US20160030480A1 - Cellular Therapy for Ocular Degeneration - Google Patents
Cellular Therapy for Ocular Degeneration Download PDFInfo
- Publication number
- US20160030480A1 US20160030480A1 US14/734,561 US201514734561A US2016030480A1 US 20160030480 A1 US20160030480 A1 US 20160030480A1 US 201514734561 A US201514734561 A US 201514734561A US 2016030480 A1 US2016030480 A1 US 2016030480A1
- Authority
- US
- United States
- Prior art keywords
- cells
- cell
- pharmaceutical composition
- ocular
- eye
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000007850 degeneration Effects 0.000 title description 9
- 238000002659 cell therapy Methods 0.000 title description 3
- 210000004027 cell Anatomy 0.000 claims abstract description 202
- 210000002901 mesenchymal stem cell Anatomy 0.000 claims abstract description 39
- 239000000203 mixture Substances 0.000 claims abstract description 27
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 claims abstract description 9
- 230000014509 gene expression Effects 0.000 claims abstract description 9
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 claims abstract description 8
- 102100024210 CD166 antigen Human genes 0.000 claims abstract description 6
- 102100032912 CD44 antigen Human genes 0.000 claims abstract description 6
- 102100037241 Endoglin Human genes 0.000 claims abstract description 6
- 101000980840 Homo sapiens CD166 antigen Proteins 0.000 claims abstract description 6
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 claims abstract description 6
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 claims abstract description 5
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 claims abstract description 5
- 101000881679 Homo sapiens Endoglin Proteins 0.000 claims abstract description 5
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 claims abstract description 5
- 101000935043 Homo sapiens Integrin beta-1 Proteins 0.000 claims abstract description 5
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 claims abstract description 5
- 102100025304 Integrin beta-1 Human genes 0.000 claims abstract description 5
- 239000008194 pharmaceutical composition Substances 0.000 claims description 42
- 210000000130 stem cell Anatomy 0.000 claims description 38
- 230000003412 degenerative effect Effects 0.000 claims description 36
- 239000003795 chemical substances by application Substances 0.000 claims description 28
- 108091008695 photoreceptors Proteins 0.000 claims description 21
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 14
- 230000002207 retinal effect Effects 0.000 claims description 14
- 239000003937 drug carrier Substances 0.000 claims description 12
- 208000002780 macular degeneration Diseases 0.000 claims description 10
- 208000007014 Retinitis pigmentosa Diseases 0.000 claims description 9
- 208000035475 disorder Diseases 0.000 claims description 9
- 230000001537 neural effect Effects 0.000 claims description 9
- 239000003814 drug Substances 0.000 claims description 8
- 230000000750 progressive effect Effects 0.000 claims description 8
- 208000010412 Glaucoma Diseases 0.000 claims description 7
- 239000003550 marker Substances 0.000 claims description 7
- 210000002894 multi-fate stem cell Anatomy 0.000 claims description 7
- 210000001178 neural stem cell Anatomy 0.000 claims description 7
- 230000004083 survival effect Effects 0.000 claims description 7
- 230000001154 acute effect Effects 0.000 claims description 6
- 230000007812 deficiency Effects 0.000 claims description 6
- 229940079593 drug Drugs 0.000 claims description 6
- 210000002919 epithelial cell Anatomy 0.000 claims description 6
- 206010012689 Diabetic retinopathy Diseases 0.000 claims description 5
- 210000001130 astrocyte Anatomy 0.000 claims description 5
- 230000001684 chronic effect Effects 0.000 claims description 5
- 238000011065 in-situ storage Methods 0.000 claims description 5
- 210000002569 neuron Anatomy 0.000 claims description 5
- 210000004248 oligodendroglia Anatomy 0.000 claims description 5
- 210000001778 pluripotent stem cell Anatomy 0.000 claims description 5
- 208000030886 Traumatic Brain injury Diseases 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 208000013441 ocular lesion Diseases 0.000 claims description 3
- 208000030768 Optic nerve injury Diseases 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 39
- 238000002560 therapeutic procedure Methods 0.000 abstract description 10
- 208000037765 diseases and disorders Diseases 0.000 abstract description 3
- 230000001172 regenerating effect Effects 0.000 abstract description 3
- 210000001508 eye Anatomy 0.000 description 60
- 101000958041 Homo sapiens Musculin Proteins 0.000 description 54
- 210000004271 bone marrow stromal cell Anatomy 0.000 description 54
- 241001465754 Metazoa Species 0.000 description 35
- 210000001519 tissue Anatomy 0.000 description 30
- 238000002054 transplantation Methods 0.000 description 24
- 241000700159 Rattus Species 0.000 description 21
- 150000001875 compounds Chemical class 0.000 description 21
- 239000003102 growth factor Substances 0.000 description 16
- -1 for example Substances 0.000 description 14
- 239000002609 medium Substances 0.000 description 14
- 210000001525 retina Anatomy 0.000 description 14
- 230000000007 visual effect Effects 0.000 description 13
- 239000003963 antioxidant agent Substances 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 238000002347 injection Methods 0.000 description 12
- 230000004044 response Effects 0.000 description 12
- 235000006708 antioxidants Nutrition 0.000 description 11
- 230000004069 differentiation Effects 0.000 description 11
- 238000000338 in vitro Methods 0.000 description 11
- 238000011282 treatment Methods 0.000 description 11
- 201000004569 Blindness Diseases 0.000 description 10
- 241000282414 Homo sapiens Species 0.000 description 10
- 230000006378 damage Effects 0.000 description 10
- 239000003636 conditioned culture medium Substances 0.000 description 9
- 210000004087 cornea Anatomy 0.000 description 9
- 210000000695 crystalline len Anatomy 0.000 description 9
- 239000010410 layer Substances 0.000 description 9
- 239000008177 pharmaceutical agent Substances 0.000 description 9
- 230000004043 responsiveness Effects 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 230000001413 cellular effect Effects 0.000 description 8
- 230000006872 improvement Effects 0.000 description 8
- 210000003583 retinal pigment epithelium Anatomy 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 230000001228 trophic effect Effects 0.000 description 8
- 230000004393 visual impairment Effects 0.000 description 8
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 7
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 7
- 230000002424 anti-apoptotic effect Effects 0.000 description 7
- 230000012010 growth Effects 0.000 description 7
- 239000001963 growth medium Substances 0.000 description 7
- MDKGKXOCJGEUJW-UHFFFAOYSA-N suprofen Chemical compound C1=CC(C(C(O)=O)C)=CC=C1C(=O)C1=CC=CS1 MDKGKXOCJGEUJW-UHFFFAOYSA-N 0.000 description 7
- 230000004304 visual acuity Effects 0.000 description 7
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- 206010038923 Retinopathy Diseases 0.000 description 6
- 206010064930 age-related macular degeneration Diseases 0.000 description 6
- 239000013592 cell lysate Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229940121363 anti-inflammatory agent Drugs 0.000 description 5
- 239000002260 anti-inflammatory agent Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 230000010261 cell growth Effects 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 210000002744 extracellular matrix Anatomy 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000004090 neuroprotective agent Substances 0.000 description 5
- 238000010899 nucleation Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000004321 preservation Methods 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 235000018102 proteins Nutrition 0.000 description 5
- 238000009256 replacement therapy Methods 0.000 description 5
- 238000012552 review Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- 102000003951 Erythropoietin Human genes 0.000 description 4
- 108090000394 Erythropoietin Proteins 0.000 description 4
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 4
- 108010025020 Nerve Growth Factor Proteins 0.000 description 4
- 102000007072 Nerve Growth Factors Human genes 0.000 description 4
- 208000022873 Ocular disease Diseases 0.000 description 4
- 229960004308 acetylcysteine Drugs 0.000 description 4
- 210000004504 adult stem cell Anatomy 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 210000001185 bone marrow Anatomy 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 229940105423 erythropoietin Drugs 0.000 description 4
- 230000004438 eyesight Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- 210000003205 muscle Anatomy 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 210000005155 neural progenitor cell Anatomy 0.000 description 4
- 230000003018 neuroregenerative effect Effects 0.000 description 4
- 239000003900 neurotrophic factor Substances 0.000 description 4
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 208000002177 Cataract Diseases 0.000 description 3
- 208000017667 Chronic Disease Diseases 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 3
- 108010024636 Glutathione Proteins 0.000 description 3
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 3
- 101500016415 Lophius americanus Glucagon-like peptide 1 Proteins 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 3
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 235000010323 ascorbic acid Nutrition 0.000 description 3
- 229960005070 ascorbic acid Drugs 0.000 description 3
- 239000011668 ascorbic acid Substances 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 210000001671 embryonic stem cell Anatomy 0.000 description 3
- 210000002950 fibroblast Anatomy 0.000 description 3
- 229960003180 glutathione Drugs 0.000 description 3
- 210000003128 head Anatomy 0.000 description 3
- 230000001506 immunosuppresive effect Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229960003299 ketamine Drugs 0.000 description 3
- 239000006166 lysate Substances 0.000 description 3
- 210000001616 monocyte Anatomy 0.000 description 3
- 210000001328 optic nerve Anatomy 0.000 description 3
- 210000005259 peripheral blood Anatomy 0.000 description 3
- 239000011886 peripheral blood Substances 0.000 description 3
- 230000003169 placental effect Effects 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 229940001584 sodium metabisulfite Drugs 0.000 description 3
- 235000010262 sodium metabisulphite Nutrition 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 230000017423 tissue regeneration Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 208000009043 Chemical Burns Diseases 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 2
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 2
- 102100037362 Fibronectin Human genes 0.000 description 2
- 108010067306 Fibronectins Proteins 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 2
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 2
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- 108010085895 Laminin Proteins 0.000 description 2
- 102000007547 Laminin Human genes 0.000 description 2
- 206010072138 Limbal stem cell deficiency Diseases 0.000 description 2
- 108010031801 Lipopolysaccharide Receptors Proteins 0.000 description 2
- 102000052508 Lipopolysaccharide-binding protein Human genes 0.000 description 2
- 108010053632 Lipopolysaccharide-binding protein Proteins 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 208000017442 Retinal disease Diseases 0.000 description 2
- 102000013275 Somatomedins Human genes 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000000735 allogeneic effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000003110 anti-inflammatory effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 230000005779 cell damage Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000009429 distress Effects 0.000 description 2
- 230000004064 dysfunction Effects 0.000 description 2
- 210000002308 embryonic cell Anatomy 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 210000000981 epithelium Anatomy 0.000 description 2
- 208000030533 eye disease Diseases 0.000 description 2
- 239000003889 eye drop Substances 0.000 description 2
- 210000004700 fetal blood Anatomy 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 230000001605 fetal effect Effects 0.000 description 2
- 229940126864 fibroblast growth factor Drugs 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 210000001654 germ layer Anatomy 0.000 description 2
- 102000046949 human MSC Human genes 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000004410 intraocular pressure Effects 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 108010046018 leukocyte inhibitory factor Proteins 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 210000003716 mesoderm Anatomy 0.000 description 2
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 210000003733 optic disk Anatomy 0.000 description 2
- 208000020911 optic nerve disease Diseases 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 210000002826 placenta Anatomy 0.000 description 2
- 210000004623 platelet-rich plasma Anatomy 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 210000003994 retinal ganglion cell Anatomy 0.000 description 2
- 210000004761 scalp Anatomy 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 2
- 235000010265 sodium sulphite Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 210000003863 superior colliculi Anatomy 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 210000005166 vasculature Anatomy 0.000 description 2
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 2
- 229960001600 xylazine Drugs 0.000 description 2
- QCHFTSOMWOSFHM-WPRPVWTQSA-N (+)-Pilocarpine Chemical compound C1OC(=O)[C@@H](CC)[C@H]1CC1=CN=CN1C QCHFTSOMWOSFHM-WPRPVWTQSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- JCIIKRHCWVHVFF-UHFFFAOYSA-N 1,2,4-thiadiazol-5-amine;hydrochloride Chemical compound Cl.NC1=NC=NS1 JCIIKRHCWVHVFF-UHFFFAOYSA-N 0.000 description 1
- LEBVLXFERQHONN-UHFFFAOYSA-N 1-butyl-N-(2,6-dimethylphenyl)piperidine-2-carboxamide Chemical compound CCCCN1CCCCC1C(=O)NC1=C(C)C=CC=C1C LEBVLXFERQHONN-UHFFFAOYSA-N 0.000 description 1
- NCYCYZXNIZJOKI-IOUUIBBYSA-N 11-cis-retinal Chemical compound O=C/C=C(\C)/C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-IOUUIBBYSA-N 0.000 description 1
- WEEMDRWIKYCTQM-UHFFFAOYSA-N 2,6-dimethoxybenzenecarbothioamide Chemical compound COC1=CC=CC(OC)=C1C(N)=S WEEMDRWIKYCTQM-UHFFFAOYSA-N 0.000 description 1
- LHYQAEFVHIZFLR-UHFFFAOYSA-L 4-(4-diazonio-3-methoxyphenyl)-2-methoxybenzenediazonium;dichloride Chemical compound [Cl-].[Cl-].C1=C([N+]#N)C(OC)=CC(C=2C=C(OC)C([N+]#N)=CC=2)=C1 LHYQAEFVHIZFLR-UHFFFAOYSA-L 0.000 description 1
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 206010002329 Aneurysm Diseases 0.000 description 1
- 208000009299 Benign Mucous Membrane Pemphigoid Diseases 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 108010049931 Bone Morphogenetic Protein 2 Proteins 0.000 description 1
- 102100024506 Bone morphogenetic protein 2 Human genes 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 108091016585 CD44 antigen Proteins 0.000 description 1
- 102000011727 Caspases Human genes 0.000 description 1
- 108010076667 Caspases Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 206010058842 Cerebrovascular insufficiency Diseases 0.000 description 1
- 241000819038 Chichester Species 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 208000027205 Congenital disease Diseases 0.000 description 1
- 208000034656 Contusions Diseases 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 102000000541 Defensins Human genes 0.000 description 1
- 108010002069 Defensins Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 102100033167 Elastin Human genes 0.000 description 1
- 108010036395 Endoglin Proteins 0.000 description 1
- 108050009340 Endothelin Proteins 0.000 description 1
- 102000002045 Endothelin Human genes 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 108010011459 Exenatide Proteins 0.000 description 1
- 208000020564 Eye injury Diseases 0.000 description 1
- 108090000368 Fibroblast growth factor 8 Proteins 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- 102400000326 Glucagon-like peptide 2 Human genes 0.000 description 1
- 101800000221 Glucagon-like peptide 2 Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 108010090254 Growth Differentiation Factor 5 Proteins 0.000 description 1
- 102100035379 Growth/differentiation factor 5 Human genes 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 description 1
- 102100021866 Hepatocyte growth factor Human genes 0.000 description 1
- 208000028782 Hereditary disease Diseases 0.000 description 1
- 101000800116 Homo sapiens Thy-1 membrane glycoprotein Proteins 0.000 description 1
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 102100022875 Hypoxia-inducible factor 1-alpha Human genes 0.000 description 1
- 108050009527 Hypoxia-inducible factor-1 alpha Proteins 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 1
- 102000048143 Insulin-Like Growth Factor II Human genes 0.000 description 1
- 108090001117 Insulin-Like Growth Factor II Proteins 0.000 description 1
- 108010042918 Integrin alpha5beta1 Proteins 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 108010092694 L-Selectin Proteins 0.000 description 1
- 235000013878 L-cysteine Nutrition 0.000 description 1
- 239000004201 L-cysteine Substances 0.000 description 1
- 102100033467 L-selectin Human genes 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 208000034693 Laceration Diseases 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108010013709 Leukocyte Common Antigens Proteins 0.000 description 1
- 102000005482 Lipopolysaccharide Receptors Human genes 0.000 description 1
- 102000043136 MAP kinase family Human genes 0.000 description 1
- 108091054455 MAP kinase family Proteins 0.000 description 1
- 208000024556 Mendelian disease Diseases 0.000 description 1
- 208000009857 Microaneurysm Diseases 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 238000010826 Nissl staining Methods 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 206010061323 Optic neuropathy Diseases 0.000 description 1
- 102000003982 Parathyroid hormone Human genes 0.000 description 1
- 108090000445 Parathyroid hormone Proteins 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 1
- 102100039277 Pleiotrophin Human genes 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 206010038848 Retinal detachment Diseases 0.000 description 1
- 206010038926 Retinopathy hypertensive Diseases 0.000 description 1
- 206010038934 Retinopathy proliferative Diseases 0.000 description 1
- 206010038935 Retinopathy sickle cell Diseases 0.000 description 1
- 102100040756 Rhodopsin Human genes 0.000 description 1
- 108090000820 Rhodopsin Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 206010042033 Stevens-Johnson syndrome Diseases 0.000 description 1
- 231100000168 Stevens-Johnson syndrome Toxicity 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 108010008125 Tenascin Proteins 0.000 description 1
- 102000007000 Tenascin Human genes 0.000 description 1
- 206010053615 Thermal burn Diseases 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 108010041111 Thrombopoietin Proteins 0.000 description 1
- 102000036693 Thrombopoietin Human genes 0.000 description 1
- 102100033523 Thy-1 membrane glycoprotein Human genes 0.000 description 1
- YTGJWQPHMWSCST-UHFFFAOYSA-N Tiopronin Chemical compound CC(S)C(=O)NCC(O)=O YTGJWQPHMWSCST-UHFFFAOYSA-N 0.000 description 1
- 108010058907 Tiopronin Proteins 0.000 description 1
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 102000046299 Transforming Growth Factor beta1 Human genes 0.000 description 1
- 101800002279 Transforming growth factor beta-1 Proteins 0.000 description 1
- 102100023935 Transmembrane glycoprotein NMB Human genes 0.000 description 1
- BGDKAVGWHJFAGW-UHFFFAOYSA-N Tropicamide Chemical compound C=1C=CC=CC=1C(CO)C(=O)N(CC)CC1=CC=NC=C1 BGDKAVGWHJFAGW-UHFFFAOYSA-N 0.000 description 1
- COQLPRJCUIATTQ-UHFFFAOYSA-N Uranyl acetate Chemical compound O.O.O=[U]=O.CC(O)=O.CC(O)=O COQLPRJCUIATTQ-UHFFFAOYSA-N 0.000 description 1
- 108010031318 Vitronectin Proteins 0.000 description 1
- 102100035140 Vitronectin Human genes 0.000 description 1
- 208000016807 X-linked intellectual disability-macrocephaly-macroorchidism syndrome Diseases 0.000 description 1
- DFPAKSUCGFBDDF-ZQBYOMGUSA-N [14c]-nicotinamide Chemical compound N[14C](=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-ZQBYOMGUSA-N 0.000 description 1
- ZHAFUINZIZIXFC-UHFFFAOYSA-N [9-(dimethylamino)-10-methylbenzo[a]phenoxazin-5-ylidene]azanium;chloride Chemical compound [Cl-].O1C2=CC(=[NH2+])C3=CC=CC=C3C2=NC2=C1C=C(N(C)C)C(C)=C2 ZHAFUINZIZIXFC-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012574 advanced DMEM Substances 0.000 description 1
- 238000012382 advanced drug delivery Methods 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 238000011316 allogeneic transplantation Methods 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 229960003942 amphotericin b Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 208000008303 aniridia Diseases 0.000 description 1
- 210000002159 anterior chamber Anatomy 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 210000001742 aqueous humor Anatomy 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 239000003855 balanced salt solution Substances 0.000 description 1
- 239000007640 basal medium Substances 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000003181 biological factor Substances 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- HOQPTLCRWVZIQZ-UHFFFAOYSA-H bis[[2-(5-hydroxy-4,7-dioxo-1,3,2$l^{2}-dioxaplumbepan-5-yl)acetyl]oxy]lead Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HOQPTLCRWVZIQZ-UHFFFAOYSA-H 0.000 description 1
- 210000002459 blastocyst Anatomy 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000006931 brain damage Effects 0.000 description 1
- 231100000874 brain damage Toxicity 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 210000001775 bruch membrane Anatomy 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 229960003150 bupivacaine Drugs 0.000 description 1
- 239000007978 cacodylate buffer Substances 0.000 description 1
- 229940046731 calcineurin inhibitors Drugs 0.000 description 1
- 230000004856 capillary permeability Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 210000001715 carotid artery Anatomy 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 108060001132 cathelicidin Proteins 0.000 description 1
- 102000014509 cathelicidin Human genes 0.000 description 1
- 238000007444 cell Immobilization Methods 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 238000012832 cell culture technique Methods 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 210000003986 cell retinal photoreceptor Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 201000005667 central retinal vein occlusion Diseases 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- JUFFVKRROAPVBI-PVOYSMBESA-N chembl1210015 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(=O)N[C@H]1[C@@H]([C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO[C@]3(O[C@@H](C[C@H](O)[C@H](O)CO)[C@H](NC(C)=O)[C@@H](O)C3)C(O)=O)O2)O)[C@@H](CO)O1)NC(C)=O)C(=O)NCC(=O)NCC(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 JUFFVKRROAPVBI-PVOYSMBESA-N 0.000 description 1
- 230000003399 chemotactic effect Effects 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 210000003161 choroid Anatomy 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 238000003501 co-culture Methods 0.000 description 1
- ACTIUHUUMQJHFO-UPTCCGCDSA-N coenzyme Q10 Chemical compound COC1=C(OC)C(=O)C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UPTCCGCDSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000009519 contusion Effects 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- UFULAYFCSOUIOV-UHFFFAOYSA-N cysteamine Chemical compound NCCS UFULAYFCSOUIOV-UHFFFAOYSA-N 0.000 description 1
- 229960002433 cysteine Drugs 0.000 description 1
- 230000004300 dark adaptation Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- WBZKQQHYRPRKNJ-UHFFFAOYSA-L disulfite Chemical compound [O-]S(=O)S([O-])(=O)=O WBZKQQHYRPRKNJ-UHFFFAOYSA-L 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000007878 drug screening assay Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 210000003981 ectoderm Anatomy 0.000 description 1
- 208000002169 ectodermal dysplasia Diseases 0.000 description 1
- 208000031068 ectodermal dysplasia syndrome Diseases 0.000 description 1
- 230000004406 elevated intraocular pressure Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 210000001900 endoderm Anatomy 0.000 description 1
- ZUBDGKVDJUIMQQ-UBFCDGJISA-N endothelin-1 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)NC(=O)[C@H]1NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](C(C)C)NC(=O)[C@H]2CSSC[C@@H](C(N[C@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N2)=O)NC(=O)[C@@H](CO)NC(=O)[C@H](N)CSSC1)C1=CNC=N1 ZUBDGKVDJUIMQQ-UBFCDGJISA-N 0.000 description 1
- 230000007159 enucleation Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 210000003560 epithelium corneal Anatomy 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 229960001519 exenatide Drugs 0.000 description 1
- 210000000646 extraembryonic cell Anatomy 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 229940012356 eye drops Drugs 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 238000011223 gene expression profiling Methods 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002518 glial effect Effects 0.000 description 1
- TWSALRJGPBVBQU-PKQQPRCHSA-N glucagon-like peptide 2 Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(O)=O)[C@@H](C)CC)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)CC)C1=CC=CC=C1 TWSALRJGPBVBQU-PKQQPRCHSA-N 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000006481 glucose medium Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 210000002149 gonad Anatomy 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- KIUKXJAPPMFGSW-MNSSHETKSA-N hyaluronan Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H](C(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-MNSSHETKSA-N 0.000 description 1
- 229940099552 hyaluronan Drugs 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 201000001948 hypertensive retinopathy Diseases 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000003365 immunocytochemistry Methods 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 230000002480 immunoprotective effect Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000004968 inflammatory condition Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000013010 irrigating solution Substances 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 231100001032 irritation of the eye Toxicity 0.000 description 1
- 206010023332 keratitis Diseases 0.000 description 1
- 206010023365 keratopathy Diseases 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 208000018769 loss of vision Diseases 0.000 description 1
- 231100000864 loss of vision Toxicity 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 210000005210 lymphoid organ Anatomy 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 229940124302 mTOR inhibitor Drugs 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 239000003628 mammalian target of rapamycin inhibitor Substances 0.000 description 1
- 230000008774 maternal effect Effects 0.000 description 1
- 238000011177 media preparation Methods 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000002829 mitogen activated protein kinase inhibitor Substances 0.000 description 1
- 238000007799 mixed lymphocyte reaction assay Methods 0.000 description 1
- 230000000921 morphogenic effect Effects 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 210000003061 neural cell Anatomy 0.000 description 1
- 230000000324 neuroprotective effect Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 210000003458 notochord Anatomy 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 229960000988 nystatin Drugs 0.000 description 1
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 1
- 208000015200 ocular cicatricial pemphigoid Diseases 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000012285 osmium tetroxide Substances 0.000 description 1
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 1
- 102000002574 p38 Mitogen-Activated Protein Kinases Human genes 0.000 description 1
- 108010068338 p38 Mitogen-Activated Protein Kinases Proteins 0.000 description 1
- 239000000199 parathyroid hormone Substances 0.000 description 1
- 229960001319 parathyroid hormone Drugs 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229960004439 pemirolast Drugs 0.000 description 1
- HIANJWSAHKJQTH-UHFFFAOYSA-N pemirolast Chemical compound CC1=CC=CN(C2=O)C1=NC=C2C=1N=NNN=1 HIANJWSAHKJQTH-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940056360 penicillin g Drugs 0.000 description 1
- 210000003516 pericardium Anatomy 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- SONNWYBIRXJNDC-VIFPVBQESA-N phenylephrine Chemical compound CNC[C@H](O)C1=CC=CC(O)=C1 SONNWYBIRXJNDC-VIFPVBQESA-N 0.000 description 1
- 229960001802 phenylephrine Drugs 0.000 description 1
- 229940096826 phenylmercuric acetate Drugs 0.000 description 1
- 210000000608 photoreceptor cell Anatomy 0.000 description 1
- 230000016732 phototransduction Effects 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 210000004224 pleura Anatomy 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 229950008882 polysorbate Drugs 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 208000037920 primary disease Diseases 0.000 description 1
- 229960003912 probucol Drugs 0.000 description 1
- FYPMFJGVHOHGLL-UHFFFAOYSA-N probucol Chemical compound C=1C(C(C)(C)C)=C(O)C(C(C)(C)C)=CC=1SC(C)(C)SC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 FYPMFJGVHOHGLL-UHFFFAOYSA-N 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 238000003498 protein array Methods 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000011555 rabbit model Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 229940116176 remicade Drugs 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004264 retinal detachment Effects 0.000 description 1
- 239000000790 retinal pigment Substances 0.000 description 1
- 210000000844 retinal pigment epithelial cell Anatomy 0.000 description 1
- 208000004644 retinal vein occlusion Diseases 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 238000012340 reverse transcriptase PCR Methods 0.000 description 1
- 238000011808 rodent model Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 230000009758 senescence Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 230000000920 spermatogeneic effect Effects 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229960002385 streptomycin sulfate Drugs 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 210000001768 subcellular fraction Anatomy 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229960004492 suprofen Drugs 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- XYKWNRUXCOIMFZ-UHFFFAOYSA-N tepoxalin Chemical compound C1=CC(OC)=CC=C1N1C(C=2C=CC(Cl)=CC=2)=CC(CCC(=O)N(C)O)=N1 XYKWNRUXCOIMFZ-UHFFFAOYSA-N 0.000 description 1
- 229950009638 tepoxalin Drugs 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 229960004402 tiopronin Drugs 0.000 description 1
- 230000009772 tissue formation Effects 0.000 description 1
- 230000008467 tissue growth Effects 0.000 description 1
- UPSPUYADGBWSHF-UHFFFAOYSA-N tolmetin Chemical compound C1=CC(C)=CC=C1C(=O)C1=CC=C(CC(O)=O)N1C UPSPUYADGBWSHF-UHFFFAOYSA-N 0.000 description 1
- 229960001017 tolmetin Drugs 0.000 description 1
- 229950003937 tolonium Drugs 0.000 description 1
- HNONEKILPDHFOL-UHFFFAOYSA-M tolonium chloride Chemical compound [Cl-].C1=C(C)C(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 HNONEKILPDHFOL-UHFFFAOYSA-M 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 238000002691 topical anesthesia Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 229960005342 tranilast Drugs 0.000 description 1
- NZHGWWWHIYHZNX-CSKARUKUSA-N tranilast Chemical compound C1=C(OC)C(OC)=CC=C1\C=C\C(=O)NC1=CC=CC=C1C(O)=O NZHGWWWHIYHZNX-CSKARUKUSA-N 0.000 description 1
- 108091007466 transmembrane glycoproteins Proteins 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 229960004791 tropicamide Drugs 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000004382 visual function Effects 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- PJVWKTKQMONHTI-UHFFFAOYSA-N warfarin Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000012130 whole-cell lysate Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/28—Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0048—Eye, e.g. artificial tears
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/06—Antiglaucoma agents or miotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/12—Ophthalmic agents for cataracts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0603—Embryonic cells ; Embryoid bodies
- C12N5/0605—Cells from extra-embryonic tissues, e.g. placenta, amnion, yolk sac, Wharton's jelly
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0662—Stem cells
- C12N5/0663—Bone marrow mesenchymal stem cells (BM-MSC)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0662—Stem cells
- C12N5/0668—Mesenchymal stem cells from other natural sources
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K2035/124—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
Definitions
- This invention relates to the field of cell-based or regenerative therapy for ophthalmic diseases and disorders.
- the invention provides mesenchymal stem cells, and methods, optionally with pharmaceutical compositions, devices for the regeneration or repair of cells and tissues of the eye.
- the eye can experience numerous diseases and other deleterious conditions that affect its ability to function normally. Many of these conditions are associated with damage or degeneration of specific ocular cells, and tissues made up of those cells. As one example, diseases and degenerative conditions of the optic nerve and retina are the leading causes of blindness throughout the world. Damage or degeneration of the cornea, lens and associated ocular tissues represent another significant cause of vision loss.
- the retina contains seven layers of alternating cells and processes that convert a light signal into a neural signal.
- the retinal photoreceptors and adjacent retinal pigment epithelium (RPE) form a functional unit that, in many disorders, becomes unbalanced due to genetic mutations or environmental conditions (including age).
- AMD AMD is the most common cause of vision loss in the United States in those 50 or older; and its prevalence increases with age.
- the primary disorder in AMD appears to be due to RPE dysfunction and changes in Bruch's membranes, e.g., lipid deposition, protein cross-linking and decreased permeability to nutrients (Lund et al., 2001).
- a variety of elements may contribute to macular degeneration, including genetic makeup, age, nutrition, smoking and exposure to sunlight.
- RP is mainly considered an inherited disease: over 100 mutations have been associated with photoreceptor loss (Lund et al., 2001). Though the majority of mutations target photoreceptors, some affect RPE cells directly. Together, these mutations affect such processes as molecular trafficking between photoreceptors and RPE cells and phototransduction, for example.
- Diabetic retinopathy may be classified as (1) non-proliferative or background retinopathy, characterized by increased capillary permeability, edema, hemorrhage, microaneurysms, and exudates, or 2) proliferative retinopathy, characterized by neovascularization extending from the retina to the vitreous, scarring, fibrous tissue formation, and potential for retinal detachment.
- CNVM choroidal neovascular membrane
- IOP intraocular pressure
- Glaucoma can develop as the eye ages, or it can occur as the result of an eye injury, inflammation, tumor, or in advanced cases of cataract or diabetes, or it can be caused by certain drugs, such as, for example steroids.
- the primary features of the optic neuropathy in glaucoma include characteristic changes in the optic nerve head, a decrease in number of surviving retinal ganglion cells, and loss of vision. It has been proposed that a cascade of events links degeneration of the optic nerve head with the slow death of retinal ganglion cells observed in the disease, and that this cascade of events can be slowed or prevented through the use of neuroprotective agents (Osborne et al., 2003, Eur. J. Ophthalmol, 13 (Supp 3): S19-S26).
- LEF Limbal epithelial cell deficiency
- LECD often leads to an imbalance between the corneal epithelium and the conjunctival epithelium in which the cornea is covered by invading conjunctival epithelial cells, which severely compromises the corneal surface and affects visual acuity (Nakamura, T. &Kinoshita, S., 2003. Cornea 22 (Supp. 1): S75-S80).
- Stem cells are capable of self-renewal and differentiation to generate a variety of mature cell lineages. Transplantation of such cells can be utilized as a clinical tool for reconstituting a target tissue, thereby restoring physiologic and anatomic functionality.
- the application of stem cell technology is wide-ranging, including tissue engineering, gene therapy delivery, and cell therapeutics, i.e., delivery of bio-therapeutic agents to a target location via exogenously supplied living cells or cellular components that produce or contain those agents (For a review, see Tresco, P. A. et al., 2000, Advanced Drug Delivery Reviews 42: 2-37).
- stem cell technology An obstacle to realization of the therapeutic potential of stem cell technology has been difficulty in obtaining sufficient numbers of stem cells.
- One source of stem cells is embryonic or fetal tissue. Embryonic stem and progenitor cells have been isolated from a number of mammalian species, including humans, and several such cell types have been shown capable of self-renewal and expansion, as well differentiation into a variety of cell lineages. In animal model systems, embryonic stem cells have been reported to differentiate into a RPE cell phenotype, as well as to enhance the survival of host photoreceptors following transplantation (Haruta, M. et al., 2004, Investig. Ophthalmol. Visual Sci. 45: 1020-1025; Schraermeyer, U. et al., 2001, Cell Transplantation 10: 673-680). But the derivation of stem cells from embryonic or fetal sources has raised many ethical issues that are desirable to avoid by identifying other sources of multipotent or pluripotent cells.
- Adult tissue also can yield stem cells useful for cell-based ocular therapy.
- retinal and corneal stem cells themselves may be utilized for cell replacement therapy in the eye.
- neural stem cells from the hippocampus have been reported to integrate with the host retina, adopting certain neural and glial characteristics (see review of Lund, R. L. et al., 2003, J. Leukocyte Biol. 74: 151-160).
- Neural stem cells prepared from fetal rat cortex were shown to differentiate along an RPE cell pathway following transplantation into the adult rat subretinal space (Enzmann, V. et al., 2003, Investig. Ophthalmol. Visual Sci.: 5417-5422).
- Bone marrow stem cells have been reported to differentiate into retinal neural cells and photoreceptors following transplantation into host retinas (Tomita, M. et al., 2002, Stem Cells 20: 279-283; Kicic, A. et al., 2003. J. Neurosci. 23: 7742-7749). Kicic, A. et al. reports that CD90 + mesenchymal stem cells were capable of integrating into the host retina. These cells underwent differentiation, forming structures similar to the photoreceptor layer and expressed a photoreceptor-specific marker.
- adult stem cells may have a more limited ability to expand in culture than do embryonic stem cells.
- a reliable, well-characterized and plentiful supply of substantially homogeneous populations of such cells would be an advantage in a variety of diagnostic and therapeutic applications in ocular repair and regeneration, including drug screening assays, ex vivo or in vitro trophic support of ocular and other useful cell types, and in vivo cell-based therapy.
- the present invention is directed toward the use of cell lines as a therapy for ocular disease.
- Several cell lines were tested in a rodent model of retinitis pigmentosa, according to methods disclosed in published U.S. Patent Application US2005/0037491.
- the present invention describes the use of human mesenchymal stem cells as being useful as a therapy for ocular disease.
- the invention provides compositions and methods applicable to cell-based or regenerative therapy for ophthalmic diseases and disorders.
- the invention features mesenchymal stem cells, optionally with pharmaceutical compositions or devices for the repair or regeneration of cells or tissues of the eye.
- the mesenchymal stem cells of the invention may provide trophic support for ocular cells in situ, or they may themselves differentiate into one or more phenotypes, or they may exert a beneficial effect in both of those fashions, but the cells do not form structures similar to the photoreceptor layer and do not express a photoreceptor-specific marker, such as rhodopsin.
- the ocular degenerative condition is an acute ocular degenerative condition such as brain trauma, optic nerve trauma or ocular lesion.
- it is a chronic or progressive degenerative condition, such as macular degeneration, retinitis pigmentosa, diabetic retinopathy, glaucoma, a limbal epithelial cell deficiency, or a retinal pigment epithelial cell deficiency.
- the cells are induced in vitro to differentiate into a neural or epithelial lineage cells prior to administration.
- the mesenchymal stem cells promote the survival or proliferation of endogenous photoreceptors in the eye. In an alternate embodiment, the mesenchymal stem cells promote the differentiation of endogenous stem cells or precursor cells to photoreceptors.
- the mesenchymal stem cells are positive for the expression of at least one of the following markers: CD29, CD44, CD105 or CD166.
- the cells are negative for the expression of at least one of the following markers: CD14, CD34 or CD45.
- the cells may be administered with at least one other cell type, such as, for example, an astrocyte, an oligodendrocyte, a neuron, a neural progenitor cell, a neural stem cell, a retinal epithelial stem cell, a corneal epithelial stem cell, or an other multipotent or pluripotent stem cell.
- the other cell type may be administered simultaneously with, or before, or after, the mesenchymal stem cells.
- the cells may be administered with at least one other agent, such as a drug for ocular therapy, or another beneficial pharmaceutical agent such as, for example, an anti-inflammatory agent, an anti-apoptotic agent, an antioxidant or a growth factor.
- the other agent may be administered simultaneously with, before, or after, the mesenchymal stem cells.
- the mesenchymal stem cell suitable for use in the present invention may be derived from tissues such as, for example, bone marrow, umbilical cord blood, amniotic sac and fluid, placenta, skin, fat, muscle, vasculature, liver, pancreas, or peripheral blood.
- the cells may be xenogeneic, allogeneic or autologous in origin.
- the cells may be isolated from the donor and transplanted immediately. Alternatively, the cells may be expanded in vitro prior to transplantation.
- the cells of the present invention may be cryogenically stored. Prior to transplantation, the cells may be thawed and transplanted immediately. Alternatively, the thawed cells may be cultured and/or expanded in vitro prior to transplantation. Alternatively, the cells may be transplanted as a frozen pellet.
- the cells may be administered to the surface of an eye, or they may be administered to the interior of an eye or to a location in proximity to the eye, such as, for example, behind the eye, or the sub-retinal space.
- the cells may be administered through a cannula or from a device implanted in the patient's body within or in proximity to the eye, or they may be administered by implantation of a matrix or support containing the cells.
- compositions for treating a patient having an ocular degenerative condition comprising a pharmaceutically acceptable carrier and the mesenchymal stem cells of the present invention in an amount effective to treat the ocular degenerative condition.
- the ocular degenerative condition may be an acute, chronic or progressive condition.
- the composition comprises the mesenchymal cells of the present invention that have been induced in vitro to differentiate into a neural or epithelial lineage cells prior to formulation of the composition.
- the composition comprises the mesenchymal stem cells of the present invention that differentiate into a neural or epithelial lineage cells in situ, post transplantation.
- the pharmaceutical composition may comprise at least one other cell type, such as an astrocyte, an oligodendrocyte, a neuron, a neural progenitor cell, a neural stem cell, a retinal epithelial stem cell, a corneal epithelial stem cell, or an other multipotent or pluripotent stem cell.
- the pharmaceutical composition may comprise at least one other agent, such as a drug for treating the ocular degenerative disorder or other beneficial pharmaceutical agents, such as, for example, anti-inflammatory agents, anti-apoptotic agents, antioxidants or growth factors.
- the pharmaceutical compositions may be formulated for administration to the surface of an eye. Alternatively, they may be formulated for administration to the interior of an eye or in proximity to the eye (e.g., behind the eye).
- the compositions may also be formulated as a matrix or support containing the cells.
- kits for treating a patient having an ocular degenerative condition.
- the kit may comprise a pharmaceutically acceptable carrier, a population of mesenchymal stem cells, and instructions for using the kit in a method of treating the patient.
- the kit may also contain one or more additional components, such as reagents and instructions for culturing the cells, or a population of at least one other cell type, or one or more agents useful in the treatment of an ocular degenerative condition.
- Another aspect of the invention features a method for increasing the survival, growth or activity of cells for transplantation to treat an ocular degenerative disorder.
- the method comprises contacting mesenchymal stem cells with at least one pharmaceutical agent, such as, for example, growth factors, trophic factors, conditioned medium, anti-inflammatory agents, anti apoptotic agents, antioxidants, neurotrophic factors or neuroregenerative or neuroprotective drugs.
- at least one pharmaceutical agent such as, for example, growth factors, trophic factors, conditioned medium, anti-inflammatory agents, anti apoptotic agents, antioxidants, neurotrophic factors or neuroregenerative or neuroprotective drugs.
- the method may comprise co-culturing mesenchymal stem cells with at least one other cell type, such as an astrocyte, an oligodendrocyte, a neuron, a neural progenitor cell, a neural stem cell, a retinal epithelial stem cell, a corneal epithelial stem cell, or other multipotent or pluripotent stem cell, prior to transplantation.
- Agents such as, for example, growth factors, trophic factors, conditioned medium, anti-inflammatory agents, anti apoptotic agents, antioxidants, neurotrophic factors or neuroregenerative or neuroprotective drugs may be added.
- a kit for practicing the method is also provided.
- the kit comprises mesenchymal stem cells and instructions for treating the cells with the at least one agent effective to increase the survival, growth or activity of the cells for transplantation.
- the kit may include at least one other cell type and instructions on the co-culture of the at least one other cell type with mesenchymal stem cells.
- FIG. 4 A histological section of a retina from an animal receiving MSC's of the present invention. Tissue section was obtained from a grafted animal 100 days post procedure.
- ocular ophthalmic
- optical optically adiasis
- ocular degenerative condition is an inclusive term encompassing acute and chronic conditions, disorders or diseases of the eye, inclusive of the neural connection between the eye and the brain, involving cell damage, degeneration or loss.
- An ocular degenerative condition may be age-related, or it may result from injury or trauma, or it may be related to a specific disease or disorder.
- Acute ocular degenerative conditions include, but are not limited to, conditions associated with cell death or compromise affecting the eye including conditions arising from cerebrovascular insufficiency, focal or diffuse brain trauma, diffuse brain damage, infection or inflammatory conditions of the eye, retinal tearing or detachment, intra-ocular lesions (contusion penetration, compression, laceration) or other physical injury (e.g., physical or chemical burns).
- Chronic ocular degenerative conditions include, but are not limited to, retinopathies and other retinal/macular disorders such as retinitis pigmentosa (RP), age-related macular degeneration (AMD), choroidal neovascular membrane (CNVM); retinopathies such as diabetic retinopathy, occlusive retinopathy, sickle cell retinopathy and hypertensive retinopathy, central retinal vein occlusion, stenosis of the carotid artery, optic neuropathies such as glaucoma and related syndromes; disorders of the lens and outer eye, e.
- retinopathies and other retinal/macular disorders such as retinitis pigmentosa (RP), age-related macular degeneration (AMD), choroidal neovascular membrane (CNVM); retinopathies such as diabetic retinopathy, occlusive retinopathy, sickle cell retinopathy and hypertensive retinopathy, central retinal
- LSCD limbal stem cell deficiency
- LEC limbal epithelial cell deficiency
- treating (or treatment of) an ocular degenerative condition refers to ameliorating the effects of, or delaying, halting or reversing the progress of, or delaying or preventing the onset of, an ocular degenerative condition as defined herein.
- an effective amount refers to a concentration or amount of a reagent or pharmaceutical composition, such as a growth factor, differentiation agent, trophic factor, cell population or other agent, that is effective for producing an intended result, including cell growth and/or differentiation in vitro or in vivo, or treatment of ocular degenerative conditions, as described herein.
- a reagent or pharmaceutical composition such as a growth factor, differentiation agent, trophic factor, cell population or other agent, that is effective for producing an intended result, including cell growth and/or differentiation in vitro or in vivo, or treatment of ocular degenerative conditions, as described herein.
- growth factors an effective amount may range from about 1 nanogram/milliliter to about 1 microgram/milliliter.
- MSC's as administered to a patient in vivo an effective amount may range from as few as several hundred or fewer to as many as several million or more. In specific embodiments, an effective amount may range from 10 3 , more specifically at least about 10 4 cells.
- the number of cells to be administered will vary depending on the specifics of the disorder to be treated, including but not limited to size or total volume/surface area to be treated, as well as proximity of the site of administration to the location of the region to be treated, among other factors familiar to the medicinal biologist.
- patient or “subject” refers to animals, including mammals, preferably humans, who are treated with the pharmaceutical compositions or in accordance with the methods described herein.
- a “stem cell” as used herein refers undifferentiated cells defined by the ability of a single cell both to self-renew, and to differentiate to produce progeny cells, including self-renewing progenitors, non-renewing progenitors, and terminally differentiated cells. Stem cells are also characterized by their ability to differentiate in vitro into functional cells of various cell lineages from multiple germ layers (endoderm, mesoderm and ectoderm), as well as to give rise to tissues of multiple germ layers following transplantation, and to contribute substantially to most, if not all, tissues following injection into blastocysts.
- Stem cells may be totipotent, pluripotent, multipotent, oligopotent, or unipotent.
- Totipotent cells are able to give rise to all embryonic and extraembryonic cell types.
- Pluripotent cells are able to give rise to all embryonic cell types.
- Multipotent cells include those able to give rise to a subset of cell lineages, but all within a particular tissue, organ, or physiological system (for example, hematopoietic stem cells (HSC) can produce progeny that include HSC (self-renewal), blood cell-restricted oligopotent progenitors, and all cell types and elements (e.g., platelets) that are normal components of the blood).
- HSC hematopoietic stem cells
- Cells that are oligopotent can give rise to a more restricted subset of cell lineages than multipotent stem cells; and cells that are unipotent are able to give rise to a single cell lineage (e.g., spermatogenic stem cells).
- Stem cells are also categorized on the basis of the source from which they may be obtained.
- An adult stem cell is generally a multipotent undifferentiated cell found in tissue comprising multiple differentiated cell types. The adult stem cell can renew itself. Under normal circumstances, it can also differentiate to yield the specialized cell types of the tissue from which it originated, and possibly other tissue types.
- MSC Mesenchymal stem cell
- a “progenitor cell” refers to a cell that is derived from a stem cell by differentiation and is capable of further differentiation to more mature cell types. Progenitor cells typically have more restricted proliferation capacity as compared to stem cells.
- conditioned media is meant that a population of cells in grown in a medium and contribute soluble factors to the medium. In one such use, the cells are removed from the medium however the soluble factors produced by these cells remain. This medium is then used to nourish a different population of cells in the presence of the soluble factors produced by the initial population of cells.
- Markers are nucleic acid or polypeptide molecules that are differentially expressed in a cell of interest.
- differential expression means an increased level of the marker for a positive marker, and a decreased level for a negative marker.
- the detectable level of the marker nucleic acid or polypeptide is sufficiently higher or lower in the cells of interest, compared to other cells, such that the cell of interest can be identified and distinguished from other cells, using any of a variety of methods known in the art.
- CD Cluster of Differentiation molecules are markers on the cell surface, as recognized by specific sets of antibodies, used to identify the cell type, stage of differentiation and activity state of a cell. Function and designation of CD markers are well established in the art. See, e.g., The Leukocyte Antigen Fact Book, 2 nd edition, Barclay, A. N. et al. Academic Press, London 1997.
- CD14 is a high affinity receptor for the complex of lipopolysaccharids (LPS) and LPS-Binding protein (LBP).
- LPS lipopolysaccharids
- LBP LPS-Binding protein
- the CD14 antigen is part of the functional heteromeric LPS receptor complex comprised of CD14, TLR4 and MD-2.
- CD14 is strongly expressed on most human monocytes and macrophages in peripheral blood, other body fluids and various tissues, such as lymph nodes and spleen.
- CD14 is weakly expressed on subpopulations of human neutrophils and myeloid dendritic cells.
- CD29 is also referred to as “fibronectin receptor, beta polypeptide”.
- CD34 is a transmembrane glycoprotein constitutively expressed on endothelial cells and on hematopoietic stem cells. This highly O-glycosylated molecule, containing serine and threonine-rich mucin like domains, binds to L-selectin.
- CD44 is also referred to as “Hermes antigen” and is the main cell surface receptor for hyaluronan. This CD is primarily expressed in most cell types, except for tissues/cells such as hepatocytes, some epithelial cells, and cardiac muscle.
- CD45 refers to the leukocyte common antigen having a sequence disclosed in Genbank Accession No. Y00638, or a naturally occurring variant sequence thereof (e.g., allelic variant).
- CD105 is also referred to as “Endoglin” and is primarily expressed on endothelial cells, monocytes, macrophages, stromal cells, and bone marrow mesenchymal cells.
- CD166 is a type 1 glycoprotein expressed on activated T cells, B cells and monocytes and appears to be the ligand for CD6 (1,2). Human CD166 may be important for activation of T cells.
- pharmaceutically acceptable carrier refers to reagents, cells, compounds, materials, compositions, and/or dosage forms that are not only compatible with the cells and other agents to be administered therapeutically, but also are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other complication commensurate with a reasonable benefit/risk ratio.
- autologous transfer refers to treatments wherein the cell donor is also the recipient of the cell replacement therapy.
- allogeneic transfer refers to treatments wherein the cell donor is of the same species as the recipient of the cell replacement therapy, but is not the same individual.
- a cell transfer in which the donor's cells and have been histocompatibly matched with a recipient is sometimes referred to as a “syngeneic transfer”.
- xenogeneic transfer “xenogeneic transplantation”, “xenograft” and the like, refer to treatments wherein the cell donor is of a different species than the recipient of the cell replacement therapy.
- Mesenchymal stem cells suitable for use in the methods of the present invention may be obtained from tissues such as, for example, bone marrow, umbilical cord blood, amniotic sac, amniotic fluid, placenta, skin, fat, muscle, vasculature, liver, pancreas, or peripheral blood, using methods that are well known in the art. Isolation of a population of mesenchymal stem cells may be achieved using monoclonal antibodies specific proteins expressed on the surface of MSC's. The monoclonal antibodies may be adhered to substrate to facilitate the separation of the bound cells.
- the methods that may be used to isolate MSC's suitable for use in the present invention may be chosen by one of ordinary skill in the art. Examples of such methods are taught in U.S. Pat. No. 6,087,113, U.S. Pat. No. 6,261,549, U.S. Pat. No. 5,914,262, U.S. Pat. No. 5,908,782, and US20040058412.
- MSC's may be characterized, for example, by growth characteristics (e.g., population doubling capability, doubling time, passages to senescence), karyotype analysis (e.g., normal karyotype; maternal or neonatal lineage), flow cytometry (e.g., FACS analysis), immunohistochemistry and/or immunocytochemistry (e.g., for detection of epitopes), gene expression profiling (e.g., gene chip arrays; polymerase chain reaction (for example, reverse transcriptase PCR, real time PCR, and conventional PCR)), protein arrays, protein secretion—19 (e.g., by plasma clotting assay or analysis of PDC-conditioned medium, for example, by Enzyme Linked Immuno-Sorbent Assay (ELISA)), mixed lymphocyte reaction (e.g., as measure of stimulation of PBMCs), and/or other methods known in the art.
- growth characteristics e.g., population doubling capability, doubling time, passages to s
- Mesenchymal stem cells suitable for use in the methods of the present invention may also include cells obtained from commercial sources, such as, for example human mesenchymal stem cells sold under the trade name POIETICSTM (Cat. No PT-2501, Cambrex). These mesenchymal stem cells are positive for the expression of the following markers: CD29, CD44, CD105 and CD166. The cells are negative for the expression of the markers CD14, CD34 and CD45.
- POIETICSTM Cat. No PT-2501, Cambrex
- Isolated MSC's or tissue from which MSC's are obtained may be used to initiate, or seed, cell cultures. Isolated cells may be transferred to sterile tissue culture vessels, either uncoated or coated with extracellular matrix or ligands such as laminin, collagen (native, denatured or crosslinked), gelatin, fibronectin, and other extracellular matrix proteins.
- extracellular matrix or ligands such as laminin, collagen (native, denatured or crosslinked), gelatin, fibronectin, and other extracellular matrix proteins.
- MSC's may be cultured in any culture medium capable of sustaining growth of the cells such as, for example, DMEM (high or low glucose), advanced DMEM, DMEM/MCDB 201, Eagle's basal medium, Ham's F10 medium (F10), Ham's F-12 medium (F12), Iscove's modified Dulbecco's—17 medium, Mesenchymal Stem Cell Growth Medium (MSCGM), DMEM/F12, RPMI 1640, and CELL-GRO-FREE.
- DMEM high or low glucose
- advanced DMEM DMEM/MCDB 201
- Eagle's basal medium Eagle's basal medium
- Ham's F10 medium (F10) Ham's F-12 medium
- Iscove's modified Dulbecco's—17 medium Mesenchymal Stem Cell Growth Medium (MSCGM)
- MSCGM Mesenchymal Stem Cell Growth Medium
- DMEM/F12 RPMI 1640
- CELL-GRO-FREE C
- the culture medium may be supplemented with one or more components including, for example, fetal bovine serum (FBS); equine serum (ES); human serum (HS); beta-mercaptoethanol (BME or 2-ME), preferably about 0.001% (v/v); one or more growth factors, for example, platelet-derived growth factor (PDGF), epidermal growth factor (EGF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), leukocyte inhibitory factor (LIF) and erythropoietin; amino acids, including L-valine; and one or more antibiotic and/or antimycotic agents to control microbial contamination, such as, for example, penicillin G. streptomycin sulfate, amphotericin B. gentamicin, and nystatin, either alone or in combination.
- the cells may be seeded in culture vessels at a density to allow cell growth.
- MSC's are used as a cell therapy for treating an ocular degenerative condition.
- MSC's may provide trophic support for ocular cells in situ, or they may themselves differentiate into one or more phenotypes, or they may exert a beneficial effect in both of those fashions, among others.
- MSC's may be administered alone (e.g., as substantially homogeneous populations) or as mixtures with other cells. MSC's may be administered in a pharmaceutical preparation, using conventional pharmaceutically acceptable carriers. Where MSC's are administered with other cells, they may be administered simultaneously or sequentially with the other cells (either before or after the other cells).
- Cells that may be administered in conjunction with MSC's include, but are not limited to, neurons, astrocytes, oligodendrocytes, neural progenitor cells, neural stem cells, ocular progenitor cells, retinal or corneal epithelial stem cells and/or other multipotent or pluripotent stem cells. The cells of different types may be mixed with the MSC's immediately or shortly prior to administration, or they may be co-cultured together for a period of time prior to administration.
- the MSC's may be administered with at least one pharmaceutical agent, such as, for example, growth factors, trophic factors, conditioned medium, or other active agents, such as anti-inflammatory agents, anti apoptotic agents, antioxidants, neurotrophic factors or neuroregenerative or neuroprotective drugs as known in the art.
- pharmaceutical agent such as, for example, growth factors, trophic factors, conditioned medium, or other active agents, such as anti-inflammatory agents, anti apoptotic agents, antioxidants, neurotrophic factors or neuroregenerative or neuroprotective drugs as known in the art.
- active agents such as anti-inflammatory agents, anti apoptotic agents, antioxidants, neurotrophic factors or neuroregenerative or neuroprotective drugs as known in the art.
- MSC's When MSC's are administered with other agents, they may be administered together in a single pharmaceutical composition, or in separate pharmaceutical compositions, simultaneously or sequentially with the other agents (either before or after administration of the other agents).
- Examples of other components that may be administered with mesenchymal stem cells include, but are not limited to: (1) other neuroprotective or neurobeneficial drugs; (2) selected extracellular matrix components, such as one or more types of collagen known in the art, and/or growth factors, platelet-rich plasma, and drugs (alternatively, the cells may be genetically engineered to express and produce growth factors); (3) anti-apoptotic agents (e.g., erythropoietin (EPO), EPO mimetibody, thrombopoietin, insulin-like growth factor (IGF)-I, IGF-II, hepatocyte growth factor, caspase inhibitors); (4) anti-inflammatory compounds (e.g., p38 MAP kinase inhibitors, TGF-beta inhibitors, stating, IL-6 and IL-1 inhibitors, PEMIROLAST, TRANILAST, REMICADE, SIROLIMUS, and non-steroidal anti-inflammatory drugs (NSAIDS) (such as—36 TEPO
- MSC's may be administered as undifferentiated cells, i.e., as cultured in Growth Medium.
- MSC's may be administered following exposure in culture to conditions that stimulate differentiation toward a desired phenotype.
- the cells may be surgically implanted, injected or otherwise administered directly or indirectly to the site of ocular damage or distress.
- When cells are administered in semi-solid or solid devices, surgical implantation into a precise location in the body is typically a suitable means of administration.
- Liquid or fluid pharmaceutical compositions may be administered to a more general location in the eye (e.g., topically or intra-ocularly).
- compositions comprising MSC cellular components (e.g., cell lysates or components thereof) or products (e.g., trophic and other biological factors produced naturally by MSC's or through genetic modification, conditioned medium from MSC culture).
- MSC cellular components e.g., cell lysates or components thereof
- products e.g., trophic and other biological factors produced naturally by MSC's or through genetic modification, conditioned medium from MSC culture.
- these methods may further comprise administering other active agents, such as growth factors, neurotrophic factors or neuroregenerative or neuroprotective drugs as known in the art.
- active agents such as growth factors, neurotrophic factors or neuroregenerative or neuroprotective drugs as known in the art.
- Dosage forms and regimes for administering MSC's or any of the other pharmaceutical compositions described herein are developed in accordance with good medical practice, taking into account the condition of the individual patient, e.g., nature and extent of the ocular degenerative condition, age, sex, body weight and general medical condition, and other factors known to medical practitioners.
- the effective amount of a pharmaceutical composition to be administered to a patient is determined by these considerations as known in the art.
- MSC's may be genetically modified to reduce their immunogenicity.
- a method for treating a patient having an ocular degenerative condition may comprise administering to the patient a preparation made from mesenchymal stem cells, in an amount effective to treat the ocular degenerative condition, wherein the preparation comprises a cell lysate of the MSC's, or a conditioned medium in which the MSC's were grown, or an extracellular matrix of the MSC's.
- the lysate may comprise at least one or all of the sub-cellular fractions of the MSC's, such as, for example the plasma membrane fraction.
- Methods of lysing cells are well known in the art and include various means of mechanical disruption, enzymatic disruption, or chemical disruption, or combinations thereof.
- Such cell lysates may be prepared from cells directly in their growth medium and thus containing secreted growth factors and the like, or may be prepared from cells washed free of medium in, for example, PBS or other solution. Washed cells may be resuspended at concentrations greater than the original population density if preferred. In one embodiment, whole cell lysates may be prepared, e.g., by disrupting cells without subsequent separation of cell fractions. In another embodiment, a cell membrane fraction is separated from a soluble fraction of the cells by routine methods known in the art, e.g., centrifugation, filtration, or similar methods.
- Cell lysates or cell soluble fractions prepared from populations of MSC's may be used as is, further concentrated, by for example, ultrafiltration or lyophilization, or even dried, partially purified, combined with pharmaceutically-acceptable carriers or diluents as are known in the art, or combined with other compounds such as biologicals, for example pharmaceutically useful protein compositions.
- Cell lysates or fractions thereof may be used in vitro or in vivo, alone or for example, with autologous or allogenic live cells.
- the lysates, if introduced in vivo may be introduced locally at a site of treatment, or remotely to provide, for example needed cellular growth factors to a patient.
- the invention features a pharmaceutical composition
- a pharmaceutically acceptable carrier and a preparation made from the mesenchymal stem cells, which may be a lysate of the MSC's, an extracellular matrix of the MSC's or a conditioned medium in which MSC's were grown.
- Kits for practicing this aspect of the invention are also provided. These may include the one or more of a pharmaceutically acceptable carrier or other agent or reagent, one or more of a cell lysate or fraction thereof, an extracellular matrix or a conditioned medium from the MSC's, and instructions for use of the kit components.
- compositions of the invention may comprise postpartum cells MSC's, or components or products thereof, formulated with a pharmaceutically acceptable carrier or medium.
- suitable pharmaceutically acceptable carriers include water, salt solution (such as Ringer's solution), alcohols, oils, gelatins, and carbohydrates, such as lactose, amylose, or starch, fatty acid esters, hydroxymethylcellulose, and polyvinyl pyrolidine.
- Such preparations may be sterilized, and if desired, mixed with auxiliary agents such as lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, and coloring.
- compositions comprising cellular components or products, but not live cells are formulated as liquids.
- Pharmaceutical compositions comprising live MSC's are typically formulated as liquids, semisolids (e.g., gels) or solids (e.g., matrices, supports and the like, as appropriate for ophthalmic tissue engineering).
- compositions may comprise auxiliary components as would be familiar to medicinal chemists or biologists.
- they may contain antioxidants in ranges that vary depending on the kind of antioxidant used.
- Reasonable ranges for commonly used antioxidants are about 0.01% to about 0.15% weight by volume of EDTA, about 0.01% to about 2.0% weight volume of sodium sulfite, and about 0.01% to about 2.0% weight by volume of sodium metabisulfite.
- One skilled in the art may use a concentration of about 0.1% weight by volume for each of the above.
- Other representative compounds include mercaptopropionyl glycine, N-acetyl cysteine, beta-mercaptoethylamine, glutathione and similar species, although other anti-oxidant agents suitable for ocular administration, e.g. ascorbic acid and its salts or sulfite or sodium metabisulfite may also be employed.
- a buffering agent may be used to maintain the pH of eye drop formulations in the range of about 4.0 to about 8.0; so as to minimize irritation of the eye.
- formulations should be at pH 7.2 to 7.5, alternatively at pH 7.3-7.4.
- the ophthalmologic compositions may also include tonicity agents suitable for administration to the eye. Among those suitable is sodium chloride to make formulations approximately isotonic with 0.9% saline solution.
- compositions are formulated with viscosity enhancing agents.
- agents can be, for example, hydroxyethylcellulose, hydroxypropylcellulose, methylcellulose, and polyvinylpyrrolidone.
- the pharmaceutical compositions may have co-solvents added if needed. Suitable co-solvents may include glycerin, polyethylene glycol (PEG), polysorbate, propylene glycol, and polyvinyl alcohol. Preservatives may also be included, such as, for example, benzalkonium chloride, benzethonium chloride, chlorobutanol, phenylmercuric acetate or nitrate, thimerosal, or methyl or propylparabens.
- Formulations for injection may be designed for single-use administration and do not contain preservatives.
- Injectable solutions nay have isotonicity equivalent to 0.9% sodium chloride solution (osmolality of 290-300 milliosmoles). This may be attained by addition of sodium chloride or other co-solvents as listed above, or excipients such as buffering agents and antioxidants, as listed above.
- Suitable reducing agents include N-acetylcysteine, ascorbic acid or a salt form, and sodium sulfite or metabisulfite, with ascorbic acid and/or N-acetylcysteine or glutathione being particularly suitable for injectable solutions.
- compositions comprising cells, cell components or cell products may be delivered to the eye of a patient in one or more of several delivery modes known in the art.
- the compositions are topically delivered to the eye in eye drops or washes.
- the compositions may be delivered to various locations within the eye via periodic intraocular injection or by infusion in an irrigating solution such as BSS or BSS PLUS (Alcon USA, Fort Worth, Tex.).
- the compositions may be applied in other ophthalmologic dosage forms known to those skilled in the art, such as pre-formed or in situ-formed gels or liposomes, for example as disclosed in U.S. Pat. No. 5,718,922 to Herrero-Vanrell.
- the composition may be delivered to or through the lens of an eye in need of treatment via a contact lens (e.g. Lidofilcon B. Bausch &Lomb CW79 or DELTACON (Deltafilcon A) or other object temporarily resident upon the surface of the eye.
- a contact lens e.g. Lidofilcon B. Bausch &Lomb CW79 or DELTACON (Deltafilcon A) or other object temporarily resident upon the surface of the eye.
- supports such as a collagen corneal shield (e.g. BIO-COR dissolvable corneal shields, Summit Technology, Watertown, Mass.) may be employed.
- compositions may also be administered by infusion into the eyeball, either through a cannula from an osmotic pump (ALZET, Alza Corp., Palo Alto, Calif.) or by implantation of timed-release capsules (OCCUSENT) or biodegradable disks (OCULEX, OCUSERT).
- AZAT osmotic pump
- OCUSENT timed-release capsules
- OCULEX biodegradable disks
- compositions comprising live cells in a semi-solid or solid carrier are typically formulated for surgical implantation at the site of ocular damage or distress. It will be appreciated that liquid compositions also may be administered by surgical procedures.
- semi-solid or solid pharmaceutical compositions may comprise semi permeable gels, lattices, cellular supports and the like, which may be non-biodegradable or biodegradable. For example, in certain embodiments, it may be desirable or appropriate to sequester the exogenous cells from their surroundings, yet enable the cells to secrete and deliver biological molecules to surrounding cells.
- cells may be formulated as autonomous implants comprising living MSC's or cell population comprising MSC's surrounded by a non-degradable, selectively permeable barrier that physically separates the transplanted cells from host tissue.
- Such implants are sometimes referred to as “immunoprotective,” as they have the capacity to prevent immune cells and macromolecules from killing the transplanted cells in the absence of pharmacologically induced immunosuppression (for a review of such devices and methods, see, e.g., P. A. Tresco et al., 2000. Adv. Drug Delivery Rev. 42: 3-27).
- the MSC's of the present invention may be incorporated into a support material prior to transplantation.
- Support materials suitable for use for purposes of the present invention include tissue templates, conduits, barriers, and reservoirs useful for tissue repair.
- synthetic and natural materials in the form of foams, sponges, gels, hydrogels, textiles, and nonwoven structures which have been used in vitro and in vivo to reconstruct or regenerate biological tissue, as well as to deliver chemotactic agents for inducing tissue growth, are suitable for use in practicing the methods of the present invention. See, e.g., the materials disclosed in U.S. Pat. No. 5,770,417, U.S. Pat. No. 6,022,743, U.S. Pat. No.
- the pharmaceutical agent may be mixed with the polymer solution prior to forming the support.
- a pharmaceutical agent may be coated onto a fabricated support, preferably in the presence of a pharmaceutical carrier.
- the pharmaceutical agent may be present as a liquid, a finely divided solid, or any other appropriate physical form.
- excipients may be added to the support to alter the release rate of the pharmaceutical agent.
- the support is incorporated with at least one pharmaceutical compound that is an anti-inflammatory compound, such as, for example compounds disclosed in U.S. Pat. No. 6,509,369.
- the support is incorporated with at least one pharmaceutical compound that is an anti-apoptotic compound, such as, for example, compounds disclosed in U.S. Pat. No. 6,793,945.
- the support is incorporated with at least one pharmaceutical compound that is an inhibitor of fibrosis, such as, for example, compounds disclosed in U.S. Pat. No. 6,331,298.
- the support is incorporated with at least one pharmaceutical compound that is capable of enhancing angiogenesis, such as, for example, compounds disclosed in U.S. Published Application 2004/0220393 and U.S. Published Application 2004/0209901.
- the support is incorporated with at least one pharmaceutical compound that is an immunosuppressive compound, such as, for example, compounds disclosed in U.S. Published Application 2004/0171623.
- the support is incorporated with at least one pharmaceutical compound that is a growth factor, such as, for example, members of the TGF-3 family, including TGF- ⁇ 1, 2, and 3, bone morphogenic proteins (BMP-2, -3, -4, -5, -6, -7, -11, -12, and -13), fibroblast growth factors-1 and -2, platelet-derived growth factor-AA, and -BB, platelet rich plasma, insulin growth factor (IGF-I, II) growth differentiation factor (GDF-5, -6, -8, -10, -15), vascular endothelial cell-derived growth factor (VEGF), pleiotrophin, endothelin, among others.
- a growth factor such as, for example, members of the TGF-3 family, including TGF- ⁇ 1, 2, and 3, bone morphogenic proteins (BMP-2, -3, -4, -5, -6, -7, -11, -12, and -13), fibroblast growth factors-1 and -2, platelet-derived growth factor-AA, and -
- Other pharmaceutical compounds can include, for example, nicotinamide, hypoxia inducible factor 1-alpha, glucagon like peptide-I (GLP-1), GLP-1 and GLP-2 mimetibody, and II, Exendin-4, retinoic acid, parathyroid hormone, tenascin-C, tropoelastin, thrombin-derived peptides, cathelicidins, defensins, laminin, biological peptides containing cell- and heparin-binding domains of adhesive extracellular matrix proteins such as fibronectin and vitronectin, MAPK inhibitors, such as, for example, compounds disclosed in U.S. Published Application 2004/0209901 and U.S. Published Application 2004/0132729.
- MAPK inhibitors such as, for example, compounds disclosed in U.S. Published Application 2004/0209901 and U.S. Published Application 2004/0132729.
- the incorporation of the cells of the present invention into a support may be achieved by the simple depositing of cells onto the support.
- Cells may enter into the support by simple diffusion ( J. Pediatr. Surg. 23 (1 Pt 2): 3-9 (1988)).
- Several other approaches have been developed to enhance the efficiency of cell seeding.
- spinner flasks have been used in seeding ofchondrocytes onto polyglycolic acid supports ( Biotechnol. Prog. 14(2): 193-202 (1998)).
- Another approach for seeding cells is the use of centrifugation, which yields minimum stress to the seeded cells and enhances seeding efficiency.
- Yang et al. developed a cell seeding method ( J. Biomed. Mater. Res.
- CCI Centrifugational Cell Immobilization
- Determination of transplant survival may also be done post mortem by removing the tissue and examining it visually or through a microscope.
- cells may be treated with stains that are specific for neural or ocular cells or products thereof, e.g., neurotransmitters.
- Transplanted cells may also be identified by prior incorporation of tracer dyes such as rhodamine- or fluorescein-labeled microspheres, fast blue, ferric microparticles, bisbenzamide or genetically introduced reporter gene products, such as beta-galactosidase or beta-glucuronidase.
- Examining restoration of the ocular function that was damaged or diseased can assess functional integration of transplanted cells into ocular tissue of a subject. For example, effectiveness in the treatment of macular degeneration or other retinopathies may be determined by improvement of visual acuity and evaluation for abnormalities and grading of stereoscopic color fundus photographs (Age-Related Eye Disease Study Research Group, NEI, NIH, AREDS Report No. 8, 2001, Arch. Ophthalmol. 119: 1417-1436).
- RCS rats are genetically predisposed to undergo significant visual loss caused by a primary dysfunction of retinal pigment epithelial (RPE) cells.
- RPE retinal pigment epithelial
- Cellular compositions were prepared from human umbilical-derived cells (cells disclosed in published U.S. Patent Application US2005/0054098), human placental-derived cells (cells disclosed in published U.S. Patent Application US2005/0058631) and fibroblasts. The cellular compositions were administered to parallel groups pf animals according to the methods described above.
- the electroretinogram is a recording of electrical potentials (action potentials) that are generated within the retina (typically in response to a flash of light). It is recorded using two electrodes, with one electrode placed on or close to the cornea of the eye whilst the other is placed on the scalp. Following overnight dark adaptation, animals were prepared for ERG recording under dim red light, as described in Sauve et al, 2004. In brief, under anesthesia (with a mixture of 150 mg/kg i.p ketamine, and 10 mg/kg i.p. xylazine) the head was secured with a stereotaxic head holder and the body temperature monitored through a rectal thermometer and maintained at 38° C. using a homeothermic blanket.
- anesthesia with a mixture of 150 mg/kg i.p ketamine, and 10 mg/kg i.p. xylazine
- Pupils were dilated using equal parts of topical 2.5% phenylephrine and 1% tropicamide.
- Topical anesthesia with 0.75% bupivacaine was used to prevent any corneal reflexes and a drop of 0.9% saline was frequently applied on the cornea to prevent its dehydration and allow electrical contact with the recording electrode (gold wire loop).
- Amplification at 1-1000 Hz bandpass, without notch filtering
- a double flash protocol was used to determine the isolation of rod and cone responses (Nixon et al, 2001).
- a probe flash was presented I sec after a conditioning flash, using a specific feature of the UTAS-3000 system (LKC Technologies) with calibrated ganzfeld; assuring complete recharge of the stimulator.
- the role of the conditioning flash in this procedure was to transiently saturate rods so that they were rendered unresponsive to the probe flash.
- Response to the probe flash was taken as reflecting cone-driven activity (a-wave).
- a rod-driven b-wave was obtained by subtracting the cone-driven response from the mixed response (obtained following presentation of a probe flash alone, i.e. not preceded by any conditioning flash).
- FIGS. 1A and 1B The response observed in these animals was much greater than that seen with un-treated or sham treated animals.
- Functional preservation of vision was demonstrated in mixed b-wave responsiveness (81.6 ⁇ 15.3) versus shams (54.4 ⁇ 24.5), and in isolated cone-b-wave responsiveness (134 ⁇ 68) versus shams (72.4 ⁇ 40.8), and in overall measures of rod contribution (41 ⁇ 16.8) versus shams (21 ⁇ 19.34).
- Physiological retinal sensitivity testing was performed to demonstrate retinal response to dim light.
- animals were anesthetized with urethane at 1.25 g/kg i.p.
- Physiological assessment in these animals was tested post graft in animals at 90 days by recording multiunit extracellular activity in the superior colliculus to illumination of respective visual receptive fields (Lund et al, 2001). This procedure was repeated for 20 independent points (spaced 200 mm apart, with each step corresponding to approximately 10-150 displacements in the visual field), covering the visual field.
- Visual thresholds were measured as the increase in intensity over background and maintained at 0.02 candila/m2 (luminescence unit), required for activating units in the superficial 200 mm of the superior colliculus with a spot of light 30 in diameter.
- Response parameters were compared between transplanted and sham control eyes that received vehicle alone.
- Efficacy of transplants in preventing visual loss was monitored by assessment of electrophysiological responsiveness in 4 animals.
- the threshold sensitivity response to light was used to define the area of visual field rescue in sham-injected control eyes versus eyes transplanted with MSC's.
- visual thresholds never exceeded 0.5 log candila/m 2 above background ( FIG. 3 ).
- the thresholds are usually in the magnitude of 4 log candila/m 2 units (Blakema and Drager, 1991).
- the thresholds were in the order of 2.9-4.9 log candila/m 2 units with an average threshold of 4.0 log candila/m 2 units, in some instances no recording could be attained ( FIG. 3 ).
- the sham-injected rats showed some highly localized functional rescue in the temporal retina.
- the human MSC transplanted rats exhibited substantially greater levels of visual preservation with thresholds ranging from 0.8 to 2.1 log candila/m 2 units, with an average threshold of 1.3 log candila/m 2 units ( FIG. 3 ).
- On average 60% of threshold responses were below 2.1 log candela units in MSC injected animals vs. 18% in sham injected controls.
- the retinas were then post-fixed in 1% osmium tetroxide for 1 h. After dehydration through a series of alcohols to epoxypropane, the retinas were embedded in TAAB embedding resin (TAAB Laboratories, Aldemarston, UK). Semi-thin sections were stained with 1% toluidine Blue in 1% borate buffer and the ultra thin sections were contrasted with uranyl acetate and lead citrate.
- FIG. 4 Histologicaly at the 90-100 day time point in MSC treated animals, anatomical rescue of host photoreceptors was clearly demonstrated ( FIG. 4 ).
- the photoreceptors form a thick layer separated by a gap from the inner nuclear layer, made up of other retinal cells.
- the width of the outer layer in the sham control is at best a discontinuous single layer as opposed to around 3-5 cells thick in the grafted eye. In comparison to a normal animal this is marginally more than half the thickness of photoreceptor cell layers normally observed.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Developmental Biology & Embryology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Cell Biology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Ophthalmology & Optometry (AREA)
- Immunology (AREA)
- Gynecology & Obstetrics (AREA)
- Rheumatology (AREA)
- Reproductive Health (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Epidemiology (AREA)
- Hematology (AREA)
- Pregnancy & Childbirth (AREA)
- Virology (AREA)
- Urology & Nephrology (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Compositions and methods applicable to cell-based or regenerative therapy for ophthalmic diseases and disorders comprising mesenchymal stem cells, particularly those characterized by the expression of at least one of the following surface markers: CD29, CD44, CD105 or CD166, and the lack of expression of at least one of CD14, CD34 or CD45.
Description
- This present application claims the benefit of priority to U.S. Provisional Application Ser. No. 60/688,637 file Jun. 8, 2005.
- This invention relates to the field of cell-based or regenerative therapy for ophthalmic diseases and disorders. In particular, the invention provides mesenchymal stem cells, and methods, optionally with pharmaceutical compositions, devices for the regeneration or repair of cells and tissues of the eye.
- As a complex and sensitive organ of the body, the eye can experience numerous diseases and other deleterious conditions that affect its ability to function normally. Many of these conditions are associated with damage or degeneration of specific ocular cells, and tissues made up of those cells. As one example, diseases and degenerative conditions of the optic nerve and retina are the leading causes of blindness throughout the world. Damage or degeneration of the cornea, lens and associated ocular tissues represent another significant cause of vision loss. The retina contains seven layers of alternating cells and processes that convert a light signal into a neural signal. The retinal photoreceptors and adjacent retinal pigment epithelium (RPE) form a functional unit that, in many disorders, becomes unbalanced due to genetic mutations or environmental conditions (including age). This results in loss of photoreceptors: through apoptosis or secondary degeneration, which leads to progressive deterioration of vision and, in some instances, to blindness (for a review, see, e.g., Lund, R. D. et al., 2001, Progress in Retinal and Eye Research 20: 415-449). Two classes of ocular disorders that fall into this pattern are age-related macular degeneration (AMD) and retinitis pigmentosa (RP).
- AMD is the most common cause of vision loss in the United States in those 50 or older; and its prevalence increases with age. The primary disorder in AMD appears to be due to RPE dysfunction and changes in Bruch's membranes, e.g., lipid deposition, protein cross-linking and decreased permeability to nutrients (Lund et al., 2001). A variety of elements may contribute to macular degeneration, including genetic makeup, age, nutrition, smoking and exposure to sunlight.
- RP is mainly considered an inherited disease: over 100 mutations have been associated with photoreceptor loss (Lund et al., 2001). Though the majority of mutations target photoreceptors, some affect RPE cells directly. Together, these mutations affect such processes as molecular trafficking between photoreceptors and RPE cells and phototransduction, for example.
- Other less common, but nonetheless debilitating retinopathies can also involve progressive cellular degeneration leading to vision loss and blindness. These include, for example, diabetic retinopathy and choroidal neovascular membrane (CNVM). Diabetic retinopathy may be classified as (1) non-proliferative or background retinopathy, characterized by increased capillary permeability, edema, hemorrhage, microaneurysms, and exudates, or 2) proliferative retinopathy, characterized by neovascularization extending from the retina to the vitreous, scarring, fibrous tissue formation, and potential for retinal detachment. In CNVM, abnormal blood vessels stemming from the choroid grow up through the retinal layers. The fragile new vessels break easily, causing blood and fluid to pool within the layers of the retina.
- Damage or progressive degeneration of the optic nerve and related nerves of the eye constitutes another leading cause of vision loss and blindness. A prime example is glaucoma, a condition of the eye that is made up of a collection of eye diseases that cause vision loss by damage to the optic nerve. Elevated intraocular pressure (IOP) due to inadequate ocular drainage is a primary cause of glaucoma, but it can also develop in the absence of elevated IOP.
- Glaucoma can develop as the eye ages, or it can occur as the result of an eye injury, inflammation, tumor, or in advanced cases of cataract or diabetes, or it can be caused by certain drugs, such as, for example steroids. The primary features of the optic neuropathy in glaucoma include characteristic changes in the optic nerve head, a decrease in number of surviving retinal ganglion cells, and loss of vision. It has been proposed that a cascade of events links degeneration of the optic nerve head with the slow death of retinal ganglion cells observed in the disease, and that this cascade of events can be slowed or prevented through the use of neuroprotective agents (Osborne et al., 2003, Eur. J. Ophthalmol, 13 (Supp 3): S19-S26).
- Cellular damage and degenerative conditions also affect other parts of the eye. For example, cataracts result from gradual opacification of the crystalline lens of the eye. It is believed that once begun, cataract development proceeds along one or more common pathways that culminate in damage to lens fibers. This condition is presently treated by surgical removal and replacement of the affected lens. Another example concerns the cornea and surrounding conjuctiva that make up the ocular surface. The limbal epithelium, located between the cornea and the bulbar conjuctiva, contains corneal epithelial stem cells. Limbal epithelial cell deficiency (LECD) is a condition that occurs, for example, in Stevens-Johnson syndrome and thermal or chemical burns. LECD often leads to an imbalance between the corneal epithelium and the conjunctival epithelium in which the cornea is covered by invading conjunctival epithelial cells, which severely compromises the corneal surface and affects visual acuity (Nakamura, T. &Kinoshita, S., 2003. Cornea 22 (Supp. 1): S75-S80).
- The recent advent of stem cell-based therapy for tissue repair and regeneration provides promising treatments for a number of aforementioned cell-degenerative pathologies and other ocular disorders. Stem cells are capable of self-renewal and differentiation to generate a variety of mature cell lineages. Transplantation of such cells can be utilized as a clinical tool for reconstituting a target tissue, thereby restoring physiologic and anatomic functionality. The application of stem cell technology is wide-ranging, including tissue engineering, gene therapy delivery, and cell therapeutics, i.e., delivery of bio-therapeutic agents to a target location via exogenously supplied living cells or cellular components that produce or contain those agents (For a review, see Tresco, P. A. et al., 2000, Advanced Drug Delivery Reviews 42: 2-37).
- An obstacle to realization of the therapeutic potential of stem cell technology has been difficulty in obtaining sufficient numbers of stem cells. One source of stem cells is embryonic or fetal tissue. Embryonic stem and progenitor cells have been isolated from a number of mammalian species, including humans, and several such cell types have been shown capable of self-renewal and expansion, as well differentiation into a variety of cell lineages. In animal model systems, embryonic stem cells have been reported to differentiate into a RPE cell phenotype, as well as to enhance the survival of host photoreceptors following transplantation (Haruta, M. et al., 2004, Investig. Ophthalmol. Visual Sci. 45: 1020-1025; Schraermeyer, U. et al., 2001, Cell Transplantation 10: 673-680). But the derivation of stem cells from embryonic or fetal sources has raised many ethical issues that are desirable to avoid by identifying other sources of multipotent or pluripotent cells.
- Adult tissue also can yield stem cells useful for cell-based ocular therapy. For instance, retinal and corneal stem cells themselves may be utilized for cell replacement therapy in the eye. In addition, neural stem cells from the hippocampus have been reported to integrate with the host retina, adopting certain neural and glial characteristics (see review of Lund, R. L. et al., 2003, J. Leukocyte Biol. 74: 151-160). Neural stem cells prepared from fetal rat cortex were shown to differentiate along an RPE cell pathway following transplantation into the adult rat subretinal space (Enzmann, V. et al., 2003, Investig. Ophthalmol. Visual Sci.: 5417-5422).
- Bone marrow stem cells have been reported to differentiate into retinal neural cells and photoreceptors following transplantation into host retinas (Tomita, M. et al., 2002, Stem Cells 20: 279-283; Kicic, A. et al., 2003. J. Neurosci. 23: 7742-7749). Kicic, A. et al. reports that CD90+ mesenchymal stem cells were capable of integrating into the host retina. These cells underwent differentiation, forming structures similar to the photoreceptor layer and expressed a photoreceptor-specific marker.
- Friedlander et al (published U.S. Patent Application US2005/0063961, assigned to The Scripps Research Institute, CA) report the rescue of blood vessels and neuronal networks in the eye by the injection of Lin−/CD31+ hematopoetic stem cells into the eye.
- An ocular surface reconstruction in a rabbit model system, utilizing cultured mucosal epithelial stem cells, has also been reported (Nakamura, T. & Kinoshita, S., 2003, supra). While these reports show promise for the use of adult progenitor and stem cells in cell-based therapy for the eye, it must be noted that adult stem cell populations are comparatively rare and are often obtainable only by invasive procedures.
- Further, adult stem cells may have a more limited ability to expand in culture than do embryonic stem cells. Thus, a need exists for alternative sources of adequate supplies of cells having the ability to support, augment or replace lost cellular function in the eye. A reliable, well-characterized and plentiful supply of substantially homogeneous populations of such cells would be an advantage in a variety of diagnostic and therapeutic applications in ocular repair and regeneration, including drug screening assays, ex vivo or in vitro trophic support of ocular and other useful cell types, and in vivo cell-based therapy.
- To this end, the present invention is directed toward the use of cell lines as a therapy for ocular disease. Several cell lines were tested in a rodent model of retinitis pigmentosa, according to methods disclosed in published U.S. Patent Application US2005/0037491. The present invention describes the use of human mesenchymal stem cells as being useful as a therapy for ocular disease.
- This invention provides compositions and methods applicable to cell-based or regenerative therapy for ophthalmic diseases and disorders. In particular, the invention features mesenchymal stem cells, optionally with pharmaceutical compositions or devices for the repair or regeneration of cells or tissues of the eye. Once transplanted into a target location in the eye, the mesenchymal stem cells of the invention may provide trophic support for ocular cells in situ, or they may themselves differentiate into one or more phenotypes, or they may exert a beneficial effect in both of those fashions, but the cells do not form structures similar to the photoreceptor layer and do not express a photoreceptor-specific marker, such as rhodopsin.
- One aspect of the invention features a method of treating a patient having an ocular degenerative condition, which comprises administering to the patient multipotent or pluripotent mesenchymal stem cells, in an amount effective to treat the ocular degenerative condition. In certain embodiments, the ocular degenerative condition is an acute ocular degenerative condition such as brain trauma, optic nerve trauma or ocular lesion. In other embodiments, it is a chronic or progressive degenerative condition, such as macular degeneration, retinitis pigmentosa, diabetic retinopathy, glaucoma, a limbal epithelial cell deficiency, or a retinal pigment epithelial cell deficiency. In certain embodiments, the cells are induced in vitro to differentiate into a neural or epithelial lineage cells prior to administration.
- In one embodiment, the mesenchymal stem cells promote the survival or proliferation of endogenous photoreceptors in the eye. In an alternate embodiment, the mesenchymal stem cells promote the differentiation of endogenous stem cells or precursor cells to photoreceptors.
- In one embodiment, the mesenchymal stem cells are positive for the expression of at least one of the following markers: CD29, CD44, CD105 or CD166. The cells are negative for the expression of at least one of the following markers: CD14, CD34 or CD45.
- In certain embodiments, the cells may be administered with at least one other cell type, such as, for example, an astrocyte, an oligodendrocyte, a neuron, a neural progenitor cell, a neural stem cell, a retinal epithelial stem cell, a corneal epithelial stem cell, or an other multipotent or pluripotent stem cell. In these embodiments, the other cell type may be administered simultaneously with, or before, or after, the mesenchymal stem cells. Likewise, in these and other embodiments, the cells may be administered with at least one other agent, such as a drug for ocular therapy, or another beneficial pharmaceutical agent such as, for example, an anti-inflammatory agent, an anti-apoptotic agent, an antioxidant or a growth factor. In these embodiments, the other agent may be administered simultaneously with, before, or after, the mesenchymal stem cells.
- The mesenchymal stem cell suitable for use in the present invention may be derived from tissues such as, for example, bone marrow, umbilical cord blood, amniotic sac and fluid, placenta, skin, fat, muscle, vasculature, liver, pancreas, or peripheral blood. The cells may be xenogeneic, allogeneic or autologous in origin. The cells may be isolated from the donor and transplanted immediately. Alternatively, the cells may be expanded in vitro prior to transplantation.
- The cells of the present invention may be cryogenically stored. Prior to transplantation, the cells may be thawed and transplanted immediately. Alternatively, the thawed cells may be cultured and/or expanded in vitro prior to transplantation. Alternatively, the cells may be transplanted as a frozen pellet.
- In various embodiments, the cells may be administered to the surface of an eye, or they may be administered to the interior of an eye or to a location in proximity to the eye, such as, for example, behind the eye, or the sub-retinal space.
- The cells may be administered through a cannula or from a device implanted in the patient's body within or in proximity to the eye, or they may be administered by implantation of a matrix or support containing the cells.
- Another aspect of the invention features a pharmaceutical composition for treating a patient having an ocular degenerative condition, comprising a pharmaceutically acceptable carrier and the mesenchymal stem cells of the present invention in an amount effective to treat the ocular degenerative condition. The ocular degenerative condition may be an acute, chronic or progressive condition. In certain embodiments, the composition comprises the mesenchymal cells of the present invention that have been induced in vitro to differentiate into a neural or epithelial lineage cells prior to formulation of the composition. Alternatively, the composition comprises the mesenchymal stem cells of the present invention that differentiate into a neural or epithelial lineage cells in situ, post transplantation.
- In certain embodiments, the pharmaceutical composition may comprise at least one other cell type, such as an astrocyte, an oligodendrocyte, a neuron, a neural progenitor cell, a neural stem cell, a retinal epithelial stem cell, a corneal epithelial stem cell, or an other multipotent or pluripotent stem cell. In these or other embodiments, the pharmaceutical composition may comprise at least one other agent, such as a drug for treating the ocular degenerative disorder or other beneficial pharmaceutical agents, such as, for example, anti-inflammatory agents, anti-apoptotic agents, antioxidants or growth factors.
- In certain embodiments, the pharmaceutical compositions may be formulated for administration to the surface of an eye. Alternatively, they may be formulated for administration to the interior of an eye or in proximity to the eye (e.g., behind the eye). The compositions may also be formulated as a matrix or support containing the cells.
- According to yet another aspect of the invention, a kit is provided for treating a patient having an ocular degenerative condition. The kit may comprise a pharmaceutically acceptable carrier, a population of mesenchymal stem cells, and instructions for using the kit in a method of treating the patient. The kit may also contain one or more additional components, such as reagents and instructions for culturing the cells, or a population of at least one other cell type, or one or more agents useful in the treatment of an ocular degenerative condition.
- Another aspect of the invention features a method for increasing the survival, growth or activity of cells for transplantation to treat an ocular degenerative disorder. The method comprises contacting mesenchymal stem cells with at least one pharmaceutical agent, such as, for example, growth factors, trophic factors, conditioned medium, anti-inflammatory agents, anti apoptotic agents, antioxidants, neurotrophic factors or neuroregenerative or neuroprotective drugs. Alternatively, the method may comprise co-culturing mesenchymal stem cells with at least one other cell type, such as an astrocyte, an oligodendrocyte, a neuron, a neural progenitor cell, a neural stem cell, a retinal epithelial stem cell, a corneal epithelial stem cell, or other multipotent or pluripotent stem cell, prior to transplantation. Agents, such as, for example, growth factors, trophic factors, conditioned medium, anti-inflammatory agents, anti apoptotic agents, antioxidants, neurotrophic factors or neuroregenerative or neuroprotective drugs may be added. A kit for practicing the method is also provided. The kit comprises mesenchymal stem cells and instructions for treating the cells with the at least one agent effective to increase the survival, growth or activity of the cells for transplantation. The kit may include at least one other cell type and instructions on the co-culture of the at least one other cell type with mesenchymal stem cells.
-
FIGS. 1A and 1B : Summary of ERG recordings from RCS rats receiving cellular transplants. Data shown is the mean amplitude of the ERG recordings (mV) obtained from rats at 60 (FIG. 1A ) and 90 days (FIG. 1B ) post transplantation (n=5 animals per condition). Recordings were taken from the eyes of rats receiving umbilical-derived cells (black bars) and the contralateral sham operated eye (black hashed bars). Recordings were taken from the eyes of rats receiving Cambrex MSC's (POIETICS™, Cat. No PT-2501) (gray bars) and the contralateral sham operated eye (gray hashed bars). Recordings were taken from the eyes of rats receiving placental-derived cells (white bars) and the contralateral sham operated eye (gray horizontally striped bars). -
FIG. 2 : Visual acuity of RCS rats receiving MSC's of the present invention. Data shown is the visual acuity of animals at 4 months of age (n=7), from sham operated rats (white bars), or MSC's of the present invention (Black bars). -
FIG. 3 : Visual thresholds of RCS rats receiving MSC's of the present invention. Data shown is the visual acuity of animals at 4 months of age (n=7) that received grafts of MSC's in the left (Δ) or right (♦) eye. Data from contralateral sham operated eyes (left ▴: right ▪) were included as controls. -
FIG. 4 : A histological section of a retina from an animal receiving MSC's of the present invention. Tissue section was obtained from a graftedanimal 100 days post procedure. - The terms “ocular”, “ophthalmic” and “optic” are used interchangeably herein to define “of, or about, or related to the eye.” The term “ocular degenerative condition” (or “disorder”) is an inclusive term encompassing acute and chronic conditions, disorders or diseases of the eye, inclusive of the neural connection between the eye and the brain, involving cell damage, degeneration or loss. An ocular degenerative condition may be age-related, or it may result from injury or trauma, or it may be related to a specific disease or disorder. Acute ocular degenerative conditions include, but are not limited to, conditions associated with cell death or compromise affecting the eye including conditions arising from cerebrovascular insufficiency, focal or diffuse brain trauma, diffuse brain damage, infection or inflammatory conditions of the eye, retinal tearing or detachment, intra-ocular lesions (contusion penetration, compression, laceration) or other physical injury (e.g., physical or chemical burns). Chronic ocular degenerative conditions (including progressive conditions) include, but are not limited to, retinopathies and other retinal/macular disorders such as retinitis pigmentosa (RP), age-related macular degeneration (AMD), choroidal neovascular membrane (CNVM); retinopathies such as diabetic retinopathy, occlusive retinopathy, sickle cell retinopathy and hypertensive retinopathy, central retinal vein occlusion, stenosis of the carotid artery, optic neuropathies such as glaucoma and related syndromes; disorders of the lens and outer eye, e. g., limbal stem cell deficiency (LSCD), also referred to as limbal epithelial cell deficiency (LECD), such as occurs in chemical or thermal injury, Steven-Johnson syndrome, contact lens-induced keratopathy, ocular cicatricial pemphigoid, congenital diseases of aniridia I or ectodermal dysplasia, and multiple endocrine deficiency-associated keratitis. The term treating (or treatment of) an ocular degenerative condition refers to ameliorating the effects of, or delaying, halting or reversing the progress of, or delaying or preventing the onset of, an ocular degenerative condition as defined herein.
- The term “effective amount” refers to a concentration or amount of a reagent or pharmaceutical composition, such as a growth factor, differentiation agent, trophic factor, cell population or other agent, that is effective for producing an intended result, including cell growth and/or differentiation in vitro or in vivo, or treatment of ocular degenerative conditions, as described herein. With respect to growth factors, an effective amount may range from about 1 nanogram/milliliter to about 1 microgram/milliliter. With respect to MSC's as administered to a patient in vivo, an effective amount may range from as few as several hundred or fewer to as many as several million or more. In specific embodiments, an effective amount may range from 103, more specifically at least about 104 cells. It will be appreciated that the number of cells to be administered will vary depending on the specifics of the disorder to be treated, including but not limited to size or total volume/surface area to be treated, as well as proximity of the site of administration to the location of the region to be treated, among other factors familiar to the medicinal biologist.
- The terms “effective period” (or “time”) and “effective conditions” refer to a period of time or other controllable conditions (e.g., temperature, humidity for in vitro methods), necessary or preferred for an agent or pharmaceutical composition to achieve its intended result.
- The term “patient” or “subject” refers to animals, including mammals, preferably humans, who are treated with the pharmaceutical compositions or in accordance with the methods described herein.
- A “stem cell” as used herein refers undifferentiated cells defined by the ability of a single cell both to self-renew, and to differentiate to produce progeny cells, including self-renewing progenitors, non-renewing progenitors, and terminally differentiated cells. Stem cells are also characterized by their ability to differentiate in vitro into functional cells of various cell lineages from multiple germ layers (endoderm, mesoderm and ectoderm), as well as to give rise to tissues of multiple germ layers following transplantation, and to contribute substantially to most, if not all, tissues following injection into blastocysts.
- Stem cells may be totipotent, pluripotent, multipotent, oligopotent, or unipotent. Totipotent cells are able to give rise to all embryonic and extraembryonic cell types. Pluripotent cells are able to give rise to all embryonic cell types. Multipotent cells include those able to give rise to a subset of cell lineages, but all within a particular tissue, organ, or physiological system (for example, hematopoietic stem cells (HSC) can produce progeny that include HSC (self-renewal), blood cell-restricted oligopotent progenitors, and all cell types and elements (e.g., platelets) that are normal components of the blood). Cells that are oligopotent can give rise to a more restricted subset of cell lineages than multipotent stem cells; and cells that are unipotent are able to give rise to a single cell lineage (e.g., spermatogenic stem cells). Stem cells are also categorized on the basis of the source from which they may be obtained. An adult stem cell is generally a multipotent undifferentiated cell found in tissue comprising multiple differentiated cell types. The adult stem cell can renew itself. Under normal circumstances, it can also differentiate to yield the specialized cell types of the tissue from which it originated, and possibly other tissue types.
- “Mesenchymal stem cell” (“MSC”) refers to a cell originating from the mesoderm of a mammal that is not fully differentiated and has the potential to differentiate into a variety of cells or tissues, including: connective tissue, bone, and cartilage, muscle, blood and blood vessels, lymphatic and lymphoid organs, notochord, pleura, pericardium, kidney, and gonads.
- A “progenitor cell” refers to a cell that is derived from a stem cell by differentiation and is capable of further differentiation to more mature cell types. Progenitor cells typically have more restricted proliferation capacity as compared to stem cells.
- By “conditioned media” is meant that a population of cells in grown in a medium and contribute soluble factors to the medium. In one such use, the cells are removed from the medium however the soluble factors produced by these cells remain. This medium is then used to nourish a different population of cells in the presence of the soluble factors produced by the initial population of cells.
- “Markers” as used herein, are nucleic acid or polypeptide molecules that are differentially expressed in a cell of interest. In this context, differential expression means an increased level of the marker for a positive marker, and a decreased level for a negative marker. The detectable level of the marker nucleic acid or polypeptide is sufficiently higher or lower in the cells of interest, compared to other cells, such that the cell of interest can be identified and distinguished from other cells, using any of a variety of methods known in the art.
- “Cluster of Differentiation” (CD) molecules are markers on the cell surface, as recognized by specific sets of antibodies, used to identify the cell type, stage of differentiation and activity state of a cell. Function and designation of CD markers are well established in the art. See, e.g., The Leukocyte Antigen Fact Book, 2nd edition, Barclay, A. N. et al. Academic Press, London 1997.
- “CD14” is a high affinity receptor for the complex of lipopolysaccharids (LPS) and LPS-Binding protein (LBP). The CD14 antigen is part of the functional heteromeric LPS receptor complex comprised of CD14, TLR4 and MD-2. CD14 is strongly expressed on most human monocytes and macrophages in peripheral blood, other body fluids and various tissues, such as lymph nodes and spleen. CD14 is weakly expressed on subpopulations of human neutrophils and myeloid dendritic cells.
- “CD29” is also referred to as “fibronectin receptor, beta polypeptide”.
- “CD34” is a transmembrane glycoprotein constitutively expressed on endothelial cells and on hematopoietic stem cells. This highly O-glycosylated molecule, containing serine and threonine-rich mucin like domains, binds to L-selectin.
- “CD44” is also referred to as “Hermes antigen” and is the main cell surface receptor for hyaluronan. This CD is primarily expressed in most cell types, except for tissues/cells such as hepatocytes, some epithelial cells, and cardiac muscle.
- “CD45” refers to the leukocyte common antigen having a sequence disclosed in Genbank Accession No. Y00638, or a naturally occurring variant sequence thereof (e.g., allelic variant).
- “CD105” is also referred to as “Endoglin” and is primarily expressed on endothelial cells, monocytes, macrophages, stromal cells, and bone marrow mesenchymal cells.
- “CD166” is a type 1 glycoprotein expressed on activated T cells, B cells and monocytes and appears to be the ligand for CD6 (1,2). Human CD166 may be important for activation of T cells.
- The term “pharmaceutically acceptable carrier” (or “medium”), which may be used interchangeably with the term “biologically compatible carrier” or “medium”, refers to reagents, cells, compounds, materials, compositions, and/or dosage forms that are not only compatible with the cells and other agents to be administered therapeutically, but also are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other complication commensurate with a reasonable benefit/risk ratio.
- Several terms are used herein with respect to cell replacement therapy. The terms “autologous transfer”, “autologous transplantation”, “autograft” and the like, refer to treatments wherein the cell donor is also the recipient of the cell replacement therapy. The terms “allogeneic transfer”, “allogeneic transplantation”, “allograft” and the like, refer to treatments wherein the cell donor is of the same species as the recipient of the cell replacement therapy, but is not the same individual. A cell transfer in which the donor's cells and have been histocompatibly matched with a recipient is sometimes referred to as a “syngeneic transfer”. The terms “xenogeneic transfer”, “xenogeneic transplantation”, “xenograft” and the like, refer to treatments wherein the cell donor is of a different species than the recipient of the cell replacement therapy.
- Mesenchymal stem cells suitable for use in the methods of the present invention may be obtained from tissues such as, for example, bone marrow, umbilical cord blood, amniotic sac, amniotic fluid, placenta, skin, fat, muscle, vasculature, liver, pancreas, or peripheral blood, using methods that are well known in the art. Isolation of a population of mesenchymal stem cells may be achieved using monoclonal antibodies specific proteins expressed on the surface of MSC's. The monoclonal antibodies may be adhered to substrate to facilitate the separation of the bound cells. The methods that may be used to isolate MSC's suitable for use in the present invention may be chosen by one of ordinary skill in the art. Examples of such methods are taught in U.S. Pat. No. 6,087,113, U.S. Pat. No. 6,261,549, U.S. Pat. No. 5,914,262, U.S. Pat. No. 5,908,782, and US20040058412.
- MSC's may be characterized, for example, by growth characteristics (e.g., population doubling capability, doubling time, passages to senescence), karyotype analysis (e.g., normal karyotype; maternal or neonatal lineage), flow cytometry (e.g., FACS analysis), immunohistochemistry and/or immunocytochemistry (e.g., for detection of epitopes), gene expression profiling (e.g., gene chip arrays; polymerase chain reaction (for example, reverse transcriptase PCR, real time PCR, and conventional PCR)), protein arrays, protein secretion—19 (e.g., by plasma clotting assay or analysis of PDC-conditioned medium, for example, by Enzyme Linked Immuno-Sorbent Assay (ELISA)), mixed lymphocyte reaction (e.g., as measure of stimulation of PBMCs), and/or other methods known in the art.
- Mesenchymal stem cells suitable for use in the methods of the present invention may also include cells obtained from commercial sources, such as, for example human mesenchymal stem cells sold under the trade name POIETICS™ (Cat. No PT-2501, Cambrex). These mesenchymal stem cells are positive for the expression of the following markers: CD29, CD44, CD105 and CD166. The cells are negative for the expression of the markers CD14, CD34 and CD45.
- Isolated MSC's, or tissue from which MSC's are obtained may be used to initiate, or seed, cell cultures. Isolated cells may be transferred to sterile tissue culture vessels, either uncoated or coated with extracellular matrix or ligands such as laminin, collagen (native, denatured or crosslinked), gelatin, fibronectin, and other extracellular matrix proteins. MSC's may be cultured in any culture medium capable of sustaining growth of the cells such as, for example, DMEM (high or low glucose), advanced DMEM, DMEM/MCDB 201, Eagle's basal medium, Ham's F10 medium (F10), Ham's F-12 medium (F12), Iscove's modified Dulbecco's—17 medium, Mesenchymal Stem Cell Growth Medium (MSCGM), DMEM/F12, RPMI 1640, and CELL-GRO-FREE. The culture medium may be supplemented with one or more components including, for example, fetal bovine serum (FBS); equine serum (ES); human serum (HS); beta-mercaptoethanol (BME or 2-ME), preferably about 0.001% (v/v); one or more growth factors, for example, platelet-derived growth factor (PDGF), epidermal growth factor (EGF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), leukocyte inhibitory factor (LIF) and erythropoietin; amino acids, including L-valine; and one or more antibiotic and/or antimycotic agents to control microbial contamination, such as, for example, penicillin G. streptomycin sulfate, amphotericin B. gentamicin, and nystatin, either alone or in combination. The cells may be seeded in culture vessels at a density to allow cell growth.
- Methods for the selection of the most appropriate culture medium, medium preparation, and cell culture techniques are well known in the art and are described in a variety of sources, including Doyle et al., (eds.), 1995, CELL & TISSUE CULTURE: LABORATORY PROCEDURES, John Wiley &Sons, Chichester; and Ho and Wang (eds.), 1991, ANIMAL CELL BIOREACTORS, Butterworth-Heinemann, Boston.
- In one aspect of the present invention, MSC's are used as a cell therapy for treating an ocular degenerative condition. Once transplanted into a target location in the eye, MSC's may provide trophic support for ocular cells in situ, or they may themselves differentiate into one or more phenotypes, or they may exert a beneficial effect in both of those fashions, among others.
- MSC's may be administered alone (e.g., as substantially homogeneous populations) or as mixtures with other cells. MSC's may be administered in a pharmaceutical preparation, using conventional pharmaceutically acceptable carriers. Where MSC's are administered with other cells, they may be administered simultaneously or sequentially with the other cells (either before or after the other cells). Cells that may be administered in conjunction with MSC's include, but are not limited to, neurons, astrocytes, oligodendrocytes, neural progenitor cells, neural stem cells, ocular progenitor cells, retinal or corneal epithelial stem cells and/or other multipotent or pluripotent stem cells. The cells of different types may be mixed with the MSC's immediately or shortly prior to administration, or they may be co-cultured together for a period of time prior to administration.
- The MSC's may be administered with at least one pharmaceutical agent, such as, for example, growth factors, trophic factors, conditioned medium, or other active agents, such as anti-inflammatory agents, anti apoptotic agents, antioxidants, neurotrophic factors or neuroregenerative or neuroprotective drugs as known in the art. When MSC's are administered with other agents, they may be administered together in a single pharmaceutical composition, or in separate pharmaceutical compositions, simultaneously or sequentially with the other agents (either before or after administration of the other agents).
- Examples of other components that may be administered with mesenchymal stem cells include, but are not limited to: (1) other neuroprotective or neurobeneficial drugs; (2) selected extracellular matrix components, such as one or more types of collagen known in the art, and/or growth factors, platelet-rich plasma, and drugs (alternatively, the cells may be genetically engineered to express and produce growth factors); (3) anti-apoptotic agents (e.g., erythropoietin (EPO), EPO mimetibody, thrombopoietin, insulin-like growth factor (IGF)-I, IGF-II, hepatocyte growth factor, caspase inhibitors); (4) anti-inflammatory compounds (e.g., p38 MAP kinase inhibitors, TGF-beta inhibitors, stating, IL-6 and IL-1 inhibitors, PEMIROLAST, TRANILAST, REMICADE, SIROLIMUS, and non-steroidal anti-inflammatory drugs (NSAIDS) (such as—36 TEPOXALIN, TOLMETIN, and SUPROFEN); (5) immunosuppressive or immunomodulatory agents, such as calcineurin inhibitors, mTOR inhibitors, antiproliferatives, corticosteroids and various antibodies; (6) antioxidants such as probucol, vitamins C and E, conenzyme Q-10, glutathione, L-cysteine and N-acetylcysteine; and (6) local anesthetics, to name a few.
- In one embodiment, MSC's may be administered as undifferentiated cells, i.e., as cultured in Growth Medium. Alternatively, MSC's may be administered following exposure in culture to conditions that stimulate differentiation toward a desired phenotype. The cells may be surgically implanted, injected or otherwise administered directly or indirectly to the site of ocular damage or distress. When cells are administered in semi-solid or solid devices, surgical implantation into a precise location in the body is typically a suitable means of administration. Liquid or fluid pharmaceutical compositions, however, may be administered to a more general location in the eye (e.g., topically or intra-ocularly).
- Other embodiments encompass methods of treating ocular degenerative conditions by administering pharmaceutical compositions comprising MSC cellular components (e.g., cell lysates or components thereof) or products (e.g., trophic and other biological factors produced naturally by MSC's or through genetic modification, conditioned medium from MSC culture).
- Again, these methods may further comprise administering other active agents, such as growth factors, neurotrophic factors or neuroregenerative or neuroprotective drugs as known in the art.
- Dosage forms and regimes for administering MSC's or any of the other pharmaceutical compositions described herein are developed in accordance with good medical practice, taking into account the condition of the individual patient, e.g., nature and extent of the ocular degenerative condition, age, sex, body weight and general medical condition, and other factors known to medical practitioners. Thus, the effective amount of a pharmaceutical composition to be administered to a patient is determined by these considerations as known in the art.
- It may be desirable or appropriate to pharmacologically immunosuppress a patient prior to initiating cell therapy. This may be accomplished through the use of systemic or local immunosuppressive agents, or it may be accomplished by delivering the cells in an encapsulated device. These and other means for reducing or eliminating an immune response to the transplanted cells are known in the art. As an alternative, MSC's may be genetically modified to reduce their immunogenicity.
- According to another aspect of the invention, a method is provided for treating a patient having an ocular degenerative condition, which may comprise administering to the patient a preparation made from mesenchymal stem cells, in an amount effective to treat the ocular degenerative condition, wherein the preparation comprises a cell lysate of the MSC's, or a conditioned medium in which the MSC's were grown, or an extracellular matrix of the MSC's. The lysate may comprise at least one or all of the sub-cellular fractions of the MSC's, such as, for example the plasma membrane fraction. Methods of lysing cells are well known in the art and include various means of mechanical disruption, enzymatic disruption, or chemical disruption, or combinations thereof. Such cell lysates may be prepared from cells directly in their growth medium and thus containing secreted growth factors and the like, or may be prepared from cells washed free of medium in, for example, PBS or other solution. Washed cells may be resuspended at concentrations greater than the original population density if preferred. In one embodiment, whole cell lysates may be prepared, e.g., by disrupting cells without subsequent separation of cell fractions. In another embodiment, a cell membrane fraction is separated from a soluble fraction of the cells by routine methods known in the art, e.g., centrifugation, filtration, or similar methods.
- Cell lysates or cell soluble fractions prepared from populations of MSC's may be used as is, further concentrated, by for example, ultrafiltration or lyophilization, or even dried, partially purified, combined with pharmaceutically-acceptable carriers or diluents as are known in the art, or combined with other compounds such as biologicals, for example pharmaceutically useful protein compositions. Cell lysates or fractions thereof may be used in vitro or in vivo, alone or for example, with autologous or allogenic live cells. The lysates, if introduced in vivo, may be introduced locally at a site of treatment, or remotely to provide, for example needed cellular growth factors to a patient.
- In another aspect, the invention features a pharmaceutical composition comprising a pharmaceutically acceptable carrier and a preparation made from the mesenchymal stem cells, which may be a lysate of the MSC's, an extracellular matrix of the MSC's or a conditioned medium in which MSC's were grown. Kits for practicing this aspect of the invention are also provided. These may include the one or more of a pharmaceutically acceptable carrier or other agent or reagent, one or more of a cell lysate or fraction thereof, an extracellular matrix or a conditioned medium from the MSC's, and instructions for use of the kit components.
- Pharmaceutical compositions of the invention may comprise postpartum cells MSC's, or components or products thereof, formulated with a pharmaceutically acceptable carrier or medium. Suitable pharmaceutically acceptable carriers include water, salt solution (such as Ringer's solution), alcohols, oils, gelatins, and carbohydrates, such as lactose, amylose, or starch, fatty acid esters, hydroxymethylcellulose, and polyvinyl pyrolidine. Such preparations may be sterilized, and if desired, mixed with auxiliary agents such as lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, and coloring. Typically, but not exclusively, pharmaceutical compositions comprising cellular components or products, but not live cells, are formulated as liquids. Pharmaceutical compositions comprising live MSC's are typically formulated as liquids, semisolids (e.g., gels) or solids (e.g., matrices, supports and the like, as appropriate for ophthalmic tissue engineering).
- Pharmaceutical compositions may comprise auxiliary components as would be familiar to medicinal chemists or biologists. For example, they may contain antioxidants in ranges that vary depending on the kind of antioxidant used. Reasonable ranges for commonly used antioxidants are about 0.01% to about 0.15% weight by volume of EDTA, about 0.01% to about 2.0% weight volume of sodium sulfite, and about 0.01% to about 2.0% weight by volume of sodium metabisulfite. One skilled in the art may use a concentration of about 0.1% weight by volume for each of the above. Other representative compounds include mercaptopropionyl glycine, N-acetyl cysteine, beta-mercaptoethylamine, glutathione and similar species, although other anti-oxidant agents suitable for ocular administration, e.g. ascorbic acid and its salts or sulfite or sodium metabisulfite may also be employed.
- A buffering agent may be used to maintain the pH of eye drop formulations in the range of about 4.0 to about 8.0; so as to minimize irritation of the eye. For direct intravitreal or intraocular injection, formulations should be at pH 7.2 to 7.5, alternatively at pH 7.3-7.4. The ophthalmologic compositions may also include tonicity agents suitable for administration to the eye. Among those suitable is sodium chloride to make formulations approximately isotonic with 0.9% saline solution.
- In certain embodiments, pharmaceutical compositions are formulated with viscosity enhancing agents. Such agents can be, for example, hydroxyethylcellulose, hydroxypropylcellulose, methylcellulose, and polyvinylpyrrolidone. The pharmaceutical compositions may have co-solvents added if needed. Suitable co-solvents may include glycerin, polyethylene glycol (PEG), polysorbate, propylene glycol, and polyvinyl alcohol. Preservatives may also be included, such as, for example, benzalkonium chloride, benzethonium chloride, chlorobutanol, phenylmercuric acetate or nitrate, thimerosal, or methyl or propylparabens.
- Formulations for injection may be designed for single-use administration and do not contain preservatives. Injectable solutions nay have isotonicity equivalent to 0.9% sodium chloride solution (osmolality of 290-300 milliosmoles). This may be attained by addition of sodium chloride or other co-solvents as listed above, or excipients such as buffering agents and antioxidants, as listed above.
- The tissues of the anterior chamber of the eye are bathed by the aqueous humor, while the retina is under continuous exposure to the vitreous. These fluids/gels exist in a highly reduced state because they contains antioxidant compounds and enzymes. Therefore, it may be advantageous to include a reducing agent in the ophthalmologic compositions. Suitable reducing agents include N-acetylcysteine, ascorbic acid or a salt form, and sodium sulfite or metabisulfite, with ascorbic acid and/or N-acetylcysteine or glutathione being particularly suitable for injectable solutions.
- Pharmaceutical compositions comprising cells, cell components or cell products may be delivered to the eye of a patient in one or more of several delivery modes known in the art. In one embodiment that may be suitable for use in some instances, the compositions are topically delivered to the eye in eye drops or washes. In another embodiment, the compositions may be delivered to various locations within the eye via periodic intraocular injection or by infusion in an irrigating solution such as BSS or BSS PLUS (Alcon USA, Fort Worth, Tex.). Alternatively, the compositions may be applied in other ophthalmologic dosage forms known to those skilled in the art, such as pre-formed or in situ-formed gels or liposomes, for example as disclosed in U.S. Pat. No. 5,718,922 to Herrero-Vanrell. In another embodiment, the composition may be delivered to or through the lens of an eye in need of treatment via a contact lens (e.g. Lidofilcon B. Bausch &Lomb CW79 or DELTACON (Deltafilcon A) or other object temporarily resident upon the surface of the eye. In other embodiments, supports such as a collagen corneal shield (e.g. BIO-COR dissolvable corneal shields, Summit Technology, Watertown, Mass.) may be employed.
- The compositions may also be administered by infusion into the eyeball, either through a cannula from an osmotic pump (ALZET, Alza Corp., Palo Alto, Calif.) or by implantation of timed-release capsules (OCCUSENT) or biodegradable disks (OCULEX, OCUSERT). These routes of administration have the advantage of providing a continuous supply of the pharmaceutical composition to the eye. This may be an advantage for local delivery to the cornea, for example.
- Pharmaceutical compositions comprising live cells in a semi-solid or solid carrier are typically formulated for surgical implantation at the site of ocular damage or distress. It will be appreciated that liquid compositions also may be administered by surgical procedures. In particular embodiments, semi-solid or solid pharmaceutical compositions may comprise semi permeable gels, lattices, cellular supports and the like, which may be non-biodegradable or biodegradable. For example, in certain embodiments, it may be desirable or appropriate to sequester the exogenous cells from their surroundings, yet enable the cells to secrete and deliver biological molecules to surrounding cells. In these embodiments, cells may be formulated as autonomous implants comprising living MSC's or cell population comprising MSC's surrounded by a non-degradable, selectively permeable barrier that physically separates the transplanted cells from host tissue. Such implants are sometimes referred to as “immunoprotective,” as they have the capacity to prevent immune cells and macromolecules from killing the transplanted cells in the absence of pharmacologically induced immunosuppression (for a review of such devices and methods, see, e.g., P. A. Tresco et al., 2000. Adv. Drug Delivery Rev. 42: 3-27).
- In one aspect, the MSC's of the present invention may be incorporated into a support material prior to transplantation. Support materials suitable for use for purposes of the present invention include tissue templates, conduits, barriers, and reservoirs useful for tissue repair. In particular, synthetic and natural materials in the form of foams, sponges, gels, hydrogels, textiles, and nonwoven structures, which have been used in vitro and in vivo to reconstruct or regenerate biological tissue, as well as to deliver chemotactic agents for inducing tissue growth, are suitable for use in practicing the methods of the present invention. See, e.g., the materials disclosed in U.S. Pat. No. 5,770,417, U.S. Pat. No. 6,022,743, U.S. Pat. No. 5,567,612, U.S. Pat. No. 5,759,830, U.S. Pat. No. 6,626,950, U.S. Pat. No. 6,534,084, U.S. Pat. No. 6,306,424, U.S. Pat. No. 6,365,149, U.S. Pat. No. 6,599,323, U.S. Pat. No. 6,656,488, and U.S. Pat. No. 6,333,029. Exemplary polymers suitable for use in the present invention are disclosed in U.S. Published Application 2004/0062753 A 1 and U.S. Pat. No. 4,557,264.
- To form a support incorporated with a pharmaceutical agent, the pharmaceutical agent may be mixed with the polymer solution prior to forming the support. Alternatively, a pharmaceutical agent may be coated onto a fabricated support, preferably in the presence of a pharmaceutical carrier. The pharmaceutical agent may be present as a liquid, a finely divided solid, or any other appropriate physical form. Alternatively, excipients may be added to the support to alter the release rate of the pharmaceutical agent. In an alternate embodiment, the support is incorporated with at least one pharmaceutical compound that is an anti-inflammatory compound, such as, for example compounds disclosed in U.S. Pat. No. 6,509,369.
- In one embodiment, the support is incorporated with at least one pharmaceutical compound that is an anti-apoptotic compound, such as, for example, compounds disclosed in U.S. Pat. No. 6,793,945.
- In another embodiment, the support is incorporated with at least one pharmaceutical compound that is an inhibitor of fibrosis, such as, for example, compounds disclosed in U.S. Pat. No. 6,331,298.
- In a further embodiment, the support is incorporated with at least one pharmaceutical compound that is capable of enhancing angiogenesis, such as, for example, compounds disclosed in U.S. Published Application 2004/0220393 and U.S. Published Application 2004/0209901.
- In still another embodiment, the support is incorporated with at least one pharmaceutical compound that is an immunosuppressive compound, such as, for example, compounds disclosed in U.S. Published Application 2004/0171623.
- In a further embodiment, the support is incorporated with at least one pharmaceutical compound that is a growth factor, such as, for example, members of the TGF-3 family, including TGF-β1, 2, and 3, bone morphogenic proteins (BMP-2, -3, -4, -5, -6, -7, -11, -12, and -13), fibroblast growth factors-1 and -2, platelet-derived growth factor-AA, and -BB, platelet rich plasma, insulin growth factor (IGF-I, II) growth differentiation factor (GDF-5, -6, -8, -10, -15), vascular endothelial cell-derived growth factor (VEGF), pleiotrophin, endothelin, among others. Other pharmaceutical compounds can include, for example, nicotinamide, hypoxia inducible factor 1-alpha, glucagon like peptide-I (GLP-1), GLP-1 and GLP-2 mimetibody, and II, Exendin-4, retinoic acid, parathyroid hormone, tenascin-C, tropoelastin, thrombin-derived peptides, cathelicidins, defensins, laminin, biological peptides containing cell- and heparin-binding domains of adhesive extracellular matrix proteins such as fibronectin and vitronectin, MAPK inhibitors, such as, for example, compounds disclosed in U.S. Published Application 2004/0209901 and U.S. Published Application 2004/0132729.
- The incorporation of the cells of the present invention into a support may be achieved by the simple depositing of cells onto the support. Cells may enter into the support by simple diffusion (J. Pediatr. Surg. 23 (1 Pt 2): 3-9 (1988)). Several other approaches have been developed to enhance the efficiency of cell seeding. For example, spinner flasks have been used in seeding ofchondrocytes onto polyglycolic acid supports (Biotechnol. Prog. 14(2): 193-202 (1998)). Another approach for seeding cells is the use of centrifugation, which yields minimum stress to the seeded cells and enhances seeding efficiency. For example, Yang et al. developed a cell seeding method (J. Biomed. Mater. Res. 55(3): 379-86 (2001)), referred to as Centrifugational Cell Immobilization (CCI). Survival of transplanted cells in a living patient may be determined through the use of a variety of scanning techniques, e.g., computerized axial tomography (CAT or CT) scan, magnetic resonance imaging (MRI) or positron emission tomography (PET) scans.
- Determination of transplant survival may also be done post mortem by removing the tissue and examining it visually or through a microscope. Alternatively, cells may be treated with stains that are specific for neural or ocular cells or products thereof, e.g., neurotransmitters. Transplanted cells may also be identified by prior incorporation of tracer dyes such as rhodamine- or fluorescein-labeled microspheres, fast blue, ferric microparticles, bisbenzamide or genetically introduced reporter gene products, such as beta-galactosidase or beta-glucuronidase.
- Examining restoration of the ocular function that was damaged or diseased can assess functional integration of transplanted cells into ocular tissue of a subject. For example, effectiveness in the treatment of macular degeneration or other retinopathies may be determined by improvement of visual acuity and evaluation for abnormalities and grading of stereoscopic color fundus photographs (Age-Related Eye Disease Study Research Group, NEI, NIH, AREDS Report No. 8, 2001, Arch. Ophthalmol. 119: 1417-1436).
- The present invention is further illustrated, but not limited by, the following examples.
- Royal College of Surgeon (RCS) rats are genetically predisposed to undergo significant visual loss caused by a primary dysfunction of retinal pigment epithelial (RPE) cells.
- Using this model, the efficacy of subretinal transplantation of mesenchymal stem cell populations to preserve photoreceptors in RCS rats was tested. In this degenerative model, rod function is lost within 30 to 60 days after birth. Loss of cone function usually follows within 3 months.
- Cultures of human adult MSC's (Cat. No. PT-2501, Cambrex) were expanded in vitro for a total of 6 passages. All cells were initially seeded at 5,000 cells/cm2 on non-coated T75 flasks in mesenchymal stem cell growth medium supplemented according to the manufacturer's instructions (Cambrex). For subsequent passages all cells were treated as follows. After trypsinization, viable cells were counted after trypan Blue staining.
- Briefly, 50 ml of cell suspension was combined with 50 ml of 0.04% w/v trypan Blue (Sigma, St. Louis Mo.) and the viable cell number, was estimated using a heamocytometer. Cells were trypsinized and washed three times in supplement free-DMEM:Low glucose medium (Invitrogen, Carlsbad, Calif.). Cultures of human MSCs cells at
passage 6 were trypsinized and washed twice in Leibovitz's L-15 medium (Invitrogen, Carlsbad, Calif.), to remove serum components. For the transplantation procedure dystrophic RCS rats were anesthetized with xylazine-ketamine (1 mg/kg i.p. of the following mixture: 2.5 ml xylazine at 20 mg/ml, 5 ml ketamine at 100 mg/ml, and 0.5 ml distilled water) and their head secured by a nose bar. Cells devoid of serum were resuspended (2×104 cells per injection) in 2 ml of Leibovitz, L-15 medium (Invitrogen, Carlsbad, Calif.) and transplanted using a fine glass pipette (internal diameter 75-150 mm) trans-scerally. Cells were delivered into the dorso-temporal subretinal space of anesthetized 3 week old dystrophic-pigmented RCS rats (total N=10/cell type). - Cells were injected unilaterally into the right eye, whilst the left eye was injected with carrier medium alone (Sham control; Leibovitz's L-15 medium). Viability of residual un-injected cells remained at greater than 95% as assessed by trypan blue exclusion at the completion of cell injections. After cell injections were performed animals were injected with dexamethasone (2 mg/kg) for 10 days post transplantation. For the duration of the study animals were maintained on oral cyclosporine A (210 mg/L of drinking water; resulting blood concentration: 250-300 mg/L) (Bedford Labs, Bedford. Ohio) from 2 days pre-transplantation until end of the study. Food and water were available ad libitum. Animals were sacrificed at 60 or 90 days postoperatively with the remainder of animals being sacrificed at earlier time-points for histological assessment of short-term changes associated with cell transplantation.
- The ability of other cell types to treat the ocular degeneration observed in RCS rats was also tested. Cellular compositions were prepared from human umbilical-derived cells (cells disclosed in published U.S. Patent Application US2005/0054098), human placental-derived cells (cells disclosed in published U.S. Patent Application US2005/0058631) and fibroblasts. The cellular compositions were administered to parallel groups pf animals according to the methods described above.
- The electroretinogram (ERG) is a recording of electrical potentials (action potentials) that are generated within the retina (typically in response to a flash of light). It is recorded using two electrodes, with one electrode placed on or close to the cornea of the eye whilst the other is placed on the scalp. Following overnight dark adaptation, animals were prepared for ERG recording under dim red light, as described in Sauve et al, 2004. In brief, under anesthesia (with a mixture of 150 mg/kg i.p ketamine, and 10 mg/kg i.p. xylazine) the head was secured with a stereotaxic head holder and the body temperature monitored through a rectal thermometer and maintained at 38° C. using a homeothermic blanket. Pupils were dilated using equal parts of topical 2.5% phenylephrine and 1% tropicamide. Topical anesthesia with 0.75% bupivacaine was used to prevent any corneal reflexes and a drop of 0.9% saline was frequently applied on the cornea to prevent its dehydration and allow electrical contact with the recording electrode (gold wire loop). A 25-gauge needle inserted under the scalp, between the two eyes, served as the reference electrode. Amplification (at 1-1000 Hz bandpass, without notch filtering), stimulus presentation, and data acquisition were provided by the UTAS-3000 system from LKC Technologies (Gaithersburg, Md.).
- A double flash protocol was used to determine the isolation of rod and cone responses (Nixon et al, 2001). A probe flash was presented I sec after a conditioning flash, using a specific feature of the UTAS-3000 system (LKC Technologies) with calibrated ganzfeld; assuring complete recharge of the stimulator. The role of the conditioning flash in this procedure was to transiently saturate rods so that they were rendered unresponsive to the probe flash. Response to the probe flash was taken as reflecting cone-driven activity (a-wave). A rod-driven b-wave was obtained by subtracting the cone-driven response from the mixed response (obtained following presentation of a probe flash alone, i.e. not preceded by any conditioning flash).
- For the quantification of dark-adapted b-waves, recordings consisted of single flash presentations (10 μsec duration), repeated 3 to 5 times to verify the response reliability and improve the signal-to-noise ratio, if required. Stimuli were presented at six increasing intensities in one log unit steps varying from −3.6 to 1.4 log candila/m2 in luminance. To minimize the potential bleaching of rods, inter-stimulus intervals were increased as the stimulus luminance was elevated from 10 sec at lowest stimulus intensity up to 2 minutes at highest stimulus intensity. The maximum b-wave amplitude was defined as that obtained from the flash intensity series, regardless of the stimulus intensity (Nusinowitz et al, 1999).
- Animals that received umbilical cell injections (n=6) demonstrated improvement in all outcome measures tested at 60 days, a-wave (27±11) versus sham controls (0), mixed b-wave (117±67) versus sham controls (18±13), cone-b-wave (55±25) versus sham controls (28±11), and in rod contribution (49±16%) versus sham controls (6±7%). Furthermore, at 90 days improved responses were measured in 2 animals tested with measures being, a-wave (15±7) versus sham controls (0), mixed b-wave (37±15) versus sham controls (0), cone-b-wave (16±11) versus sham controls (7±5), and in rod contribution (58±39%) versus sham controls (0%). (
FIGS. 1A and 1B ). The response observed in these animals was much greater than that seen with un-treated or sham treated animals. MSC injections (n=5) at 58 days showed responsiveness to a-wave measurements (16.4±13.1) versus sham controls (14.6±12.5). Functional preservation of vision was demonstrated in mixed b-wave responsiveness (81.6±15.3) versus shams (54.4±24.5), and in isolated cone-b-wave responsiveness (134±68) versus shams (72.4±40.8), and in overall measures of rod contribution (41±16.8) versus shams (21±19.34). These results demonstrated demonstrate preservation of photoreceptor function at 60 days in these animals. - MSC injections (n=5) at 88 days in the same animals demonstrated significant preservation in all the ERG measures when compared to sham controls. Responsiveness to a-wave measurements (14.3+12.1) versus sham controls (0). Functional preservation of vision was demonstrated in mixed b-wave responsiveness (64.5+24) versus shams (0), and in isolated cone-b-wave responsiveness (32.6+22.7) versus shams (8+4), and in overall measures of rod contribution (47.5+29) versus shams (0). These results demonstrated improvement in visual responsiveness when compared to sham controls. Thus, the data clearly demonstrates that visual function is preserved in RCS animals that receive MSC injections vs sham controls, where vision is lost by 90 days.
- Placental cell transplants (n=4) at 60 days showed no improvement in a-wave (20+20) versus sham controls (0), but showed minor improvement in mixed b-wave (81+72) versus sham controls (1.5+2), and good improvement in cone-b-wave (50+19) versus sham controls (7+7), and in rod contribution (30%) versus sham controls (0). These results indicated some improvement in visual responsiveness when compared to sham controls. This suggests that photoreceptor rescue was observed in these animals to a small extent (
FIGS. 1A and 1B ). - In contrast, animals receiving fibroblast transplantations showed no improvement in any of the parameters tested.
- Functional Assessment:
- Physiological retinal sensitivity testing was performed to demonstrate retinal response to dim light. In these tests animals were anesthetized with urethane at 1.25 g/kg i.p. Physiological assessment in these animals was tested post graft in animals at 90 days by recording multiunit extracellular activity in the superior colliculus to illumination of respective visual receptive fields (Lund et al, 2001). This procedure was repeated for 20 independent points (spaced 200 mm apart, with each step corresponding to approximately 10-150 displacements in the visual field), covering the visual field. Visual thresholds were measured as the increase in intensity over background and maintained at 0.02 candila/m2 (luminescence unit), required for activating units in the superficial 200 mm of the superior colliculus with a spot of light 30 in diameter. Response parameters were compared between transplanted and sham control eyes that received vehicle alone.
- The grating acuity of RCS rats was tested after 3 and 4 months of age months. Normal animals demonstrate acuity of 0.5 cycles/degree at 3 months of age. After 3 months eyes injected with MSCs maintained an average acuity of 0.47 cycles/degree (n=14) in contrast to sham treated animals that retained an average acuity of 0.2 cycles/degree. Thus visual acuity was preserved in these animals 90 days post-graft. At 4 months of age MSC grafted animals maintained an average acuity of 0.36 cycles/degree (n=7), in contrast to sham treated animals that retained acuity at baseline levels (
FIG. 2 ). - Efficacy of transplants in preventing visual loss was monitored by assessment of electrophysiological responsiveness in 4 animals. The threshold sensitivity response to light was used to define the area of visual field rescue in sham-injected control eyes versus eyes transplanted with MSC's. In nondystrophic rats, visual thresholds never exceeded 0.5 log candila/m2 above background (
FIG. 3 ). In non-operated dystrophic rats, the thresholds are usually in the magnitude of 4 log candila/m2 units (Blakema and Drager, 1991). By contrast, in non-operated sham injected dystrophic rats, the thresholds were in the order of 2.9-4.9 log candila/m2 units with an average threshold of 4.0 log candila/m2 units, in some instances no recording could be attained (FIG. 3 ). Thus, the sham-injected rats showed some highly localized functional rescue in the temporal retina. However, the human MSC transplanted rats exhibited substantially greater levels of visual preservation with thresholds ranging from 0.8 to 2.1 log candila/m2 units, with an average threshold of 1.3 log candila/m2 units (FIG. 3 ). On average 60% of threshold responses were below 2.1 log candela units in MSC injected animals vs. 18% in sham injected controls. - At the conclusion of the study, animals were sacrificed with an overdose of urethane (12.5 g/kg). The orientation of the eye was maintained by placing a 6.0 suture through the superior rectus muscle prior to enucleation. After making a corneal incision, the eyes were fixed with 2.5% parafomaldehyde, 2.5% glutaraldehyde, 0.01% picric acid in 0.1 M cacodylate buffer (pH7.4). After fixation, the cornea and lens were removed by cutting around the cilliary body. A small nick was made in the periphery of the dorsal retina prior to removal of the superior rectus to assist in maintaining orientation. The retinas were then post-fixed in 1% osmium tetroxide for 1 h. After dehydration through a series of alcohols to epoxypropane, the retinas were embedded in TAAB embedding resin (TAAB Laboratories, Aldemarston, UK). Semi-thin sections were stained with 1% toluidine Blue in 1% borate buffer and the ultra thin sections were contrasted with uranyl acetate and lead citrate.
- For Nissl staining, sections were stained with 0.75% cresyl violet (Sigma, St. Louis, Mo.) after which they were dehydrated through graded alcohols at 70, 95 and 100% twice. They were then placed in xylene (Sigma. St. Louis, Mo.), rinsed with PBS (pH 7.4) (Invitrogen, Carlsbad, Calif.), coverslipped and mounted with DPX mountant (Sigma, St. Louis, Mo.).
- Histologicaly at the 90-100 day time point in MSC treated animals, anatomical rescue of host photoreceptors was clearly demonstrated (
FIG. 4 ). The photoreceptors form a thick layer separated by a gap from the inner nuclear layer, made up of other retinal cells. The width of the outer layer in the sham control is at best a discontinuous single layer as opposed to around 3-5 cells thick in the grafted eye. In comparison to a normal animal this is marginally more than half the thickness of photoreceptor cell layers normally observed. - Publications cited throughout this document are hereby incorporated by reference in their entirety. Although the various aspects of the invention have been illustrated above by reference to examples and preferred embodiments, it will be appreciated that the scope of the invention is defined not by the foregoing description, but by the following claims properly construed under principles of patent law.
Claims (16)
1-16. (canceled)
17. A pharmaceutical composition for treating a patient having an ocular degenerative condition, the composition comprising mesenchymal stem cells in an amount effective to treat the ocular degenerative condition, and a pharmaceutically acceptable carrier.
18. The pharmaceutical composition of claim 17 , wherein the mesenchymal stem cells are characterized by the expression of at least one of the following surface markers: CD29, CD44, CD105 or CD166, and the lack of expression of at least one of CD14, CD34 or CD45.
19. The pharmaceutical composition of claim 17 or 18 , wherein the ocular degenerative condition is an acute ocular degenerative condition.
20. The pharmaceutical composition of claim 19 , wherein the acute ocular degenerative condition is a brain trauma, optic nerve trauma or ocular lesion.
21. The pharmaceutical composition of claim 17 or 18 , wherein the ocular degenerative condition is a chronic or progressive degenerative condition.
22. The pharmaceutical composition of claim 21 , wherein the chronic or progressive ocular degenerative condition is macular degeneration, retinitis pigmentosa, diabetic retinopathy, glaucoma, limbal epithelial cell deficiency.
23. The pharmaceutical composition of claim 17 or 18 , wherein the mesenchymal stem cells promote the survival of ocular cells in situ but the cells do not form structures similar to the photoreceptor layer and do not express a photoreceptor-specific marker.
24. The pharmaceutical composition of claim 17 or 18 , wherein the mesenchymal stem cells promote the formation of photoreceptors from ocular cells in situ but the stem cells do not differentiate into photoreceptors themselves.
25. The pharmaceutical composition of claim 17 or 18 , containing at least one other cell type.
26. The pharmaceutical composition of claim 25 , wherein the at least one other cell type is an astrocyte, oligodendrocyte, neuron, neural progenitor, neural stem cell, retinal epithelial stem cell, corneal epithelial stem cell, or other multipotent or pluripotent stem cell.
27. The pharmaceutical composition of claim 25 , comprising at least one other agent.
28. The pharmaceutical composition of claim 27 , wherein the at least one other agent is a drug for treating the ocular degenerative disorder.
29. The pharmaceutical composition of claim 17 or 18 , wherein the cells are administered to the surface of an eye.
30. The pharmaceutical composition of claim 17 or 18 , wherein the cells are administered to the interior of an eye.
31. The pharmaceutical composition of claim 17 or 18 , wherein the pharmaceutical carrier is formulated as a three dimentional matrix or support containing the cells.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/734,561 US20160030480A1 (en) | 2005-06-08 | 2015-06-09 | Cellular Therapy for Ocular Degeneration |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US68863705P | 2005-06-08 | 2005-06-08 | |
US11/446,462 US9074189B2 (en) | 2005-06-08 | 2006-06-02 | Cellular therapy for ocular degeneration |
US14/734,561 US20160030480A1 (en) | 2005-06-08 | 2015-06-09 | Cellular Therapy for Ocular Degeneration |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/446,462 Division US9074189B2 (en) | 2005-06-08 | 2006-06-02 | Cellular therapy for ocular degeneration |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160030480A1 true US20160030480A1 (en) | 2016-02-04 |
Family
ID=37498978
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/446,462 Expired - Fee Related US9074189B2 (en) | 2005-06-08 | 2006-06-02 | Cellular therapy for ocular degeneration |
US14/734,561 Abandoned US20160030480A1 (en) | 2005-06-08 | 2015-06-09 | Cellular Therapy for Ocular Degeneration |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/446,462 Expired - Fee Related US9074189B2 (en) | 2005-06-08 | 2006-06-02 | Cellular therapy for ocular degeneration |
Country Status (12)
Country | Link |
---|---|
US (2) | US9074189B2 (en) |
EP (1) | EP1888123B1 (en) |
JP (1) | JP2009500297A (en) |
CN (1) | CN101484575B (en) |
AU (1) | AU2006255183B2 (en) |
CA (1) | CA2613889A1 (en) |
DK (1) | DK1888123T3 (en) |
ES (1) | ES2400916T3 (en) |
PL (1) | PL1888123T3 (en) |
PT (1) | PT1888123E (en) |
SI (1) | SI1888123T1 (en) |
WO (1) | WO2006133052A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12275954B2 (en) | 2017-02-24 | 2025-04-15 | UCL Business Ltd. | Method of identifying l/m-opsin and CRX positive cone photoreceptor cells based on specific biomarkers |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060085246A (en) | 2003-09-18 | 2006-07-26 | 마커사이트, 인코포레이티드 | Trans scleral delivery |
US8663639B2 (en) | 2005-02-09 | 2014-03-04 | Santen Pharmaceutical Co., Ltd. | Formulations for treating ocular diseases and conditions |
DK1848431T3 (en) | 2005-02-09 | 2016-04-18 | Santen Pharmaceutical Co Ltd | LIQUID FORMULATIONS FOR TREATMENT OF DISEASES OR CONDITIONS |
WO2007092620A2 (en) | 2006-02-09 | 2007-08-16 | Macusight, Inc. | Stable formulations, and methods of their preparation and use |
US8222271B2 (en) | 2006-03-23 | 2012-07-17 | Santen Pharmaceutical Co., Ltd. | Formulations and methods for vascular permeability-related diseases or conditions |
US7959949B2 (en) | 2006-04-27 | 2011-06-14 | University Of Central Florida Research Foundation, Inc. | Functionalized nanoceria composition for ophthalmic treatment |
CA2650638A1 (en) * | 2006-04-28 | 2007-11-08 | Tulane University Health Sciences Center | Methods for treating diabetes |
US20070292401A1 (en) * | 2006-06-20 | 2007-12-20 | Harmon Alexander M | Soft tissue repair and regeneration using stem cell products |
US20100111910A1 (en) * | 2006-07-12 | 2010-05-06 | Angioblast Systems, Inc. | Treatment of excessive neovascularization |
WO2008083401A1 (en) | 2007-01-02 | 2008-07-10 | University Of Central Florida Research Foundation Inc. | Methods and materials for stimulating proliferation of stem cells |
US9119391B1 (en) | 2007-07-16 | 2015-09-01 | University Of Central Florida Research Foundation, Inc. | Polymer coated ceria nanoparticles for selective cytoprotection |
US8318485B2 (en) | 2008-02-25 | 2012-11-27 | Natalie Gavrilova | Stem cell therapy for the treatment of diabetic retinopathy and diabetic optic neuropathy |
US20090220995A1 (en) | 2008-02-28 | 2009-09-03 | Sachs David H | Multiple administrations of umbilicus derived cells |
US20110143433A1 (en) * | 2008-03-17 | 2011-06-16 | Agency For Science, Technology And Research | Microcarriers for Stem Cell Culture |
US9458431B2 (en) | 2008-03-17 | 2016-10-04 | Agency For Science, Technology And Research | Microcarriers for stem cell culture |
SG188918A1 (en) | 2008-03-17 | 2013-04-30 | Agency Science Tech & Res | |
US8828720B2 (en) * | 2008-03-17 | 2014-09-09 | Agency For Science, Technology And Research | Microcarriers for stem cell culture |
US8916199B1 (en) | 2008-04-25 | 2014-12-23 | University of Central Florida Research Foundation, Ind. | Inhibition of angiogenesis associated with ovarian cancer by nanoparticles of cerium oxide |
EP2288258A4 (en) * | 2008-04-25 | 2012-10-31 | Univ Oklahoma | INHIBITION OF NEOVASCULARIZATION BY CERIUM OXIDE NANOPARTICLES |
US9127202B1 (en) | 2008-07-18 | 2015-09-08 | University Of Central Florida Research Foundation, Inc. | Biocompatible nano rare earth oxide upconverters for imaging and therapeutics |
AU2009289521A1 (en) * | 2008-09-04 | 2010-03-11 | Abt Holding Company | Use of stem cells to prevent neuronal dieback |
US8883519B1 (en) | 2009-03-17 | 2014-11-11 | University Of Central Florida Research Foundation, Inc. | Oxidase activity of polymeric coated cerium oxide nanoparticles |
EP2251028A1 (en) * | 2009-05-12 | 2010-11-17 | Biocompatibles Uk Ltd. | Treatment of eye diseases using encapsulated cells encoding and secreting an anti-angiogenic factor and/or a neuroprotective factor |
US9585840B1 (en) | 2009-07-10 | 2017-03-07 | University Of Central Florida Research Foundation, Inc. | Redox active cerium oxide nanoparticles and associated methods |
US8795731B1 (en) | 2009-10-12 | 2014-08-05 | University Of Central Florida Research Foundation, Inc. | Cerium oxide nanoparticle-based device for the detection of reactive oxygen species and monitoring of chronic inflammation |
CN102048756B (en) * | 2009-11-04 | 2014-02-19 | 中国医学科学院基础医学研究所 | Use of human adipose-derived mesenchymal stem cells in kidney and fundus diseases |
WO2012036786A1 (en) | 2010-09-17 | 2012-03-22 | University Of L'aquila | Nanoparticles of cerium oxide targeted to an amyloid-beta antigen of alzheimer's disease |
RU2467730C2 (en) * | 2011-01-19 | 2012-11-27 | Александр Дмитриевич Ромащенко | Method for integrated pathogenetic treatment of central and peripheral tapetoretinal dystrophies with applying cell technologies |
RU2467727C2 (en) * | 2011-02-11 | 2012-11-27 | Александр Дмитриевич Ромащенко | Method of treating wet age-related macular degeneration of retina with using cell transplantation |
US8951539B1 (en) | 2011-06-07 | 2015-02-10 | University Of Central Florida Research Foundation, Inc. | Methods of promoting angiogenesis using cerium oxide nanoparticles |
EP2554662A1 (en) * | 2011-08-05 | 2013-02-06 | M Maria Pia Cosma | Methods of treatment of retinal degeneration diseases |
US9161950B2 (en) | 2011-09-21 | 2015-10-20 | University Of Central Florida Foundation, Inc. | Neuronal protection by cerium oxide nanoparticles |
US9463437B2 (en) | 2013-02-14 | 2016-10-11 | University Of Central Florida Research Foundation, Inc. | Methods for scavenging nitric oxide using cerium oxide nanoparticles |
US9274071B2 (en) | 2013-12-30 | 2016-03-01 | General Electric Company | Methods for assessing cell culture fluid by impedance spectra |
WO2015142855A1 (en) * | 2014-03-17 | 2015-09-24 | University Of Virginia Patent Foundation | Compositions and methods for treating retinopathy |
US10736934B2 (en) | 2015-11-13 | 2020-08-11 | The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center | Proteasome modulation for treatment of corneal disorders |
EP3332695B1 (en) * | 2016-12-09 | 2021-05-26 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Measurement device |
EP3906036A1 (en) * | 2019-01-03 | 2021-11-10 | Mesoblast International Sàrl | Method for improving visual acuity |
US20220378846A1 (en) * | 2021-06-01 | 2022-12-01 | U-Neuron Biomedical Inc. | Use of secretome of amniotic fluid stem cell in the treatment of dry eye disease |
CN115463153A (en) * | 2022-01-13 | 2022-12-13 | 南京中凯生物医药科技有限公司 | Preparation method of MSCs microsphere eye drops |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040062753A1 (en) * | 2002-09-27 | 2004-04-01 | Alireza Rezania | Composite scaffolds seeded with mammalian cells |
US20050003534A1 (en) * | 2002-11-07 | 2005-01-06 | Eliezer Huberman | Human stem cell materials and methods |
US20050019801A1 (en) * | 2003-06-04 | 2005-01-27 | Curis, Inc. | Stem cell-based methods for identifying and characterizing agents |
US20050164380A1 (en) * | 2003-11-04 | 2005-07-28 | Trisler G. D. | Stem cell culture medium and method of using said medium and the cells |
US20050260158A1 (en) * | 2003-11-07 | 2005-11-24 | Eliezer Huberman | Human stem cell materials and methods |
US20060154364A1 (en) * | 2005-01-13 | 2006-07-13 | Coroneo Minas T | Stem cell cultivation devices and methods |
US20060210539A1 (en) * | 2005-02-28 | 2006-09-21 | Sangamo Biosciences, Inc. | Anti-angiogenic methods and compositions |
US20060252150A1 (en) * | 2002-11-08 | 2006-11-09 | Linzhao Cheng | Human embryonic stem cell cultures, and compositions and methods for growing same |
Family Cites Families (179)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3209652A (en) * | 1961-03-30 | 1965-10-05 | Burgsmueller Karl | Thread whirling method |
AT326803B (en) * | 1968-08-26 | 1975-12-29 | Binder Fa G | MESHWARE AND METHOD OF MANUFACTURING THE SAME |
US3935067A (en) * | 1974-11-22 | 1976-01-27 | Wyo-Ben Products, Inc. | Inorganic support for culture media |
CA1201400A (en) | 1982-04-16 | 1986-03-04 | Joel L. Williams | Chemically specific surfaces for influencing cell activity during culture |
US4499802A (en) * | 1982-09-29 | 1985-02-19 | Container Graphics Corporation | Rotary cutting die with scrap ejection |
US4537773A (en) * | 1983-12-05 | 1985-08-27 | E. I. Du Pont De Nemours And Company | α-Aminoboronic acid derivatives |
US4557264A (en) * | 1984-04-09 | 1985-12-10 | Ethicon Inc. | Surgical filament from polypropylene blended with polyethylene |
US5215893A (en) * | 1985-10-03 | 1993-06-01 | Genentech, Inc. | Nucleic acid encoding the ba chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid |
US5089396A (en) * | 1985-10-03 | 1992-02-18 | Genentech, Inc. | Nucleic acid encoding β chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid |
US4737578A (en) * | 1986-02-10 | 1988-04-12 | The Salk Institute For Biological Studies | Human inhibin |
US5863531A (en) * | 1986-04-18 | 1999-01-26 | Advanced Tissue Sciences, Inc. | In vitro preparation of tubular tissue structures by stromal cell culture on a three-dimensional framework |
CA1340581C (en) * | 1986-11-20 | 1999-06-08 | Joseph P. Vacanti | Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices |
US5804178A (en) * | 1986-11-20 | 1998-09-08 | Massachusetts Institute Of Technology | Implantation of cell-matrix structure adjacent mesentery, omentum or peritoneum tissue |
US5567612A (en) * | 1986-11-20 | 1996-10-22 | Massachusetts Institute Of Technology | Genitourinary cell-matrix structure for implantation into a human and a method of making |
NZ229354A (en) | 1988-07-01 | 1990-09-26 | Becton Dickinson Co | Treating polymer surfaces with a gas plasma and then applying a layer of endothelial cells to the surface |
EP0363125A3 (en) | 1988-10-03 | 1990-08-16 | Hana Biologics Inc. | Proliferated pancreatic endocrine cell product and process |
US5837539A (en) * | 1990-11-16 | 1998-11-17 | Osiris Therapeutics, Inc. | Monoclonal antibodies for human mesenchymal stem cells |
DK0628639T3 (en) | 1991-04-25 | 2000-01-24 | Chugai Pharmaceutical Co Ltd | Reconstituted human antibody to human interleukin-6 receptor |
US5449383A (en) * | 1992-03-18 | 1995-09-12 | Chatelier; Ronald C. | Cell growth substrates |
GB9206861D0 (en) * | 1992-03-28 | 1992-05-13 | Univ Manchester | Wound healing and treatment of fibrotic disorders |
CA2114282A1 (en) * | 1993-01-28 | 1994-07-29 | Lothar Schilder | Multi-layered implant |
JP3525221B2 (en) | 1993-02-17 | 2004-05-10 | 味の素株式会社 | Immunosuppressants |
US5523226A (en) * | 1993-05-14 | 1996-06-04 | Biotechnology Research And Development Corp. | Transgenic swine compositions and methods |
GB9310557D0 (en) * | 1993-05-21 | 1993-07-07 | Smithkline Beecham Plc | Novel process and apparatus |
TW257671B (en) * | 1993-11-19 | 1995-09-21 | Ciba Geigy | |
US6001647A (en) * | 1994-04-28 | 1999-12-14 | Ixion Biotechnology, Inc. | In vitro growth of functional islets of Langerhans and in vivo uses thereof |
US5834308A (en) * | 1994-04-28 | 1998-11-10 | University Of Florida Research Foundation, Inc. | In vitro growth of functional islets of Langerhans |
US6703017B1 (en) * | 1994-04-28 | 2004-03-09 | Ixion Biotechnology, Inc. | Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures |
US6083903A (en) * | 1994-10-28 | 2000-07-04 | Leukosite, Inc. | Boronic ester and acid compounds, synthesis and uses |
EP0800829B2 (en) | 1994-12-29 | 2012-07-25 | Chugai Seiyaku Kabushiki Kaisha | Use of a pm-1 antibody or of a mh 166 antibody for enhancing the anti-tumor effect of cisplatin or carboplatin |
US5843780A (en) * | 1995-01-20 | 1998-12-01 | Wisconsin Alumni Research Foundation | Primate embryonic stem cells |
US5718922A (en) * | 1995-05-31 | 1998-02-17 | Schepens Eye Research Institute, Inc. | Intravitreal microsphere drug delivery and method of preparation |
US5908782A (en) * | 1995-06-05 | 1999-06-01 | Osiris Therapeutics, Inc. | Chemically defined medium for human mesenchymal stem cells |
RU2222534C2 (en) | 1997-04-24 | 2004-01-27 | Орто-Макнейл Фармасьютикал, Инк. | Substituted imidazoles, method for their preparing, pharmaceutical composition based on thereof, methods for treatment of cytokine-mediated diseases |
PT1028737E (en) * | 1997-07-03 | 2007-07-11 | Osiris Therapeutics Inc | Human mesenchymal stem cells from peripheral blood |
US6670127B2 (en) * | 1997-09-16 | 2003-12-30 | Egea Biosciences, Inc. | Method for assembly of a polynucleotide encoding a target polypeptide |
ES2243007T3 (en) * | 1997-09-16 | 2005-11-16 | Egea Biosciences Llc | COMPLETE CHEMICAL SYNTHESIS AND GENES GENES SYNTHESIS. |
CA2307807C (en) * | 1997-10-23 | 2008-09-02 | Andrea G. Bodnar | Methods and materials for the growth of primate-derived primordial stem cells in feeder-free culture |
AR014195A1 (en) * | 1997-12-29 | 2001-02-07 | Ortho Mcneil Pharm Inc | USEFUL TRIFENYLPROPANAMIDE COMPOUNDS FOR THE TREATMENT OF INFLAMMATORY PROCESSES, ANTI-INFLAMMATORY COMPOSITIONS THAT INCLUDE THEM, AND METHODS TO PREPARE THEM |
EP1066052B1 (en) * | 1998-03-18 | 2006-02-01 | Osiris Therapeutics, Inc. | Mesenchymal stem cells for prevention and treatment of immune responses in transplantation |
MY132496A (en) * | 1998-05-11 | 2007-10-31 | Vertex Pharma | Inhibitors of p38 |
US7410798B2 (en) | 2001-01-10 | 2008-08-12 | Geron Corporation | Culture system for rapid expansion of human embryonic stem cells |
US6667176B1 (en) * | 2000-01-11 | 2003-12-23 | Geron Corporation | cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells |
US6610540B1 (en) | 1998-11-18 | 2003-08-26 | California Institute Of Technology | Low oxygen culturing of central nervous system progenitor cells |
US6413556B1 (en) * | 1999-01-08 | 2002-07-02 | Sky High, Llc | Aqueous anti-apoptotic compositions |
WO2000043500A2 (en) * | 1999-01-21 | 2000-07-27 | Vitro Diagnostics, Inc. | Immortalized cell lines and methods of making the same |
US6815203B1 (en) * | 1999-06-23 | 2004-11-09 | Joslin Diabetes Center, Inc. | Methods of making pancreatic islet cells |
US6306424B1 (en) * | 1999-06-30 | 2001-10-23 | Ethicon, Inc. | Foam composite for the repair or regeneration of tissue |
US6333029B1 (en) * | 1999-06-30 | 2001-12-25 | Ethicon, Inc. | Porous tissue scaffoldings for the repair of regeneration of tissue |
US6685936B2 (en) * | 1999-10-12 | 2004-02-03 | Osiris Therapeutics, Inc. | Suppressor cells induced by culture with mesenchymal stem cells for treatment of immune responses in transplantation |
US20030082155A1 (en) | 1999-12-06 | 2003-05-01 | Habener Joel F. | Stem cells of the islets of langerhans and their use in treating diabetes mellitus |
JP2003517592A (en) * | 1999-12-13 | 2003-05-27 | ザ スクリプス リサーチ インスティチュート | Markers for identification and isolation of islet α and β precursors |
US7439064B2 (en) * | 2000-03-09 | 2008-10-21 | Wicell Research Institute, Inc. | Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium |
US7005252B1 (en) * | 2000-03-09 | 2006-02-28 | Wisconsin Alumni Research Foundation | Serum free cultivation of primate embryonic stem cells |
US6436704B1 (en) * | 2000-04-10 | 2002-08-20 | Raven Biotechnologies, Inc. | Human pancreatic epithelial progenitor cells and methods of isolation and use thereof |
US6458589B1 (en) * | 2000-04-27 | 2002-10-01 | Geron Corporation | Hepatocyte lineage cells derived from pluripotent stem cells |
EP2292735A1 (en) * | 2000-06-26 | 2011-03-09 | Nc Medical Research Inc. | Cell fractions containing cells capable of differentiating into neural cells |
DK1333833T3 (en) * | 2000-10-23 | 2011-12-12 | Glaxosmithkline Llc | New trisubstituted 8H-pyridol [2,3-d] pyrimidin-7-one compound for the treatment of CSBP / RK / p38 kinase-mediated diseases |
MXPA03005139A (en) | 2000-12-08 | 2004-01-29 | Ortho Mcneil Pharm Inc | Macroheterocylic compounds useful as kinase inhibitors. |
HUP0303855A3 (en) | 2000-12-08 | 2005-04-28 | Ortho Mcneil Pharm Inc | Indazolyl-substituted pyrroline compounds as kinase inhibitors |
US6599323B2 (en) * | 2000-12-21 | 2003-07-29 | Ethicon, Inc. | Reinforced tissue implants and methods of manufacture and use |
US20040121460A1 (en) * | 2001-01-24 | 2004-06-24 | Lumelsky Nadya L | Differentiation of stem cells to pancreatic endocrine cells |
CA2435146C (en) * | 2001-01-25 | 2011-03-29 | The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Formulation of boronic acid compounds |
US6656488B2 (en) * | 2001-04-11 | 2003-12-02 | Ethicon Endo-Surgery, Inc. | Bioabsorbable bag containing bioabsorbable materials of different bioabsorption rates for tissue engineering |
JP2004527249A (en) * | 2001-04-19 | 2004-09-09 | デヴェロゲン アクチエンゲゼルシャフト フュア エントヴィックルングスビオローギッシェ フォルシュング | Method of differentiating stem cells into insulin producing cells |
WO2002088335A1 (en) | 2001-04-24 | 2002-11-07 | Ajinomoto Co., Inc. | Stem cells and method of separating the same |
WO2002092756A2 (en) | 2001-05-15 | 2002-11-21 | Rappaport Family Institute For Research In The Medical Sciences | Insulin producing cells derived from human embryonic stem cells |
US6626950B2 (en) * | 2001-06-28 | 2003-09-30 | Ethicon, Inc. | Composite scaffold with post anchor for the repair and regeneration of tissue |
KR100418195B1 (en) | 2001-07-05 | 2004-02-11 | 주식회사 우리기술 | Apparatus and method for multi-testing insulation of power cables |
GB0117583D0 (en) * | 2001-07-19 | 2001-09-12 | Astrazeneca Ab | Novel compounds |
CA2456981C (en) * | 2001-08-06 | 2012-02-28 | Bresagen, Inc. | Alternative compositions and methods for the culture of stem cells |
US6617152B2 (en) * | 2001-09-04 | 2003-09-09 | Corning Inc | Method for creating a cell growth surface on a polymeric substrate |
US20050053588A1 (en) * | 2001-10-18 | 2005-03-10 | Li Yin | Conversion of liver stem and progenitor cells to pancreatic functional cells |
US8021876B2 (en) | 2001-11-15 | 2011-09-20 | Children's Medical Center Corporation | Methods of isolation, expansion and differentiation of fetal stem cells from chorionic villus, amniotic fluid, and placenta and therapeutic uses thereof |
AU2002364143B2 (en) * | 2001-12-07 | 2008-02-21 | Asterias Biotherapeutics, Inc. | Islet cells from primate pluripotent stem cells |
EP2308963A3 (en) * | 2001-12-07 | 2011-09-21 | Cytori Therapeutics, Inc. | System for processing lipoaspirate cells |
WO2003054169A1 (en) | 2001-12-21 | 2003-07-03 | Thromb-X Nv | Compositions for the in vitro derivation and culture of embryonic stem (es) cell lines with germline transmission capability |
US20030162290A1 (en) | 2002-01-25 | 2003-08-28 | Kazutomo Inoue | Method for inducing differentiation of embryonic stem cells into functioning cells |
AU2003231358A1 (en) * | 2002-04-17 | 2003-10-27 | Otsuka Pharmaceutical Co., Ltd. | METHOD OF FORMING PANCREATIC Beta CELLS FROM MESENCHYMAL CELLS |
US20040161419A1 (en) * | 2002-04-19 | 2004-08-19 | Strom Stephen C. | Placental stem cells and uses thereof |
DE60319364T2 (en) | 2002-05-08 | 2009-02-19 | Janssen Pharmaceutica N.V. | SUBSTITUTED PYRROLINS AS KINASE INHIBITORS |
US20060003446A1 (en) * | 2002-05-17 | 2006-01-05 | Gordon Keller | Mesoderm and definitive endoderm cell populations |
JP2005527241A (en) | 2002-05-28 | 2005-09-15 | ベクトン・ディキンソン・アンド・カンパニー | Methods for proliferation of human pancreatic acinar cells and transdifferentiation into insulin producing cells in vitro |
RU2004135382A (en) * | 2002-06-05 | 2005-06-27 | Янссен Фармацевтика Н.В. (Be) | SUBSTITUTED PYRROLINS AS KINASE INHIBITORS |
GB0212976D0 (en) | 2002-06-06 | 2002-07-17 | Tonejet Corp Pty Ltd | Ejection method and apparatus |
CN1171991C (en) | 2002-07-08 | 2004-10-20 | 徐如祥 | Culture process of human nerve stem cell |
US6877147B2 (en) * | 2002-07-22 | 2005-04-05 | Broadcom Corporation | Technique to assess timing delay by use of layout quality analyzer comparison |
US7838290B2 (en) * | 2002-07-25 | 2010-11-23 | The Scripps Research Institute | Hematopoietic stem cells and methods of treatment of neovascular eye diseases therewith |
US20040110287A1 (en) | 2002-07-29 | 2004-06-10 | Es Cell International Pte Ltd. | Multi-step method for the differentiation of insulin positive, glucose responsive cells |
AU2003262628A1 (en) | 2002-08-14 | 2004-03-03 | University Of Florida | Bone marrow cell differentiation |
JP2005537803A (en) | 2002-09-06 | 2005-12-15 | アムサイト インコーポレーティッド | CD56 positive human adult pancreatic endocrine precursor cells |
US9969977B2 (en) * | 2002-09-20 | 2018-05-15 | Garnet Biotherapeutics | Cell populations which co-express CD49c and CD90 |
US7144999B2 (en) * | 2002-11-23 | 2006-12-05 | Isis Pharmaceuticals, Inc. | Modulation of hypoxia-inducible factor 1 alpha expression |
EP1567639A4 (en) | 2002-12-05 | 2005-12-21 | Technion Res & Dev Foundation | Cultured human pancreatic islets, and uses thereof |
CA2508880C (en) | 2002-12-16 | 2018-02-06 | Technion Research And Development Foundation Ltd. | Methods of preparing feeder cells-free, xeno-free human embryonic stem cells and stem cell cultures prepared using same |
US20070155661A1 (en) | 2003-02-14 | 2007-07-05 | The Board Of Trustees Of The Leland Standord Junior University | Methods and compositions for modulating the development of stem cells |
US20070154981A1 (en) | 2003-02-14 | 2007-07-05 | The Board Of Trustees Of The Leland Stanford Junior University | Insulin-producing cells derived from stem cells |
US20070020242A1 (en) | 2003-03-27 | 2007-01-25 | Ixion Biotechnology, Inc. | Method for transdifferentiation of non-pancreatic stem cells to the pancreatic pathway |
WO2004090110A2 (en) | 2003-03-31 | 2004-10-21 | Bresagen Inc. | Compositions and methods for the control, differentiation and/or manipulation of pluripotent cells through a gamma-secretase signaling pathway |
US20090203141A1 (en) | 2003-05-15 | 2009-08-13 | Shi-Lung Lin | Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant RNA agents |
ES2542070T3 (en) | 2003-06-27 | 2015-07-30 | DePuy Synthes Products, LLC | Postpartum cells derived from umbilical cord tissue and methods of preparing and using them for soft tissue repair and regeneration |
IL161903A0 (en) | 2003-07-17 | 2005-11-20 | Gamida Cell Ltd | Ex vivo progenitor and stem cell expansion for usein the treatment of disease of endodermally- deri ved organs |
ITRM20030395A1 (en) | 2003-08-12 | 2005-02-13 | Istituto Naz Per Le Malattie Infettive Lazz | CULTURE GROUND FOR MAINTENANCE, PROLIFERATION AND DIFFERENTIATION OF MAMMALIAN CELLS. |
WO2005017117A2 (en) | 2003-08-14 | 2005-02-24 | Martin Haas | Multipotent amniotic fetal stem cells (mafsc) and banking of same |
US7157275B2 (en) | 2003-08-15 | 2007-01-02 | Becton, Dickinson And Company | Peptides for enhanced cell attachment and growth |
AU2004269395A1 (en) | 2003-08-27 | 2005-03-10 | Stemcells California, Inc. | Enriched pancreatic stem cell and progenitor cell populations, and methods for identifying, isolating and enriching for these populations |
JP2007515433A (en) * | 2003-12-17 | 2007-06-14 | アラーガン インコーポレイテッド | Methods of treating retinoid responsive disorders using selective inhibitors of CYP26A and CYP26B |
US20060030042A1 (en) * | 2003-12-19 | 2006-02-09 | Ali Brivanlou | Maintenance of embryonic stem cells by the GSK-3 inhibitor 6-bromoindirubin-3'-oxime |
US20050266554A1 (en) * | 2004-04-27 | 2005-12-01 | D Amour Kevin A | PDX1 expressing endoderm |
US7625753B2 (en) * | 2003-12-23 | 2009-12-01 | Cythera, Inc. | Expansion of definitive endoderm cells |
WO2005063971A2 (en) | 2003-12-23 | 2005-07-14 | Cythera, Inc | Definitive endoderm |
US20050233446A1 (en) * | 2003-12-31 | 2005-10-20 | Parsons Xuejun H | Defined media for stem cell culture |
TWI334443B (en) * | 2003-12-31 | 2010-12-11 | Ind Tech Res Inst | Method of single cell culture of undifferentiated human embryonic stem cells |
WO2005071066A1 (en) | 2004-01-23 | 2005-08-04 | Board Of Regents, The University Of Texas System | Methods and compositions for preparing pancreatic insulin secreting cells |
GB2441530B (en) | 2004-02-12 | 2009-09-23 | Univ Newcastle | Stem Cells |
US20060281174A1 (en) | 2004-03-09 | 2006-12-14 | Gang Xu | Methods for generating insulin-producing cells |
WO2005086845A2 (en) | 2004-03-10 | 2005-09-22 | Regents Of The University Of California | Compositions and methods for growth of embryonic stem cells |
JP4491014B2 (en) * | 2004-04-01 | 2010-06-30 | ウイスコンシン アラムニ リサーチ ファンデーション | Differentiation of stem cells into endoderm and pancreatic lineages |
EP1740612B1 (en) | 2004-04-27 | 2019-08-07 | Viacyte, Inc. | Pdx1 expressing endoderm |
CA2966883A1 (en) | 2004-07-09 | 2006-02-16 | Cythera, Inc. | Methods for identifying factors for differentiating definitive endoderm |
EP1791952A4 (en) | 2004-08-13 | 2008-06-11 | Univ Georgia Res Found | Compositions and methods for self-renewal and differentiation in human embryonic stem cells |
WO2006026473A2 (en) | 2004-08-25 | 2006-03-09 | University Of Georgia Research Foundation, Inc. | METHODS AND COMPOSITIONS UTILIZING MYC AND GSK3ß TO MANIPULATE THE PLURIPOTENCY OF EMBRYONIC STEM CELLS |
DE102004043256B4 (en) | 2004-09-07 | 2013-09-19 | Rheinische Friedrich-Wilhelms-Universität Bonn | Scalable process for culturing undifferentiated stem cells in suspension |
GB2432846B (en) | 2004-09-08 | 2009-12-30 | Wisconsin Alumni Res Found | Medium and culture of embryonic stem cells |
DK3196296T3 (en) | 2004-09-08 | 2019-02-04 | Wisconsin Alumini Res Foundation | Cultivation of human embryonic stem cells |
AU2006210955A1 (en) * | 2005-01-31 | 2006-08-10 | Es Cell International Pte Ltd. | Directed differentiation of embryonic stem cells and uses thereof |
AU2006218359A1 (en) | 2005-03-04 | 2006-09-08 | John O'neil | Adult pancreatic derived stromal cells |
GB0505970D0 (en) | 2005-03-23 | 2005-04-27 | Univ Edinburgh | Culture medium containing kinase inhibitor, and uses thereof |
ATE553198T1 (en) | 2005-04-15 | 2012-04-15 | Geron Corp | TREATMENT OF CANCER THROUGH THE COMBINED INHIBITION OF PROTEASOME AND TELOMERASE ACTIVITIES |
EP1874367B1 (en) | 2005-04-26 | 2011-07-06 | Arhus Universitet | Biocompatible material for surgical implants and cell guiding tissue culture surfaces |
BRPI0611733A2 (en) | 2005-06-10 | 2010-09-28 | Irm Llc | compounds that maintain embryonic stem cell pluripotency |
WO2006138433A2 (en) | 2005-06-14 | 2006-12-28 | The Regents Of The University Of California | Induction of cell differentiation by class i bhlh polypeptides |
US20080199959A1 (en) | 2005-06-21 | 2008-08-21 | Ge Healthcare Bio-Sciences Ab | Method For Cell Culture |
US8778919B2 (en) | 2005-06-30 | 2014-07-15 | Janssen Pharmaceutica Nv | Cyclic anilino—pyridinotriazines |
AU2006274438A1 (en) | 2005-07-29 | 2007-02-01 | Australian Stem Cell Centre Limited | Compositions and methods for growth of pluripotent cells |
WO2007016485A2 (en) | 2005-07-29 | 2007-02-08 | Athersys, Inc. | Use of a gsk-3 inhibitor to maintain potency of cultured cells |
US8962318B2 (en) | 2005-09-02 | 2015-02-24 | Agency For Science, Technology And Research | Method of deriving mesenchymal stem cells from ES cells using FGF2 |
SG151259A1 (en) | 2005-09-12 | 2009-04-30 | Es Cell Int Pte Ltd | Cardiomyocyte production |
WO2007047509A2 (en) | 2005-10-14 | 2007-04-26 | Regents Of The University Of Minnesota | Differentiation of non-embryonic stem cells to cells having a pancreatic phenotype |
CA2627645C (en) | 2005-10-27 | 2015-07-07 | Cythera, Inc. | Pdx1-expressing dorsal and ventral foregut endoderm |
WO2007082963A1 (en) | 2006-01-18 | 2007-07-26 | Fundación Instituto Valenciano De Infertilidad | Human embryo stem-cell lines and methods for using same |
WO2007101130A2 (en) | 2006-02-23 | 2007-09-07 | Novocell, Inc. | Compositions and methods useful for culturing differentiable cells |
US7695965B2 (en) | 2006-03-02 | 2010-04-13 | Cythera, Inc. | Methods of producing pancreatic hormones |
CA3147112A1 (en) | 2006-03-02 | 2007-09-13 | Viacyte, Inc. | Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production |
US8741643B2 (en) | 2006-04-28 | 2014-06-03 | Lifescan, Inc. | Differentiation of pluripotent stem cells to definitive endoderm lineage |
AU2007244675A1 (en) | 2006-04-28 | 2007-11-08 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
EP2027258A2 (en) | 2006-05-02 | 2009-02-25 | Wisconsin Alumni Research Foundation | Method of differentiating stem cells into cells of the endoderm and pancreatic lineage |
WO2007139929A2 (en) | 2006-05-25 | 2007-12-06 | The Burnham Institute For Medical Research | Methods for culture and production of single cell populations of human embryonic stem cells |
WO2007149182A2 (en) | 2006-06-19 | 2007-12-27 | Geron Corporation | Differentiation and enrichment of islet-like cells from human pluripotent stem cells |
CN100494359C (en) | 2006-06-23 | 2009-06-03 | 中日友好医院 | Method for in vitro expansion of neural stem cells in three-dimensional culture |
US20080003676A1 (en) | 2006-06-26 | 2008-01-03 | Millipore Corporation | Growth of embryonic stem cells |
CA2893679C (en) | 2006-06-26 | 2018-10-30 | Lifescan, Inc. | Conditioned medium for pluripotent stem cell culture |
AU2007270069B2 (en) | 2006-07-06 | 2013-05-16 | Es Cell International Pte Ltd | Method for stem cell culture and cells derived therefrom |
WO2008013664A2 (en) | 2006-07-26 | 2008-01-31 | Cythera, Inc. | Methods of producing pancreatic hormones |
KR101331510B1 (en) | 2006-08-30 | 2013-11-20 | 재단법인서울대학교산학협력재단 | Media compostions containing low concentrations of glucose useful for human embryonic stem cells, differentiation method of human embryonic stem cells into insulin-producing cells or cell clusters using thereof, and insulin-producing cells or cell clusters differentiated thereby |
JP2008099662A (en) | 2006-09-22 | 2008-05-01 | Institute Of Physical & Chemical Research | Stem cell culture method |
WO2008039521A2 (en) | 2006-09-26 | 2008-04-03 | Nmt Medical, Inc. | Method for modifying a medical implant surface for promoting tissue growth |
US20100323442A1 (en) | 2006-10-17 | 2010-12-23 | Emmanuel Edward Baetge | Modulation of the phosphatidylinositol-3-kinase pathway in the differentiation of human embryonic stem cells |
US8835163B2 (en) | 2006-10-18 | 2014-09-16 | The Board Of Trustees Of The University Of Illinois | Embryonic-like stem cells derived from adult human peripheral blood and methods of use |
TW200836749A (en) | 2007-01-09 | 2008-09-16 | Vioquest Pharmaceuticals Inc | Compositions including triciribine and bortezomib and derivatives thereof and methods of use thereof |
CN101641436A (en) | 2007-01-30 | 2010-02-03 | 佐治亚大学研究基金会 | Be used to produce the promptly stable mesendoderm cell mass of early stage mesoblastema of entoderm and mesoblastema system and multipotency wandering cell (MMC) |
GB0703188D0 (en) | 2007-02-19 | 2007-03-28 | Roger Land Building | Large scale production of stem cells |
JP5738591B2 (en) | 2007-07-18 | 2015-06-24 | ライフスキャン・インコーポレイテッドLifescan,Inc. | Differentiation of human embryonic stem cells |
CA3114827C (en) | 2007-07-31 | 2023-09-05 | Lifescan, Inc. | Differentiation of human embryonic stem cells to pancreatic endocrine |
AU2008291930B2 (en) | 2007-08-24 | 2014-04-17 | Slotervaart Participaties Bv | Compositions for the treatment of neoplastic diseases |
BRPI0819609A2 (en) | 2007-11-27 | 2014-10-14 | Lifescan Inc | DIFFERENTIATION OF HUMAN EMBRYONIC STEM CELLS |
SG154367A1 (en) | 2008-01-31 | 2009-08-28 | Es Cell Int Pte Ltd | Method of differentiating stem cells |
WO2009101407A2 (en) | 2008-02-11 | 2009-08-20 | Cambridge Enterprise Limited | Improved reprogramming of mammalian cells, and the cells obtained |
KR20190057164A (en) | 2008-02-21 | 2019-05-27 | 얀센 바이오테크 인코포레이티드 | Methods, surface modified plates and compositions for cell attachment, cultivation and detachment |
SG188918A1 (en) | 2008-03-17 | 2013-04-30 | Agency Science Tech & Res | |
EP2727998B1 (en) | 2008-04-21 | 2019-06-12 | Viacyte, Inc. | Methods for purifying pancreatic endoderm cells derived from human embryonic stem cells |
US20090298178A1 (en) | 2008-06-03 | 2009-12-03 | D Amour Kevin Allen | Growth factors for production of definitive endoderm |
PL2310492T3 (en) | 2008-06-30 | 2015-12-31 | Janssen Biotech Inc | Differentiation of pluripotent stem cells |
DE102008032236A1 (en) | 2008-06-30 | 2010-04-01 | Eberhard-Karls-Universität Tübingen | Isolation and / or identification of stem cells with adipocytic, chondrocytic and pancreatic differentiation potential |
US20100028307A1 (en) | 2008-07-31 | 2010-02-04 | O'neil John J | Pluripotent stem cell differentiation |
US9234178B2 (en) | 2008-10-31 | 2016-01-12 | Janssen Biotech, Inc. | Differentiation of human pluripotent stem cells |
US8008075B2 (en) | 2008-11-04 | 2011-08-30 | Viacyte, Inc. | Stem cell aggregate suspension compositions and methods of differentiation thereof |
MX2012000898A (en) | 2009-07-20 | 2012-06-01 | Janssen Biotech Inc | Differentiation of human embryonic stem cells. |
US20120322152A1 (en) | 2010-03-02 | 2012-12-20 | Michael Raghunath | Culture Additives To Boost Stem Cell Proliferation And Differentiation Response |
-
2006
- 2006-06-02 US US11/446,462 patent/US9074189B2/en not_active Expired - Fee Related
- 2006-06-02 EP EP06772099A patent/EP1888123B1/en active Active
- 2006-06-02 WO PCT/US2006/021671 patent/WO2006133052A2/en active Application Filing
- 2006-06-02 CN CN2006800288205A patent/CN101484575B/en not_active Expired - Fee Related
- 2006-06-02 CA CA002613889A patent/CA2613889A1/en not_active Abandoned
- 2006-06-02 ES ES06772099T patent/ES2400916T3/en active Active
- 2006-06-02 PL PL06772099T patent/PL1888123T3/en unknown
- 2006-06-02 AU AU2006255183A patent/AU2006255183B2/en not_active Ceased
- 2006-06-02 JP JP2008515799A patent/JP2009500297A/en active Pending
- 2006-06-02 DK DK06772099.5T patent/DK1888123T3/en active
- 2006-06-02 SI SI200631541T patent/SI1888123T1/en unknown
- 2006-06-02 PT PT67720995T patent/PT1888123E/en unknown
-
2015
- 2015-06-09 US US14/734,561 patent/US20160030480A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040062753A1 (en) * | 2002-09-27 | 2004-04-01 | Alireza Rezania | Composite scaffolds seeded with mammalian cells |
US20050003534A1 (en) * | 2002-11-07 | 2005-01-06 | Eliezer Huberman | Human stem cell materials and methods |
US20060252150A1 (en) * | 2002-11-08 | 2006-11-09 | Linzhao Cheng | Human embryonic stem cell cultures, and compositions and methods for growing same |
US20050019801A1 (en) * | 2003-06-04 | 2005-01-27 | Curis, Inc. | Stem cell-based methods for identifying and characterizing agents |
US20050164380A1 (en) * | 2003-11-04 | 2005-07-28 | Trisler G. D. | Stem cell culture medium and method of using said medium and the cells |
US20050260158A1 (en) * | 2003-11-07 | 2005-11-24 | Eliezer Huberman | Human stem cell materials and methods |
US20060154364A1 (en) * | 2005-01-13 | 2006-07-13 | Coroneo Minas T | Stem cell cultivation devices and methods |
US20060210539A1 (en) * | 2005-02-28 | 2006-09-21 | Sangamo Biosciences, Inc. | Anti-angiogenic methods and compositions |
Non-Patent Citations (5)
Title |
---|
Blanc et al. Scandinavian J. Immunol. 2003; 57:11-20. * |
Campagnoli et al. Blood, 2001: 98:2396-2402. * |
Le Blanc et al. Biology of Blood and Marrow Transplantation, 2005; 11:321-334. * |
Lin et al. Di Yi Jun Yi Da Xue Xue Bao, 2003; 23:251-3, abstract * |
Zhang et al. Chinese Medical Journal 2004; 117:882-887. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12275954B2 (en) | 2017-02-24 | 2025-04-15 | UCL Business Ltd. | Method of identifying l/m-opsin and CRX positive cone photoreceptor cells based on specific biomarkers |
Also Published As
Publication number | Publication date |
---|---|
ES2400916T3 (en) | 2013-04-15 |
DK1888123T3 (en) | 2013-04-15 |
US9074189B2 (en) | 2015-07-07 |
CA2613889A1 (en) | 2006-12-14 |
WO2006133052A3 (en) | 2008-11-20 |
AU2006255183A1 (en) | 2006-12-14 |
SI1888123T1 (en) | 2013-04-30 |
EP1888123A2 (en) | 2008-02-20 |
AU2006255183B2 (en) | 2012-02-02 |
PT1888123E (en) | 2013-03-13 |
CN101484575A (en) | 2009-07-15 |
EP1888123B1 (en) | 2013-01-09 |
US20060280729A1 (en) | 2006-12-14 |
EP1888123A4 (en) | 2009-04-29 |
WO2006133052A2 (en) | 2006-12-14 |
JP2009500297A (en) | 2009-01-08 |
PL1888123T3 (en) | 2013-06-28 |
CN101484575B (en) | 2013-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9074189B2 (en) | Cellular therapy for ocular degeneration | |
JP4950660B2 (en) | Repair and regeneration of ocular tissue using postpartum cells | |
KR102073730B1 (en) | Methods of producing human rpe cells and pharmaceutical preparations of human rpe cells | |
ES2530370T5 (en) | Retinal pigment epithelial cells derived from stem cells | |
KR102359257B1 (en) | How to treat retinal disease | |
US20150064781A1 (en) | Repair and regeneration of ocular tissue using postpartum-derived cells | |
JP2010018627A (en) | Material from bone marrow stromal cell for use in forming blood vessel and producing angiogenic and trophic factors | |
CN110913874A (en) | Method for measuring the efficacy of a retinal disease therapy | |
CN114981417A (en) | Method for producing retinal pigment epithelial cells | |
TW201636032A (en) | Treatment of ocular conditions using progenitor cells | |
TW201836623A (en) | Treatment of retinal degeneration using progenitor cells | |
JP2019524688A (en) | Treatment of retinal vascular disease using progenitor cells | |
TW201729819A (en) | Treatment of retinal degeneration using progenitor cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |