US20090200663A1 - Polymer and solder pillars for connecting chip and carrier - Google Patents
Polymer and solder pillars for connecting chip and carrier Download PDFInfo
- Publication number
- US20090200663A1 US20090200663A1 US12/028,848 US2884808A US2009200663A1 US 20090200663 A1 US20090200663 A1 US 20090200663A1 US 2884808 A US2884808 A US 2884808A US 2009200663 A1 US2009200663 A1 US 2009200663A1
- Authority
- US
- United States
- Prior art keywords
- solder balls
- pillars
- solder
- semiconductor chip
- package substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49811—Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
- H01L23/49816—Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49811—Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/11—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L24/14—Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/17—Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/90—Methods for connecting semiconductor or solid state bodies using means for bonding not being attached to, or not being formed on, the body surface to be connected, e.g. pressure contacts using springs or clips
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/303—Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/341—Surface mounted components
- H05K3/3431—Leadless components
- H05K3/3436—Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/0401—Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
- H01L2224/0601—Structure
- H01L2224/0603—Bonding areas having different sizes, e.g. different heights or widths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
- H01L2224/065—Material
- H01L2224/06505—Bonding areas having different materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
- H01L2224/118—Post-treatment of the bump connector
- H01L2224/1182—Applying permanent coating, e.g. in-situ coating
- H01L2224/11822—Applying permanent coating, e.g. in-situ coating by dipping, e.g. in a solder bath
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13075—Plural core members
- H01L2224/1308—Plural core members being stacked
- H01L2224/13082—Two-layer arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/1319—Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/13198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/13199—Material of the matrix
- H01L2224/1329—Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/13198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/13298—Fillers
- H01L2224/13299—Base material
- H01L2224/133—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/14—Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/14—Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
- H01L2224/1401—Structure
- H01L2224/1403—Bump connectors having different sizes, e.g. different diameters, heights or widths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/14—Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
- H01L2224/145—Material
- H01L2224/14505—Bump connectors having different materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/17—Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
- H01L2224/1705—Shape
- H01L2224/17051—Bump connectors having different shapes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8112—Aligning
- H01L2224/81136—Aligning involving guiding structures, e.g. spacers or supporting members
- H01L2224/81138—Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
- H01L2224/81139—Guiding structures on the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8119—Arrangement of the bump connectors prior to mounting
- H01L2224/81191—Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8119—Arrangement of the bump connectors prior to mounting
- H01L2224/81193—Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/818—Bonding techniques
- H01L2224/81801—Soldering or alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
- H01L2224/83191—Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
- H01L2224/83194—Lateral distribution of the layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00013—Fully indexed content
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01022—Titanium [Ti]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01074—Tungsten [W]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01076—Osmium [Os]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12044—OLED
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0364—Conductor shape
- H05K2201/0379—Stacked conductors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10613—Details of electrical connections of non-printed components, e.g. special leads
- H05K2201/10621—Components characterised by their electrical contacts
- H05K2201/10674—Flip chip
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/20—Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
- H05K2201/2036—Permanent spacer or stand-off in a printed circuit or printed circuit assembly
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the embodiments of the invention generally relate to methods of connecting chips to chip carriers, ceramic packages, etc. (package substrates) and to a method that forms smaller than usual first solder balls and polymer pillars on the surface of a semiconductor chip and forms second solder balls on the corresponding surface of the package substrate to which the chip will be attached.
- the method heats the first solder balls and the second solder balls to join the first solder balls and the second solder balls into solder pillars.
- solder balls are used to join chips to the package.
- solder ball size for higher I/O density
- chip size larger chip size
- plastic packaging with larger coefficient of thermal expansion (CTE) than ceramic packages
- Pb-free solder with higher reflow temperature and higher modulus than Pb-containing solder.
- the coefficient of thermal expansion mismatch between the chip and the package can result in high stress in the solder joints, which can cause cracks and eventually device failure.
- an embodiment of the invention provides a method of connecting chips to chip carriers, ceramic packages, etc. (package substrates) that forms smaller than usual first solder balls and polymer pillars on the surface of a semiconductor chip.
- the method applies adhesive to the distal ends of the polymer pillars.
- the polymer pillars extend further from the surface of the semiconductor chip than the first solder balls to an extent such that the applying of the adhesive to the distal ends of the polymer pillars is performed without applying adhesive to the first solder balls.
- the method also forms second solder balls, which are similar in size to the first solder balls, on the corresponding surface of the package substrate to which the chip will be attached. Then, the method positions the surface of the semiconductor chip next to the corresponding surface of the package substrate such that the distal ends of the polymer pillars contact the corresponding surface of the package substrate and such that the first solder balls contact corresponding ones of the second solder balls.
- the combined diameters of the first solder balls and the second solder balls is equal to or greater than a dimension that the polymer pillars extend from the surface of the semiconductor chip.
- the method heats the first solder balls and the second solder balls to join the first solder balls and the second solder balls into solder pillars.
- the heating process heats the first and second solder balls to a temperature at least equal to a melting point of the first solder balls and the second solder balls (the heating process reflows the solder). After the solder cools below its melting point, the resulting solder structure forms as solder pillars.
- the adhesive bonds the distal ends of the polymer pillars to the corresponding surface of the package substrate.
- the polymer pillars maintain relative positions of the surface of the integrated circuit chip and the corresponding surface of the package substrate during the heating of the first solder balls and the second solder balls.
- the first and second solder balls (which can be lead-free solder) are approximately the same size on the substrate and on the chip, but are only approximately one-half the exterior size (approximately one quarter of the volume) of a standard C4 (controlled collapsible chip connection) solder balls.
- the C4 solder balls are conventionally only formed on the chip when forming connections to the substrate.
- the two smaller solder balls After the heating process (reflow), the two smaller solder balls would be expected to have somewhere between 1 ⁇ 2 and 1 ⁇ 4 the volume of solder contained in the single conventional C4 bump (because each smaller solder ball has only approximately one quarter of the volume of a standard C4 solder ball). Thus, during reflow, the two smaller solder balls would be expected to collapse as occurs conventionally with the C4 solder balls.
- the height of the polymer pillars controls the stand-off distance between the chip surface and the corresponding substrate surface, which prevents the solder from collapsing into a spherical shape.
- solder balls join to form a solder pillar, whose shape is determined by a combination of the solder volume, the sizes of the back level metalization (BLM) and substrate pads, and the polymer pillar height. Further, the solder pillars provide greater physical support between the semiconductor chip and the package substrate relative to the solder pillars. By observing the resulting structure, it sometimes can be seen that the solder pillars actually comprise two joined solder balls.
- the foregoing process produces a unique structure that comprises polymer pillars and solder pillars positioned between and connecting the semiconductor chip and the package substrate.
- the solder pillars have a shape and a size similar to that of the polymer pillars.
- the polymer pillars comprise optical transmission media (adapted to transmit optical signals between the semiconductor chip and the package substrate) while the solder pillars comprise electrical transmission media (adapted to transmit electrical signals between the semiconductor chip and the package substrate).
- solder and polymer pillars are elongated structures, as contrasted with the conventional rounded C4 solder balls (used conventionally to connect the chip and the substrate).
- the height (first dimension) of the solder pillars and the polymer pillars between the semiconductor chip and the package substrate is at least 2 times their width (second dimension that is perpendicular to the first dimension).
- FIG. 1 illustrates a schematic diagram of an integrated circuit assembly
- FIG. 2 illustrates a schematic diagram of an integrated circuit assembly
- FIG. 3 illustrates a schematic diagram of an integrated circuit assembly
- FIG. 4 illustrates a schematic diagram of an integrated circuit assembly
- FIG. 5 illustrates a schematic diagram of an integrated circuit assembly
- FIG. 6 illustrates a schematic diagram of an integrated circuit assembly
- FIG. 7 illustrates a schematic diagram of an integrated circuit assembly
- FIG. 8 illustrates a schematic diagram of an integrated circuit assembly
- FIG. 9 illustrates a schematic diagram of an integrated circuit assembly
- FIG. 10 illustrates a schematic diagram of an integrated circuit assembly
- FIG. 11 illustrates a schematic diagram of an integrated circuit assembly.
- elongated solder connections can be formed by joining the chip to the package at the solder reflow temperature, mechanically separating the chip from the package to elongate the solder, and then cooling the solder in the “stretched state”. This process provides an elongated solder connection for improved reliability; however, this process is difficult to implement in manufacturing.
- a semiconductor chip 102 includes contact pads 104 upon which solder balls 106 are formed. These solder balls form electrical input/output connections.
- the structure includes polymer pillars 108 that form optical input/output connections.
- the polymer pillars 108 are taller than the solder balls 106 by a measure labeled T 1 in FIG. 1 .
- the distal ends of the polymer pillars 108 are dipped into an adhesive 202 , which results in the distal ends of the polymer pillars 108 being covered with adhesive 202 as shown in FIG. 3 .
- the chip 102 can be positioned adjacent to a package substrate 404 such that the solder balls 106 make contact with pads 402 on the package substrate 404 and such that the polymer pillars 180 become attached to the package substrate 404 by means of the adhesive 202 .
- the height difference between the solder balls 106 and the polymer pillars 108 allows the polymer pillars 108 to be dipped into an adhesive 202 , as shown in FIG. 2 , without having the adhesive 202 contact the solder balls 106 . Therefore, it is desirable to maintain a gap (shown as item 204 in FIG. 2 ) between the solder balls 106 and the adhesive 202 , to prevent the solder balls 106 from becoming contaminated with the adhesive 202 .
- the solder balls may be contaminated by the adhesive 202 and may not form good connections with the pads 402 . If the height difference T 1 is too great, the solder balls may not be large enough to make contact with the bond pad 402 . It is difficult to ensure that the solder balls 106 make contact to the bond pads 402 on the substrate because, if the solder balls 106 are too small, they may not reach the bond pads 402 . To the contrary, if the solder balls 106 are too large, no gap 204 may be present and the solder balls may be covered with adhesive 202 . This adhesive 202 can interfere with the ability of the solder balls 106 to bond with the pads 402 .
- FIGS. 5-9 the processing sequence shown in FIGS. 5-9 is utilized to form a new structure and ensure that the electrical connections between the chip 102 and the package substrate 404 are formed properly. More specifically, as shown in FIGS. 5-9 , a method is disclosed that creates a new structure and which properly forms electrical connections when both electrical and optical connections are utilized between semiconductor chips and packaging substrates.
- FIG. 5 illustrates a similar structure to that shown in FIG. 1 ; however, in FIG. 5 , rather than using the full-size solder balls 106 , the structure in FIG. 5 utilizes smaller solder balls 506 .
- This increases the height difference to a measure shown as T 2 which is greater than the height difference T 1 shown in FIG. 1 .
- the smaller solder balls 506 could be approximately one-half to three-quarters of the height (H 1 , which is shown in FIG. 10 and discussed below) of the polymer pillars 108 , which would allow T 2 to be approximately one-quarter to one-half the height of the polymer pillar (H 1 ).
- the method applies adhesive 202 to the distal ends of the polymer pillars 108 (the distal ends are the ends of the polymer pillars 108 that are furthest away the surface of the semiconductor chip 102 opposite the ends that are connected to the semiconductor chip 102 ). This allows in the tips of the polymer pillars 108 be coated in adhesive 202 as shown in FIG. 7 .
- the polymer pillars 108 extend further from the surface of the semiconductor chip 102 than the first solder balls 506 to an extent such that the applying of the adhesive to the distal ends of the polymer pillars 108 is performed without applying adhesive to the first solder balls 506 .
- the greater height difference T 2 produces a larger gap 604 (when compared to gap 204 shown in FIG. 2 ) and provides a much greater margin for error than did the smaller height difference T 1 .
- the larger gap 604 substantially reduces the chance of the smaller solder balls 506 becoming contaminated with the adhesive 202 , which increases yield and decreases waste.
- the method also forms second solder balls 802 , which are similar in size to the first solder balls 506 , on the bond pads 402 of the corresponding surface of the package substrate 404 to which the chip 102 will be attached. Then, the method positions the surface of the semiconductor chip 102 next to the corresponding surface of the package substrate 404 such that the distal ends of the polymer pillars 108 contact the corresponding surface of the package substrate 404 and such that the first solder balls 506 contact corresponding ones of the second solder balls 802 .
- the combined diameters of the first solder balls 506 and the second solder balls 802 is equal to or greater than a dimension that the polymer pillars 108 extend from the surface of the semiconductor chip 102 .
- the method heats the first solder balls 506 and the second solder balls 802 to join the first solder balls 506 and the second solder balls 802 into solder pillars 902 , as shown in FIG. 9 .
- the heating process heats the first and second solder balls 802 to a temperature at least equal to a melting point of the first solder balls 506 and the second solder balls 802 (the heating process reflows the solder). After the solder cools below its melting point, the resulting solder structure forms as solder pillars 902 .
- the adhesive 202 bonds the distal ends of the polymer pillars 108 to the corresponding surface of the package substrate 404 .
- the polymer pillars 108 maintain the relative positions of the surface of the integrated circuit chip 102 and the corresponding surface of the package substrate 404 during the heating of the first solder balls 506 and the second solder balls 802 . This prevents the first and second solder balls 506 , 802 from collapsing into a larger ball shape and, instead, forces the solder balls 506 , 802 to take an elongated pillar-like shape upon cooling.
- the first and second solder balls 802 (which can be lead-free solder) are approximately the same size on the substrate 404 and on the chip 102 , but are only approximately one-half the exterior size (approximately one quarter of the volume) of the C4 solder balls that would be required if the processing shown in FIGS. 1-4 were being performed. As shown above, in FIGS. 1-4 , the C4 solder balls are conventionally only formed on the chip 102 when forming connections to the substrate 404 .
- the two smaller solder balls After the heating process (reflow), the two smaller solder balls would be expected to have somewhere between 1 ⁇ 2 and 1 ⁇ 4 the volume of solder contained in the single C4 bump used in FIG. 1-4 (because each smaller solder ball has only approximately one quarter of the volume of a standard C4 solder ball shown in FIG. 1-4 ). Thus, during reflow, the two smaller solder balls would be expected to collapse as occurs conventionally with the C4 solder balls.
- the height of the polymer pillars 108 controls the stand-off distance between the chip 102 surface and the corresponding substrate 404 surface, which prevents the solder balls 506 , 802 from collapsing into a spherical shape. Because of the presence of the polymer pillars 108 , the solder balls 506 , 802 join to form the solder pillar 902 , whose shape is determined by a combination of the solder volume, the sizes of the substrate 404 pads, and the polymer pillar 108 height.
- the solder and polymer pillars 108 , 902 are elongated structures, as contrasted with the conventional rounded C4 solder balls 106 (used conventionally to connect the chip 102 and the substrate 404 ). Because they are elongated, the height (first dimension H 1 ) of the solder pillars 902 and the polymer pillars 108 between the semiconductor chip 102 and the package substrate 404 is approximately at least 2 times their width (second dimension W 2 that is perpendicular to the first dimension) as shown in FIG. 10 .
- the height (first dimension H 1 ) of the solder balls 106 between the semiconductor chip 102 and the package substrate 404 is about the same as their width (second dimension W 1 that is perpendicular to the first dimension) as also shown in FIG. 10 .
- the measures H 1 , W 1 , and W 2 shown in FIG. 10 are only approximate relative measures and the pillars are not all exactly the same size, but are all similarly elongated.
- the solder pillars 902 are elongated, as contrasted with the rounded solder balls 106 shown in FIGS. 1-4 .
- solder pillars 902 provide greater physical support between the semiconductor chip 102 and the package substrate 404 relative to the solder pillars 902 .
- the solder pillars 902 can have a somewhat uneven elongated shape. For example, by observing some embodiments of the resulting structure, it sometimes can be seen that the solder pillars 902 actually comprise two joined solder balls, as shown in FIG. 11 .
- the foregoing process produces a unique structure that comprises polymer pillars 108 and solder pillars 902 positioned between and connecting the semiconductor chip 102 and the package substrate 404 .
- the solder pillars 902 have a shape and a size similar to that of the polymer pillars 108 .
- the polymer pillars 108 comprise optical transmission media (adapted to transmit optical signals between the semiconductor chip 102 and the package substrate 404 ) while the solder pillars 902 comprise electrical transmission media (adapted to transmit electrical signals between the semiconductor chip 102 and the package substrate 404 ).
- the larger gap 604 substantially reduces the chance of the smaller solder balls 506 becoming contaminated with the adhesive 202 , which increases yield and decreases waste; yet, when the polymer pillars 108 contact the surface of the substrate 404 , the first solder balls 506 are pushed against the second solder balls 802 and the solder balls make very good contact with each other, which increases yield and reliability. Therefore, the process and structure discussed above produces a new structure and increases yield and reliability.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Wire Bonding (AREA)
Abstract
A method of connecting chips to chip carriers, ceramic packages, etc. (package substrates) forms smaller than usual first solder balls and polymer pillars on the surface of a semiconductor chip and applies adhesive to the distal ends of the polymer pillars. The method also forms second solder balls, which are similar in size to the first solder balls, on the corresponding surface of the package substrate to which the chip will be attached. Then, the method positions the surface of the semiconductor chip next to the corresponding surface of the package substrate. The adhesive bonds the distal ends of the polymer pillars to the corresponding surface of the package substrate. The method heats the first solder balls and the second solder balls to join the first solder balls and the second solder balls into solder pillars.
Description
- 1. Field of the Invention
- The embodiments of the invention generally relate to methods of connecting chips to chip carriers, ceramic packages, etc. (package substrates) and to a method that forms smaller than usual first solder balls and polymer pillars on the surface of a semiconductor chip and forms second solder balls on the corresponding surface of the package substrate to which the chip will be attached. The method heats the first solder balls and the second solder balls to join the first solder balls and the second solder balls into solder pillars.
- 2. Description of the Related Art
- In conventional systems, solder balls are used to join chips to the package. However, it is becoming increasingly difficult to ensure solder ball reliability due to the following trends: smaller solder ball size (for higher I/O density); larger chip size; plastic packaging (with larger coefficient of thermal expansion (CTE) than ceramic packages); and the use of Pb-free solder (with higher reflow temperature and higher modulus than Pb-containing solder). The coefficient of thermal expansion mismatch between the chip and the package can result in high stress in the solder joints, which can cause cracks and eventually device failure.
- In view of the foregoing, an embodiment of the invention provides a method of connecting chips to chip carriers, ceramic packages, etc. (package substrates) that forms smaller than usual first solder balls and polymer pillars on the surface of a semiconductor chip. The method applies adhesive to the distal ends of the polymer pillars.
- The polymer pillars extend further from the surface of the semiconductor chip than the first solder balls to an extent such that the applying of the adhesive to the distal ends of the polymer pillars is performed without applying adhesive to the first solder balls.
- The method also forms second solder balls, which are similar in size to the first solder balls, on the corresponding surface of the package substrate to which the chip will be attached. Then, the method positions the surface of the semiconductor chip next to the corresponding surface of the package substrate such that the distal ends of the polymer pillars contact the corresponding surface of the package substrate and such that the first solder balls contact corresponding ones of the second solder balls.
- The combined diameters of the first solder balls and the second solder balls is equal to or greater than a dimension that the polymer pillars extend from the surface of the semiconductor chip. Thus, when the polymer pillars contact the surface of the substrate, the first solder balls are pushed against the second solder balls and the solder balls make very good contact with each other. The method heats the first solder balls and the second solder balls to join the first solder balls and the second solder balls into solder pillars. The heating process heats the first and second solder balls to a temperature at least equal to a melting point of the first solder balls and the second solder balls (the heating process reflows the solder). After the solder cools below its melting point, the resulting solder structure forms as solder pillars.
- The adhesive bonds the distal ends of the polymer pillars to the corresponding surface of the package substrate. Thus, because they are firmly attached between the chip and the substrate, the polymer pillars maintain relative positions of the surface of the integrated circuit chip and the corresponding surface of the package substrate during the heating of the first solder balls and the second solder balls.
- The first and second solder balls (which can be lead-free solder) are approximately the same size on the substrate and on the chip, but are only approximately one-half the exterior size (approximately one quarter of the volume) of a standard C4 (controlled collapsible chip connection) solder balls. The C4 solder balls are conventionally only formed on the chip when forming connections to the substrate.
- After the heating process (reflow), the two smaller solder balls would be expected to have somewhere between ½ and ¼ the volume of solder contained in the single conventional C4 bump (because each smaller solder ball has only approximately one quarter of the volume of a standard C4 solder ball). Thus, during reflow, the two smaller solder balls would be expected to collapse as occurs conventionally with the C4 solder balls. However, the height of the polymer pillars controls the stand-off distance between the chip surface and the corresponding substrate surface, which prevents the solder from collapsing into a spherical shape. Because of the presence of the polymer pillars, the solder balls join to form a solder pillar, whose shape is determined by a combination of the solder volume, the sizes of the back level metalization (BLM) and substrate pads, and the polymer pillar height. Further, the solder pillars provide greater physical support between the semiconductor chip and the package substrate relative to the solder pillars. By observing the resulting structure, it sometimes can be seen that the solder pillars actually comprise two joined solder balls.
- The foregoing process produces a unique structure that comprises polymer pillars and solder pillars positioned between and connecting the semiconductor chip and the package substrate. The solder pillars have a shape and a size similar to that of the polymer pillars. However, the polymer pillars comprise optical transmission media (adapted to transmit optical signals between the semiconductor chip and the package substrate) while the solder pillars comprise electrical transmission media (adapted to transmit electrical signals between the semiconductor chip and the package substrate).
- As described above, these solder and polymer pillars are elongated structures, as contrasted with the conventional rounded C4 solder balls (used conventionally to connect the chip and the substrate). Thus, the height (first dimension) of the solder pillars and the polymer pillars between the semiconductor chip and the package substrate is at least 2 times their width (second dimension that is perpendicular to the first dimension).
- These and other aspects of the embodiments of the invention will be better appreciated and understood when considered in conjunction with the following description and the accompanying drawings. It should be understood, however, that the following descriptions, while indicating preferred embodiments of the invention and numerous specific details thereof, are given by way of illustration and not of limitation. Many changes and modifications may be made within the scope of the embodiments of the invention without departing from the spirit thereof, and the embodiments of the invention include all such modifications.
- The embodiments of the invention will be better understood from the following detailed description with reference to the drawings, in which:
-
FIG. 1 illustrates a schematic diagram of an integrated circuit assembly; -
FIG. 2 illustrates a schematic diagram of an integrated circuit assembly; -
FIG. 3 illustrates a schematic diagram of an integrated circuit assembly; -
FIG. 4 illustrates a schematic diagram of an integrated circuit assembly; -
FIG. 5 illustrates a schematic diagram of an integrated circuit assembly; -
FIG. 6 illustrates a schematic diagram of an integrated circuit assembly; -
FIG. 7 illustrates a schematic diagram of an integrated circuit assembly; -
FIG. 8 illustrates a schematic diagram of an integrated circuit assembly; -
FIG. 9 illustrates a schematic diagram of an integrated circuit assembly; -
FIG. 10 illustrates a schematic diagram of an integrated circuit assembly; and -
FIG. 11 illustrates a schematic diagram of an integrated circuit assembly. - The embodiments of the invention and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments that are illustrated in the accompanying drawings and detailed in the following description. It should be noted that the features illustrated in the drawings are not necessarily drawn to scale. Descriptions of well-known components and processing techniques are omitted so as to not unnecessarily obscure the embodiments of the invention. The examples used herein are intended merely to facilitate an understanding of ways in which the embodiments of the invention may be practiced and to further enable those of skill in the art to practice the embodiments of the invention. Accordingly, the examples should not be construed as limiting the scope of the embodiments of the invention.
- One solution to relieving stress in solder connections is to use elongated solder connections. For example, elongated solder connections can be formed by joining the chip to the package at the solder reflow temperature, mechanically separating the chip from the package to elongate the solder, and then cooling the solder in the “stretched state”. This process provides an elongated solder connection for improved reliability; however, this process is difficult to implement in manufacturing.
- Hence, an effective process for making elongated solder connections would be useful. It would also be advantageous to form electrical and optical I/Os on the same chip, which would be useful for connections between, for example, stacked chips or connections from the chip to the package. For example, U.S. Patent Publication 2006/0104566 to Bakir et al. (the complete disclosure of which is incorporated herein by reference) uses polymer pillars for the optical inputs/outputs and solder balls for the electrical inputs/outputs.
- However, when polymer pillars are used in combination with rounded solder ball connections, the polymer pillars should be taller than the solder balls (to allow dipping into an adhesive). For example, as shown in
FIG. 1 , asemiconductor chip 102 includescontact pads 104 upon whichsolder balls 106 are formed. These solder balls form electrical input/output connections. In addition, the structure includespolymer pillars 108 that form optical input/output connections. For a detailed description of how such structures are formed, and the materials and processing for creating such structures, reference is made to the previously mentioned U.S. Patent Publication 2006/0104566, and such explanation is not repeated herein. - As shown in
FIG. 1 , thepolymer pillars 108 are taller than thesolder balls 106 by a measure labeled T1 inFIG. 1 . InFIG. 2 , the distal ends of thepolymer pillars 108 are dipped into an adhesive 202, which results in the distal ends of thepolymer pillars 108 being covered with adhesive 202 as shown inFIG. 3 . Then, as shown inFIG. 4 , thechip 102 can be positioned adjacent to apackage substrate 404 such that thesolder balls 106 make contact withpads 402 on thepackage substrate 404 and such that the polymer pillars 180 become attached to thepackage substrate 404 by means of the adhesive 202. - The height difference between the
solder balls 106 and thepolymer pillars 108, discussed above, (Ti) allows thepolymer pillars 108 to be dipped into an adhesive 202, as shown inFIG. 2 , without having the adhesive 202 contact thesolder balls 106. Therefore, it is desirable to maintain a gap (shown asitem 204 inFIG. 2 ) between thesolder balls 106 and the adhesive 202, to prevent thesolder balls 106 from becoming contaminated with the adhesive 202. - If the height difference T1 is too small, the solder balls may be contaminated by the adhesive 202 and may not form good connections with the
pads 402. If the height difference T1 is too great, the solder balls may not be large enough to make contact with thebond pad 402. It is difficult to ensure that thesolder balls 106 make contact to thebond pads 402 on the substrate because, if thesolder balls 106 are too small, they may not reach thebond pads 402. To the contrary, if thesolder balls 106 are too large, nogap 204 may be present and the solder balls may be covered withadhesive 202. This adhesive 202 can interfere with the ability of thesolder balls 106 to bond with thepads 402. - In view of these issues, the processing sequence shown in
FIGS. 5-9 is utilized to form a new structure and ensure that the electrical connections between thechip 102 and thepackage substrate 404 are formed properly. More specifically, as shown inFIGS. 5-9 , a method is disclosed that creates a new structure and which properly forms electrical connections when both electrical and optical connections are utilized between semiconductor chips and packaging substrates. - More specifically,
FIG. 5 illustrates a similar structure to that shown inFIG. 1 ; however, inFIG. 5 , rather than using the full-size solder balls 106, the structure inFIG. 5 utilizessmaller solder balls 506. This increases the height difference to a measure shown as T2 which is greater than the height difference T1 shown inFIG. 1 . For example, thesmaller solder balls 506 could be approximately one-half to three-quarters of the height (H1, which is shown inFIG. 10 and discussed below) of thepolymer pillars 108, which would allow T2 to be approximately one-quarter to one-half the height of the polymer pillar (H1). - Thus, in
FIG. 6 , the method applies adhesive 202 to the distal ends of the polymer pillars 108 (the distal ends are the ends of thepolymer pillars 108 that are furthest away the surface of thesemiconductor chip 102 opposite the ends that are connected to the semiconductor chip 102). This allows in the tips of thepolymer pillars 108 be coated in adhesive 202 as shown inFIG. 7 . - The
polymer pillars 108 extend further from the surface of thesemiconductor chip 102 than thefirst solder balls 506 to an extent such that the applying of the adhesive to the distal ends of thepolymer pillars 108 is performed without applying adhesive to thefirst solder balls 506. In other words, the greater height difference T2 produces a larger gap 604 (when compared togap 204 shown inFIG. 2 ) and provides a much greater margin for error than did the smaller height difference T1. Thelarger gap 604 substantially reduces the chance of thesmaller solder balls 506 becoming contaminated with the adhesive 202, which increases yield and decreases waste. - In order to ensure that a good electrical connection is formed, the method also forms
second solder balls 802, which are similar in size to thefirst solder balls 506, on thebond pads 402 of the corresponding surface of thepackage substrate 404 to which thechip 102 will be attached. Then, the method positions the surface of thesemiconductor chip 102 next to the corresponding surface of thepackage substrate 404 such that the distal ends of thepolymer pillars 108 contact the corresponding surface of thepackage substrate 404 and such that thefirst solder balls 506 contact corresponding ones of thesecond solder balls 802. - The combined diameters of the
first solder balls 506 and thesecond solder balls 802 is equal to or greater than a dimension that thepolymer pillars 108 extend from the surface of thesemiconductor chip 102. Thus, when thepolymer pillars 108 contact the surface of thesubstrate 404, thefirst solder balls 506 are pushed against thesecond solder balls 802 and the solder balls make very good contact with each other. - The method heats the
first solder balls 506 and thesecond solder balls 802 to join thefirst solder balls 506 and thesecond solder balls 802 intosolder pillars 902, as shown inFIG. 9 . The heating process heats the first andsecond solder balls 802 to a temperature at least equal to a melting point of thefirst solder balls 506 and the second solder balls 802 (the heating process reflows the solder). After the solder cools below its melting point, the resulting solder structure forms assolder pillars 902. - The adhesive 202 bonds the distal ends of the
polymer pillars 108 to the corresponding surface of thepackage substrate 404. Thus, because they are firmly attached between thechip 102 and thesubstrate 404 by the adhesive 202, thepolymer pillars 108 maintain the relative positions of the surface of theintegrated circuit chip 102 and the corresponding surface of thepackage substrate 404 during the heating of thefirst solder balls 506 and thesecond solder balls 802. This prevents the first andsecond solder balls solder balls - The first and second solder balls 802 (which can be lead-free solder) are approximately the same size on the
substrate 404 and on thechip 102, but are only approximately one-half the exterior size (approximately one quarter of the volume) of the C4 solder balls that would be required if the processing shown inFIGS. 1-4 were being performed. As shown above, inFIGS. 1-4 , the C4 solder balls are conventionally only formed on thechip 102 when forming connections to thesubstrate 404. - After the heating process (reflow), the two smaller solder balls would be expected to have somewhere between ½ and ¼ the volume of solder contained in the single C4 bump used in
FIG. 1-4 (because each smaller solder ball has only approximately one quarter of the volume of a standard C4 solder ball shown inFIG. 1-4 ). Thus, during reflow, the two smaller solder balls would be expected to collapse as occurs conventionally with the C4 solder balls. - However, the height of the
polymer pillars 108 controls the stand-off distance between thechip 102 surface and thecorresponding substrate 404 surface, which prevents thesolder balls polymer pillars 108, thesolder balls solder pillar 902, whose shape is determined by a combination of the solder volume, the sizes of thesubstrate 404 pads, and thepolymer pillar 108 height. - As described above, the solder and
polymer pillars chip 102 and the substrate 404). Because they are elongated, the height (first dimension H1) of thesolder pillars 902 and thepolymer pillars 108 between thesemiconductor chip 102 and thepackage substrate 404 is approximately at least 2 times their width (second dimension W2 that is perpendicular to the first dimension) as shown inFIG. 10 . To the contrary, the height (first dimension H1) of thesolder balls 106 between thesemiconductor chip 102 and thepackage substrate 404 is about the same as their width (second dimension W1 that is perpendicular to the first dimension) as also shown inFIG. 10 . The measures H1, W1, and W2 shown inFIG. 10 are only approximate relative measures and the pillars are not all exactly the same size, but are all similarly elongated. Thus, thesolder pillars 902 are elongated, as contrasted with therounded solder balls 106 shown inFIGS. 1-4 . - Further, the
solder pillars 902 provide greater physical support between thesemiconductor chip 102 and thepackage substrate 404 relative to thesolder pillars 902. Thesolder pillars 902 can have a somewhat uneven elongated shape. For example, by observing some embodiments of the resulting structure, it sometimes can be seen that thesolder pillars 902 actually comprise two joined solder balls, as shown inFIG. 11 . - The foregoing process produces a unique structure that comprises
polymer pillars 108 andsolder pillars 902 positioned between and connecting thesemiconductor chip 102 and thepackage substrate 404. Thesolder pillars 902 have a shape and a size similar to that of thepolymer pillars 108. However, thepolymer pillars 108 comprise optical transmission media (adapted to transmit optical signals between thesemiconductor chip 102 and the package substrate 404) while thesolder pillars 902 comprise electrical transmission media (adapted to transmit electrical signals between thesemiconductor chip 102 and the package substrate 404). - With the foregoing method shown in
FIGS. 5-9 , thelarger gap 604 substantially reduces the chance of thesmaller solder balls 506 becoming contaminated with the adhesive 202, which increases yield and decreases waste; yet, when thepolymer pillars 108 contact the surface of thesubstrate 404, thefirst solder balls 506 are pushed against thesecond solder balls 802 and the solder balls make very good contact with each other, which increases yield and reliability. Therefore, the process and structure discussed above produces a new structure and increases yield and reliability. - The foregoing description of the specific embodiments will so fully reveal the modify and/or adapt for various applications such specific embodiments without departing from the generic concept, and, therefore, such adaptations and modifications should and are intended to be comprehended within the meaning and range of equivalents of the disclosed embodiments. It is to be understood that the phraseology or terminology employed herein is for the purpose of description and not of limitation. Therefore, while the embodiments of the invention have been described in terms of preferred embodiments, those skilled in the art will recognize that the embodiments of the invention can be practiced with modification within the spirit and scope of the appended claims.
Claims (20)
1. A structure comprising:
a semiconductor chip;
a package substrate connected to said semiconductor chip;
polymer pillars positioned between and connecting said semiconductor chip and said package substrate; and
solder pillars positioned between and connecting said semiconductor chip and said package substrate.
2. The structure according to claim 1 , all the limitations of which are incorporated herein by reference, wherein said solder pillars have a shape and a size similar to that of said polymer pillars.
3. The structure according to claim 1 , all the limitations of which are incorporated herein by reference, wherein said solder pillars and said polymer pillars each have a first dimension between said semiconductor chip and said package substrate that is at least 2 times a second dimension that is perpendicular to said first dimension.
4. The structure according to claim 1 , all the limitations of which are incorporated herein by reference, wherein said solder pillars provide greater physical support between said semiconductor chip and said package substrate relative to said solder pillars.
5. The structure according to claim 1 , all the limitations of which are incorporated herein by reference, wherein said solder pillars lack lead.
6. A structure comprising:
a semiconductor chip;
a package substrate connected to said semiconductor chip;
polymer pillars positioned between and connecting said semiconductor chip and said package substrate; and
solder pillars positioned between and connecting said semiconductor chip and said package substrate,
wherein said polymer pillars comprise optical transmission media adapted to transmit optical signals between said semiconductor chip and said package substrate,
wherein said solder pillars comprise electrical transmission media adapted to transmit electrical signals between said semiconductor chip and said package substrate, and
wherein said solder pillars comprise two joined solder balls.
7. The structure according to claim 6 , all the limitations of which are incorporated herein by reference, wherein said solder pillars have a shape and a size similar to that of said polymer pillars.
8. The structure according to claim 6 , all the limitations of which are incorporated herein by reference, wherein said solder pillars and said polymer pillars each have a first dimension between said semiconductor chip and said package substrate that is at least 2 times a second dimension that is perpendicular to said first dimension.
9. The structure according to claim 6 , all the limitations of which are incorporated herein by reference, wherein said solder pillars provide greater physical support between said semiconductor chip and said package substrate relative to said solder pillars.
10. The structure according to claim 6 , all the limitations of which are incorporated herein by reference, wherein said solder pillars lack lead.
11. A method comprising:
forming first solder balls on a surface of a semiconductor chip;
forming polymer pillars on said surface of said semiconductor chip;
forming second solder balls on a corresponding surface of a package substrate;
positioning said surface of said semiconductor chip next to said corresponding surface of said package substrate such that said polymer pillars contact said corresponding surface of said package substrate and such that said first solder balls contact corresponding ones of said second solder balls; and
heating said first solder balls and said second solder balls to join said first solder balls and said second solder balls into solder pillars.
12. The method according to claim 11 , all the limitations of which are incorporated herein by reference, wherein said polymer pillars extend further from said surface of said semiconductor chip than said first solder balls.
13. The method according to claim 11 , all the limitations of which are incorporated herein by reference, wherein combined diameters of said first solder balls and said second solder balls is equal to or greater than a dimension that said polymer pillars extend from said surface of said semiconductor chip.
14. The method according to claim 11 , all the limitations of which are incorporated herein by reference, wherein said polymer pillars maintain relative positions of said surface of said integrated circuit chip and said corresponding surface of said package substrate during said heating of said first solder balls and said second solder balls.
15. The method according to claim 11 , all the limitations of which are incorporated herein by reference, wherein said heating comprises heating to a temperature at least equal to a melting point of said first solder balls and said second solder balls.
16. A method comprising:
forming first solder balls on a surface of a semiconductor chip;
forming polymer pillars on said surface of said semiconductor chip;
applying adhesive to distal ends of said polymer pillars, wherein said distal ends comprise ends of said polymer pillars that are furthest away said surface of said semiconductor chip;
forming second solder balls on a corresponding surface of a package substrate;
positioning said surface of said semiconductor chip next to said corresponding surface of said package substrate such that said distal ends of said polymer pillars contact said corresponding surface of said package substrate and such that said first solder balls contact corresponding ones of said second solder balls, wherein said adhesive bonds said distal ends of said polymer pillars to said corresponding surface of said package substrate; and
heating said first solder balls and said second solder balls to join said first solder balls and said second solder balls into solder pillars.
17. The method according to claim 16 , all the limitations of which are incorporated herein by reference, wherein said polymer pillars extend further from said surface of said semiconductor chip than said first solder balls to an extent such that said applying of said adhesive to said distal ends of said polymer pillars is performed without applying adhesive to said first solder balls.
18. The method according to claim 16 , all the limitations of which are incorporated herein by reference, wherein combined diameters of said first solder balls and said second solder balls is equal to or greater than a dimension that said polymer pillars extend from said surface of said semiconductor chip.
19. The method according to claim 16 , all the limitations of which are incorporated herein by reference, wherein said polymer pillars maintain relative positions of said surface of said integrated circuit chip and said corresponding surface of said package substrate during said heating of said first solder balls and said second solder balls.
20. The method according to claim 16 , all the limitations of which are incorporated herein by reference, wherein said heating comprises heating to a temperature at least equal to a melting point of said first solder balls and said second solder balls.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/028,848 US20090200663A1 (en) | 2008-02-11 | 2008-02-11 | Polymer and solder pillars for connecting chip and carrier |
US13/463,855 US8426247B2 (en) | 2008-02-11 | 2012-05-04 | Polymer and solder pillars for connecting chip and carrier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/028,848 US20090200663A1 (en) | 2008-02-11 | 2008-02-11 | Polymer and solder pillars for connecting chip and carrier |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/463,855 Division US8426247B2 (en) | 2008-02-11 | 2012-05-04 | Polymer and solder pillars for connecting chip and carrier |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090200663A1 true US20090200663A1 (en) | 2009-08-13 |
Family
ID=40938203
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/028,848 Abandoned US20090200663A1 (en) | 2008-02-11 | 2008-02-11 | Polymer and solder pillars for connecting chip and carrier |
US13/463,855 Expired - Fee Related US8426247B2 (en) | 2008-02-11 | 2012-05-04 | Polymer and solder pillars for connecting chip and carrier |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/463,855 Expired - Fee Related US8426247B2 (en) | 2008-02-11 | 2012-05-04 | Polymer and solder pillars for connecting chip and carrier |
Country Status (1)
Country | Link |
---|---|
US (2) | US20090200663A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8227924B2 (en) | 2010-07-13 | 2012-07-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Substrate stand-offs for semiconductor devices |
US20120199981A1 (en) * | 2011-02-09 | 2012-08-09 | Jeong Se-Young | Semiconductor device and method of fabricating the semiconductor device |
US20120286418A1 (en) * | 2011-05-13 | 2012-11-15 | Stats Chippac, Ltd. | Semiconductor Device and Method of Forming Dummy Pillars Between Semiconductor Die and Substrate for Maintaining Standoff Distance |
US8531040B1 (en) * | 2012-03-14 | 2013-09-10 | Honeywell International Inc. | Controlled area solder bonding for dies |
US20150084150A1 (en) * | 2013-09-25 | 2015-03-26 | Delphi Technologies, Inc. | Ball grid array packaged camera device soldered to a substrate |
US20150130072A1 (en) * | 2013-11-14 | 2015-05-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Stacking of multiple dies for forming three dimensional integrated circuit (3dic) structure |
EP2950358A3 (en) * | 2014-05-29 | 2016-01-20 | LG Innotek Co., Ltd | Light emitting device package |
KR20160023328A (en) * | 2014-08-22 | 2016-03-03 | 엘지이노텍 주식회사 | Light emitting device package |
US20160172299A1 (en) * | 2014-12-12 | 2016-06-16 | Qualcomm Incorporated | Integrated device package comprising photo sensitive fill between a substrate and a die |
US9373585B2 (en) * | 2014-09-17 | 2016-06-21 | Invensas Corporation | Polymer member based interconnect |
US20170141073A1 (en) * | 2013-06-26 | 2017-05-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mechanisms for Forming Hybrid Bonding Structures with Elongated Bumps |
US9666514B2 (en) | 2015-04-14 | 2017-05-30 | Invensas Corporation | High performance compliant substrate |
US20200006293A1 (en) * | 2018-06-29 | 2020-01-02 | Intel Corporation | Chip scale thin 3d die stacked package |
US20200273823A1 (en) * | 2019-02-27 | 2020-08-27 | Advanced Semiconductor Engineering, Inc. | Semiconductor device package and method of manufacturing the same |
CN113013105A (en) * | 2019-12-19 | 2021-06-22 | 美光科技公司 | Semiconductor die with capillary flow structure for direct chip mounting |
US20220208719A1 (en) * | 2020-12-31 | 2022-06-30 | International Business Machines Corporation | Assembly of a chip to a substrate |
CN115223971A (en) * | 2021-04-21 | 2022-10-21 | 美光科技公司 | Semiconductor interconnect structures with conductive elements, and associated systems and methods |
US20240047446A1 (en) * | 2022-08-08 | 2024-02-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor package and manufacturing method of the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10825799B2 (en) * | 2018-12-19 | 2020-11-03 | Nanya Technology Corporation | Semiconductor structure |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5633535A (en) * | 1995-01-27 | 1997-05-27 | Chao; Clinton C. | Spacing control in electronic device assemblies |
US6461890B1 (en) * | 1996-12-27 | 2002-10-08 | Rohm Co., Ltd. | Structure of semiconductor chip suitable for chip-on-board system and methods of fabricating and mounting the same |
US20050207693A1 (en) * | 2004-03-22 | 2005-09-22 | Kishio Yokouchi | Optical structures and methods for connecting optical circuit board components |
US20060104566A1 (en) * | 2004-11-16 | 2006-05-18 | Bakir Muhannad S | Microfluidic, optical, and electrical input output interconnects, methods of fabrication thereof, and methods of use thereof |
US20060118604A1 (en) * | 2004-12-05 | 2006-06-08 | Buchwalter Stephen L | Solder interconnect structure and method using injection molded solder |
US7092603B2 (en) * | 2004-03-03 | 2006-08-15 | Fujitsu Limited | Optical bridge for chip-to-board interconnection and methods of fabrication |
US20060211171A1 (en) * | 2005-03-18 | 2006-09-21 | Tummala Rao O | Underfill on substrate process and ultra-fine pitch, low standoff chip-to-package interconnections produced thereby |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4878611A (en) * | 1986-05-30 | 1989-11-07 | American Telephone And Telegraph Company, At&T Bell Laboratories | Process for controlling solder joint geometry when surface mounting a leadless integrated circuit package on a substrate |
US7993969B2 (en) * | 2006-08-10 | 2011-08-09 | Infineon Technologies Ag | Method for producing a module with components stacked one above another |
US8872335B2 (en) * | 2007-07-23 | 2014-10-28 | Infineon Technologies Ag | Electronic device and method of manufacturing same |
-
2008
- 2008-02-11 US US12/028,848 patent/US20090200663A1/en not_active Abandoned
-
2012
- 2012-05-04 US US13/463,855 patent/US8426247B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5633535A (en) * | 1995-01-27 | 1997-05-27 | Chao; Clinton C. | Spacing control in electronic device assemblies |
US6461890B1 (en) * | 1996-12-27 | 2002-10-08 | Rohm Co., Ltd. | Structure of semiconductor chip suitable for chip-on-board system and methods of fabricating and mounting the same |
US7092603B2 (en) * | 2004-03-03 | 2006-08-15 | Fujitsu Limited | Optical bridge for chip-to-board interconnection and methods of fabrication |
US20050207693A1 (en) * | 2004-03-22 | 2005-09-22 | Kishio Yokouchi | Optical structures and methods for connecting optical circuit board components |
US20060104566A1 (en) * | 2004-11-16 | 2006-05-18 | Bakir Muhannad S | Microfluidic, optical, and electrical input output interconnects, methods of fabrication thereof, and methods of use thereof |
US20060118604A1 (en) * | 2004-12-05 | 2006-06-08 | Buchwalter Stephen L | Solder interconnect structure and method using injection molded solder |
US20060211171A1 (en) * | 2005-03-18 | 2006-09-21 | Tummala Rao O | Underfill on substrate process and ultra-fine pitch, low standoff chip-to-package interconnections produced thereby |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI464849B (en) * | 2010-07-13 | 2014-12-11 | Taiwan Semiconductor Mfg Co Ltd | Semiconductor structures and method of forming a device |
US8227924B2 (en) | 2010-07-13 | 2012-07-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Substrate stand-offs for semiconductor devices |
US20120199981A1 (en) * | 2011-02-09 | 2012-08-09 | Jeong Se-Young | Semiconductor device and method of fabricating the semiconductor device |
US20120286418A1 (en) * | 2011-05-13 | 2012-11-15 | Stats Chippac, Ltd. | Semiconductor Device and Method of Forming Dummy Pillars Between Semiconductor Die and Substrate for Maintaining Standoff Distance |
US10096540B2 (en) * | 2011-05-13 | 2018-10-09 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming dummy pillars between semiconductor die and substrate for maintaining standoff distance |
US8531040B1 (en) * | 2012-03-14 | 2013-09-10 | Honeywell International Inc. | Controlled area solder bonding for dies |
US20170141073A1 (en) * | 2013-06-26 | 2017-05-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mechanisms for Forming Hybrid Bonding Structures with Elongated Bumps |
US10867957B2 (en) | 2013-06-26 | 2020-12-15 | Taiwan Semiconductor Manufacturing Co., Ltd. | Mechanisms for forming hybrid bonding structures with elongated bumps |
US10163846B2 (en) * | 2013-06-26 | 2018-12-25 | Taiwan Semiconductor Manufacturing Co., Ltd. | Mechanisms for forming hybrid bonding structures with elongated bumps |
US20150084150A1 (en) * | 2013-09-25 | 2015-03-26 | Delphi Technologies, Inc. | Ball grid array packaged camera device soldered to a substrate |
US9231124B2 (en) * | 2013-09-25 | 2016-01-05 | Delphi Technologies, Inc. | Ball grid array packaged camera device soldered to a substrate |
US9929109B2 (en) | 2013-11-14 | 2018-03-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Stacking of multiple dies for forming three dimensional integrated circuit (3DIC) structure |
US20180197826A1 (en) * | 2013-11-14 | 2018-07-12 | Taiwan Semiconductor Manufacturing Co., Ltd. | Three dimensional integrated circuit (3dic) with support structures |
US11424194B2 (en) * | 2013-11-14 | 2022-08-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Three dimensional integrated circuit (3DIC) with support structures |
US9570421B2 (en) * | 2013-11-14 | 2017-02-14 | Taiwan Semiconductor Manufacturing Co., Ltd. | Stacking of multiple dies for forming three dimensional integrated circuit (3DIC) structure |
US20150130072A1 (en) * | 2013-11-14 | 2015-05-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Stacking of multiple dies for forming three dimensional integrated circuit (3dic) structure |
US10510684B2 (en) * | 2013-11-14 | 2019-12-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Three dimensional integrated circuit (3DIC) with support structures |
EP3975272A1 (en) * | 2014-05-29 | 2022-03-30 | Suzhou Lekin Semiconductor Co., Ltd. | Light emitting device package |
CN105304805A (en) * | 2014-05-29 | 2016-02-03 | Lg伊诺特有限公司 | Light emitting device packaging |
EP2950358A3 (en) * | 2014-05-29 | 2016-01-20 | LG Innotek Co., Ltd | Light emitting device package |
US9559278B2 (en) | 2014-05-29 | 2017-01-31 | Lg Innotek Co., Ltd. | Light emitting device package |
KR20160023328A (en) * | 2014-08-22 | 2016-03-03 | 엘지이노텍 주식회사 | Light emitting device package |
KR102209035B1 (en) * | 2014-08-22 | 2021-01-28 | 엘지이노텍 주식회사 | Light emitting device package |
US9865548B2 (en) | 2014-09-17 | 2018-01-09 | Invensas Corporation | Polymer member based interconnect |
US9373585B2 (en) * | 2014-09-17 | 2016-06-21 | Invensas Corporation | Polymer member based interconnect |
US20160172299A1 (en) * | 2014-12-12 | 2016-06-16 | Qualcomm Incorporated | Integrated device package comprising photo sensitive fill between a substrate and a die |
US10037941B2 (en) * | 2014-12-12 | 2018-07-31 | Qualcomm Incorporated | Integrated device package comprising photo sensitive fill between a substrate and a die |
US10410977B2 (en) | 2015-04-14 | 2019-09-10 | Invensas Corporation | High performance compliant substrate |
US9666514B2 (en) | 2015-04-14 | 2017-05-30 | Invensas Corporation | High performance compliant substrate |
US20200006293A1 (en) * | 2018-06-29 | 2020-01-02 | Intel Corporation | Chip scale thin 3d die stacked package |
US11581287B2 (en) * | 2018-06-29 | 2023-02-14 | Intel Corporation | Chip scale thin 3D die stacked package |
US20200273823A1 (en) * | 2019-02-27 | 2020-08-27 | Advanced Semiconductor Engineering, Inc. | Semiconductor device package and method of manufacturing the same |
CN113013105A (en) * | 2019-12-19 | 2021-06-22 | 美光科技公司 | Semiconductor die with capillary flow structure for direct chip mounting |
US11923332B2 (en) | 2019-12-19 | 2024-03-05 | Micron Technology, Inc. | Semiconductor die with capillary flow structures for direct chip attachment |
US20220208719A1 (en) * | 2020-12-31 | 2022-06-30 | International Business Machines Corporation | Assembly of a chip to a substrate |
US11824037B2 (en) * | 2020-12-31 | 2023-11-21 | International Business Machines Corporation | Assembly of a chip to a substrate |
CN115223971A (en) * | 2021-04-21 | 2022-10-21 | 美光科技公司 | Semiconductor interconnect structures with conductive elements, and associated systems and methods |
US20240047446A1 (en) * | 2022-08-08 | 2024-02-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor package and manufacturing method of the same |
Also Published As
Publication number | Publication date |
---|---|
US8426247B2 (en) | 2013-04-23 |
US20120220117A1 (en) | 2012-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8426247B2 (en) | Polymer and solder pillars for connecting chip and carrier | |
US8242010B2 (en) | Electrical interconnect forming method | |
US6963033B2 (en) | Ball grid array attaching means having improved reliability and method of manufacturing same | |
US7745258B2 (en) | Manufacturing method of semiconductor device | |
US20080048316A1 (en) | Packaged microdevices and methods for manufacturing packaged microdevices | |
JP2009110995A (en) | Three-dimensional packaging method and apparatus | |
US20110287583A1 (en) | Convex die attachment method | |
TWI857939B (en) | Mounting structure for semiconductor element, and combination of semiconductor element and substrate | |
US11658099B2 (en) | Flip chip curved sidewall self-alignment features for substrate and method for manufacturing the self-alignment features | |
US8159064B2 (en) | Lead pin for package substrate, and method for manufacturing package substrate with the same | |
JP5906022B2 (en) | Macropin hybrid interconnect array and manufacturing method thereof | |
US9093396B2 (en) | Silicon interposer systems | |
JP4720438B2 (en) | Flip chip connection method | |
Chen et al. | Laser assisted bonding technology enabling fine bump pitch in flip chip package assembly | |
US20100314433A1 (en) | Method for Manufacturing Tight Pitch, Flip Chip Integrated Circuit Packages | |
JP2000357714A (en) | Semiconductor device and manufacture thereof | |
JP5187341B2 (en) | Manufacturing method of semiconductor device | |
US20090065931A1 (en) | Packaged integrated circuit and method of forming thereof | |
TWI588946B (en) | Back-to-back stacked integrated circuit assembly and method of making | |
US6962437B1 (en) | Method and apparatus for thermal profiling of flip-chip packages | |
KR101054491B1 (en) | Solid Phase Bonding Method Using Strip Bump | |
US20090170244A1 (en) | Method for manufacturing a flip chip package | |
JP2005294447A (en) | Flux transfer device and semiconductor manufacturing equipment with bga substrate using it, and flux transfer method and semiconductor manufacturing method with bga substrate using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAUBENSPECK, TIMOTHY HARRISON;GAMBINO, JEFFREY P.;MUZZY, CHRISTOPHER D.;AND OTHERS;REEL/FRAME:020486/0815;SIGNING DATES FROM 20080131 TO 20080207 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |