US20040067301A1 - Medical device with porous surface for controlled drug release and method of making the same - Google Patents
Medical device with porous surface for controlled drug release and method of making the same Download PDFInfo
- Publication number
- US20040067301A1 US20040067301A1 US10/679,057 US67905703A US2004067301A1 US 20040067301 A1 US20040067301 A1 US 20040067301A1 US 67905703 A US67905703 A US 67905703A US 2004067301 A1 US2004067301 A1 US 2004067301A1
- Authority
- US
- United States
- Prior art keywords
- biologically active
- active agent
- suspension
- solution
- voids
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 claims abstract description 60
- 239000013543 active substance Substances 0.000 claims abstract description 46
- 229920000642 polymer Polymers 0.000 claims abstract description 36
- 239000000725 suspension Substances 0.000 claims abstract description 27
- 238000000576 coating method Methods 0.000 claims description 35
- 239000011248 coating agent Substances 0.000 claims description 32
- 239000011236 particulate material Substances 0.000 claims description 23
- 239000002904 solvent Substances 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 11
- 229920001577 copolymer Polymers 0.000 claims description 10
- 229920001296 polysiloxane Polymers 0.000 claims description 10
- 238000011068 loading method Methods 0.000 claims description 8
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 claims description 7
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 6
- 229920000669 heparin Polymers 0.000 claims description 6
- 229960002897 heparin Drugs 0.000 claims description 6
- 238000002513 implantation Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000007769 metal material Substances 0.000 claims description 6
- 229920002635 polyurethane Polymers 0.000 claims description 6
- 239000004814 polyurethane Substances 0.000 claims description 6
- 229920002367 Polyisobutene Polymers 0.000 claims description 5
- 238000003780 insertion Methods 0.000 claims description 3
- 230000037431 insertion Effects 0.000 claims description 3
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 3
- 229920002943 EPDM rubber Polymers 0.000 claims description 2
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- 229920002401 polyacrylamide Polymers 0.000 claims description 2
- 229920001223 polyethylene glycol Polymers 0.000 claims description 2
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 claims description 2
- 229920006124 polyolefin elastomer Polymers 0.000 claims description 2
- 229920001451 polypropylene glycol Polymers 0.000 claims description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 235000000346 sugar Nutrition 0.000 claims description 2
- 150000008163 sugars Chemical class 0.000 claims description 2
- 229920002725 thermoplastic elastomer Polymers 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 4
- 229920001971 elastomer Polymers 0.000 claims 2
- 239000000806 elastomer Substances 0.000 claims 2
- 229940079593 drug Drugs 0.000 abstract description 72
- 239000003814 drug Substances 0.000 abstract description 72
- 239000000463 material Substances 0.000 abstract description 22
- 238000001962 electrophoresis Methods 0.000 abstract description 9
- 239000011148 porous material Substances 0.000 abstract description 7
- -1 e.g. Substances 0.000 description 12
- 238000012384 transportation and delivery Methods 0.000 description 7
- 239000000017 hydrogel Substances 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 230000001954 sterilising effect Effects 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 229960001138 acetylsalicylic acid Drugs 0.000 description 3
- 229940127218 antiplatelet drug Drugs 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229920000858 Cyclodextrin Polymers 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 229920002683 Glycosaminoglycan Polymers 0.000 description 2
- 102000007625 Hirudins Human genes 0.000 description 2
- 108010007267 Hirudins Proteins 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000003146 anticoagulant agent Substances 0.000 description 2
- 229940127090 anticoagulant agent Drugs 0.000 description 2
- 239000002256 antimetabolite Substances 0.000 description 2
- 239000003080 antimitotic agent Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 239000008199 coating composition Substances 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 238000002594 fluoroscopy Methods 0.000 description 2
- 229940006607 hirudin Drugs 0.000 description 2
- WQPDUTSPKFMPDP-OUMQNGNKSA-N hirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 WQPDUTSPKFMPDP-OUMQNGNKSA-N 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000000614 phase inversion technique Methods 0.000 description 2
- 239000000106 platelet aggregation inhibitor Substances 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 239000004633 polyglycolic acid Substances 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- PUDHBTGHUJUUFI-SCTWWAJVSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-n-[(2s,3r)-1-amino-3-hydroxy-1-oxobutan-2-yl]-19-[[(2r)-2-amino-3-naphthalen-2-ylpropanoyl]amino]-16-[(4-hydroxyphenyl)methyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-7-propan-2-yl-1,2-dithia-5,8,11,14,17-p Chemical compound C([C@H]1C(=O)N[C@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](N)CC=1C=C2C=CC=CC2=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(N)=O)=O)C(C)C)C1=CC=C(O)C=C1 PUDHBTGHUJUUFI-SCTWWAJVSA-N 0.000 description 1
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- GNWUOVJNSFPWDD-XMZRARIVSA-M Cefoxitin sodium Chemical compound [Na+].N([C@]1(OC)C(N2C(=C(COC(N)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)CC1=CC=CS1 GNWUOVJNSFPWDD-XMZRARIVSA-M 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920002567 Chondroitin Polymers 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- 229920000045 Dermatan sulfate Polymers 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 229920002971 Heparan sulfate Polymers 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 229940124599 anti-inflammatory drug Drugs 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000001754 anti-pyretic effect Effects 0.000 description 1
- 239000002506 anticoagulant protein Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002221 antipyretic Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 229960002537 betamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-DVTGEIKXSA-N betamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-DVTGEIKXSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229960002682 cefoxitin Drugs 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229920001727 cellulose butyrate Polymers 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- DLGJWSVWTWEWBJ-HGGSSLSASA-N chondroitin Chemical compound CC(O)=N[C@@H]1[C@H](O)O[C@H](CO)[C@H](O)[C@@H]1OC1[C@H](O)[C@H](O)C=C(C(O)=O)O1 DLGJWSVWTWEWBJ-HGGSSLSASA-N 0.000 description 1
- 229940059329 chondroitin sulfate Drugs 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- AVJBPWGFOQAPRH-FWMKGIEWSA-L dermatan sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@H](OS([O-])(=O)=O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](C([O-])=O)O1 AVJBPWGFOQAPRH-FWMKGIEWSA-L 0.000 description 1
- 229940051593 dermatan sulfate Drugs 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- MXCPYJZDGPQDRA-UHFFFAOYSA-N dialuminum;2-acetyloxybenzoic acid;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3].CC(=O)OC1=CC=CC=C1C(O)=O MXCPYJZDGPQDRA-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229920006213 ethylene-alphaolefin copolymer Polymers 0.000 description 1
- 229920005680 ethylene-methyl methacrylate copolymer Polymers 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 210000003709 heart valve Anatomy 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- KXCLCNHUUKTANI-RBIYJLQWSA-N keratan Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@H](COS(O)(=O)=O)O[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@H](O[C@@H](O[C@H]3[C@H]([C@@H](COS(O)(=O)=O)O[C@@H](O)[C@@H]3O)O)[C@H](NC(C)=O)[C@H]2O)COS(O)(=O)=O)O[C@H](COS(O)(=O)=O)[C@@H]1O KXCLCNHUUKTANI-RBIYJLQWSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229960002437 lanreotide Drugs 0.000 description 1
- 108010021336 lanreotide Proteins 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- UWYHMGVUTGAWSP-JKIFEVAISA-N oxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=CC=CC=C1 UWYHMGVUTGAWSP-JKIFEVAISA-N 0.000 description 1
- 229960001019 oxacillin Drugs 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 229920001432 poly(L-lactide) Polymers 0.000 description 1
- 229920002432 poly(vinyl methyl ether) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920006216 polyvinyl aromatic Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920001290 polyvinyl ester Polymers 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 229920006215 polyvinyl ketone Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229920006214 polyvinylidene halide Polymers 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 229940048914 protamine Drugs 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229940080236 sodium cetyl sulfate Drugs 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- GGHPAKFFUZUEKL-UHFFFAOYSA-M sodium;hexadecyl sulfate Chemical compound [Na+].CCCCCCCCCCCCCCCCOS([O-])(=O)=O GGHPAKFFUZUEKL-UHFFFAOYSA-M 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 238000012385 systemic delivery Methods 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- NZHGWWWHIYHZNX-CSKARUKUSA-N tranilast Chemical compound C1=C(OC)C(OC)=CC=C1\C=C\C(=O)NC1=CC=CC=C1C(O)=O NZHGWWWHIYHZNX-CSKARUKUSA-N 0.000 description 1
- 229960005342 tranilast Drugs 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/146—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0067—Means for introducing or releasing pharmaceutical products into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/23—Carbohydrates
- A61L2300/236—Glycosaminoglycans, e.g. heparin, hyaluronic acid, chondroitin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/42—Anti-thrombotic agents, anticoagulants, anti-platelet agents
Definitions
- This invention relates generally to medical devices for delivering a biologically active agent or drug to a desired location within the body of a patient. More particularly, the invention is directed to medical devices having a porous surface comprising a plurality of voids therein.
- the porous surface is capable of being loaded with a drug, e.g., by infusing or placing the drug into the voids, for release into the body, particularly upon expansion of the portion of the medical device with the porous surface.
- the drug is concentrated into the voids by electrophoresis.
- the drug be directly applied to the diseased tissue. Because such localized delivery to the afflicted area usually requires a relatively small amount of drug, side effects of the drug are reduced. Also, since localized delivery requires smaller amounts of drugs, such delivery is desirable for expensive drugs.
- a drug or biologically active agent is biologically derived (e.g., a gene, a protein or a lipid), it usually cannot withstand standard sterilization of the device (e.g., ETO, gamma, or e-beam sterilization, autoclaving).
- standard sterilization of the device e.g., ETO, gamma, or e-beam sterilization, autoclaving.
- ETO ETO, gamma, or e-beam sterilization, autoclaving
- a number of methods for delivering drugs to body lumens or vessels involve the use of catheters having expandable portions, such as a balloon, disposed on the catheter.
- catheters having expandable portions such as a balloon
- expandable portions such as a balloon
- U.S. Pat. No. 5,304,121 to Sahatjian PCT application WO 95/03083 to Sahatjian et al.
- U.S. Pat. No. 5,120,322 to Davis et al. describe medical devices in which the exterior surface of the device is coated with a swellable hydrogel polymer.
- a solution of a drug to be delivered to the afflicted tissue is incorporated into the hydrogel.
- the drug is usually pre-sterilized by such methods as filtration.
- the drug is held within the matrix of the hydrogel.
- the medical device is a balloon catheter
- the drug is delivered by inserting the catheter into the body lumen and expanding the coated balloon against the afflicted tissue of the lumen to force the drug from
- a composition of a drug, a polymeric material and a solvent is applied to at least a surface of the device.
- a method is described in co-pending application Ser. No. 08/633,490, filed Jun. 13, 1996 and published as EP 0 822 788A2 on Feb. 11, 1998.
- U.S. Pat. No. 5,464,650 to Berg et al. describes drug containing coatings for medical devices.
- the medical devices of the invention comprise a portion which has a porous surface.
- the porous surface includes the pores and the material between the pores which make up the porous surface.
- the porous surface is made of a material, such as polymer or a polymer blend, having a plurality of voids therein.
- the void space of the coating is preferably greater than about 60% of the volume of the porous surface.
- the porous surface can be a porous coating covering the surface of the device. The thickness of such a coating can be tailored to meet individual needs for release of at least one biologically active agent.
- the porous surface can be a structural part of the device. For example, a stent graft formed of a porous membrane would have a porous surface. A biologically active agent is loaded into the voids for release when the device is implanted.
- the medical device is a stent endoprosthesis having at least a portion which is covered with a polymeric porous surface such as a polymeric coating or material with a plurality of voids therein.
- a biologically active agent or a drug is placed into the voids for controlled release when the stent is implanted or inserted into a body lumen.
- the medical device is a stent graft comprising at least one portion which is made of porous graft material, which can, but need not be further covered with a porous or “sponge” coating.
- a drug is loaded into the voids to form a drug-coated stent graft.
- the devices of the present invention can be prepared by applying a porous coating composition to a surface of the device, e.g., stent or stent graft.
- the porous coating composition comprises a polymer dissolved in a solvent and an elutable particulate material. After the coating is cured, it is exposed to a solvent, e.g., water, which causes the particulate material to elute from the polymer to form a porous or sponge coating having a plurality of voids therein.
- the porous surface or coating can be loaded with a drug in an electrophoresis method.
- the drug is dissolved or suspended in a solvent to form a drug solution or suspension.
- the device and an electrode are placed into the solution or suspension.
- An electric current source e.g., battery, is connected to the device and the electrode. When the current source is switched on, the drug (which has a positive or negative charge) in the solution or suspension will be loaded into the voids of the device's porous surface.
- the porous surface of the device can already contain materials which do not dissolve in the solution or suspension.
- materials include drugs or radiopaque materials, which permit the device to be visible during implantation under fluoroscopy.
- porous stent graft With certain devices which are formed of porous materials, such as a porous stent graft, such devices can be loaded without first applying a porous coating to the graft. However, a porous coating can be used in conjunction with this type of device. A device with such a porous surface can be directly loaded in an electrophoresis method as described above.
- FIGS. 1 a - 1 b depict a method of preparing a porous coating for a medical device.
- FIG. 2 depicts an electrophoresis method for concentrating a biologically active agent into the porous coating or material.
- Devices which can be used in this invention include self-expanding stents and balloon expandable stents.
- self-expanding stents useful in the present invention are illustrated in U.S. Pat. Nos. 4,655,771 and 4,954,126 issued to Wallsten and U.S. Pat. No. 5,061,275 issued to Wallsten et al.
- Examples of appropriate balloon-expandable stents are shown in U.S. Pat. No. 4,733,665 issued to Palmaz, U.S. Pat. No. 4,800,882 issued to Gianturco and U.S. Pat. No. 4,886,062 issued to Wiktor. It will be appreciated that all references cited herein are incorporated by reference in their entireties, for all purposes.
- the expandable stent may be formed from polymeric, metallic, ceramic materials and/or composite materials. However, it is preferred that the stent contain a metallic material, e.g., stainless steel, nitinol, tantalum. Suitable polymeric materials include without limitation poly-L-lactic acid, polycarbonate and polyethylene terephthalate.
- the stent grafts suitable for the present invention include those appropriate for cardiovascular applications, such as ones described in U.S. Pat. No. 4,657,544 to Pinchuk, or urinary applications, such as U.S. Pat. No. 4,334,327 to Lyman.
- grafts are made of biocompatible polymeric materials, e.g., polyurethane, silicone, polyethylene terephthalate, teflon, or tissue engineered autografts or xenografts.
- the graft include some metallic material to conduct the current and facilitate the concentrating of the drug into the porous surface.
- the stent graft can be formed of a porous material having a porous surface, such as a porous membrane. Examples of such stent grafts and methods for making them are described in U.S. Pat. No. 4,657,544 to Pinchuk and U.S. Pat. No. 5,758,562 to Thompson. When such porous stent grafts are used in the electrophoresis method, they can, but do not have to be coated with a porous coating before the grafts are loaded with biologically active agents.
- implantable medical devices such as blood oxygenator, heart valves and vein valves can be used in the invention.
- any implantable device that contains some metal portion can be used.
- the polymer(s) useful for forming the porous coating should be ones that are biostable, biocompatible, particularly during insertion or implantation of the device into the body and avoids irritation to body tissue.
- examples of such polymers include without limitation polyurethanes, polyisobutylene and its copolymers, silicones, and polyesters.
- polystyrene copolymers include polyolefins, polyisobutylene, ethylene-alphaolefin copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers such as polyvinyl chloride, polyvinyl ethers such as polyvinyl methyl ether, polyvinylidene halides such as polyvinylidene fluoride and polyvinylidene chloride, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics such as polystyrene, polyvinyl esters such as polyvinyl acetate; copolymers of vinyl monomers, copolymers of vinyl monomers and olefins such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, ethylene-vinyl acetate copolymers, polyamides such as Nylon 66 and polycaprolactone, alkyd resins
- the polymers are preferably selected from elastomeric polymers such as silicones (e.g., polysiloxanes and substituted polysiloxanes), polyurethanes, thermoplastic elastomers, polyisobutylene and its copolymers ethylene vinyl acetate copolymers, polyolefin elastomers, and EPDM rubbers.
- elastomeric polymers such as silicones (e.g., polysiloxanes and substituted polysiloxanes), polyurethanes, thermoplastic elastomers, polyisobutylene and its copolymers ethylene vinyl acetate copolymers, polyolefin elastomers, and EPDM rubbers.
- the polymer is selected to allow the coating to better adhere to the surface of the expandable portion of the medical device when it is subjected to forces or stress.
- porous or sponge coating can be formed by using a single type of polymer, various combinations of polymers can be employed.
- the appropriate mixture of polymers can be coordinated with biologically active agents of interest to produce desired effects when coated on a medical device in accordance with the invention.
- the elutable particulate materials which can be incorporated into the polymer include without limitation polyethylene oxide, polyethylene glycol, polyethylene oxide/polypropylene oxide copolymers, polyhydroxyethyl methacrylate, polyvinylpyrrolidone, polyacrylamide and its copolymers, salts, e.g., sodium chloride, sugars, and elutable biologically active agents such as heparin.
- the amount of elutable particulate material that is incorporated into the polymer should range from about 10% to 90% by weight of the porous or sponge coating and preferably, from about 30% to 70%.
- the average particle size of the elutable material can range from 1-100 microns and preferably from about 2 to 15 microns.
- the solvent that is used to form the mixture or slurry of polymer and elutable particulate materials include ones which can dissolve the polymer into solution and do not alter or adversely impact the therapeutic properties of the material employed.
- useful solvents for silicone include tetrahydrofuran (THF), chloroform and dichloromethane.
- the composition of polymer and elutable particulate material can be applied to a portion of the medical device in a variety of ways.
- the composition can be spray-coated onto the device or the device can be dipped into the composition.
- One of skill in the art would be aware of methods for applying the coating to the device.
- the thickness of the porous coating can range from about 10 ⁇ m to 0.5 mm. Preferably, the thickness is about 20 ⁇ m to 100 ⁇ m.
- the composition After the composition is applied to the device, it should be cured to produce a polymer containing the particulate material and to evaporate the solvent.
- Certain polymers such as silicone, can be cured at relatively low temperatures, (e.g., room temperature) in what is known as a room temperature vulcanization (RTV) process. More typically, the curing/evaporation process involves higher temperatures so that the coated device is heated in a oven. Typically, the heating occurs at approximately 90° C. or higher for approximately 1 to 16 hours when silicone is used. For certain coatings the heating may occur at temperatures as high as 150° C. The time and temperature of heating will of course vary with the particular polymer, drugs, and solvents used. One of skill in the art is aware of the necessary adjustments to these parameters.
- a solvent is used to elute the particulate material from the polymer.
- the device can be soaked in the solvent to elute the particulate materials.
- Other methods of eluting the particulate is apparent to those skilled in the art.
- the choice of the solvent depends upon the solubility of the elutable particulate material in that solvent.
- water can be used for water-soluble particulate materials such as heparin.
- organic solvents can be used for elutable particulate materials which can be dissolved in organic solvents.
- suitable solvents include ethanol, dimethyl sulfoxide, etc.
- a mixture or slurry comprising a polymer 101 , an elutable particulate material 102 and a solvent is applied to a portion of the medical device.
- the device is then exposed to an aqueous or organic solvent to elute the particulate material 102 from the polymer 101 to form a plurality of voids 103 in the polymer 101 (FIG. 1 b ).
- phase inversion methods Other methods of making a porous coating/membrane are known in the art, such as several phase inversion methods. Examples of these phase inversion methods are: 1) solvent freeze drying; 2) polymer, solvent and non-solvent pore former systems; and 3) thermal processes using a latent solvent. A more detailed description of these methods can be found in R.E. Kesting “Synthetic Polymeric Membranes—A Structural Perspective”, JOHN WILEY & SONS, 2D EDITION, which is incorporated herein by reference.
- the medical device can be optionally sterilized. Depending upon the nature of the drug used, sterilization of the device can occur before or after the drug is loaded into the sponge coating. Methods of sterilization are known in the art. For example, the devices can be sterilized by exposure to gamma radiation at 2.5-3.5 Mrad or by exposure to ethylene oxide.
- porous materials or membranes which can be used to form porous stent graft can be made of a polymer.
- Suitable polymers include polyurethane, silicone, polytetra fluorethylene, polyethylene terephthalate, polyisobutylene and its copolymers, polylactic acid, polyglycolic acid and its copolymers, cellulose and its derivatives.
- Graft materials can also be biologically derived. For example, collagen, elastin, tissue engineered autografts or xenografts are suitable.
- the stent graft contain some metallic material to facilitate loading of the coating with a drug by electrophoresis.
- metallic material can be incorporated by laminating or cladding a metal or an metallic alloy onto the porous graft material.
- an electrophoresis method can be used to load the biologically active agent in the porous surface. Specifically, as described in FIG. 2, a graft or other medical device 10 having a porous surface 11 containing voids 12 is placed into a container 15 which holds a solution or a suspension 13 of a drug 14 .
- the drug 14 does not have to be dissolved in a solvent. It can remain as a suspension such as a slurry.
- an electrode 16 Also placed in the container 15 is an electrode 16 , typically made of metal.
- the electrode 16 and the device 10 with the porous surface 11 are connected, typically by wires 17 to a current source 18 , such as a battery.
- a current source 18 such as a battery.
- the current source 18 is switched on, at least some of the drug 14 , which contains either a positive or negative charge, is loaded into the voids 12 , thereby increasing the amount of the drug at the porous surface.
- the drug 14 when an electric field is applied to the solution containing the drug, the charged drug molecules are forced to move toward the electrode with the opposite charge.
- the device 10 functions as either an anode or cathode. If the drug 14 is negatively charged, e.g., a protein or heparin, the device 10 will function as an anode. If the drug 14 is positively charged, the device 10 will function as a cathode.
- the type of electrode 16 i.e., its material, used will depend upon whether the device 10 functions as an anode or cathode. For example, if the device 10 is an anode, an electrode 16 which can function as a cathode is used. Persons skilled in the art are aware of how to select suitable electrodes 16 .
- the mobility of the drug 14 under the electric current can be varied. Specifically, at different pH levels, the predominant ionic form of the drug 14 will be different.
- the pH of the solution or suspension 13 is low, e.g., acidic, the carboxyl group is un-ionized and the amino group is ionized.
- amino acids are placed into a solution or suspension 13 with a high pH level, the carboxyl group is ionized and the amino group is un-ionized.
- Such changes in the ionic form or charge form of the drug 14 affects its mobility under the electric current.
- the porous surface of the device can contain some biologically active agent even before the surface is loaded with the drug 14 according to this method. More specifically, prior to placing the devices into the drug solution or suspension 13 the porous surface may already contain materials, such as particulate materials, that provide desirable properties to the device. These materials should not be soluble or elutable in the solvent forming the drug solution or suspension 13 . They can include another biologically active agent or radiopaque materials to allow the device to be visible during implantation under fluoroscopy.
- biologically active agent or “drug” refers not only to the molecular or charged form of the biologically active agent or drug but also to formulations containing the same, such as, without limitation, liposomes, emulsions with surfactant and cyclodextrin encapsulations.
- biologically active agents having an electric charge are used in this invention.
- a neutral or a weakly charged biologically active agent can also be used if it can be converted to a charged moiety.
- a neutral or a weakly charged biologically active agent can also be used if it can be converted to a charged moiety.
- a neutral or a weakly charged biologically active agent can also be used if it can be converted to a charged moiety.
- a neutral or a weakly charged biologically active agent can also be used if it can be converted to a charged moiety.
- surfactants which can be used are, without limitation, fatty acids, phospholipids and sodium cetyl sulfate.
- the biologically active agent can be converted to a charged moiety by cyclodextrin encapsulation.
- Suitable biologically active agents include without limitation glucocorticoids (e.g., dexamethasone, betamethasone), heparin, hirudin, angiopeptin, aspirin, growth factors, oligonucleotides, and, more generally, antiplatelet agents, anti-coagulant agents, antimitotic agents, antioxidants, antimetabolite agents, anti-cancer agents and anti-inflammatory agents could be used.
- Antiplatelet agents can include drugs such as aspirin. Aspirin is classified as an analgesic, antipyretic, anti-inflammatory and antiplatelet drug.
- Anticoagulant agents can include drugs such as glycosaminoglycan, protamine, hirudin and tick anticoagulant protein.
- Glycosaminoglycans include heparin, heparin sulfate, hyaluronic acid, chondroitin, chondroitin sulfate, dermatan sulfate and keratosulfate and their respective derivatives.
- Antimitotic agents and antimetabolite agents can include drugs such as methotrexate.
- Antibiotic agents can include penicillin, cefoxitin, and oxacillin.
- genes or nucleic acids, or portions thereof can be used. Such genes or nucleic acids can first be packaged in liposomes or nanoparticles.
- collagen synthesis inhibitors such as tranilast, can be used.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Cardiology (AREA)
- Dispersion Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Prostheses (AREA)
Abstract
Description
- This invention relates generally to medical devices for delivering a biologically active agent or drug to a desired location within the body of a patient. More particularly, the invention is directed to medical devices having a porous surface comprising a plurality of voids therein. The porous surface is capable of being loaded with a drug, e.g., by infusing or placing the drug into the voids, for release into the body, particularly upon expansion of the portion of the medical device with the porous surface. In one method of loading the porous surface, the drug is concentrated into the voids by electrophoresis.
- For certain diseases which are localized to a particular part of the body, the systemic administration of drugs for the treatment of these diseases is not preferred because of the inefficiencies associated with the indirect delivery of the drugs to the afflicted area. Also, if a drug causes significant side effects, it is generally inappropriate for systemic delivery.
- Instead, it is preferred that the drug be directly applied to the diseased tissue. Because such localized delivery to the afflicted area usually requires a relatively small amount of drug, side effects of the drug are reduced. Also, since localized delivery requires smaller amounts of drugs, such delivery is desirable for expensive drugs.
- However, such localized delivery of drugs to the walls of lumens, such as blood vessels and ducts, can be problematic since body lumens are generally involved in the transport of body fluids, which tend to carry the drug away from the afflicted area. Thus, there is a need for devices and methods for the localized delivery of drugs to afflicted tissue, especially body lumens.
- Also, if a drug or biologically active agent is biologically derived (e.g., a gene, a protein or a lipid), it usually cannot withstand standard sterilization of the device (e.g., ETO, gamma, or e-beam sterilization, autoclaving). Thus, the number of drugs that can be incorporated into the implantable device is limited. Hence, there is a need for a method for including such drugs into a drug-releasing device.
- A number of methods for delivering drugs to body lumens or vessels involve the use of catheters having expandable portions, such as a balloon, disposed on the catheter. For instance, U.S. Pat. No. 5,304,121 to Sahatjian, PCT application WO 95/03083 to Sahatjian et al. and U.S. Pat. No. 5,120,322 to Davis et al. describe medical devices in which the exterior surface of the device is coated with a swellable hydrogel polymer. A solution of a drug to be delivered to the afflicted tissue is incorporated into the hydrogel. The drug is usually pre-sterilized by such methods as filtration. The drug is held within the matrix of the hydrogel. In the case where the medical device is a balloon catheter, the drug is delivered by inserting the catheter into the body lumen and expanding the coated balloon against the afflicted tissue of the lumen to force the drug from the hydrogel into the tissue.
- However, these hydrogel coated devices have certain disadvantages. In particular, because the loading of the drug into the hydrogel is based on diffusion, the amount of drug that can be loaded onto the devices is limited. Thus, there remains a need for a way to load more drug onto implantable devices.
- Other methods for making a drug coated implantable device include ones in which a composition of a drug, a polymeric material and a solvent is applied to at least a surface of the device. Such a method is described in co-pending application Ser. No. 08/633,490, filed Jun. 13, 1996 and published as EP 0 822 788A2 on Feb. 11, 1998. Also, U.S. Pat. No. 5,464,650 to Berg et al. describes drug containing coatings for medical devices.
- These and other objectives are accomplished by the present invention. To achieve the aforementioned objectives, a medical device and a method for making such device for the localized delivery of biologically active agents to a patient has been invented.
- The medical devices of the invention comprise a portion which has a porous surface. The porous surface includes the pores and the material between the pores which make up the porous surface. The porous surface is made of a material, such as polymer or a polymer blend, having a plurality of voids therein. The void space of the coating is preferably greater than about 60% of the volume of the porous surface. The porous surface can be a porous coating covering the surface of the device. The thickness of such a coating can be tailored to meet individual needs for release of at least one biologically active agent. Alternatively, the porous surface can be a structural part of the device. For example, a stent graft formed of a porous membrane would have a porous surface. A biologically active agent is loaded into the voids for release when the device is implanted.
- In another embodiment of the invention, the medical device is a stent endoprosthesis having at least a portion which is covered with a polymeric porous surface such as a polymeric coating or material with a plurality of voids therein. A biologically active agent or a drug is placed into the voids for controlled release when the stent is implanted or inserted into a body lumen.
- In yet another embodiment, the medical device is a stent graft comprising at least one portion which is made of porous graft material, which can, but need not be further covered with a porous or “sponge” coating. A drug is loaded into the voids to form a drug-coated stent graft.
- The devices of the present invention can be prepared by applying a porous coating composition to a surface of the device, e.g., stent or stent graft. The porous coating composition comprises a polymer dissolved in a solvent and an elutable particulate material. After the coating is cured, it is exposed to a solvent, e.g., water, which causes the particulate material to elute from the polymer to form a porous or sponge coating having a plurality of voids therein.
- The porous surface or coating can be loaded with a drug in an electrophoresis method. In such a method, the drug is dissolved or suspended in a solvent to form a drug solution or suspension. The device and an electrode are placed into the solution or suspension. An electric current source, e.g., battery, is connected to the device and the electrode. When the current source is switched on, the drug (which has a positive or negative charge) in the solution or suspension will be loaded into the voids of the device's porous surface.
- Furthermore, prior to placing the device into the drug solution or suspension, the porous surface of the device can already contain materials which do not dissolve in the solution or suspension. Such materials include drugs or radiopaque materials, which permit the device to be visible during implantation under fluoroscopy.
- With certain devices which are formed of porous materials, such as a porous stent graft, such devices can be loaded without first applying a porous coating to the graft. However, a porous coating can be used in conjunction with this type of device. A device with such a porous surface can be directly loaded in an electrophoresis method as described above.
- FIGS. 1a-1 b depict a method of preparing a porous coating for a medical device.
- FIG. 2 depicts an electrophoresis method for concentrating a biologically active agent into the porous coating or material.
- Devices which can be used in this invention include self-expanding stents and balloon expandable stents. Examples of self-expanding stents useful in the present invention are illustrated in U.S. Pat. Nos. 4,655,771 and 4,954,126 issued to Wallsten and U.S. Pat. No. 5,061,275 issued to Wallsten et al. Examples of appropriate balloon-expandable stents are shown in U.S. Pat. No. 4,733,665 issued to Palmaz, U.S. Pat. No. 4,800,882 issued to Gianturco and U.S. Pat. No. 4,886,062 issued to Wiktor. It will be appreciated that all references cited herein are incorporated by reference in their entireties, for all purposes.
- The expandable stent may be formed from polymeric, metallic, ceramic materials and/or composite materials. However, it is preferred that the stent contain a metallic material, e.g., stainless steel, nitinol, tantalum. Suitable polymeric materials include without limitation poly-L-lactic acid, polycarbonate and polyethylene terephthalate.
- The stent grafts suitable for the present invention include those appropriate for cardiovascular applications, such as ones described in U.S. Pat. No. 4,657,544 to Pinchuk, or urinary applications, such as U.S. Pat. No. 4,334,327 to Lyman. Generally, such grafts are made of biocompatible polymeric materials, e.g., polyurethane, silicone, polyethylene terephthalate, teflon, or tissue engineered autografts or xenografts. As a result, when these polymeric grafts are used in the claimed electrophoresis method of the invention, it is preferable that the graft include some metallic material to conduct the current and facilitate the concentrating of the drug into the porous surface.
- Furthermore, the stent graft can be formed of a porous material having a porous surface, such as a porous membrane. Examples of such stent grafts and methods for making them are described in U.S. Pat. No. 4,657,544 to Pinchuk and U.S. Pat. No. 5,758,562 to Thompson. When such porous stent grafts are used in the electrophoresis method, they can, but do not have to be coated with a porous coating before the grafts are loaded with biologically active agents.
- Moreover, other implantable medical devices such as blood oxygenator, heart valves and vein valves can be used in the invention. In general, any implantable device that contains some metal portion can be used.
- The following is a more detailed description of suitable materials and methods useful in producing the drug loaded coatings or materials of the invention.
- The polymer(s) useful for forming the porous coating should be ones that are biostable, biocompatible, particularly during insertion or implantation of the device into the body and avoids irritation to body tissue. Examples of such polymers include without limitation polyurethanes, polyisobutylene and its copolymers, silicones, and polyesters. Other suitable polymers include polyolefins, polyisobutylene, ethylene-alphaolefin copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers such as polyvinyl chloride, polyvinyl ethers such as polyvinyl methyl ether, polyvinylidene halides such as polyvinylidene fluoride and polyvinylidene chloride, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics such as polystyrene, polyvinyl esters such as polyvinyl acetate; copolymers of vinyl monomers, copolymers of vinyl monomers and olefins such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, ethylene-vinyl acetate copolymers, polyamides such as Nylon 66 and polycaprolactone, alkyd resins, polycarbonates, polyoxyethylenes, polyimides, polyethers, epoxy resins, polyurethanes, rayon-triacetate, cellulose, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, carboxymethyl cellulose, collagens, chitins, polylactic acid, polyglycolic acid, and polylactic acid-polyethylene oxide copolymers.
- If the polymer is being applied to a part of the medical device which undergoes mechanical challenges, e.g., expansion and contraction, the polymers are preferably selected from elastomeric polymers such as silicones (e.g., polysiloxanes and substituted polysiloxanes), polyurethanes, thermoplastic elastomers, polyisobutylene and its copolymers ethylene vinyl acetate copolymers, polyolefin elastomers, and EPDM rubbers. The polymer is selected to allow the coating to better adhere to the surface of the expandable portion of the medical device when it is subjected to forces or stress.
- Furthermore, although the porous or sponge coating can be formed by using a single type of polymer, various combinations of polymers can be employed. The appropriate mixture of polymers can be coordinated with biologically active agents of interest to produce desired effects when coated on a medical device in accordance with the invention.
- The elutable particulate materials which can be incorporated into the polymer include without limitation polyethylene oxide, polyethylene glycol, polyethylene oxide/polypropylene oxide copolymers, polyhydroxyethyl methacrylate, polyvinylpyrrolidone, polyacrylamide and its copolymers, salts, e.g., sodium chloride, sugars, and elutable biologically active agents such as heparin.
- The amount of elutable particulate material that is incorporated into the polymer should range from about 10% to 90% by weight of the porous or sponge coating and preferably, from about 30% to 70%. The average particle size of the elutable material can range from 1-100 microns and preferably from about 2 to 15 microns.
- The solvent that is used to form the mixture or slurry of polymer and elutable particulate materials include ones which can dissolve the polymer into solution and do not alter or adversely impact the therapeutic properties of the material employed. Examples of useful solvents for silicone include tetrahydrofuran (THF), chloroform and dichloromethane.
- The composition of polymer and elutable particulate material can be applied to a portion of the medical device in a variety of ways. For example, the composition can be spray-coated onto the device or the device can be dipped into the composition. One of skill in the art would be aware of methods for applying the coating to the device. The thickness of the porous coating can range from about 10 μm to 0.5 mm. Preferably, the thickness is about 20 μm to 100 μm.
- After the composition is applied to the device, it should be cured to produce a polymer containing the particulate material and to evaporate the solvent. Certain polymers, such as silicone, can be cured at relatively low temperatures, (e.g., room temperature) in what is known as a room temperature vulcanization (RTV) process. More typically, the curing/evaporation process involves higher temperatures so that the coated device is heated in a oven. Typically, the heating occurs at approximately 90° C. or higher for approximately 1 to 16 hours when silicone is used. For certain coatings the heating may occur at temperatures as high as 150° C. The time and temperature of heating will of course vary with the particular polymer, drugs, and solvents used. One of skill in the art is aware of the necessary adjustments to these parameters.
- To elute the particulate material from the polymer, a solvent is used. The device can be soaked in the solvent to elute the particulate materials. Other methods of eluting the particulate is apparent to those skilled in the art.
- The choice of the solvent depends upon the solubility of the elutable particulate material in that solvent. For instance, for water-soluble particulate materials such as heparin, water can be used. For elutable particulate materials which can be dissolved in organic solvents, such organic solvents can be used. Examples of suitable solvents, without limitation, include ethanol, dimethyl sulfoxide, etc.
- As shown in FIGS. 1a-1 b, in one method for forming the
porous coating 100, a mixture or slurry comprising apolymer 101, an elutableparticulate material 102 and a solvent is applied to a portion of the medical device. The device is then exposed to an aqueous or organic solvent to elute theparticulate material 102 from thepolymer 101 to form a plurality ofvoids 103 in the polymer 101 (FIG. 1b). - Other methods of making a porous coating/membrane are known in the art, such as several phase inversion methods. Examples of these phase inversion methods are: 1) solvent freeze drying; 2) polymer, solvent and non-solvent pore former systems; and 3) thermal processes using a latent solvent. A more detailed description of these methods can be found in R.E. Kesting “Synthetic Polymeric Membranes—A Structural Perspective”, JOHN WILEY & SONS, 2D EDITION, which is incorporated herein by reference.
- After the porous coating is formed on the device, the medical device can be optionally sterilized. Depending upon the nature of the drug used, sterilization of the device can occur before or after the drug is loaded into the sponge coating. Methods of sterilization are known in the art. For example, the devices can be sterilized by exposure to gamma radiation at 2.5-3.5 Mrad or by exposure to ethylene oxide.
- The porous materials or membranes which can be used to form porous stent graft can be made of a polymer. Suitable polymers include polyurethane, silicone, polytetra fluorethylene, polyethylene terephthalate, polyisobutylene and its copolymers, polylactic acid, polyglycolic acid and its copolymers, cellulose and its derivatives. Graft materials can also be biologically derived. For example, collagen, elastin, tissue engineered autografts or xenografts are suitable.
- As noted early, it is desirable that the stent graft contain some metallic material to facilitate loading of the coating with a drug by electrophoresis. Such metallic material can be incorporated by laminating or cladding a metal or an metallic alloy onto the porous graft material.
- To load the biologically active agent in the porous surface, an electrophoresis method can be used. Specifically, as described in FIG. 2, a graft or other
medical device 10 having aporous surface 11 containingvoids 12 is placed into acontainer 15 which holds a solution or asuspension 13 of adrug 14. Thedrug 14 does not have to be dissolved in a solvent. It can remain as a suspension such as a slurry. - Also placed in the
container 15 is anelectrode 16, typically made of metal. Theelectrode 16 and thedevice 10 with theporous surface 11 are connected, typically bywires 17 to acurrent source 18, such as a battery. When thecurrent source 18 is switched on, at least some of thedrug 14, which contains either a positive or negative charge, is loaded into thevoids 12, thereby increasing the amount of the drug at the porous surface. In other words, when an electric field is applied to the solution containing the drug, the charged drug molecules are forced to move toward the electrode with the opposite charge. Depending upon the charge on thedrug 14, thedevice 10 functions as either an anode or cathode. If thedrug 14 is negatively charged, e.g., a protein or heparin, thedevice 10 will function as an anode. If thedrug 14 is positively charged, thedevice 10 will function as a cathode. - Also, the type of
electrode 16, i.e., its material, used will depend upon whether thedevice 10 functions as an anode or cathode. For example, if thedevice 10 is an anode, anelectrode 16 which can function as a cathode is used. Persons skilled in the art are aware of how to selectsuitable electrodes 16. - Furthermore, by adjusting the pH of the drug solution or
suspension 13, the mobility of thedrug 14 under the electric current can be varied. Specifically, at different pH levels, the predominant ionic form of thedrug 14 will be different. For example, with respect to amino acids, if the pH of the solution orsuspension 13 is low, e.g., acidic, the carboxyl group is un-ionized and the amino group is ionized. When amino acids are placed into a solution orsuspension 13 with a high pH level, the carboxyl group is ionized and the amino group is un-ionized. Such changes in the ionic form or charge form of thedrug 14 affects its mobility under the electric current. - It should be noted that the porous surface of the device can contain some biologically active agent even before the surface is loaded with the
drug 14 according to this method. More specifically, prior to placing the devices into the drug solution orsuspension 13 the porous surface may already contain materials, such as particulate materials, that provide desirable properties to the device. These materials should not be soluble or elutable in the solvent forming the drug solution orsuspension 13. They can include another biologically active agent or radiopaque materials to allow the device to be visible during implantation under fluoroscopy. - As used herein, “biologically active agent” or “drug” refers not only to the molecular or charged form of the biologically active agent or drug but also to formulations containing the same, such as, without limitation, liposomes, emulsions with surfactant and cyclodextrin encapsulations.
- Preferably, biologically active agents having an electric charge are used in this invention. However, a neutral or a weakly charged biologically active agent can also be used if it can be converted to a charged moiety. There are a variety of ways for carrying out such a conversion. For instance, one typical method includes forming an emulsion of the drug or drug particle with a surfactant. Examples of surfactants which can be used are, without limitation, fatty acids, phospholipids and sodium cetyl sulfate. In another method, the biologically active agent can be converted to a charged moiety by cyclodextrin encapsulation.
- Suitable biologically active agents that can be used in this invention include without limitation glucocorticoids (e.g., dexamethasone, betamethasone), heparin, hirudin, angiopeptin, aspirin, growth factors, oligonucleotides, and, more generally, antiplatelet agents, anti-coagulant agents, antimitotic agents, antioxidants, antimetabolite agents, anti-cancer agents and anti-inflammatory agents could be used. Antiplatelet agents can include drugs such as aspirin. Aspirin is classified as an analgesic, antipyretic, anti-inflammatory and antiplatelet drug. Anticoagulant agents can include drugs such as glycosaminoglycan, protamine, hirudin and tick anticoagulant protein. Glycosaminoglycans include heparin, heparin sulfate, hyaluronic acid, chondroitin, chondroitin sulfate, dermatan sulfate and keratosulfate and their respective derivatives. Antimitotic agents and antimetabolite agents can include drugs such as methotrexate. Antibiotic agents can include penicillin, cefoxitin, and oxacillin. Also, genes or nucleic acids, or portions thereof can be used. Such genes or nucleic acids can first be packaged in liposomes or nanoparticles. Furthermore, collagen synthesis inhibitors, such as tranilast, can be used.
- The description contained herein is for purposes of illustration and not for purposes of limitation. Changes and modifications may be made to the embodiments of the description and still be within the scope of the invention. Furthermore, obvious changes, modifications or variations will occur to those skilled in the art. Also, all references cited above are incorporated herein, in their entirety, for all purposes related to this disclosure.
Claims (28)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/679,057 US20040067301A1 (en) | 1998-07-07 | 2003-10-03 | Medical device with porous surface for controlled drug release and method of making the same |
US11/851,675 US7758909B2 (en) | 1998-07-07 | 2007-09-07 | Medical device with porous surface for controlled drug release and method of making the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/110,697 US6652581B1 (en) | 1998-07-07 | 1998-07-07 | Medical device with porous surface for controlled drug release and method of making the same |
US10/679,057 US20040067301A1 (en) | 1998-07-07 | 2003-10-03 | Medical device with porous surface for controlled drug release and method of making the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/110,697 Continuation US6652581B1 (en) | 1998-07-07 | 1998-07-07 | Medical device with porous surface for controlled drug release and method of making the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/851,675 Continuation US7758909B2 (en) | 1998-07-07 | 2007-09-07 | Medical device with porous surface for controlled drug release and method of making the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040067301A1 true US20040067301A1 (en) | 2004-04-08 |
Family
ID=22334400
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/110,697 Expired - Lifetime US6652581B1 (en) | 1998-07-07 | 1998-07-07 | Medical device with porous surface for controlled drug release and method of making the same |
US10/679,057 Abandoned US20040067301A1 (en) | 1998-07-07 | 2003-10-03 | Medical device with porous surface for controlled drug release and method of making the same |
US11/851,675 Expired - Fee Related US7758909B2 (en) | 1998-07-07 | 2007-09-07 | Medical device with porous surface for controlled drug release and method of making the same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/110,697 Expired - Lifetime US6652581B1 (en) | 1998-07-07 | 1998-07-07 | Medical device with porous surface for controlled drug release and method of making the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/851,675 Expired - Fee Related US7758909B2 (en) | 1998-07-07 | 2007-09-07 | Medical device with porous surface for controlled drug release and method of making the same |
Country Status (8)
Country | Link |
---|---|
US (3) | US6652581B1 (en) |
EP (1) | EP1096902B1 (en) |
JP (1) | JP2002519139A (en) |
AT (1) | ATE384502T1 (en) |
CA (1) | CA2336650C (en) |
DE (2) | DE1096902T1 (en) |
ES (1) | ES2169012T1 (en) |
WO (1) | WO2000001322A1 (en) |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1475110A1 (en) * | 2003-05-09 | 2004-11-10 | B. Braun Melsungen Ag | Stent for controlled drug release |
US20050079199A1 (en) * | 2003-02-18 | 2005-04-14 | Medtronic, Inc. | Porous coatings for drug release from medical devices |
US20060039947A1 (en) * | 1998-09-11 | 2006-02-23 | Gerhard Schmidmaier | Biologically active implants |
US20060051393A1 (en) * | 2004-09-08 | 2006-03-09 | Medtronic, Inc. | Method of manufacturing drug-eluting medical device |
US20060051392A1 (en) * | 2004-09-03 | 2006-03-09 | Medtronic, Inc. | Porous coatings for drug release from medical devices |
US20060088567A1 (en) * | 2004-10-27 | 2006-04-27 | Scimed Life Systems | Method of manufacturing a medical device having a porous coating thereon |
WO2006062975A3 (en) * | 2004-12-07 | 2007-01-11 | Boston Scient Scimed Inc | Orienting polymer domains for controlled drug delivery |
US20070154522A1 (en) * | 2004-08-03 | 2007-07-05 | Chow Edwin P Y | Polymer having interconnected pores for drug delivery and method |
US20080251391A1 (en) * | 2007-04-12 | 2008-10-16 | Boston Scientific Scimed, Inc. | Methods and systems for applying therapeutic agent to a medical device |
US7582068B2 (en) | 2003-02-18 | 2009-09-01 | Medtronic, Inc. | Occlusion resistant hydrocephalic shunt |
US20100048755A1 (en) * | 2006-11-17 | 2010-02-25 | Edwin Pei Yong Chow | Porous polymeric material with cross-linkable wetting agent |
US7931683B2 (en) | 2007-07-27 | 2011-04-26 | Boston Scientific Scimed, Inc. | Articles having ceramic coated surfaces |
US7938855B2 (en) | 2007-11-02 | 2011-05-10 | Boston Scientific Scimed, Inc. | Deformable underlayer for stent |
US7942926B2 (en) | 2007-07-11 | 2011-05-17 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US7976915B2 (en) | 2007-05-23 | 2011-07-12 | Boston Scientific Scimed, Inc. | Endoprosthesis with select ceramic morphology |
US7981150B2 (en) | 2006-11-09 | 2011-07-19 | Boston Scientific Scimed, Inc. | Endoprosthesis with coatings |
US7985252B2 (en) | 2008-07-30 | 2011-07-26 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis |
US7998192B2 (en) | 2008-05-09 | 2011-08-16 | Boston Scientific Scimed, Inc. | Endoprostheses |
US8002823B2 (en) | 2007-07-11 | 2011-08-23 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US8002821B2 (en) | 2006-09-18 | 2011-08-23 | Boston Scientific Scimed, Inc. | Bioerodible metallic ENDOPROSTHESES |
US8029554B2 (en) | 2007-11-02 | 2011-10-04 | Boston Scientific Scimed, Inc. | Stent with embedded material |
US8048150B2 (en) | 2006-04-12 | 2011-11-01 | Boston Scientific Scimed, Inc. | Endoprosthesis having a fiber meshwork disposed thereon |
US8052743B2 (en) | 2006-08-02 | 2011-11-08 | Boston Scientific Scimed, Inc. | Endoprosthesis with three-dimensional disintegration control |
US8052744B2 (en) | 2006-09-15 | 2011-11-08 | Boston Scientific Scimed, Inc. | Medical devices and methods of making the same |
US8052745B2 (en) | 2007-09-13 | 2011-11-08 | Boston Scientific Scimed, Inc. | Endoprosthesis |
US8057534B2 (en) | 2006-09-15 | 2011-11-15 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8066763B2 (en) | 1998-04-11 | 2011-11-29 | Boston Scientific Scimed, Inc. | Drug-releasing stent with ceramic-containing layer |
US8067054B2 (en) | 2007-04-05 | 2011-11-29 | Boston Scientific Scimed, Inc. | Stents with ceramic drug reservoir layer and methods of making and using the same |
US8071156B2 (en) | 2009-03-04 | 2011-12-06 | Boston Scientific Scimed, Inc. | Endoprostheses |
US8070797B2 (en) | 2007-03-01 | 2011-12-06 | Boston Scientific Scimed, Inc. | Medical device with a porous surface for delivery of a therapeutic agent |
US8080055B2 (en) | 2006-12-28 | 2011-12-20 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8089029B2 (en) | 2006-02-01 | 2012-01-03 | Boston Scientific Scimed, Inc. | Bioabsorbable metal medical device and method of manufacture |
US8128689B2 (en) | 2006-09-15 | 2012-03-06 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis with biostable inorganic layers |
US8187620B2 (en) | 2006-03-27 | 2012-05-29 | Boston Scientific Scimed, Inc. | Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents |
US8216632B2 (en) | 2007-11-02 | 2012-07-10 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US8221822B2 (en) | 2007-07-31 | 2012-07-17 | Boston Scientific Scimed, Inc. | Medical device coating by laser cladding |
US8231980B2 (en) | 2008-12-03 | 2012-07-31 | Boston Scientific Scimed, Inc. | Medical implants including iridium oxide |
US8236046B2 (en) | 2008-06-10 | 2012-08-07 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis |
US8267992B2 (en) | 2009-03-02 | 2012-09-18 | Boston Scientific Scimed, Inc. | Self-buffering medical implants |
US8287937B2 (en) | 2009-04-24 | 2012-10-16 | Boston Scientific Scimed, Inc. | Endoprosthese |
US8303643B2 (en) | 2001-06-27 | 2012-11-06 | Remon Medical Technologies Ltd. | Method and device for electrochemical formation of therapeutic species in vivo |
US8353949B2 (en) | 2006-09-14 | 2013-01-15 | Boston Scientific Scimed, Inc. | Medical devices with drug-eluting coating |
US8382824B2 (en) | 2008-10-03 | 2013-02-26 | Boston Scientific Scimed, Inc. | Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides |
US8431149B2 (en) | 2007-03-01 | 2013-04-30 | Boston Scientific Scimed, Inc. | Coated medical devices for abluminal drug delivery |
US8449603B2 (en) | 2008-06-18 | 2013-05-28 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US8513353B2 (en) | 2009-03-19 | 2013-08-20 | Agency For Science, Technology And Research | Forming copolymer from bicontinuous microemulsion comprising monomers of different hydrophilicity |
US8574615B2 (en) | 2006-03-24 | 2013-11-05 | Boston Scientific Scimed, Inc. | Medical devices having nanoporous coatings for controlled therapeutic agent delivery |
US8668732B2 (en) | 2010-03-23 | 2014-03-11 | Boston Scientific Scimed, Inc. | Surface treated bioerodible metal endoprostheses |
CN103757683A (en) * | 2014-01-07 | 2014-04-30 | 江南大学 | Electrodeposition preparation method of light-crosslinking bio-based coating |
US8771343B2 (en) | 2006-06-29 | 2014-07-08 | Boston Scientific Scimed, Inc. | Medical devices with selective titanium oxide coatings |
US8808726B2 (en) | 2006-09-15 | 2014-08-19 | Boston Scientific Scimed. Inc. | Bioerodible endoprostheses and methods of making the same |
US8815275B2 (en) | 2006-06-28 | 2014-08-26 | Boston Scientific Scimed, Inc. | Coatings for medical devices comprising a therapeutic agent and a metallic material |
US8815273B2 (en) | 2007-07-27 | 2014-08-26 | Boston Scientific Scimed, Inc. | Drug eluting medical devices having porous layers |
US8840660B2 (en) | 2006-01-05 | 2014-09-23 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8900292B2 (en) | 2007-08-03 | 2014-12-02 | Boston Scientific Scimed, Inc. | Coating for medical device having increased surface area |
US8920491B2 (en) | 2008-04-22 | 2014-12-30 | Boston Scientific Scimed, Inc. | Medical devices having a coating of inorganic material |
US8932346B2 (en) | 2008-04-24 | 2015-01-13 | Boston Scientific Scimed, Inc. | Medical devices having inorganic particle layers |
US9284409B2 (en) | 2007-07-19 | 2016-03-15 | Boston Scientific Scimed, Inc. | Endoprosthesis having a non-fouling surface |
Families Citing this family (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2178541C (en) | 1995-06-07 | 2009-11-24 | Neal E. Fearnot | Implantable medical device |
US6582392B1 (en) | 1998-05-01 | 2003-06-24 | Ekos Corporation | Ultrasound assembly for use with a catheter |
US6676626B1 (en) | 1998-05-01 | 2004-01-13 | Ekos Corporation | Ultrasound assembly with increased efficacy |
US8177743B2 (en) | 1998-05-18 | 2012-05-15 | Boston Scientific Scimed, Inc. | Localized delivery of drug agents |
US6719805B1 (en) * | 1999-06-09 | 2004-04-13 | C. R. Bard, Inc. | Devices and methods for treating tissue |
US7682647B2 (en) | 1999-09-03 | 2010-03-23 | Advanced Cardiovascular Systems, Inc. | Thermal treatment of a drug eluting implantable medical device |
US7807211B2 (en) * | 1999-09-03 | 2010-10-05 | Advanced Cardiovascular Systems, Inc. | Thermal treatment of an implantable medical device |
US20070032853A1 (en) | 2002-03-27 | 2007-02-08 | Hossainy Syed F | 40-O-(2-hydroxy)ethyl-rapamycin coated stent |
US8632845B2 (en) * | 2000-12-28 | 2014-01-21 | Abbott Cardiovascular Systems Inc. | Method of drying bioabsorbable coating over stents |
US8277868B2 (en) * | 2001-01-05 | 2012-10-02 | Abbott Cardiovascular Systems Inc. | Balloon catheter for delivering therapeutic agents |
US6544223B1 (en) * | 2001-01-05 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Balloon catheter for delivering therapeutic agents |
WO2002065946A1 (en) * | 2001-02-23 | 2002-08-29 | Angiogene Inc. | Apparatus for loading a therapeutic agent onto an endovascular device |
US20020119178A1 (en) * | 2001-02-23 | 2002-08-29 | Luc Levesque | Drug eluting device for treating vascular diseases |
JP2003135588A (en) * | 2001-11-08 | 2003-05-13 | Univ Nihon | Percutaneous transluminal drug delivery device |
DE60209799T2 (en) | 2001-12-03 | 2007-01-25 | Ekos Corp., Bothell | CATHETER WITH SEVERAL ULTRASOUND EMITTING PARTS |
US7141044B2 (en) | 2001-12-11 | 2006-11-28 | Ekos Corporation | Alternate site gene therapy |
US8226629B1 (en) | 2002-04-01 | 2012-07-24 | Ekos Corporation | Ultrasonic catheter power control |
USRE40722E1 (en) | 2002-09-27 | 2009-06-09 | Surmodics, Inc. | Method and apparatus for coating of substrates |
US7125577B2 (en) | 2002-09-27 | 2006-10-24 | Surmodics, Inc | Method and apparatus for coating of substrates |
US7192484B2 (en) | 2002-09-27 | 2007-03-20 | Surmodics, Inc. | Advanced coating apparatus and method |
US6921371B2 (en) | 2002-10-14 | 2005-07-26 | Ekos Corporation | Ultrasound radiating members for catheter |
CA2503625A1 (en) | 2002-11-13 | 2004-05-27 | Setagon, Inc. | Medical devices having porous layers and methods for making same |
US9770349B2 (en) | 2002-11-13 | 2017-09-26 | University Of Virginia Patent Foundation | Nanoporous stents with enhanced cellular adhesion and reduced neointimal formation |
US20060121080A1 (en) | 2002-11-13 | 2006-06-08 | Lye Whye K | Medical devices having nanoporous layers and methods for making the same |
DE60334676D1 (en) * | 2003-02-21 | 2010-12-09 | Sorin Biomedica Cardio Srl | Method for producing a stent and corresponding stent |
US20050118344A1 (en) * | 2003-12-01 | 2005-06-02 | Pacetti Stephen D. | Temperature controlled crimping |
US20050137520A1 (en) * | 2003-10-29 | 2005-06-23 | Rule Peter R. | Catheter with ultrasound-controllable porous membrane |
US7803178B2 (en) | 2004-01-30 | 2010-09-28 | Trivascular, Inc. | Inflatable porous implants and methods for drug delivery |
ATE423578T1 (en) * | 2004-05-27 | 2009-03-15 | Medtronic Inc | MEDICAL DEVICE WITH A BIOLOGICAL ACTIVE SUBSTANCE |
US7507433B2 (en) * | 2004-09-03 | 2009-03-24 | Boston Scientific Scimed, Inc. | Method of coating a medical device using an electrowetting process |
US7901451B2 (en) | 2004-09-24 | 2011-03-08 | Biosensors International Group, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
US7958840B2 (en) | 2004-10-27 | 2011-06-14 | Surmodics, Inc. | Method and apparatus for coating of substrates |
US20060124466A1 (en) * | 2004-12-09 | 2006-06-15 | Scimed Life Systems, Inc. | Method and apparatus for coating a medical device by electroplating |
US8535702B2 (en) | 2005-02-01 | 2013-09-17 | Boston Scientific Scimed, Inc. | Medical devices having porous polymeric regions for controlled drug delivery and regulated biocompatibility |
WO2006138719A2 (en) * | 2005-06-17 | 2006-12-28 | Georgia Tech Research Corporation | Coated microstructures and method of manufacture thereof |
EP2345376B1 (en) * | 2005-09-30 | 2012-07-04 | Cook Medical Technologies LLC | Coated vaso-occlusion device |
US20070112421A1 (en) * | 2005-11-14 | 2007-05-17 | O'brien Barry | Medical device with a grooved surface |
US20070168021A1 (en) * | 2006-01-17 | 2007-07-19 | Holmes David R Jr | Porous three dimensional nest scaffolding |
US20100233350A1 (en) * | 2006-03-15 | 2010-09-16 | Boston Scientific Scimed, Inc. | Drug delivery composition and methods of making same using nanofabrication |
US20080097620A1 (en) | 2006-05-26 | 2008-04-24 | Nanyang Technological University | Implantable article, method of forming same and method for reducing thrombogenicity |
US20080057102A1 (en) * | 2006-08-21 | 2008-03-06 | Wouter Roorda | Methods of manufacturing medical devices for controlled drug release |
WO2008063539A2 (en) * | 2006-11-16 | 2008-05-29 | Boston Scientific Limited | Stent with differential timing of abluminal and luminal release of a therapeutic agent |
US20080152784A1 (en) * | 2006-12-22 | 2008-06-26 | Boston Scientific Scimed, Inc. | Methods of manufacturing coatings and coated medical devices |
CN101209360B (en) * | 2006-12-29 | 2012-06-20 | 微创医疗器械(上海)有限公司 | Method for preparing biological bracket |
US10182833B2 (en) | 2007-01-08 | 2019-01-22 | Ekos Corporation | Power parameters for ultrasonic catheter |
ES2471118T3 (en) | 2007-06-22 | 2014-06-25 | Ekos Corporation | Method and apparatus for the treatment of intracranial hemorrhages |
US20090076591A1 (en) * | 2007-09-19 | 2009-03-19 | Boston Scientific Scimed, Inc. | Stent Design Allowing Extended Release of Drug and/or Enhanced Adhesion of Polymer to OD Surface |
US7833266B2 (en) | 2007-11-28 | 2010-11-16 | Boston Scientific Scimed, Inc. | Bifurcated stent with drug wells for specific ostial, carina, and side branch treatment |
WO2009111712A1 (en) * | 2008-03-06 | 2009-09-11 | Boston Scientific Scimed, Inc. | Balloon catheter devices with folded balloons |
US9364349B2 (en) | 2008-04-24 | 2016-06-14 | Surmodics, Inc. | Coating application system with shaped mandrel |
US8206636B2 (en) | 2008-06-20 | 2012-06-26 | Amaranth Medical Pte. | Stent fabrication via tubular casting processes |
US10898620B2 (en) | 2008-06-20 | 2021-01-26 | Razmodics Llc | Composite stent having multi-axial flexibility and method of manufacture thereof |
US8206635B2 (en) | 2008-06-20 | 2012-06-26 | Amaranth Medical Pte. | Stent fabrication via tubular casting processes |
US7951193B2 (en) | 2008-07-23 | 2011-05-31 | Boston Scientific Scimed, Inc. | Drug-eluting stent |
US8642063B2 (en) | 2008-08-22 | 2014-02-04 | Cook Medical Technologies Llc | Implantable medical device coatings with biodegradable elastomer and releasable taxane agent |
US9283305B2 (en) | 2009-07-09 | 2016-03-15 | Medtronic Vascular, Inc. | Hollow tubular drug eluting medical devices |
EP2470232B1 (en) * | 2009-08-27 | 2016-03-30 | Boston Scientific Scimed, Inc. | Balloon catheter devices with drug-coated sheath |
US8381774B2 (en) * | 2009-09-20 | 2013-02-26 | Medtronic Vascular, Inc. | Methods for loading a drug eluting medical device |
US20110070358A1 (en) | 2009-09-20 | 2011-03-24 | Medtronic Vascular, Inc. | Method of forming hollow tubular drug eluting medical devices |
US20120022178A1 (en) * | 2010-06-17 | 2012-01-26 | Diversified Glogal Technologies, Llc | Methods of embedding foam with additives |
US8616040B2 (en) | 2010-09-17 | 2013-12-31 | Medtronic Vascular, Inc. | Method of forming a drug-eluting medical device |
TW201315451A (en) | 2011-10-06 | 2013-04-16 | Metal Ind Res & Dev Ct | A processing method for metal implant surface and its metal implant |
FR2983075B1 (en) * | 2011-11-24 | 2014-08-15 | Ab7 Innovation | PROCESS FOR LOADING POLYMERIC PLAQUETTE IN AMPLYHILE IONIZED MEDICINAL SOLUTION FOR IONTOPHORESIS TRANSDERMAL DELIVERY |
US9827401B2 (en) | 2012-06-01 | 2017-11-28 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
WO2013181498A1 (en) | 2012-06-01 | 2013-12-05 | Surmodics, Inc. | Apparatus and method for coating balloon catheters |
US11090468B2 (en) | 2012-10-25 | 2021-08-17 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US9283350B2 (en) | 2012-12-07 | 2016-03-15 | Surmodics, Inc. | Coating apparatus and methods |
EP2967938B1 (en) | 2013-03-14 | 2017-03-01 | Medtronic Vascular Inc. | Method for manufacturing a stent and stent manufactured thereby |
US9364588B2 (en) | 2014-02-04 | 2016-06-14 | Abbott Cardiovascular Systems Inc. | Drug delivery scaffold or stent with a novolimus and lactide based coating such that novolimus has a minimum amount of bonding to the coating |
EP3200858A4 (en) * | 2014-09-30 | 2018-06-13 | The Spectranetics Corporation | Electrodeposition coating for medical devices |
US9808608B2 (en) | 2014-11-16 | 2017-11-07 | International Business Machines Corporation | Helical coil delivery device for active agent |
EP3307388B1 (en) | 2015-06-10 | 2022-06-22 | Ekos Corporation | Ultrasound catheter |
WO2020112816A1 (en) | 2018-11-29 | 2020-06-04 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US11819590B2 (en) | 2019-05-13 | 2023-11-21 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
CA3168856A1 (en) | 2020-01-24 | 2021-07-29 | PatchClamp Medtech, Inc. | Tissue repair and sealing devices having a detachable graft and clasp assembly and methods for the use thereof |
US11911572B2 (en) * | 2022-05-05 | 2024-02-27 | Innocare Urologics, Llc | Soft tip drug-eluting urinary drainage catheter |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3758396A (en) * | 1971-08-31 | 1973-09-11 | Research Corp | Ition preparation of immobilized enzymemembrane complexes by electrocodepos |
US4101984A (en) * | 1975-05-09 | 1978-07-25 | Macgregor David C | Cardiovascular prosthetic devices and implants with porous systems |
US4334327A (en) * | 1979-12-21 | 1982-06-15 | University Of Utah | Ureteral prosthesis |
US4655771A (en) * | 1982-04-30 | 1987-04-07 | Shepherd Patents S.A. | Prosthesis comprising an expansible or contractile tubular body |
US4657544A (en) * | 1984-04-18 | 1987-04-14 | Cordis Corporation | Cardiovascular graft and method of forming same |
US4733665A (en) * | 1985-11-07 | 1988-03-29 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4800882A (en) * | 1987-03-13 | 1989-01-31 | Cook Incorporated | Endovascular stent and delivery system |
US4886062A (en) * | 1987-10-19 | 1989-12-12 | Medtronic, Inc. | Intravascular radially expandable stent and method of implant |
US5061275A (en) * | 1986-04-21 | 1991-10-29 | Medinvent S.A. | Self-expanding prosthesis |
US5120322A (en) * | 1990-06-13 | 1992-06-09 | Lathrotec, Inc. | Method and apparatus for treatment of fibrotic lesions |
US5147370A (en) * | 1991-06-12 | 1992-09-15 | Mcnamara Thomas O | Nitinol stent for hollow body conduits |
US5205921A (en) * | 1991-02-04 | 1993-04-27 | Queen's University At Kingston | Method for depositing bioactive coatings on conductive substrates |
US5304121A (en) * | 1990-12-28 | 1994-04-19 | Boston Scientific Corporation | Drug delivery system making use of a hydrogel polymer coating |
US5464650A (en) * | 1993-04-26 | 1995-11-07 | Medtronic, Inc. | Intravascular stent and method |
US5693085A (en) * | 1994-04-29 | 1997-12-02 | Scimed Life Systems, Inc. | Stent with collagen |
US5758562A (en) * | 1995-10-11 | 1998-06-02 | Schneider (Usa) Inc. | Process for manufacturing braided composite prosthesis |
US5843172A (en) * | 1997-04-15 | 1998-12-01 | Advanced Cardiovascular Systems, Inc. | Porous medicated stent |
US5972027A (en) * | 1997-09-30 | 1999-10-26 | Scimed Life Systems, Inc | Porous stent drug delivery system |
US6635082B1 (en) * | 2000-12-29 | 2003-10-21 | Advanced Cardiovascular Systems Inc. | Radiopaque stent |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5073365A (en) * | 1989-06-01 | 1991-12-17 | Advanced Polymer Systems | Clinical and personal care articles enhanced by lubricants and adjuvants |
US5674192A (en) | 1990-12-28 | 1997-10-07 | Boston Scientific Corporation | Drug delivery |
US5258020A (en) * | 1990-09-14 | 1993-11-02 | Michael Froix | Method of using expandable polymeric stent with memory |
US5500013A (en) * | 1991-10-04 | 1996-03-19 | Scimed Life Systems, Inc. | Biodegradable drug delivery vascular stent |
CA2216943C (en) | 1995-04-19 | 2003-06-17 | Schneider (Usa) Inc. | Drug release coated stent |
US5609629A (en) * | 1995-06-07 | 1997-03-11 | Med Institute, Inc. | Coated implantable medical device |
CA2199890C (en) * | 1996-03-26 | 2002-02-05 | Leonard Pinchuk | Stents and stent-grafts having enhanced hoop strength and methods of making the same |
US6267782B1 (en) * | 1997-11-20 | 2001-07-31 | St. Jude Medical, Inc. | Medical article with adhered antimicrobial metal |
US6364856B1 (en) * | 1998-04-14 | 2002-04-02 | Boston Scientific Corporation | Medical device with sponge coating for controlled drug release |
-
1998
- 1998-07-07 US US09/110,697 patent/US6652581B1/en not_active Expired - Lifetime
-
1999
- 1999-07-06 WO PCT/US1999/015237 patent/WO2000001322A1/en active IP Right Grant
- 1999-07-06 DE DE1096902T patent/DE1096902T1/en active Pending
- 1999-07-06 DE DE69938047T patent/DE69938047D1/en not_active Expired - Lifetime
- 1999-07-06 AT AT99932279T patent/ATE384502T1/en not_active IP Right Cessation
- 1999-07-06 JP JP2000557770A patent/JP2002519139A/en not_active Abandoned
- 1999-07-06 EP EP99932279A patent/EP1096902B1/en not_active Expired - Lifetime
- 1999-07-06 ES ES99932279T patent/ES2169012T1/en active Pending
- 1999-07-06 CA CA002336650A patent/CA2336650C/en not_active Expired - Fee Related
-
2003
- 2003-10-03 US US10/679,057 patent/US20040067301A1/en not_active Abandoned
-
2007
- 2007-09-07 US US11/851,675 patent/US7758909B2/en not_active Expired - Fee Related
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3758396A (en) * | 1971-08-31 | 1973-09-11 | Research Corp | Ition preparation of immobilized enzymemembrane complexes by electrocodepos |
US4101984A (en) * | 1975-05-09 | 1978-07-25 | Macgregor David C | Cardiovascular prosthetic devices and implants with porous systems |
US4334327A (en) * | 1979-12-21 | 1982-06-15 | University Of Utah | Ureteral prosthesis |
US4954126A (en) * | 1982-04-30 | 1990-09-04 | Shepherd Patents S.A. | Prosthesis comprising an expansible or contractile tubular body |
US4954126B1 (en) * | 1982-04-30 | 1996-05-28 | Ams Med Invent S A | Prosthesis comprising an expansible or contractile tubular body |
US4655771A (en) * | 1982-04-30 | 1987-04-07 | Shepherd Patents S.A. | Prosthesis comprising an expansible or contractile tubular body |
US4655771B1 (en) * | 1982-04-30 | 1996-09-10 | Medinvent Ams Sa | Prosthesis comprising an expansible or contractile tubular body |
US4657544A (en) * | 1984-04-18 | 1987-04-14 | Cordis Corporation | Cardiovascular graft and method of forming same |
US4733665A (en) * | 1985-11-07 | 1988-03-29 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4733665C2 (en) * | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4733665B1 (en) * | 1985-11-07 | 1994-01-11 | Expandable Grafts Partnership | Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft |
US5061275A (en) * | 1986-04-21 | 1991-10-29 | Medinvent S.A. | Self-expanding prosthesis |
US4800882A (en) * | 1987-03-13 | 1989-01-31 | Cook Incorporated | Endovascular stent and delivery system |
US4886062A (en) * | 1987-10-19 | 1989-12-12 | Medtronic, Inc. | Intravascular radially expandable stent and method of implant |
US5120322A (en) * | 1990-06-13 | 1992-06-09 | Lathrotec, Inc. | Method and apparatus for treatment of fibrotic lesions |
US5304121A (en) * | 1990-12-28 | 1994-04-19 | Boston Scientific Corporation | Drug delivery system making use of a hydrogel polymer coating |
US5205921A (en) * | 1991-02-04 | 1993-04-27 | Queen's University At Kingston | Method for depositing bioactive coatings on conductive substrates |
US5147370A (en) * | 1991-06-12 | 1992-09-15 | Mcnamara Thomas O | Nitinol stent for hollow body conduits |
US5464650A (en) * | 1993-04-26 | 1995-11-07 | Medtronic, Inc. | Intravascular stent and method |
US5693085A (en) * | 1994-04-29 | 1997-12-02 | Scimed Life Systems, Inc. | Stent with collagen |
US6391052B2 (en) * | 1994-04-29 | 2002-05-21 | Scimed Life Systems, Inc. | Stent with collagen |
US5758562A (en) * | 1995-10-11 | 1998-06-02 | Schneider (Usa) Inc. | Process for manufacturing braided composite prosthesis |
US5843172A (en) * | 1997-04-15 | 1998-12-01 | Advanced Cardiovascular Systems, Inc. | Porous medicated stent |
US5972027A (en) * | 1997-09-30 | 1999-10-26 | Scimed Life Systems, Inc | Porous stent drug delivery system |
US6635082B1 (en) * | 2000-12-29 | 2003-10-21 | Advanced Cardiovascular Systems Inc. | Radiopaque stent |
Cited By (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8066763B2 (en) | 1998-04-11 | 2011-11-29 | Boston Scientific Scimed, Inc. | Drug-releasing stent with ceramic-containing layer |
US20060039947A1 (en) * | 1998-09-11 | 2006-02-23 | Gerhard Schmidmaier | Biologically active implants |
US10646622B2 (en) | 1998-09-11 | 2020-05-12 | Gerhard Schmidmaier | Biologically active implants |
US20090317538A1 (en) * | 1998-09-11 | 2009-12-24 | Gerhard Schmidmaier | Biologically active implants |
US8114427B2 (en) | 1998-09-11 | 2012-02-14 | Gerhard Schmidmaier | Biologically active implants |
US8303643B2 (en) | 2001-06-27 | 2012-11-06 | Remon Medical Technologies Ltd. | Method and device for electrochemical formation of therapeutic species in vivo |
US20050079199A1 (en) * | 2003-02-18 | 2005-04-14 | Medtronic, Inc. | Porous coatings for drug release from medical devices |
US7582068B2 (en) | 2003-02-18 | 2009-09-01 | Medtronic, Inc. | Occlusion resistant hydrocephalic shunt |
EP1475110A1 (en) * | 2003-05-09 | 2004-11-10 | B. Braun Melsungen Ag | Stent for controlled drug release |
US20070154522A1 (en) * | 2004-08-03 | 2007-07-05 | Chow Edwin P Y | Polymer having interconnected pores for drug delivery and method |
US20060051392A1 (en) * | 2004-09-03 | 2006-03-09 | Medtronic, Inc. | Porous coatings for drug release from medical devices |
WO2006029301A3 (en) * | 2004-09-08 | 2006-08-24 | Medtronic Inc | Method of manufacturing drug-eluting medical device |
US20060051393A1 (en) * | 2004-09-08 | 2006-03-09 | Medtronic, Inc. | Method of manufacturing drug-eluting medical device |
WO2006049943A3 (en) * | 2004-10-27 | 2006-09-14 | Boston Scient Scimed Inc | Method of manufacturing a medical device having a porous coating thereon |
WO2006049943A2 (en) | 2004-10-27 | 2006-05-11 | Boston Scientific Scimed, Inc. | Method of manufacturing a medical device having a porous coating thereon |
JP2008517721A (en) * | 2004-10-27 | 2008-05-29 | ボストン サイエンティフィック リミティド | Method for manufacturing a medical device having a porous coating thereon |
US20060088567A1 (en) * | 2004-10-27 | 2006-04-27 | Scimed Life Systems | Method of manufacturing a medical device having a porous coating thereon |
US7862835B2 (en) | 2004-10-27 | 2011-01-04 | Boston Scientific Scimed, Inc. | Method of manufacturing a medical device having a porous coating thereon |
WO2006062975A3 (en) * | 2004-12-07 | 2007-01-11 | Boston Scient Scimed Inc | Orienting polymer domains for controlled drug delivery |
US7964209B2 (en) | 2004-12-07 | 2011-06-21 | Boston Scientific Scimed, Inc. | Orienting polymer domains for controlled drug delivery |
US8840660B2 (en) | 2006-01-05 | 2014-09-23 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8089029B2 (en) | 2006-02-01 | 2012-01-03 | Boston Scientific Scimed, Inc. | Bioabsorbable metal medical device and method of manufacture |
US8574615B2 (en) | 2006-03-24 | 2013-11-05 | Boston Scientific Scimed, Inc. | Medical devices having nanoporous coatings for controlled therapeutic agent delivery |
US8187620B2 (en) | 2006-03-27 | 2012-05-29 | Boston Scientific Scimed, Inc. | Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents |
US8048150B2 (en) | 2006-04-12 | 2011-11-01 | Boston Scientific Scimed, Inc. | Endoprosthesis having a fiber meshwork disposed thereon |
US8815275B2 (en) | 2006-06-28 | 2014-08-26 | Boston Scientific Scimed, Inc. | Coatings for medical devices comprising a therapeutic agent and a metallic material |
US8771343B2 (en) | 2006-06-29 | 2014-07-08 | Boston Scientific Scimed, Inc. | Medical devices with selective titanium oxide coatings |
US8052743B2 (en) | 2006-08-02 | 2011-11-08 | Boston Scientific Scimed, Inc. | Endoprosthesis with three-dimensional disintegration control |
US8353949B2 (en) | 2006-09-14 | 2013-01-15 | Boston Scientific Scimed, Inc. | Medical devices with drug-eluting coating |
US8128689B2 (en) | 2006-09-15 | 2012-03-06 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis with biostable inorganic layers |
US8052744B2 (en) | 2006-09-15 | 2011-11-08 | Boston Scientific Scimed, Inc. | Medical devices and methods of making the same |
US8057534B2 (en) | 2006-09-15 | 2011-11-15 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8808726B2 (en) | 2006-09-15 | 2014-08-19 | Boston Scientific Scimed. Inc. | Bioerodible endoprostheses and methods of making the same |
US8002821B2 (en) | 2006-09-18 | 2011-08-23 | Boston Scientific Scimed, Inc. | Bioerodible metallic ENDOPROSTHESES |
US7981150B2 (en) | 2006-11-09 | 2011-07-19 | Boston Scientific Scimed, Inc. | Endoprosthesis with coatings |
US20100048755A1 (en) * | 2006-11-17 | 2010-02-25 | Edwin Pei Yong Chow | Porous polymeric material with cross-linkable wetting agent |
US8715339B2 (en) | 2006-12-28 | 2014-05-06 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8080055B2 (en) | 2006-12-28 | 2011-12-20 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8070797B2 (en) | 2007-03-01 | 2011-12-06 | Boston Scientific Scimed, Inc. | Medical device with a porous surface for delivery of a therapeutic agent |
US8431149B2 (en) | 2007-03-01 | 2013-04-30 | Boston Scientific Scimed, Inc. | Coated medical devices for abluminal drug delivery |
US8067054B2 (en) | 2007-04-05 | 2011-11-29 | Boston Scientific Scimed, Inc. | Stents with ceramic drug reservoir layer and methods of making and using the same |
US20080251391A1 (en) * | 2007-04-12 | 2008-10-16 | Boston Scientific Scimed, Inc. | Methods and systems for applying therapeutic agent to a medical device |
WO2008127964A3 (en) * | 2007-04-12 | 2009-12-10 | Boston Scientific Scimed, Inc. | Methods and systems for applying therapeutic agent to a medical device |
US7976915B2 (en) | 2007-05-23 | 2011-07-12 | Boston Scientific Scimed, Inc. | Endoprosthesis with select ceramic morphology |
US8002823B2 (en) | 2007-07-11 | 2011-08-23 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US7942926B2 (en) | 2007-07-11 | 2011-05-17 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US9284409B2 (en) | 2007-07-19 | 2016-03-15 | Boston Scientific Scimed, Inc. | Endoprosthesis having a non-fouling surface |
US7931683B2 (en) | 2007-07-27 | 2011-04-26 | Boston Scientific Scimed, Inc. | Articles having ceramic coated surfaces |
US8815273B2 (en) | 2007-07-27 | 2014-08-26 | Boston Scientific Scimed, Inc. | Drug eluting medical devices having porous layers |
US8221822B2 (en) | 2007-07-31 | 2012-07-17 | Boston Scientific Scimed, Inc. | Medical device coating by laser cladding |
US8900292B2 (en) | 2007-08-03 | 2014-12-02 | Boston Scientific Scimed, Inc. | Coating for medical device having increased surface area |
US8052745B2 (en) | 2007-09-13 | 2011-11-08 | Boston Scientific Scimed, Inc. | Endoprosthesis |
US8216632B2 (en) | 2007-11-02 | 2012-07-10 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US7938855B2 (en) | 2007-11-02 | 2011-05-10 | Boston Scientific Scimed, Inc. | Deformable underlayer for stent |
US8029554B2 (en) | 2007-11-02 | 2011-10-04 | Boston Scientific Scimed, Inc. | Stent with embedded material |
US8920491B2 (en) | 2008-04-22 | 2014-12-30 | Boston Scientific Scimed, Inc. | Medical devices having a coating of inorganic material |
US8932346B2 (en) | 2008-04-24 | 2015-01-13 | Boston Scientific Scimed, Inc. | Medical devices having inorganic particle layers |
US7998192B2 (en) | 2008-05-09 | 2011-08-16 | Boston Scientific Scimed, Inc. | Endoprostheses |
US8236046B2 (en) | 2008-06-10 | 2012-08-07 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis |
US8449603B2 (en) | 2008-06-18 | 2013-05-28 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US7985252B2 (en) | 2008-07-30 | 2011-07-26 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis |
US8382824B2 (en) | 2008-10-03 | 2013-02-26 | Boston Scientific Scimed, Inc. | Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides |
US8231980B2 (en) | 2008-12-03 | 2012-07-31 | Boston Scientific Scimed, Inc. | Medical implants including iridium oxide |
US8267992B2 (en) | 2009-03-02 | 2012-09-18 | Boston Scientific Scimed, Inc. | Self-buffering medical implants |
US8071156B2 (en) | 2009-03-04 | 2011-12-06 | Boston Scientific Scimed, Inc. | Endoprostheses |
US8513353B2 (en) | 2009-03-19 | 2013-08-20 | Agency For Science, Technology And Research | Forming copolymer from bicontinuous microemulsion comprising monomers of different hydrophilicity |
US8287937B2 (en) | 2009-04-24 | 2012-10-16 | Boston Scientific Scimed, Inc. | Endoprosthese |
US8668732B2 (en) | 2010-03-23 | 2014-03-11 | Boston Scientific Scimed, Inc. | Surface treated bioerodible metal endoprostheses |
CN103757683A (en) * | 2014-01-07 | 2014-04-30 | 江南大学 | Electrodeposition preparation method of light-crosslinking bio-based coating |
Also Published As
Publication number | Publication date |
---|---|
US6652581B1 (en) | 2003-11-25 |
JP2002519139A (en) | 2002-07-02 |
DE1096902T1 (en) | 2002-05-23 |
EP1096902B1 (en) | 2008-01-23 |
US20070299509A1 (en) | 2007-12-27 |
CA2336650C (en) | 2008-01-29 |
US7758909B2 (en) | 2010-07-20 |
ATE384502T1 (en) | 2008-02-15 |
EP1096902A1 (en) | 2001-05-09 |
DE69938047D1 (en) | 2008-03-13 |
WO2000001322A1 (en) | 2000-01-13 |
ES2169012T1 (en) | 2002-07-01 |
CA2336650A1 (en) | 2000-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6652581B1 (en) | Medical device with porous surface for controlled drug release and method of making the same | |
US6364856B1 (en) | Medical device with sponge coating for controlled drug release | |
JP4184961B2 (en) | Method for spray coating medical devices | |
EP1180013B1 (en) | Local drug delivery | |
JP5581059B2 (en) | Coated stent for drug delivery outside the lumen | |
US8070797B2 (en) | Medical device with a porous surface for delivery of a therapeutic agent | |
US8257729B2 (en) | Implants with membrane diffusion-controlled release of active ingredient | |
JP2006500163A (en) | Method for coating medical devices | |
ZA200601870B (en) | Coating of surgical devices | |
JP2007501044A5 (en) | ||
US20100183501A1 (en) | Medical Devices With Nanotextured Titanium Coating | |
CA2579524A1 (en) | Medical device with porous surface for controlled drug release and method of making the same | |
EP2809370B1 (en) | Negatively charged vascular stent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION |
|
AS | Assignment |
Owner name: SCIMED LIFE SYSTEMS, INC., MINNESOTA Free format text: MERGER;ASSIGNOR:BOSTON SCIENTIFIC SCIMED, INC.;REEL/FRAME:021609/0024 Effective date: 20041222 Owner name: SCHNEIDER (USA) INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DING, NI;REEL/FRAME:021608/0833 Effective date: 19980706 Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:021609/0092 Effective date: 20041222 Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA Free format text: CHANGE OF NAME;ASSIGNOR:SCHNEIDER (USA) INC.;REEL/FRAME:021608/0983 Effective date: 19990427 |