US6380880B1 - Digital pixel sensor with integrated charge transfer amplifier - Google Patents
Digital pixel sensor with integrated charge transfer amplifier Download PDFInfo
- Publication number
- US6380880B1 US6380880B1 US09/823,592 US82359201A US6380880B1 US 6380880 B1 US6380880 B1 US 6380880B1 US 82359201 A US82359201 A US 82359201A US 6380880 B1 US6380880 B1 US 6380880B1
- Authority
- US
- United States
- Prior art keywords
- digital
- pixel
- sensor array
- image sensor
- charge transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/04—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
- H04N1/19—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
- H04N1/195—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a two-dimensional array or a combination of two-dimensional arrays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/77—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
- H04N25/772—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
Definitions
- the invention generally relates to image sensor systems; and in particular, the present invention relates to a digital image sensor including an integrated charge transfer amplifier at each pixel.
- Digital photography is one of the most exciting technologies that have emerged in the past years. With the appropriate hardware and software (and a little knowledge), anyone can put the principles of digital photography to work. Digital cameras, for example, are on the cutting edge of digital photography. Recent product introductions, technological advancements, and price cuts, along with the emergence of email and the World Wide Web, have helped make digital cameras the hottest new category of consumer electronics products.
- Digital cameras do not work in the way that traditional film cameras do. In fact, they are more closely related to computer scanners, copiers, or fax machines.
- Most digital cameras use an image sensor or photosensitive device, such as charged-coupled device (CCD) or Complementary Metal-Oxide Semiconductor (CMOS) to sense a scene.
- CCD charged-coupled device
- CMOS Complementary Metal-Oxide Semiconductor
- the photosensitive device reacts to light reflected from the scene and can translate the strength of that light into electronic signals that are digitized. By passing light through red, green, and blue filters, for example, the intensity of the light can be gauged for each separate color spectrum.
- red, green, and blue filters for example, the intensity of the light can be gauged for each separate color spectrum.
- the camera can determine the specific color of each segment of the picture. Because the image is actually a collection of numeric data, it can easily be downloaded into a computer and manipulated for more artistic effects.
- Digital cameras do not have the resolution attainable with conventional photography. While traditional film-based technology, limited only by the granularity of the chemically based film, typically has a resolution of tens of millions of pixels, image sensors for use in most commercially available digital cameras acceptable to general consumers have a resolution of slightly more than one or two million pixels. Although digital cameras having resolutions of up to six million pixels are available, these high-resolution cameras are prohibitively expensive. Furthermore, the dynamic range of digital image sensors is often not as broad as is possible with film-based conventional photography. This is especially true for CMOS image sensors which, in general, have lower dynamic ranges than CCDs.
- FIG. 1 is a block diagram of a digital image sensor as disclosed in U.S. Pat. No. 5,461,425 of Fowler et al. (“the '425 patent”).
- digital image sensor 10 includes an image sensor core 12 which has a two-dimensional array of pixels.
- Each pixel 15 of sensor core 12 has a light detecting element (a photodetector or photosensor) coupled to a dedicated A/D converter.
- Each of the A/D converter outputs a stream of bits representative of the analog output of the associated light detecting element.
- the image sensor of the '425 patent outputs digital image data directly from each pixel.
- a digital image sensor such as sensor 10 of FIG. 1, not only does the supporting circuitry for image sensor core 12 become dramatically simplified, there are also numerous advantages provided by the digital image sensor architecture in view of traditional CMOS image sensors. The advantages include better control of operations of the image sensor and far better image quality therefrom.
- image sensor core 12 is inevitably larger than it would be without the dedicated A/D converters. If an image sensor is desired to have millions of photodetectors thereon, there would be a large number of dedicated A/D converters, which could take a significant amount of circuit area to implement in the image sensor core. Larger image sensor cores are undesirable because they typically lead to higher manufacturing cost and lower yield. Therefore, designs of digital image sensors having a smaller image sensor core are much more desirable. Further, it is often not feasible to merely reduce the size of the photodetectors to accommodate the dedicated A/D converters in an image sensor of limited size.
- a digital image sensor includes a sensor array of digital pixels.
- the sensor array outputs digital signals as pixel data representing an image of a scene.
- Each of the digital pixels includes a photodetector producing an analog signal indicative of the amount of light impinging on the sensor array.
- Each digital pixel also includes a charge transfer amplifier coupled to receive the analog signal and amplifying the signal to generate an amplified pixel voltage signal.
- the digital image sensor further includes analog-to-digital conversion (ADC) circuits located within the sensor array. Each of the ADC circuits is connected to one or more charge transfer amplifiers for converting the amplified pixel voltage signal of each digital pixel to a digitized pixel voltage signal.
- ADC analog-to-digital conversion
- the charge transfer amplifier generates a pixel voltage signal having increased voltage magnitude than the voltage signal generated by the photodetector and provides the enhanced voltage value to the analog-to-digital conversion circuit.
- the integration of a charge transfer amplifier in a digital pixel of the present invention has the effect of increasing the sensitivity level of each of the digital pixels and as a result, provides a digital image sensor with increased sensitivity and dynamic range.
- the photodetector is a photogate and the charge transfer amplifier is implemented as a transfer gate and a floating diffusion as a measuring capacitor.
- FIG. 1 is a block diagram of a digital image sensor as described in U.S. Pat. No. 5,461,425 of Fowler et al.
- FIG. 2 is a block diagram of a digital image sensor where an ADC circuit is associated with four photodetectors in the image sensor array according to one embodiment of the present invention.
- FIG. 3 is a block diagram of a CMOS image sensor array according to one embodiment of the present invention.
- FIG. 4 is a circuit diagram of a single digital pixel in a sensor array according to one embodiment of the present invention.
- FIG. 5 is a circuit diagram of a group of four digital pixels in a sensor array sharing an ADC circuit according to one embodiment of the present invention.
- FIG. 6 is a cross-sectional schematic of a charge transfer amplifier implemented as a transfer gate and a measuring capacitor according to one embodiment of the present invention.
- FIG. 7 is a block diagram of a digital image sensor incorporating the image sensor array according to one embodiment of the present invention.
- FIG. 8 is a circuit diagram of a group of four digital pixels in a sensor array sharing an ADC circuit according to another embodiment of the present invention.
- a digital image sensor implementing a digital pixel sensor (DPS) architecture, includes a charge transfer amplifier within each digital pixel for enhancing the sensitivity of the image sensor.
- DPS digital pixel sensor
- the increased sensitivity of the digital pixels allows the pixels to capture light information even in low light conditions or when the integration times are short.
- the digital image sensor of the present invention has applicability in low light imaging conditions or in motion photography, such as sports photography.
- a digital pixel sensor (DPS) array or a sensor array refers to a digital image sensor having an array of photodetectors where each photodetector produces a digital output signal.
- the DPS array implements the digital pixel sensor architecture illustrated in FIG. 1 and described in aforementioned '425 patent which patent is incorporated herein by reference in its entirety.
- the DPS array of the '425 patent utilizes pixel level analog-to-digital conversion to provide a digital output signal at each pixel.
- the pixels of a DPS array are sometimes referred to as a “sensor pixel” or a “sensor element” or a “digital pixel,” which terms are used to indicate that each of the photodetectors of a DPS array includes an analog-to-digital conversion (ADC) circuit, and is distinguishable from a conventional photodetector which includes a photodetector and produces an analog signal.
- ADC analog-to-digital conversion
- the digital output signals of a DPS array have advantages over the conventional analog signals in that the digital signals can be read out at a much higher speed.
- other schemes for implementing a pixel level A/D conversion in an area image sensor may also be used in the image sensor of the present invention.
- the DPS array of the digital pixel sensor is implemented using the alternative array architecture illustrated in FIG. 2 .
- sensor array 22 includes a two-dimensional array of photodetectors 24 .
- an ADC circuit 26 of sensor array 22 is shared among a group of four neighboring photodetectors 24 .
- Each of the ADC circuit 26 performs A/D conversion of the output voltage signal by multiplexing between the four neighboring photodetectors.
- Digital image sensor 20 may include other control circuitry such as a clock generation circuit and other global control circuitry which are not shown in FIG. 2 .
- FIG. 3 illustrates a sensor array 100 in which the present invention may be practiced.
- Sensor array 100 can be used in any image capturing device (for example, a digital camera) for either stationary or video image capture.
- Sensor array 100 which is typically at least partially fabricated on a substrate utilizing CMOS technology, comprises a plurality of digital pixels 150 - i,j arranged in an array.
- pixel 105 is used to denote any one of pixels 150 - i,j in array 100 .
- an individual pixel 150 is arranged in row 102 - i and column 104 - j where row 102 - i is one of rows 102 - i through 102 -N and column 104 - j is one of columns 104 - 1 through 104 -M.
- each pixel 150 can -include an optical filter (e.g., a red filter, a blue filter, or a green filter).
- Pixels 150 - i,j are then arranged in a mosaic of selectively transmissive filters so that different groups of pixels 150 - i,j detect light of different colors.
- a first group 106 of pixels 150 - i,j can detect a red spectrum
- a second group 108 of pixels 150 - i,j can detect a green spectrum
- a third group 110 of pixels 150 - i,j can detect a blue spectrum.
- the resolution of sensor array 100 is determined by the number of rows and columns. In FIG. 3, the resolution of sensor array 100 is N by M which, in many applications, can be 1000 pixels by 1000 pixels, for example.
- sensor array 100 is fabricated using CMOS technology. Of course, other fabrication technologies can be used, such a BiCMOS or an NMOS fabrication technology.
- Each pixel 150 in sensor array 100 includes a photodetector (or a photosensor) that produces an electrical signal when exposed to light.
- Each pixel 150 or a group of pixels 105 i-j in sensor array 100 also includes an ADC circuit for generating the digital output signal of the pixel.
- each pixel 150 also includes a charge transfer amplifier circuit for enhancing the sensitivity of the pixel.
- FIG. 4 is a block diagram of a single digital pixel 150 in sensor array 100 according to one embodiment of the present invention.
- digital pixel 150 can be any one of pixels 150 - i,j in sensor array 100 .
- digital pixel 150 includes a photodetector 120 and a readout circuit 138 .
- Photodetector 120 can be a photogate, a photodiode or a phototransistor.
- photodetector 120 is implemented as an enhanced photodetector described in copending and commonly assigned U.S. patent application Ser. No. 09/617,740, filed Jul.
- photodetector 120 is modeled as a current source 122 connected in parallel with a capacitor 124 .
- Photodetector 120 is connected in series with an NMOS transistor 128 and the serial combination of photodetector 120 and transistor 128 is coupled between a voltage V cc and ground.
- the gate terminal 130 of transistor 128 is coupled to receive a Reset signal. When the Reset signal to gate terminal 130 is set high, transistor 128 is turned on and capacitor 124 is charged to a voltage level equaling V cc less the threshold voltage of transistor 128 , V Th .
- transistor 128 can be implemented as a PMOS transistor with the corresponding change in the polarity of the control signals.
- An output voltage signal V out generated at output node 129 which is the voltage across capacitor 124 , is indicative of the integrated light intensity between the time that transistor 128 is turned off and the time that light 126 incident on photodetector 120 is turned off or the time the readout process begins.
- transistor 128 can be used for other purposes such as blooming control or offset cancellations.
- the operation of pixel 150 involves a light integration process followed by a readout process. Each of these two processes is sustained for a controlled time interval.
- capacitor 124 is charged by turning transistor 128 on.
- light 126 incident on photodetector 120 for a predefined period of time (also called the exposure time) causes a change in the conductivity of photodetector 120 .
- the time interval during which the light integration process proceeds is referred to as exposure control, which may be achieved by electronic or mechanical shuttering. The time interval controls how much charge is accumulated by photodetector 120 .
- pixel 150 starts the readout process during which the output voltage V out generated by photodetector 120 is read out via readout circuit 138 to a data bus or video bus (not shown).
- readout circuit 138 includes a charge transfer amplifier 140 coupled to output node 129 of photodetector 120 .
- Charge transfer amplifier 140 operates to amplify the voltage level of the output voltage V out generated by the charge stored on capacitor 124 at the end of the integration period.
- charge transfer amplifier 140 provides a pixel voltage signal having an increased voltage magnitude at its output terminal 142 (also called a sensing node).
- a control signal is coupled to charge transfer amplifier 140 for controlling the operation of the amplifier.
- the control signal can be a common signal driving the charge transfer amplifier circuits of pixels 105 - i,j in the entire sensor array 100 .
- the control signal can also be a common signal driving a column or a row of pixels in sensor array 100 .
- the pixel voltage signal at sensing node 142 is coupled to an analog-to-digital conversion (ADC) circuit 134 which digitizes the analog pixel voltage signal to yield a digitized pixel voltage signal, indicative of the amount of light exposure of pixel 150 .
- ADC circuit 134 can be implemented using any known A/D conversion technique and can have any degree of accuracy (e.g. 8, 10 or 16 bits or more).
- ADC circuit 134 is controlled by a clock (CLK) signal and digitizes the analog pixel voltage signal when triggered by the CLK signal.
- CLK clock
- the advantage of digitizing the pixel voltage signal within pixel 150 is that digitized pixel voltage signals can be converted and read out of each pixel 150 in sensor array 100 at a much higher speed than that of a corresponding analog signal. Further description of the pixel level digitalization in an image sensor can be found in the aforementioned '425 patent.
- ADC circuit 134 is implemented using the Multi-Channel Bit Serial (MCBS) analog-to-digital conversion technique described in U.S. Pat. No. 5,801,657 of Fowler et al. (“the '657 patent”), which patent is incorporated herein by reference in its entirety.
- MCBS Multi-Channel Bit Serial
- the MCBS ADC technique of the '657 patent can significantly improve the overall system performance while minimizing the size of the ADC circuit.
- an MCBS ADC has many advantages applicable to image acquisition and more importantly, facilitates high-speed readout.
- FIG. 4 The block diagram of FIG. 4 is used to illustrate one exemplary embodiment of pixel 150 of sensor array 100 of the present invention and is not intended to be limiting.
- pixel 150 can be implemented using a dedicated ADC circuit 134 as shown in FIG. 4, a shared ADC sensor array architecture can also be used.
- FIG. 5 illustrates another embodiment of the present invention where a group of neighboring digital pixels 150 a to 150 d shares a single ADC circuit 134 .
- Like elements in FIGS. 4 and 5 are given the same reference numeral to simplify the following description. In the embodiment shown in FIG.
- digital pixels 150 a to 150 d include photodiodes D 0 to D 3 respectively as light detecting elements. Each of the photodiodes D 0 to D 3 is connected to an NMOS transistor 128 controlled by a Reset signal for reseting the photodiode between each light exposure. Transistor 128 and the Reset signal in each of digital pixels 150 a to 150 d operates in the same manner as previously described with respect to FIG. 4 .
- Each of digital pixels 150 a to 150 d includes a charge transfer amplifier 140 for amplifying the output voltage generated by the respective photodiode. Each charge transfer amplifier 140 of pixels 150 a to 150 d provides a pixel voltage signal at its output.
- Switches S 0 to S 3 are disposed to multiplex ADC circuit 134 between pixels 150 a to 150 d . Thus, at any one time, only one charge transfer amplifier 140 of pixels 150 a to 150 d is connected to sensing node 142 and provided to ADC circuit 134 for analog-to-digital conversion. Switches S 0 to S 3 in FIG. 5 are symbolic switches only and one of ordinary skill in the art would appreciate that switches S 0 to S 3 should be constructed such that, when the respective one of switches S 0 to S 3 are closed, the output node of each charge transfer amplifier 140 is isolated from the large capacitance of sensing node 142 in the shared-ADC architecture.
- a source follower can be used in switches S 0 to S 3 for capacitance isolation.
- a shared-ADC architecture can be implemented using the mulitplexing scheme shown in FIG. 8 where switches S 0 to S 3 are incorporated in the comparator circuit of ADC circuit 134 .
- Detail description of the comparator circuit in FIG. 8 is provided in concurrently filed and commonly assigned patent application Ser. No. 09 / 274 , 202 , entitled “A Multiplexed Multi-Channel Bit Serial Analog-to-Digital Converter,” of David Xiao Dong Yang et al.
- the advantage of the multiplexing scheme illustrated in FIG. 8 is that the output node of each charge transfer amplifier 140 drives the gate terminal of a transistor.
- each charge transfer amplifier 140 is isolated from the large capacitance resulted from sharing one ADC circuit with a multiple number of photodetectors.
- a person of ordinary skill in the art would appreciate that other methods of implementing a shared-ADC architecture can be used.
- the advantage of integrating a charge transfer amplifier in a digital pixel of a digital image sensor includes improving the sensitivity of the digital pixel so that the digital pixel can have a much larger dynamic range as compared to a digital pixel without the use of charge transfer amplification.
- the increased sensitivity can be exploited by using multiple sampling to produce an image where both bright light and low light conditions can be captured with clarity. (Multiple sampling is described in more detail below.)
- a digital image sensor in accordance with the present invention is suitable for use in low-light photography where the amount of incident light is limited and conventional image sensors having limited sensitivity may not be able to capture any image at all.
- the digital image sensor of the present invention is also suitable for use in motion photography where the exposure time for each frame of an image is limited.
- each pixel incorporates a photodetector and an A/D conversion circuit or a group of pixels share an A/D conversion circuit. Because of space limitation, the pixel level A/D conversion circuit cannot be too large so as to increase the area of the image sensor core excessively. Typically, the A/D conversion circuit in a digital pixel sensor array is optimized for size and is thus generally less precise.
- the digital image sensor of the present invention can tolerate a less precise A/D conversion while still producing satisfactory results.
- Another advantage of integrating charge transfer amplification in a digital pixel is that the area of the photodetector can be reduced if necessary to reduce the area of the image sensor core without sacrificing the sensitivity level of the digital pixel.
- Another advantage of integrating a charge transfer amplifier in a digital pixel in the image sensor of the present invention is that the charge sensed by the photodetector is stored at the sense node of the charge transfer amplifier and is shielded from incident light.
- the aforementioned advantages of integrating a charge transfer amplifier in a digital pixel of a digital image sensor greatly improves the performance of the image sensor.
- FIG. 6 illustrates a charge transfer amplifier implemented as a transfer gate and a measuring capacitor according to one embodiment of the present invention.
- the photodetector is implemented as a photogate 202 .
- Photogate 202 has a large gate area to enable accumulation of photo-generated charge in the substrate area 212 underneath photogate 202 .
- a transfer gate 204 couples the substrate area 212 to a floating diffusion 206 which acts as a measuring capacitor.
- Floating diffusion 206 stores the photo-generated charge transferred from substrate area 212 and generates an output voltage V out at a node 210 (node 210 is used here to represent the electrical contact to floating diffusion 206 ).
- Floating diffusion 206 is typically a small diffusion area so that the measuring capacitor has a small capacitance.
- the capacitance of the measuring capacitor is much smaller than the capacitance of photogate 202 .
- Dotted line 214 in FIG. 6 represents the potential well of floating diffusion 206 and is used to illustrate pictorially that the smaller capacitance of the measuring capacitor generates a larger output voltage V out for the same amount of charge collected by photogate 202 .
- V out is the voltage at sensing node 210
- C PG is the capacitance of photogate 202
- C M is the capacitance of the floating diffusion 206
- V PG is the voltage generated by photogate 202 .
- capacitance C M is much smaller than the capacitance of the photodetector
- a large V out voltage can be generated at sensing node 210 by the action of the charge transfer amplifier.
- the use of a small capacitance measuring capacitor (floating diffusion 206 ) has the effect of increasing the sensitivity of photogate 202 .
- a control signal is applied to transfer gate 204 to command the transfer of the charge accumulated by photogate 202 to floating diffusion 206 .
- the control signal can be derived from the control signal PG of photogate 202 or the Reset signal of the photogate.
- circuitry for initializing the voltages at sense node 210 and at transfer gate 204 is provided as is conventionally done.
- the digital pixel further includes a Reset gate 216 coupled to a diffusion 208 area. Diffusion area 208 is coupled to the power supply V cc and functions to precharge floating diffusion 206 to a specified voltage when driven by the Reset signal.
- sensor array 100 is fabricated on an integrated circuit using CMOS technology. Furthermore, sensor array 100 can be integrated with sensor supporting circuitry, such as row and column decoders and filters and multiplexer circuitry. In one embodiment, a digital image sensor of the present invention is implemented as described in the aforementioned '425 patent. In another embodiment, sensor array 100 can be integrated with supporting circuitry including a data memory, to form an integrated digital image sensor as illustrated in FIG. 7 .
- FIG. 7 is a functional block diagram of an image sensor 300 according to the present invention. Image sensor 300 includes a sensor array 302 which has an N by M array of pixels similar to those described in FIGS. 2 and 3 above.
- Sensor array 302 includes digital pixels incorporating pixel-level charge transfer amplification.
- a sense amplifier and latch circuit 304 is coupled to sensor array 302 to facilitate the readout of digital signals from sensor array 302 .
- threshold memory 306 is 1 megabits
- time index memory 308 with two bit time index values is 2 megabits
- digital memory 310 is at least 10 megabits.
- image sensor 300 can implement multiple sampling to improve the qualify of an image.
- each digital pixel can be exposed to an image for different exposure times in order to compensate for bright and dark portions of the image. Additionally, the information regarding how long an exposure time is associated with each pixel and the integrated intensity for that pixel is stored in time index memory 308 and digital memory 310 . Further description of implementation of multiple sampling in image sensor 300 is provided in U.S. patent application Ser. No. 09/567,786, entitled “Multiple Sampling via a Time-Indexed Method to Achieve Wide Dynamic Ranges,” by David Yang et al., filed on May 9, 2000, which is incorporated herein by reference in its entirety.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/823,592 US6380880B1 (en) | 2001-03-30 | 2001-03-30 | Digital pixel sensor with integrated charge transfer amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/823,592 US6380880B1 (en) | 2001-03-30 | 2001-03-30 | Digital pixel sensor with integrated charge transfer amplifier |
Publications (1)
Publication Number | Publication Date |
---|---|
US6380880B1 true US6380880B1 (en) | 2002-04-30 |
Family
ID=25239182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/823,592 Expired - Lifetime US6380880B1 (en) | 2001-03-30 | 2001-03-30 | Digital pixel sensor with integrated charge transfer amplifier |
Country Status (1)
Country | Link |
---|---|
US (1) | US6380880B1 (en) |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6541751B1 (en) * | 2001-10-03 | 2003-04-01 | Pixim Inc | Time multiplexing image processing functions for noise reduction |
US20030133030A1 (en) * | 2002-01-16 | 2003-07-17 | Borg Matthew M. | Ground referenced pixel reset |
US6606049B1 (en) * | 2002-08-02 | 2003-08-12 | Ami Semiconductor, Inc. | Analog to digital converters based on transconveyance amplifiers |
US20030189657A1 (en) * | 2002-04-04 | 2003-10-09 | Tarik Hammadou | Image sensor circuit and method |
US20040179119A1 (en) * | 2003-03-13 | 2004-09-16 | Jelley Kevin W. | Multicolor light sensing pixel structure |
US20040233324A1 (en) * | 2001-05-29 | 2004-11-25 | Transchip, Inc. | Systems and methods for power conservation in a CMOS imager |
US6838651B1 (en) * | 2002-03-28 | 2005-01-04 | Ess Technology, Inc. | High sensitivity snap shot CMOS image sensor |
US20050068436A1 (en) * | 2001-05-29 | 2005-03-31 | Miriam Fraenkel | CMOS imager for cellular applications and methods of using such |
US20050073451A1 (en) * | 2003-07-14 | 2005-04-07 | University Of Rochester | Multiplexed-input-separated sigma-delta analog-to-digital converter design for pixel-level analog-to-digital conversion |
US20050134714A1 (en) * | 2003-12-19 | 2005-06-23 | Bradley Carlson | Single chip, noise-resistant, one-dimensional, CMOS sensor for target imaging |
US20060049334A1 (en) * | 2004-09-09 | 2006-03-09 | Stmicroelectronics Ltd., Country Of Incorporation | Image sensors |
US20060064477A1 (en) * | 2004-09-23 | 2006-03-23 | Renkis Martin A | Mesh networked video and sensor surveillance system and method for wireless mesh networked sensors |
US20060070107A1 (en) * | 2004-09-24 | 2006-03-30 | Martin Renkis | Wireless video surveillance system and method with remote viewing |
US20060066720A1 (en) * | 2004-09-24 | 2006-03-30 | Martin Renkis | Wireless video surveillance system and method with external removable recording |
US20060066721A1 (en) * | 2004-09-25 | 2006-03-30 | Martin Renkis | Wireless video surveillance system and method with dual encoding |
US20060070108A1 (en) * | 2004-09-30 | 2006-03-30 | Martin Renkis | Wireless video surveillance system & method with digital input recorder interface and setup |
US20060070109A1 (en) * | 2004-09-30 | 2006-03-30 | Martin Renkis | Wireless video surveillance system & method with rapid installation |
US20060066729A1 (en) * | 2004-09-24 | 2006-03-30 | Martin Renkis | Wireless video surveillance system and method with DVR-based querying |
US20060072757A1 (en) * | 2004-09-24 | 2006-04-06 | Martin Renkis | Wireless video surveillance system and method with emergency video access |
US20060075235A1 (en) * | 2004-09-30 | 2006-04-06 | Martin Renkis | Wireless video surveillance system and method with security key |
US20060072013A1 (en) * | 2004-09-23 | 2006-04-06 | Martin Renkis | Wireless video surveillance system and method with two-way locking of input capture devices |
US20060075065A1 (en) * | 2004-09-30 | 2006-04-06 | Renkis Martin A | Wireless video surveillance system and method with single click-select actions |
US20060071779A1 (en) * | 2004-09-30 | 2006-04-06 | Martin Renkis | Wireless video surveillance system & method with input capture and data transmission prioritization and adjustment |
US20060095539A1 (en) * | 2004-10-29 | 2006-05-04 | Martin Renkis | Wireless video surveillance system and method for mesh networking |
US20060143672A1 (en) * | 2004-09-23 | 2006-06-29 | Martin Renkis | Wireless video surveillance processing negative motion |
US20070009104A1 (en) * | 2004-09-23 | 2007-01-11 | Renkis Martin A | Wireless smart camera system and method |
US20070064109A1 (en) * | 2004-09-23 | 2007-03-22 | Renkis Martin A | Wireless video surveillance system and method for self-configuring network |
US20070176108A1 (en) * | 2004-01-12 | 2007-08-02 | Koninklijke Philips Electronics Nv | Semiconductor-based image sensor |
US7388535B1 (en) * | 2006-07-20 | 2008-06-17 | Nortel Networks Limited | Digitizing front end for optical receiver |
US7595883B1 (en) | 2002-09-16 | 2009-09-29 | The Board Of Trustees Of The Leland Stanford Junior University | Biological analysis arrangement and approach therefor |
US7603087B1 (en) | 2005-08-12 | 2009-10-13 | Smartvue Corporation | Wireless video surveillance jamming and interface prevention |
US20100259322A1 (en) * | 2009-04-06 | 2010-10-14 | Bridge Semiconductor Corporation | Readout circuit and system including same |
US20100276572A1 (en) * | 2005-06-02 | 2010-11-04 | Sony Corporation | Semiconductor image sensor module and method of manufacturing the same |
WO2012003094A1 (en) * | 2010-07-01 | 2012-01-05 | Nueva Imaging | High dynamic range image sensor with in pixel memory |
US20120262322A1 (en) * | 2005-09-30 | 2012-10-18 | The Massachusetts Institute Of Technology | Digital readout method and apparatus |
US8842179B2 (en) | 2004-09-24 | 2014-09-23 | Smartvue Corporation | Video surveillance sharing system and method |
US20140299772A1 (en) * | 2011-05-20 | 2014-10-09 | The University Of Chicago | Mid-infrared photodetectors |
US20150062377A1 (en) * | 2013-08-29 | 2015-03-05 | Pixim, Inc. | Cmos image sensor implementing correlated double sampling with compression |
US20150244947A1 (en) * | 2014-02-25 | 2015-08-27 | Samsung Electronics Co., Ltd. | Device and method of transferring sensed data in image sensor |
US20150349012A1 (en) * | 2013-02-14 | 2015-12-03 | Olympus Corporation | Solid-state image pickup device and image pickup device |
US9588240B1 (en) | 2015-10-27 | 2017-03-07 | General Electric Company | Digital readout architecture for four side buttable digital X-ray detector |
US20170194374A1 (en) * | 2015-12-31 | 2017-07-06 | General Electric Company | Radiation detector assembly |
US9813652B2 (en) | 2013-08-29 | 2017-11-07 | Sony Corporation | CMOS image sensor and imaging method implementing correlated double sampling and compression |
US20190098241A1 (en) * | 2016-03-15 | 2019-03-28 | Dartmouth College | Stacked backside-illuminated quanta image sensor with cluster-parallel readout |
US10283557B2 (en) | 2015-12-31 | 2019-05-07 | General Electric Company | Radiation detector assembly |
RU2733415C1 (en) * | 2020-05-13 | 2020-10-01 | Вячеслав Михайлович Смелков | Digital device of a two-cameras television system with adjustment of the direction of the viewing axis and with high sensitivity to the same level for each of the light-signal channels |
US11252354B2 (en) * | 2018-08-01 | 2022-02-15 | Canon Kabushiki Kaisha | Image sensor, control method thereof, and image capturing apparatus |
CN114363539A (en) * | 2020-10-13 | 2022-04-15 | 爱思开海力士有限公司 | Analog-to-digital converter, image sensor and method of operation |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3623132A (en) | 1970-12-14 | 1971-11-23 | North American Rockwell | Charge sensing circuit |
US4142199A (en) | 1977-06-24 | 1979-02-27 | International Business Machines Corporation | Bucket brigade device and process |
US5461425A (en) | 1994-02-15 | 1995-10-24 | Stanford University | CMOS image sensor with pixel level A/D conversion |
US5471515A (en) | 1994-01-28 | 1995-11-28 | California Institute Of Technology | Active pixel sensor with intra-pixel charge transfer |
US5801657A (en) | 1997-02-05 | 1998-09-01 | Stanford University | Serial analog-to-digital converter using successive comparisons |
US5982318A (en) * | 1997-10-10 | 1999-11-09 | Lucent Technologies Inc. | Linearizing offset cancelling white balancing and gamma correcting analog to digital converter for active pixel sensor imagers with self calibrating and self adjusting properties |
US6271785B1 (en) * | 1998-04-29 | 2001-08-07 | Texas Instruments Incorporated | CMOS imager with an A/D per pixel convertor |
-
2001
- 2001-03-30 US US09/823,592 patent/US6380880B1/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3623132A (en) | 1970-12-14 | 1971-11-23 | North American Rockwell | Charge sensing circuit |
US4142199A (en) | 1977-06-24 | 1979-02-27 | International Business Machines Corporation | Bucket brigade device and process |
US5471515A (en) | 1994-01-28 | 1995-11-28 | California Institute Of Technology | Active pixel sensor with intra-pixel charge transfer |
US5461425A (en) | 1994-02-15 | 1995-10-24 | Stanford University | CMOS image sensor with pixel level A/D conversion |
US5801657A (en) | 1997-02-05 | 1998-09-01 | Stanford University | Serial analog-to-digital converter using successive comparisons |
US5982318A (en) * | 1997-10-10 | 1999-11-09 | Lucent Technologies Inc. | Linearizing offset cancelling white balancing and gamma correcting analog to digital converter for active pixel sensor imagers with self calibrating and self adjusting properties |
US6271785B1 (en) * | 1998-04-29 | 2001-08-07 | Texas Instruments Incorporated | CMOS imager with an A/D per pixel convertor |
Cited By (112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7738013B2 (en) * | 2001-05-29 | 2010-06-15 | Samsung Electronics Co., Ltd. | Systems and methods for power conservation in a CMOS imager |
US7701497B2 (en) | 2001-05-29 | 2010-04-20 | Samsung Electronics Co., Ltd. | CMOS imager for cellular applications and methods of using such |
US20050068436A1 (en) * | 2001-05-29 | 2005-03-31 | Miriam Fraenkel | CMOS imager for cellular applications and methods of using such |
US20040233324A1 (en) * | 2001-05-29 | 2004-11-25 | Transchip, Inc. | Systems and methods for power conservation in a CMOS imager |
US6541751B1 (en) * | 2001-10-03 | 2003-04-01 | Pixim Inc | Time multiplexing image processing functions for noise reduction |
US20030133030A1 (en) * | 2002-01-16 | 2003-07-17 | Borg Matthew M. | Ground referenced pixel reset |
US7298406B2 (en) * | 2002-01-16 | 2007-11-20 | Micron Technology, Inc. | Ground referenced pixel reset |
US6838651B1 (en) * | 2002-03-28 | 2005-01-04 | Ess Technology, Inc. | High sensitivity snap shot CMOS image sensor |
WO2003085699A2 (en) * | 2002-04-04 | 2003-10-16 | Motorola, Inc. | Image sensor circuit and method |
WO2003085699A3 (en) * | 2002-04-04 | 2004-01-22 | Motorola Inc | Image sensor circuit and method |
US20030189657A1 (en) * | 2002-04-04 | 2003-10-09 | Tarik Hammadou | Image sensor circuit and method |
US7095439B2 (en) | 2002-04-04 | 2006-08-22 | Motorola, Inc. | Image sensor circuit and method |
US6606049B1 (en) * | 2002-08-02 | 2003-08-12 | Ami Semiconductor, Inc. | Analog to digital converters based on transconveyance amplifiers |
US8709788B2 (en) | 2002-09-16 | 2014-04-29 | The Board Of Trustees Of The Leland Stanford Junior University | Biological analysis arrangement and approach therefor |
US7595883B1 (en) | 2002-09-16 | 2009-09-29 | The Board Of Trustees Of The Leland Stanford Junior University | Biological analysis arrangement and approach therefor |
US20040179119A1 (en) * | 2003-03-13 | 2004-09-16 | Jelley Kevin W. | Multicolor light sensing pixel structure |
US7209172B2 (en) * | 2003-03-13 | 2007-04-24 | Motorola, Inc. | Multicolor light sensing pixel structure |
WO2005008906A3 (en) * | 2003-07-14 | 2005-05-06 | Univ Rochester | Multiplexed-input-separated sigma-delta analog-to-digital converter design for pixel-level analog-to-digital conversion |
US20050073451A1 (en) * | 2003-07-14 | 2005-04-07 | University Of Rochester | Multiplexed-input-separated sigma-delta analog-to-digital converter design for pixel-level analog-to-digital conversion |
US7023369B2 (en) | 2003-07-14 | 2006-04-04 | University Of Rochester | Multiplexed-input-separated sigma-delta analog-to-digital converter design for pixel-level analog-to-digital conversion |
US20050134714A1 (en) * | 2003-12-19 | 2005-06-23 | Bradley Carlson | Single chip, noise-resistant, one-dimensional, CMOS sensor for target imaging |
US7446806B2 (en) * | 2003-12-19 | 2008-11-04 | Symbol Technologies, Inc. | Single chip, noise-resistant, one-dimensional, CMOS sensor for target imaging |
US20070176108A1 (en) * | 2004-01-12 | 2007-08-02 | Koninklijke Philips Electronics Nv | Semiconductor-based image sensor |
EP1635470A1 (en) * | 2004-09-09 | 2006-03-15 | STMicroelectronics Limited | Method and apparatus for a CMOS image sensor comprising a distributed amplifier and a multiplexed analog to digital converter |
US20060049334A1 (en) * | 2004-09-09 | 2006-03-09 | Stmicroelectronics Ltd., Country Of Incorporation | Image sensors |
US7265329B2 (en) | 2004-09-09 | 2007-09-04 | Stmicroelectronics Ltd. | Image sensors with distributed amplifiers and related methods |
US20070064109A1 (en) * | 2004-09-23 | 2007-03-22 | Renkis Martin A | Wireless video surveillance system and method for self-configuring network |
US20060072013A1 (en) * | 2004-09-23 | 2006-04-06 | Martin Renkis | Wireless video surveillance system and method with two-way locking of input capture devices |
US7821533B2 (en) | 2004-09-23 | 2010-10-26 | Smartvue Corporation | Wireless video surveillance system and method with two-way locking of input capture devices |
US20060143672A1 (en) * | 2004-09-23 | 2006-06-29 | Martin Renkis | Wireless video surveillance processing negative motion |
US20060064477A1 (en) * | 2004-09-23 | 2006-03-23 | Renkis Martin A | Mesh networked video and sensor surveillance system and method for wireless mesh networked sensors |
US20070009104A1 (en) * | 2004-09-23 | 2007-01-11 | Renkis Martin A | Wireless smart camera system and method |
US8752106B2 (en) | 2004-09-23 | 2014-06-10 | Smartvue Corporation | Mesh networked video and sensor surveillance system and method for wireless mesh networked sensors |
US8457314B2 (en) | 2004-09-23 | 2013-06-04 | Smartvue Corporation | Wireless video surveillance system and method for self-configuring network |
US20060066720A1 (en) * | 2004-09-24 | 2006-03-30 | Martin Renkis | Wireless video surveillance system and method with external removable recording |
US8842179B2 (en) | 2004-09-24 | 2014-09-23 | Smartvue Corporation | Video surveillance sharing system and method |
US20060072757A1 (en) * | 2004-09-24 | 2006-04-06 | Martin Renkis | Wireless video surveillance system and method with emergency video access |
US7954129B2 (en) | 2004-09-24 | 2011-05-31 | Smartvue Corporation | Wireless video surveillance system and method with remote viewing |
US20060066729A1 (en) * | 2004-09-24 | 2006-03-30 | Martin Renkis | Wireless video surveillance system and method with DVR-based querying |
US7508418B2 (en) | 2004-09-24 | 2009-03-24 | Smartvue Corporation | Wireless video surveillance system and method with DVR-based querying |
US20090237504A1 (en) * | 2004-09-24 | 2009-09-24 | Renkis Martin A | Wireless video surveillance system and method with DVR-based querying |
US20060070107A1 (en) * | 2004-09-24 | 2006-03-30 | Martin Renkis | Wireless video surveillance system and method with remote viewing |
US7719571B2 (en) | 2004-09-24 | 2010-05-18 | Smartvue Corporation | Wireless video surveillance system and method with DVR-based querying |
US8208019B2 (en) | 2004-09-24 | 2012-06-26 | Martin Renkis | Wireless video surveillance system and method with external removable recording |
US7719567B2 (en) | 2004-09-24 | 2010-05-18 | Smartvue Corporation | Wireless video surveillance system and method with emergency video access |
US20060066721A1 (en) * | 2004-09-25 | 2006-03-30 | Martin Renkis | Wireless video surveillance system and method with dual encoding |
US7936370B2 (en) | 2004-09-25 | 2011-05-03 | Smartvue Corporation | Wireless video surveillance system and method with dual encoding |
US20060071779A1 (en) * | 2004-09-30 | 2006-04-06 | Martin Renkis | Wireless video surveillance system & method with input capture and data transmission prioritization and adjustment |
US8253796B2 (en) | 2004-09-30 | 2012-08-28 | Smartvue Corp. | Wireless video surveillance system and method with rapid installation |
US9407877B2 (en) | 2004-09-30 | 2016-08-02 | Kip Smrt P1 Lp | Wireless video surveillance system and method with input capture and data transmission prioritization and adjustment |
US7784080B2 (en) | 2004-09-30 | 2010-08-24 | Smartvue Corporation | Wireless video surveillance system and method with single click-select actions |
US20100220188A1 (en) * | 2004-09-30 | 2010-09-02 | Renkis Martin A | Wireless Video Surveillance System and Method with Input Capture and Data Transmission Prioritization and Adjustment |
US20060070109A1 (en) * | 2004-09-30 | 2006-03-30 | Martin Renkis | Wireless video surveillance system & method with rapid installation |
US20060075235A1 (en) * | 2004-09-30 | 2006-04-06 | Martin Renkis | Wireless video surveillance system and method with security key |
US7728871B2 (en) | 2004-09-30 | 2010-06-01 | Smartvue Corporation | Wireless video surveillance system & method with input capture and data transmission prioritization and adjustment |
US8610772B2 (en) | 2004-09-30 | 2013-12-17 | Smartvue Corporation | Wireless video surveillance system and method with input capture and data transmission prioritization and adjustment |
US20060070108A1 (en) * | 2004-09-30 | 2006-03-30 | Martin Renkis | Wireless video surveillance system & method with digital input recorder interface and setup |
US20060075065A1 (en) * | 2004-09-30 | 2006-04-06 | Renkis Martin A | Wireless video surveillance system and method with single click-select actions |
US9544547B2 (en) | 2004-09-30 | 2017-01-10 | Kip Smrt P1 Lp | Monitoring smart devices on a wireless mesh communication network |
US8199195B2 (en) | 2004-09-30 | 2012-06-12 | Martin Renkis | Wireless video surveillance system and method with security key |
US10769910B2 (en) | 2004-10-29 | 2020-09-08 | Sensormatic Electronics, LLC | Surveillance systems with camera coordination for detecting events |
US20060095539A1 (en) * | 2004-10-29 | 2006-05-04 | Martin Renkis | Wireless video surveillance system and method for mesh networking |
US11450188B2 (en) | 2004-10-29 | 2022-09-20 | Johnson Controls Tyco IP Holdings LLP | Wireless environmental data capture system and method for mesh networking |
US11138847B2 (en) | 2004-10-29 | 2021-10-05 | Sensormatic Electronics, LLC | Wireless environmental data capture system and method for mesh networking |
US10504347B1 (en) | 2004-10-29 | 2019-12-10 | Sensormatic Electronics, LLC | Wireless environmental data capture system and method for mesh networking |
US10115279B2 (en) | 2004-10-29 | 2018-10-30 | Sensomatic Electronics, LLC | Surveillance monitoring systems and methods for remotely viewing data and controlling cameras |
US12100277B2 (en) | 2004-10-29 | 2024-09-24 | Johnson Controls Tyco IP Holdings LLP | Wireless environmental data capture system and method for mesh networking |
US11228728B2 (en) | 2005-06-02 | 2022-01-18 | Sony Group Corporation | Semiconductor image sensor module and method of manufacturing the same |
US11722800B2 (en) | 2005-06-02 | 2023-08-08 | Sony Group Corporation | Semiconductor image sensor module and method of manufacturing the same |
US8946610B2 (en) * | 2005-06-02 | 2015-02-03 | Sony Corporation | Semiconductor image sensor module and method of manufacturing the same |
US10645324B2 (en) | 2005-06-02 | 2020-05-05 | Sony Corporation | Semiconductor image sensor module and method of manufacturing the same |
US10594972B2 (en) | 2005-06-02 | 2020-03-17 | Sony Corporation | Semiconductor image sensor module and method of manufacturing the same |
US20100276572A1 (en) * | 2005-06-02 | 2010-11-04 | Sony Corporation | Semiconductor image sensor module and method of manufacturing the same |
US10129497B2 (en) | 2005-06-02 | 2018-11-13 | Sony Corporation | Semiconductor image sensor module and method of manufacturing the same |
US9955097B2 (en) | 2005-06-02 | 2018-04-24 | Sony Corporation | Semiconductor image sensor module and method of manufacturing the same |
US7603087B1 (en) | 2005-08-12 | 2009-10-13 | Smartvue Corporation | Wireless video surveillance jamming and interface prevention |
US7925219B2 (en) | 2005-08-12 | 2011-04-12 | Smartvue Corporation | Wireless video surveillance jamming and interference prevention |
US20090275287A1 (en) * | 2005-08-12 | 2009-11-05 | Renkis Martin A | Wireless video surveillance jamming and interface prevention |
US20090315991A1 (en) * | 2005-08-12 | 2009-12-24 | Renkis Martin A | Wireless Video Surveillance Jamming and Interference Prevention |
US10348993B2 (en) | 2005-09-30 | 2019-07-09 | Massachusetts Institute Of Technology | Digital readout method and apparatus |
US20120262322A1 (en) * | 2005-09-30 | 2012-10-18 | The Massachusetts Institute Of Technology | Digital readout method and apparatus |
US9712771B2 (en) | 2005-09-30 | 2017-07-18 | Massachusetts Institute Of Technology | Digital readout method and apparatus |
US8933832B2 (en) * | 2005-09-30 | 2015-01-13 | The Massachusetts Institute Of Technology | Digital readout method and apparatus |
US9385738B2 (en) | 2005-09-30 | 2016-07-05 | Massachusetts Institute Of Technology | Digital readout method and apparatus |
US7388535B1 (en) * | 2006-07-20 | 2008-06-17 | Nortel Networks Limited | Digitizing front end for optical receiver |
US20100259322A1 (en) * | 2009-04-06 | 2010-10-14 | Bridge Semiconductor Corporation | Readout circuit and system including same |
US8981277B2 (en) | 2010-07-01 | 2015-03-17 | Silicon Optronics, Inc. | High dynamic range image sensor with in pixel memory |
WO2012003094A1 (en) * | 2010-07-01 | 2012-01-05 | Nueva Imaging | High dynamic range image sensor with in pixel memory |
US20140299772A1 (en) * | 2011-05-20 | 2014-10-09 | The University Of Chicago | Mid-infrared photodetectors |
US9318628B2 (en) * | 2011-05-20 | 2016-04-19 | The University Of Chicago | Mid-infrared photodetectors |
US20150349012A1 (en) * | 2013-02-14 | 2015-12-03 | Olympus Corporation | Solid-state image pickup device and image pickup device |
US9077924B2 (en) * | 2013-08-29 | 2015-07-07 | Sony Corporation | CMOS image sensor implementing correlated double sampling with compression |
US9813652B2 (en) | 2013-08-29 | 2017-11-07 | Sony Corporation | CMOS image sensor and imaging method implementing correlated double sampling and compression |
US20150062377A1 (en) * | 2013-08-29 | 2015-03-05 | Pixim, Inc. | Cmos image sensor implementing correlated double sampling with compression |
US9413999B2 (en) | 2013-08-29 | 2016-08-09 | Sony Corporation | CMOS image sensor implementing correlated double sampling with compression |
US9509925B2 (en) * | 2014-02-25 | 2016-11-29 | Samsung Electronics Co., Ltd. | Device and method of transferring sensed data in image sensor |
US20150244947A1 (en) * | 2014-02-25 | 2015-08-27 | Samsung Electronics Co., Ltd. | Device and method of transferring sensed data in image sensor |
CN108353138A (en) * | 2015-10-27 | 2018-07-31 | 通用电气公司 | The digital read out framework of digital X ray detector can be docked for four sides |
JP2019502284A (en) * | 2015-10-27 | 2019-01-24 | ゼネラル・エレクトリック・カンパニイ | Digital readout architecture for a four-side joinable digital X-ray detector |
CN108353138B (en) * | 2015-10-27 | 2020-07-10 | 通用电气公司 | Digital readout architecture for four-sided dockable digital X-ray detectors |
US9588240B1 (en) | 2015-10-27 | 2017-03-07 | General Electric Company | Digital readout architecture for four side buttable digital X-ray detector |
WO2017074610A1 (en) * | 2015-10-27 | 2017-05-04 | General Electric Company | Digital readout architecture for four side buttable digital x-ray detector |
US10283557B2 (en) | 2015-12-31 | 2019-05-07 | General Electric Company | Radiation detector assembly |
US10686003B2 (en) * | 2015-12-31 | 2020-06-16 | General Electric Company | Radiation detector assembly |
US20170194374A1 (en) * | 2015-12-31 | 2017-07-06 | General Electric Company | Radiation detector assembly |
US20190098241A1 (en) * | 2016-03-15 | 2019-03-28 | Dartmouth College | Stacked backside-illuminated quanta image sensor with cluster-parallel readout |
KR20190116049A (en) * | 2016-03-15 | 2019-10-14 | 다트머스 칼리지 | Stacked back-illuminated quantum image sensor with cluster-parallel readout |
US11924573B2 (en) * | 2016-03-15 | 2024-03-05 | Trustees Of Dartmouth College | Stacked backside-illuminated quanta image sensor with cluster-parallel readout |
JP2019510418A (en) * | 2016-03-15 | 2019-04-11 | ダートマス カレッジ | Stacked back-illuminated quantum image sensor with cluster parallel readout |
US11252354B2 (en) * | 2018-08-01 | 2022-02-15 | Canon Kabushiki Kaisha | Image sensor, control method thereof, and image capturing apparatus |
RU2733415C1 (en) * | 2020-05-13 | 2020-10-01 | Вячеслав Михайлович Смелков | Digital device of a two-cameras television system with adjustment of the direction of the viewing axis and with high sensitivity to the same level for each of the light-signal channels |
CN114363539A (en) * | 2020-10-13 | 2022-04-15 | 爱思开海力士有限公司 | Analog-to-digital converter, image sensor and method of operation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6380880B1 (en) | Digital pixel sensor with integrated charge transfer amplifier | |
US11196955B2 (en) | Solid-state imaging element and camera system | |
US6970195B1 (en) | Digital image sensor with improved color reproduction | |
EP2109306B1 (en) | Pixel array with global shutter | |
EP2378764B1 (en) | A camera | |
US7667169B2 (en) | Image sensor with simultaneous auto-focus and image preview | |
US7675561B2 (en) | Time delayed integration CMOS image sensor with zero desynchronization | |
EP2285098B1 (en) | Solid-state image pickup device and driving method thereof, and electronic apparatus | |
US10044947B2 (en) | Electronic apparatus and driving method therefor | |
US6975355B1 (en) | Multiple sampling via a time-indexed method to achieve wide dynamic ranges | |
EP3627556B1 (en) | Solid-state image sensor and image-capturing device | |
KR100801758B1 (en) | Image sensor and its control method | |
WO2000005874A1 (en) | Multiple storage node active pixel sensors | |
EP2280538B1 (en) | Solid-state imaging element and camera system | |
JP2001251558A (en) | Interlaced Alternate Pixel Design for High Sensitivity CMOS Image Sensor | |
US5724094A (en) | Contact image sensor utilizing differential voltage pickoff | |
Ay et al. | CMOS active pixel sensor (APS) imager for scientific applications | |
WO2024031300A1 (en) | Photon counting pixel and method of operation thereof | |
EP1772011B1 (en) | Cmos image sensor | |
Solhusvik et al. | Experimental results from 32 x 32 CMOS photogate and photodiode active pixel image sensors | |
KR100752405B1 (en) | Pixel part of CMOS image sensor using photodiode for storage | |
JP2004228524A (en) | Solid state imaging device and camera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PIXIM, INCORPORATED, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIDERMANN, WILLIAM R.;REEL/FRAME:011681/0143 Effective date: 20010329 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: COMERICA BANK, A TEXAS BANKING ASSOCIATION, MICHIG Free format text: SECURITY AGREEMENT;ASSIGNOR:PIXIM, INC., A CALIFORNIA CORPORATION;REEL/FRAME:026064/0625 Effective date: 20110325 |
|
AS | Assignment |
Owner name: PIXIM, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:COMERICA BANK;REEL/FRAME:028958/0954 Effective date: 20120911 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |