [Pm] VQMWBBYLQSCNPO-UHFFFAOYSA-N 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- VAOBNUXIUILSCN-UHFFFAOYSA-M tetrabutylazanium;phenoxide Chemical compound [O-]C1=CC=CC=C1.CCCC[N+](CCCC)(CCCC)CCCC VAOBNUXIUILSCN-UHFFFAOYSA-M 0.000 description 1
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 1
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 1
- QBFHVLJPBLSAJC-UHFFFAOYSA-M tetraethylazanium;phenoxide Chemical compound [O-]C1=CC=CC=C1.CC[N+](CC)(CC)CC QBFHVLJPBLSAJC-UHFFFAOYSA-M 0.000 description 1
- RJXMRBDKMJQPTH-UHFFFAOYSA-M tetramethylazanium;phenoxide Chemical compound C[N+](C)(C)C.[O-]C1=CC=CC=C1 RJXMRBDKMJQPTH-UHFFFAOYSA-M 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- QDZRBIRIPNZRSG-UHFFFAOYSA-N titanium nitrate Chemical class [O-][N+](=O)O[Ti](O[N+]([O-])=O)(O[N+]([O-])=O)O[N+]([O-])=O QDZRBIRIPNZRSG-UHFFFAOYSA-N 0.000 description 1
- HDUMBHAAKGUHAR-UHFFFAOYSA-J titanium(4+);disulfate Chemical class [Ti+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O HDUMBHAAKGUHAR-UHFFFAOYSA-J 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- QVOFCQBZXGLNAA-UHFFFAOYSA-M tributyl(methyl)azanium;hydroxide Chemical compound [OH-].CCCC[N+](C)(CCCC)CCCC QVOFCQBZXGLNAA-UHFFFAOYSA-M 0.000 description 1
- ULOJOSQIMPVDJX-UHFFFAOYSA-M tributyl(methyl)azanium;phenoxide Chemical compound [O-]C1=CC=CC=C1.CCCC[N+](C)(CCCC)CCCC ULOJOSQIMPVDJX-UHFFFAOYSA-M 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0239—Quaternary ammonium compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0245—Nitrogen containing compounds being derivatives of carboxylic or carbonic acids
- B01J31/0251—Guanidides (R2N-C(=NR)-NR2)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/12—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
- B01J31/128—Mixtures of organometallic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2204—Organic complexes the ligands containing oxygen or sulfur as complexing atoms
- B01J31/2208—Oxygen, e.g. acetylacetonates
- B01J31/2226—Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
- B01J31/223—At least two oxygen atoms present in one at least bidentate or bridging ligand
- B01J31/2234—Beta-dicarbonyl ligands, e.g. acetylacetonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/26—Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/25—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
- C07C51/252—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
- C07C51/43—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
- C07C51/44—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
- C07C51/48—Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C68/00—Preparation of esters of carbonic or haloformic acids
- C07C68/01—Preparation of esters of carbonic or haloformic acids from carbon monoxide and oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00002—Chemical plants
- B01J2219/00027—Process aspects
- B01J2219/0004—Processes in series
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/30—Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
- B01J2231/32—Addition reactions to C=C or C-C triple bonds
- B01J2231/321—Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/14—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/10—Complexes comprising metals of Group I (IA or IB) as the central metal
- B01J2531/16—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/30—Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
- B01J2531/38—Lanthanides other than lanthanum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/40—Complexes comprising metals of Group IV (IVA or IVB) as the central metal
- B01J2531/46—Titanium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/70—Complexes comprising metals of Group VII (VIIB) as the central metal
- B01J2531/72—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/824—Palladium
Definitions
- the present invention is directed to a catalyst composition and method for producing aromatic carbonates through the carbonylation of aromatic hydroxy compounds.
- Aromatic carbonates find utility, inter alia, as intermediates in the preparation of polycarbonates.
- a popular method of polycarbonate preparation is the melt transesterification of aromatic carbonates with bisphenols.
- Various methods for preparing aromatic carbonates have been previously described in the literature and utilized by industry.
- a method that has enjoyed substantial popularity in the literature involves the direct carbonylation of aromatic hydroxy compounds with carbon monoxide and oxygen catalyzed by at least one Group 8, 9 or 10 metal source. Further refinements to the carbonylation catalyst composition include the identification of co-catalysts.
- Carbonylation catalyst literature lauds the effectiveness of halide salts, particularly bromide salts, in catalyst compositions for improving catalyst TON's. While it is true that catalyst compositions that contain halide salts have historically exhibited high activity, there are drawbacks to using halide in a carbonylation reaction. For example, when used to carbonylate phenol, bromide anions are consumed in the process, forming undesirable brominated byproducts, such as 2- and 4-bromophenols and bromodiphenylcarbonate.
- the present invention is directed to a method and catalyst composition for producing aromatic carbonates.
- the present invention provides a method for carbonylating aromatic hydroxy compounds, comprising the step of contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst composition comprising an effective amount of at least one Group 8, 9, or 10 metal source, an effective amount of at least one inorganic co-catalyst comprising a Group 14 metal source, and an effective amount of at least one salt co-catalyst, wherein the carbonylation catalyst composition is free of a halide source.
- the present invention is directed to a carbonylation method and catalyst composition for producing aromatic carbonates.
- the constituents of the carbonylation catalyst composition are defined as “components” irrespective of whether a reaction between the constituents occurs before or during the carbonylation reaction.
- the catalyst composition typically includes the components and any reaction products thereof.
- the method includes the step of contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst composition comprising an effective amount of at least one Group 8, 9, or 10 metal source, an effective amount of an inorganic co-catalyst comprising at least one Group 14 element source, and an effective amount of at least one salt co-catalyst, wherein the carbonylation catalyst composition is free of a halide source.
- the term “effective amount,” as used herein, includes that amount of a substance capable of yielding the desired aromatic carbonate, or also includes that amount of a substance that increases the selectivity of any one of the starting reagents (e.g. oxygen, carbon monoxide, and aromatic hydroxy compound) towards the desired aromatic carbonate.
- the starting reagents e.g. oxygen, carbon monoxide, and aromatic hydroxy compound
- the method includes the step of contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst composition that comprises an effective amount of at least one Group 8, 9, or 10 metal source, an effective amount of at least one first inorganic co-catalyst comprising at least one Group 14 element source, an effective amount of at least one second inorganic co-catalyst selected from the group consisting of a Group 4 metal source, a Group 7 metal source, a Group 11 metal source, and a lanthanide element source; and an effective amount of at least one salt co-catalyst, wherein the catalyst composition is free of a halide source.
- a carbonylation catalyst composition that comprises an effective amount of at least one Group 8, 9, or 10 metal source, an effective amount of at least one first inorganic co-catalyst comprising at least one Group 14 element source, an effective amount of at least one second inorganic co-catalyst selected from the group consisting of a Group 4 metal source, a
- the method includes the step of contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst composition that comprises an effective amount of at least one Group 8, 9, or 10 metal source, an effective amount of at least one first inorganic co-catalyst comprising at least one Group 14 element source, an effective amount of at least one second inorganic co-catalyst selected from the group consisting of Group 4 metal sources, and lanthanide element sources; an effective amount of at least one salt co-catalyst, and an effective amount of at least one base, wherein the catalyst composition is free of a halide source
- aromatic hydroxy compound which is convertible to a carbonate ester, is suitable in the present invention.
- suitable aromatic hydroxy compounds include, but are not limited to, monocyclic, polycyclic or fused polycyclic aromatic monohydroxy or polyhydroxy compounds having from about 6 to about 30, and preferably from about 6 to about 15 carbon atoms.
- Illustrative examples include but are not limited to phenol, alkylphenols, alkoxyphenols, biphenols, bisphenols, and salicylic acid derivates such as methyl salicylate.
- the carbonylation catalyst composition contains at least one catalyst component selected from Group 8, 9 or 10 metal sources.
- Typical Group 8, 9 or 10 metal sources include ruthenium sources, rhodium sources, palladium sources, osmium sources, iridium sources, platinum sources, and mixtures thereof.
- the quantity of the Group 8, 9, or 10 metal source is not limited in the process of the present invention.
- the amount employed should be about 1 gram of Group 8, 9, or 10 metal per 100 grams to 1,000,000 grams of aromatic hydroxy compound (i.e. about 1 part per million (ppm) to about 10,000 ppm of Group 8, 9, or 10 metal). For example, about 1 ppm to about 1000 ppm of Group 8, 9, or 10 metal is suitable.
- a typical Group 8, 9, or 10 metal source is a palladium source.
- the palladium source used is typically in the Pd (II) oxidation state at the beginning of the reaction.
- a palladium compound in either the Pd(O) or Pd(IV) oxidation states can be used.
- the term “compound” includes inorganic, coordination and organometallic complex compounds. The compounds are typically neutral, cationic, or anionic, depending on the charges carried by the central atom and the coordinated ligands. Other common names for these compounds include complex ions (if electrically charged), Werner complexes, and coordination complexes.
- a Group 8, 9, or 10 metal source can be employed in a homogeneous form that is substantially soluble in the reaction media or in a heterogeneous form which is substantially insoluble in the reaction media, including supported or polymer bound species.
- suitable palladium sources include, but are not limited to, palladium sponge, palladium black, palladium deposited on carbon, palladium deposited on alumina, palladium deposited on silica, palladium sulfates, palladium nitrates, palladium carboxylates, palladium oxides, palladium acetates, palladium salts of ⁇ -diketones, palladium salts of ⁇ -ketoesters, and palladium compounds containing any of the following ligands: carbon monoxide, amine, nitrite, nitrile, isonitrile, phosphine, phosphite, phosphate, alkoxide, alkyl, aryl, silyl or olefin
- the carbonylation catalyst composition in the present invention further contains an effective amount of at least one first inorganic co-catalyst (IOCC) comprising at least one Group 14 element source.
- IOCC inorganic co-catalyst
- the term “inorganic co-catalyst” includes any catalyst component that contains a metal element, which is present in the catalyst composition in addition to the Group 8, 9 or 10 metal source.
- the Group 14 element source is at least one selected from the group consisting of silicon, germanium, tin, and lead.
- a second IOCC selected from the group consisting of Group 4 metal sources, and lanthanide element sources is also present in the catalyst composition.
- the Group 4 metal source is at least one selected from the group consisting of zirconium, hafnium, and titanium.
- the Group 7 metal source is at least one selected from the group consisting of rhenium and manganese.
- the Group 11 metal source is at least one selected from the group consisting of silver, gold and copper.
- the lanthanide element source is at least one selected from the group consisting of praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium and preferably cerium.
- Suitable forms of Group 14, Group 4, Group 7, Group 11, and lanthanide IOCC's include, but are not limited to, elemental metals, metal salts, metal compounds in stable oxidation states, and precursors thereof which form catalytically active metal species under the reaction conditions.
- the compounds are typically neutral, cationic, or anionic, depending on the charges carried by the central atom and the coordinated ligands.
- Illustrative examples of Group 14, Group 4, Group 7, Group 11, and lanthanide IOCC's include but are not limited to oxides, carboxylates, acetates, salts of ⁇ -diketones, salts of ⁇ -ketoesters, nitrates, and compounds containing any of the following ligands: carbon monoxide, amine, nitrite, nitrite, isonitrile, cyanide, phosphine, phosphite, phosphate, alkoxide, alkyl, aryl, silyl or olefin.
- the IOCC's are typically initially soluble in the reaction mixture, and typically remain soluble or become at least partially insoluble during the course of the reaction, or they are typically initially insoluble in the reaction mixture, and remain either insoluble or become at least partially soluble during the course of the reaction.
- the IOCC's are typically supported or polymer-bound with a variety of support media, including but not limited to carbon, alumina, silica, and zeolites.
- At least one Group 14 element is present as a first IOCC in the carbonylation catalyst composition.
- the Group 14 element is lead.
- suitable lead sources include, but are not limited to, lead oxides such as lead(II) oxide, tri-lead tetraoxide, and lead(IV) oxide, lead carboxylates such as lead acetate and lead proprionate, inorganic lead salts such as lead nitrate and lead sulfate, alkoxy and aryloxy lead compounds such as lead methoxide and lead phenoxide, lead ⁇ -diketone compounds such as lead(II) 2,4-pentanedionate, organometallic lead compounds having at least one lead-carbon bond, e.g., alkyl lead compounds such as tetraethyllead(IV), and lead compounds containing any of the following ligands: carbon monoxide, amine, nitrite, nitrite,
- titanium sources include, but are not limited to, titanyl oxides, titanium alkoxides, titanium aryloxides, titanium nitrates, titanium carboxylates, and titanium sulfates. Additional examples of titanium sources include titanium compounds containing any one of the following ligands: carbon monoxide, amine, nitrite, nitrate nitrite, isonitrile, cyanide, phosphine, phosphite, phosphate, alkoxide, alkyl, aryl, silyl, olefin, ⁇ -diketone, or ⁇ -ketoester. In one embodiment the titanium source is titanium(IV) oxide 2,4-pentanedionate. Mixtures of titanium sources are also suitable.
- An example of a Group 7 metal source is a manganese source.
- manganese sources include but are not limited to manganese nitrates, manganese carboxylates, manganese sulfate, and manganese compounds containing any one of the following ligands: carbon monoxide, amine, nitrite, nitrite, isonitrile, cyanide, phosphine, phosphite, phosphate, alkoxide, alkyl, aryl, silyl, olefin, ⁇ -diketone, or ⁇ -ketoester.
- the manganese source is manganese (III) 2,4-pentanedionate. Mixtures of manganese sources are also suitable.
- An example of a Group 11 metal source is a copper source.
- copper sources include but are not limited to copper oxides, copper alkoxides, copper aryloxides, copper nitrate, copper carboxylates, copper sulfate, and copper compounds containing any one of the following ligands: carbon monoxide, amine, nitrite, nitrite, isonitrile, cyanide, phosphine, phosphite, phosphate, alkoxide, alkyl, aryl, silyl, olefin, ⁇ -diketone, or ⁇ -ketoester.
- the copper source is copper(II) 2,4-pentanedionate. Mixtures of copper sources are also suitable.
- cerium sources include, but are not limited to, cerium oxides, cerium alkoxides, cerium aryloxides, cerium nitrate, cerium carboxylates, cerium sulfate, and cerium compounds containing any one of the following ligands: carbon monoxide, amine, nitrite, nitrite, isonitrile, cyanide, phosphine, phosphite, phosphate, alkoxide, alkyl, aryl, silyl, olefin, ⁇ -diketone, or ⁇ -ketoester.
- the cerium source is cerium(III) acetate.
- cerium source is cerium(III) 2,4-pentanedionate. Mixtures of lanthanides sources, including but not limited to, cerium sources are also suitable.
- organic co-catalyst salt in addition to the inorganic components at least one organic co-catalyst salt is also present.
- organic co-catalyst salt includes any catalyst component which is present in the catalyst composition, in addition to the Group 8, 9 or 10 catalyst and any IOCC source, which comprises an anion selected from the group consisting of acetate, carboxylate, benzoate, sulfate, nitrate, tetraarylborate, alkylsulfonate, arylsulfonates, or cyanide.
- Typical organic co-catalyst salts contain a cation selected from the group consisting of an alkali metal cation, an alkaline-earth metal cation, guanidinium, or an onium cation.
- onium cations include ammonium cations, phosphonium cations, and sulfonium cations.
- the organic co-catalyst salts used include sodium carboxylates (e.g. sodium acetate), tetraalkylammonium carboxylates (e.g. tetrabutylammonium benzoate), tetraalkylammonium sulfates (e.g.
- tetrabutylammonium sulfate tetraalkylammonium nitrates (e.g. tetrabutylammonium nitrate) tetraalkylammonium tetraarylborates (e.g. tetrabutylammonium tetraphenylborate), tetraalkylammonium sulfonates, (e.g. tetraethylammonium para-tolylsulfonate), and tetraalkylammonium cyanides (e.g. tetraethylammonium cyanide).
- tetraetrabutylammonium sulfate tetraalkylammonium nitrates
- tetraalkylammonium tetraarylborates e.g. tetrabutylammonium tetraphenylborate
- At least one base is typically present in carbonylation catalyst composition of the present invention.
- Suitable bases include, but are not limited to, alkali metal or alkaline-earth metal, guanidinium, or onium salts of basic oxides, hydroxides, mono or polyalkoxides with linear or branched alkyl chains having from about 1 to about 30 carbon atoms, aryloxides including monocyclic, polycyclic or fused polycyclic aromatic monohydroxy or polyhydroxy compounds having from about 6 to about 30, and preferably from about 6 to about 15 carbon atoms.
- Typical onium cations contain organic residues, which typically include C 1-20 alkyl, C 6-10 aryl, or alkyl-aryl combinations thereof.
- a second suitable class of bases includes tertiary amines with organic residues which contain alkyl residues having from about 1 to about 20 carbon atoms, aryl residues having from about 6 to about 30, and preferably from about 6 to about 15 carbon atoms, or alkyl-aryl combinations thereof.
- Typical bases include, but are not limited to, sodium hydroxide, lithium hydroxide, potassium hydroxide, tetraalkylammonium hydroxides (e.g.
- tetramethylammonium hydroxides sodium phenoxide, lithium phenoxide, potassium phenoxide, and tetraalkylammonium phenoxides (e.g. tetramethylammonium phenoxide, tetraethylammonium phenoxide, methyltributylammonium phenoxide and tetrabutylammonium phenoxide).
- the first IOCC comprising at least one Group 14 metal source
- the first IOCC is present in the amount of about 0.1 mole to about 150 moles of Group 14 metal source per mole of a Group 8, 9, or 10 catalyst.
- between about 1 mole and about 100 moles of Group 14 IOCC per mole of Group 8, 9 or 10 catalyst is used.
- between about 10 moles and about 70 moles of Group 14 IOCC per mole of Group 8, 9 or 10 catalyst is used.
- the Group 8, 9, or 10 catalyst is palladium the molar ratio of lead relative to palladium at the initiation of the reaction is typically between about 10 moles and about 70 moles per mole of palladium.
- the molar ratio of the second IOCC relative to the Group 8, 9, or 10 catalyst present in the carbonylation catalyst composition at the initiation of the reaction is typically between about 0.1 mole and about 100 moles of second IOCC per mole of Group 8, 9, or 10 catalyst. In one embodiment the ratio of a second IOCC relative to the Group 8, 9, or 10 catalyst at the initiation of the reaction is between about 1 mole and about 20 moles per mole of Group 8, 9 or 10 catalyst.
- the molar ratio of the second IOCC e.g., a titanium source, a manganese source, a copper source, or a cerium source
- the molar ratio of the second IOCC is typically between about 1 mole and about 100 moles per mole of palladium.
- the molar ratio of the salt co-catalyst relative to Group 8, 9, or 10 catalyst present in the carbonylation catalyst composition at the initiation of the reaction is between about 0.1 mole and about 10000 moles per mole of Group 8, 9, or 10 catalyst. In one embodiment the molar ratio of the salt co-catalyst relative to Group 8, 9, or 10 catalyst is between about 1 mole and about 1000 moles. For example, when the Group 8, 9 or 10 catalyst is palladium, the molar ratio of the salt co-catalyst relative to palladium at the initiation of the reaction is typically between about 1 mole and about 600 moles per mole of palladium.
- the molar ratio of the base relative to the Group 8, 9, or 10 catalyst at the initiation of the reaction is typically between about 0.1 mole and about 1000 moles of base per mole of the Group 8, 9, or 10 catalyst. In one embodiment, the molar ratio of the base relative to the Group 8, 9, or 10 catalyst is between about 1 mole and about 600 moles per mole of Group 8, 9, or 10 catalyst. For example, when the Group 8, 9 or 10 catalyst is palladium the molar ratio of the base to palladium is typically between about 1 mole and about 400 moles per mole of palladium.
- the carbonylation method can be carried out in a variety of reactor systems including, but not limited to, stirred vessels, autoclaves and bubble columns, each of which is capable of being operated under batch-liquid/batch-gas reactor conditions (i.e. batch/batch), batch-liquid/continuous-gas reactor conditions (i.e. batch/flow or semi-continuous), or continuous-liquid/continuous-gas reactor conditions (i.e.flow/flow).
- reactor systems including, but not limited to, stirred vessels, autoclaves and bubble columns, each of which is capable of being operated under batch-liquid/batch-gas reactor conditions (i.e. batch/batch), batch-liquid/continuous-gas reactor conditions (i.e. batch/flow or semi-continuous), or continuous-liquid/continuous-gas reactor conditions (i.e.flow/flow).
- two or more reactors are typically employed in a cascade.
- about 2 to about 15 reactors are used.
- the separate gas addition preferably proceeds in such a way that the optimal gas concentrations are ensure
- each reactor vessel be pressurized.
- a total pressure in the range up to about 35 Megapascals (MPa) is used.
- the reaction pressure is between about 0.5 MPa and about 14 MPa.
- the reaction gases are typically reagent grade purity, and special care must be taken to ensure that no catalyst composition poisons are present as impurities in the gas sources.
- the carbon monoxide and oxygen are introduced independently of each other into the reactor vessel.
- the carbon monoxide and oxygen are introduced into the reactor vessel as a single premixed gas mixture comprising carbon monoxide and oxygen.
- the composition of the reaction gases comprising carbon monoxide and oxygen can be varied in broad concentration ranges.
- the volume percent oxygen in the gas mixtures can be up to about 0.1 volume % to about 20 volume %.
- the volume % of oxygen in the gas mixture is between about 1% and about 9%. Gas sparging or mixing can be used to aid the reaction.
- inert gases such as nitrogen, helium, neon, argon, krypton, xenon, or any other gas which has no negative effect on the carbonylation reaction can be added to the reactor vessel in order to dilute the carbon monoxide and oxygen gas mixture.
- air is an acceptable substitute for pure oxygen.
- concentration of inert gas in the reaction gas is typically up to about 60 volume %. In one embodiment the volume % of inert gas is about 0% to about 20% of the total gas volume.
- Typical reaction temperatures are between about 50° C. and about 150° C. In one embodiment the reaction temperature is between about 90° C. and about 110° C. Provisions are typically made for including a drying agent or a drying process step in the overall reaction method. Higher catalyst turnover numbers are typically obtained if water is removed from the reaction mixture during the reaction.
- the aromatic carbonate produced is diphenyl carbonate (DPC) and the Group 8, 9, or 10 metal utilized is palladium.
- DPC diphenyl carbonate
- Pd TON palladium turnover number
- Carbonylation reactions were carried out in glass reaction vessels containing about 15 ppm to about 25 ppm of palladium(II) 2,4-pentanedionate in phenol, IOCC combinations in equivalents versus palladium, various salt co-catalyst components in equivalents versus palladium, and sodium hydroxide in equivalents versus palladium.
- Titanium (Ti) was added as titanium(IV) oxide 2,4-pentanedionate
- manganese (Mn) was added as manganese(III) 2,4-pentanedionate
- copper (Cu) was added as copper(II) 2,4-pentanedionate
- cerium (Ce) was added as cerrium(III) 2,4-pentanedionate.
- the components were heated to 100° C. for 3 hours in an atomosphere of about 6% to about 9% oxygen in carbon monoxide at about 11 megapascals.
- TBA-Benzoate is tetrabutylammonium benzoate
- NaOAc is sodium acetate
- TBA-SO 4 is tetrabutylammonium sulfate
- TBA-NO 3 is tetrabutylammonium nitrate
- TBA-BPh4 is tetrabutylammonium tetraphenylborate
- TEA-tolSO 3 is tetraethylammonium para-tolylsulfonate
- TEA-SCN is tetraethylammonium cyanide. Average results of multiple runs are given in Tables 1-5.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
TABLE 1 | ||||
Pd | PbO | salt/ | Pd | |
Example | (ppm) | eq. vs. Pd | eq. vs. Pd | TON |
1 | 25 | 50 | NaOAc/ | 479 |
400 | ||||
2 | 25 | 50 | TBA- | 872 |
benzoate/ | ||||
400 | ||||
3 | 25 | 50 | TBA-SO4/ | 426 |
50 | ||||
4 | 25 | 50 | TBA-NO3/ | 62 |
400 | ||||
5 | 25 | 50 | TBA-BPh4/ | 48 |
400 | ||||
6 | 25 | 50 | TEA-tolSO3/ | 79 |
50 | ||||
7 | 25 | 50 | TEA-CN/ | 84 |
50 | ||||
TABLE 2 | |||||
Pd | PbO | salt/ | NaOH | Pd | |
Example | (ppm) | eq. vs. Pd | eq. vs. Pd | Eq. vs Pd | TON |
8 | 25 | 50 | NaOAc/ | 200 | 202 |
400 | |||||
9 | 25 | 50 | TBA- | 200 | 1028 |
benzoate/ | |||||
400 | |||||
TABLE 3 | |||||
Pd | PbO | Ti | salt/ | Pd | |
Example | (ppm) | eq. vs. Pd | eq. vs. Pd | eq. vs. Pd | TON |
10 | 25 | 50 | 6 | NaOAc/ | 273 |
400 | |||||
11 | 25 | 50 | 6 | TBA-benzoate/ | 791 |
400 | |||||
TABLE 4 | |||||
Pd | PbO | Ce | salt/ | Pd | |
Example | (ppm) | eq. vs. Pd | eq. vs. Pd | eq. vs. Pd | TON |
12 | 25 | 50 | 6 | NaOAc/ | 258 |
400 | |||||
13 | 25 | 50 | 6 | TBA-benzoate/ | 1049 |
400 | |||||
TABLE 5 | |||||||
Pd | PbO | 2nd IOCC | TMAOH | salt/ | Pd | ||
Example | (ppm) | eq. vs. Pd | 2nd IOCC | eq. vs. Pd | eq. vs. Pd | eq. vs. Pd | TON |
14 | 15 | 100 | Ti | 18 | 400 | TBA-NO3/ | 1679 |
500 | |||||||
15 | 15 | 100 | Ti | 18 | 400 | TBA- | 1372 |
benzoate/500 | |||||||
16 | 15 | 100 | Ti | 18 | 400 | TEA- | 1499 |
tolSO3/500 | |||||||
17 | 15 | 100 | Ce | 12 | 400 | TBA- | 1767 |
benzoate/500 | |||||||
18 | 15 | 100 | Ce | 12 | 400 | TEA- | 2027 |
tolSO3/500 | |||||||
19 | 15 | 100 | Cu | 12 | 200 | TBA- | 571 |
benzoate/500 | |||||||
20 | 15 | 100 | Cu | 12 | 200 | TBA-SO4/ | 809 |
500 | |||||||
21 | 15 | 100 | Mn | 12 | 400 | TBA-NO3/ | 959 |
500 | |||||||
22 | 15 | 100 | Mn | 12 | 400 | TBA- | 1349 |
benzoate/500 | |||||||
23 | 15 | 100 | Mn | 12 | 400 | TEA- | 1525 |
tolSO3/500 | |||||||
Claims (36)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/822,158 US6440893B1 (en) | 2001-03-30 | 2001-03-30 | Method and catalyst composition for producing aromatic carbonates |
US10/135,723 US6700008B2 (en) | 2001-03-30 | 2002-04-30 | Method and catalyst composition for producing aromatic carbonates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/822,158 US6440893B1 (en) | 2001-03-30 | 2001-03-30 | Method and catalyst composition for producing aromatic carbonates |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/135,723 Division US6700008B2 (en) | 2001-03-30 | 2002-04-30 | Method and catalyst composition for producing aromatic carbonates |
Publications (1)
Publication Number | Publication Date |
---|---|
US6440893B1 true US6440893B1 (en) | 2002-08-27 |
Family
ID=25235323
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/822,158 Expired - Fee Related US6440893B1 (en) | 2001-03-30 | 2001-03-30 | Method and catalyst composition for producing aromatic carbonates |
US10/135,723 Expired - Fee Related US6700008B2 (en) | 2001-03-30 | 2002-04-30 | Method and catalyst composition for producing aromatic carbonates |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/135,723 Expired - Fee Related US6700008B2 (en) | 2001-03-30 | 2002-04-30 | Method and catalyst composition for producing aromatic carbonates |
Country Status (1)
Country | Link |
---|---|
US (2) | US6440893B1 (en) |
Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE736325C (en) | 1936-07-04 | 1943-06-11 | Seitz Werke Gmbh | Self-seller |
US4187242A (en) | 1976-10-12 | 1980-02-05 | General Electric Company | Catalytic aromatic carbonate process |
US5231210A (en) | 1992-08-17 | 1993-07-27 | General Electric Company | Method for making aromatic carbonates |
US5239106A (en) | 1992-08-17 | 1993-08-24 | General Electric Company | Method of recovering and purifying diphenylcarbonate from phenolic solutions thereof |
US5284964A (en) | 1992-08-17 | 1994-02-08 | General Electric Company | Method for making aromatic carbonates |
JPH06271509A (en) | 1993-03-22 | 1994-09-27 | Mitsubishi Petrochem Co Ltd | Production of aromatic carbonate ester |
JPH06271506A (en) | 1993-03-17 | 1994-09-27 | Mitsubishi Petrochem Co Ltd | Method for producing aromatic carbonic acid ester |
US5373083A (en) | 1993-06-17 | 1994-12-13 | General Electric Company | Thermoplastic resin and method using heterocyclic amine catalyst |
US5380907A (en) | 1992-06-01 | 1995-01-10 | Mitsubishi Gas Chemical Company, Inc. | Method for preparing aromatic carbonate |
US5399734A (en) | 1991-07-29 | 1995-03-21 | General Electric Company | Method for making aromatic organic carbonates |
JPH07145107A (en) | 1993-11-08 | 1995-06-06 | Mitsubishi Chem Corp | Production of aromatic carbonate |
US5498789A (en) | 1994-01-12 | 1996-03-12 | Mitsubishi Chemical Corporation | Method of producing aromatic carbonate |
US5502232A (en) | 1993-11-22 | 1996-03-26 | Bayer Aktiengesellschaft | Process for preparing diaryl carbonates |
JPH0892168A (en) | 1994-09-21 | 1996-04-09 | Mitsubishi Chem Corp | Production of aromatic carbonic acid ester |
JPH0889810A (en) | 1994-09-21 | 1996-04-09 | Mitsubishi Chem Corp | Production of aromatic carbonate |
JPH08193056A (en) | 1995-01-13 | 1996-07-30 | Mitsubishi Chem Corp | Production of aromatic carbonic ester |
US5543547A (en) | 1993-03-08 | 1996-08-06 | Mitsubishi Chemical Corporation | Method of producing aromatic carbonate |
EP0736325A2 (en) | 1995-04-05 | 1996-10-09 | Bayer Ag | Supported platinum catalysts and process for the preparation of diaryle carbonates |
JPH09110804A (en) | 1995-10-16 | 1997-04-28 | Mitsubishi Chem Corp | Production of aromatic carbonic ester |
JPH09255629A (en) | 1996-03-26 | 1997-09-30 | Mitsubishi Chem Corp | Production of aromatic carbonic acid ester |
JPH09278715A (en) | 1996-04-16 | 1997-10-28 | Mitsubishi Chem Corp | Production of aromatic carbonic acid ester |
JPH09278716A (en) | 1996-04-17 | 1997-10-28 | Mitsubishi Chem Corp | Production of aromatic carbonic acid ester |
US5726340A (en) | 1996-04-05 | 1998-03-10 | Mitsubishi Chemical Corporation | Method of producing aromatic carbonate |
US5760272A (en) | 1997-03-24 | 1998-06-02 | General Electric Company | Method for preparing diaryl carbonates with improved selectivity |
JPH10158221A (en) | 1996-12-03 | 1998-06-16 | Mitsubishi Chem Corp | Production of aromatic carbonate |
US5821377A (en) | 1996-04-09 | 1998-10-13 | Bayer Aktiengesellschaft | Process for the continuous production of diaryl carbonates |
US5856554A (en) | 1996-05-17 | 1999-01-05 | Bayer Ag | Process for producing diaryl carbonates |
US6197991B1 (en) | 1999-04-29 | 2001-03-06 | General Electric Company | Method and catalyst system for producing |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US526340A (en) * | 1894-09-18 | Half to julius salinger | ||
US6172254B1 (en) | 1999-06-30 | 2001-01-09 | General Electric Company | Catalyst composition and method for producing diaryl carbonates using nitrile as promoter |
US6114564A (en) | 1999-08-27 | 2000-09-05 | General Electric Company | Catalyst composition and method for producing diaryl carbonates |
US6180812B1 (en) | 1999-08-27 | 2001-01-30 | General Electric Company | Catalyst composition and method for producing diaryl carbonates using amide as promoter |
-
2001
- 2001-03-30 US US09/822,158 patent/US6440893B1/en not_active Expired - Fee Related
-
2002
- 2002-04-30 US US10/135,723 patent/US6700008B2/en not_active Expired - Fee Related
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE736325C (en) | 1936-07-04 | 1943-06-11 | Seitz Werke Gmbh | Self-seller |
US4187242A (en) | 1976-10-12 | 1980-02-05 | General Electric Company | Catalytic aromatic carbonate process |
US5399734A (en) | 1991-07-29 | 1995-03-21 | General Electric Company | Method for making aromatic organic carbonates |
US5380907A (en) | 1992-06-01 | 1995-01-10 | Mitsubishi Gas Chemical Company, Inc. | Method for preparing aromatic carbonate |
US5239106A (en) | 1992-08-17 | 1993-08-24 | General Electric Company | Method of recovering and purifying diphenylcarbonate from phenolic solutions thereof |
US5284964A (en) | 1992-08-17 | 1994-02-08 | General Electric Company | Method for making aromatic carbonates |
US5231210A (en) | 1992-08-17 | 1993-07-27 | General Electric Company | Method for making aromatic carbonates |
US5543547A (en) | 1993-03-08 | 1996-08-06 | Mitsubishi Chemical Corporation | Method of producing aromatic carbonate |
JPH06271506A (en) | 1993-03-17 | 1994-09-27 | Mitsubishi Petrochem Co Ltd | Method for producing aromatic carbonic acid ester |
JPH06271509A (en) | 1993-03-22 | 1994-09-27 | Mitsubishi Petrochem Co Ltd | Production of aromatic carbonate ester |
US5373083A (en) | 1993-06-17 | 1994-12-13 | General Electric Company | Thermoplastic resin and method using heterocyclic amine catalyst |
JPH07145107A (en) | 1993-11-08 | 1995-06-06 | Mitsubishi Chem Corp | Production of aromatic carbonate |
US5502232A (en) | 1993-11-22 | 1996-03-26 | Bayer Aktiengesellschaft | Process for preparing diaryl carbonates |
US5498789A (en) | 1994-01-12 | 1996-03-12 | Mitsubishi Chemical Corporation | Method of producing aromatic carbonate |
JPH0889810A (en) | 1994-09-21 | 1996-04-09 | Mitsubishi Chem Corp | Production of aromatic carbonate |
JPH0892168A (en) | 1994-09-21 | 1996-04-09 | Mitsubishi Chem Corp | Production of aromatic carbonic acid ester |
JPH08193056A (en) | 1995-01-13 | 1996-07-30 | Mitsubishi Chem Corp | Production of aromatic carbonic ester |
EP0736325A2 (en) | 1995-04-05 | 1996-10-09 | Bayer Ag | Supported platinum catalysts and process for the preparation of diaryle carbonates |
JPH09110804A (en) | 1995-10-16 | 1997-04-28 | Mitsubishi Chem Corp | Production of aromatic carbonic ester |
JPH09255629A (en) | 1996-03-26 | 1997-09-30 | Mitsubishi Chem Corp | Production of aromatic carbonic acid ester |
US5726340A (en) | 1996-04-05 | 1998-03-10 | Mitsubishi Chemical Corporation | Method of producing aromatic carbonate |
US5821377A (en) | 1996-04-09 | 1998-10-13 | Bayer Aktiengesellschaft | Process for the continuous production of diaryl carbonates |
JPH09278715A (en) | 1996-04-16 | 1997-10-28 | Mitsubishi Chem Corp | Production of aromatic carbonic acid ester |
JPH09278716A (en) | 1996-04-17 | 1997-10-28 | Mitsubishi Chem Corp | Production of aromatic carbonic acid ester |
US5856554A (en) | 1996-05-17 | 1999-01-05 | Bayer Ag | Process for producing diaryl carbonates |
JPH10158221A (en) | 1996-12-03 | 1998-06-16 | Mitsubishi Chem Corp | Production of aromatic carbonate |
US5760272A (en) | 1997-03-24 | 1998-06-02 | General Electric Company | Method for preparing diaryl carbonates with improved selectivity |
US6197991B1 (en) | 1999-04-29 | 2001-03-06 | General Electric Company | Method and catalyst system for producing |
Also Published As
Publication number | Publication date |
---|---|
US20030040428A1 (en) | 2003-02-27 |
US6700008B2 (en) | 2004-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0583935B1 (en) | Method for making aromatic carbonates | |
KR20020015705A (en) | Catalyst composition and method for producing diaryl carbonates using nitrile as promoter | |
US6143913A (en) | Method and catalyst system for producing aromatic carbonates | |
US6380417B1 (en) | Catalysts system for producing aromatic carbonates | |
US6355597B1 (en) | Catalyst system for producing aromatic carbonates | |
US6512134B2 (en) | Method and catalyst system for producing aromatic carbonates | |
US6566299B1 (en) | Catalyst system | |
US6440893B1 (en) | Method and catalyst composition for producing aromatic carbonates | |
US6160154A (en) | Method and catalyst system for producing aromatic carbonates | |
US6706908B2 (en) | Method and catalyst composition for producing aromatic carbonates | |
KR20020077935A (en) | Method and catalyst system for producing aromatic carbonates | |
US6441215B1 (en) | Method for reducing carbonate decomposition in reaction mixtures | |
US6423863B1 (en) | Method of sustaining catalyst activity in the catalytic production of aromatic carbonates | |
US7084291B2 (en) | Water resistant catalyst for the production of diaryl carbonates via the direct carbonylation of phenolic compounds | |
US6800779B2 (en) | Method for producing aromatic carbonates | |
EP0867428B1 (en) | Method for preparing diaryl carbonates employing beta-diketone salts | |
EP1328501B1 (en) | Method and catalyst system for producing aromatic carbonates | |
US6410774B1 (en) | Method for recovery of catalyst components | |
EP1366014A1 (en) | Method and catalyst system for producing aromatic carbonates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENERAL ELECTRIC COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHALYAEV, KIRILL VLADIMIROVICH;JOHNSON, BRUCE FLETCHER;WHISENHUNT, DONALD WAYNE JR.;AND OTHERS;REEL/FRAME:011713/0697;SIGNING DATES FROM 20010328 TO 20010330 |
|
AS | Assignment |
Owner name: GENERAL ELECTRIC COMPANY, NEW YORK Free format text: CORRECTIUVE ASSIGNMENT TO REMOVE AVERY DENNISON CORPORATION AS THE RECEIVING PARTY, PREVIOUSLY RECORDED AT REEL 011713 FRAME 0697.;ASSIGNORS:SHALYAEV, KIRILL VLADIMIROVICH;JOHNSON, BRUCE FLETCHER;WHISENHUNT, DONALD WAYNE, JR.;AND OTHERS;REEL/FRAME:012510/0328;SIGNING DATES FROM 20010328 TO 20010330 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20060827 |