RU99118673A - ULTRASONIC METHOD FOR MEASURING FLOW SPEED - Google Patents
ULTRASONIC METHOD FOR MEASURING FLOW SPEEDInfo
- Publication number
- RU99118673A RU99118673A RU99118673/28A RU99118673A RU99118673A RU 99118673 A RU99118673 A RU 99118673A RU 99118673/28 A RU99118673/28 A RU 99118673/28A RU 99118673 A RU99118673 A RU 99118673A RU 99118673 A RU99118673 A RU 99118673A
- Authority
- RU
- Russia
- Prior art keywords
- amplitude modulation
- max
- propagation
- flow velocity
- frequency
- Prior art date
Links
Claims (4)
fp≪ 10[(Cmax+Vmaxcosα)/L]≅0,05fc,
где fp - максимальная частота, при которой коэффициент затухания пульсирует в момент распространения ультразвуковой волны в текучей среде, Cmax - максимальная скорость звука в текучей среде, L - расстояние распространения ультразвука, Vmax - максимальная скорость течения, ожидаемая на интервале L, и α - угол, который образуют расстояние L распространения и направление скорости течения.1. A method of measuring the flow velocity based on the time difference, comprising measuring the propagation time of the ultrasonic wave in directions that are the same as the flow velocity and opposite to it, and calculating the flow velocity, comprising the steps of amplitude modulating the ultrasonic carrier with a frequency f c to a frequency f modulation amplitude m which is less than the frequency f c the carrier, for a period τ (= 5 / f m) whenever the time measurement of ultrasonic propagation, carry propagation Vp -modulirovannogo signal in directions that coincide with the flow rate and opposite to it, demodulates the received amplitude-modulated signals after propagation in directions coinciding with the flow rate and opposite to it, for detecting a signal f m amplitude modulation measured time between the ultrasonic carrier amplitude modulation f c f m a frequency modulation and amplitude detection signal f m amplitude modulation from the received signal, and the measurement of different con five times in the expression for the flow velocity measurement based on the time difference and the calculated flow rate signal with frequency f m of the amplitude modulation determined by the following expression
f p ≪ 10 [(C max + V max cosα) / L] ≅0.05f c ,
where f p is the maximum frequency at which the attenuation coefficient pulsates at the time of propagation of the ultrasonic wave in the fluid, C max is the maximum speed of sound in the fluid, L is the ultrasound propagation distance, V max is the maximum flow velocity expected in the interval L, and α is the angle that the propagation distance L and the direction of the flow velocity form.
Δψc1/π = Δψм1(fc/πfм) = m1+β,
Δψc2/π = Δψм2(fc/πfм) = m2+γ,
где β<1,0 и γ<1,0,
запоминают m1 и m2, измеряют составляющие βπ и γπ разностей фаз, добавляют m1π и m2π к результатам измерения для вычисления разностей фаз Δψc1 и Δψc2 и вычисляют скорость течения на основании следующего выражения
V = [πfcL/cosα][(1/Δψc1)-(1/Δψc2)],
выбирают частоту fм амплитудной модуляции следующим образом
fм=[(n+a)/2L](Cmin-vmax),
n=[а(Сmin-vmax)-b(Сmах+vmах)]/(Cmax-Cmin+2vmax)
запоминают n, и
Δψм1= nπ+aπ,
Δψм2= nπ+aπ,
измеряют разности фаз aπ и bπ, которые может измерить дискриминатор разности фаз, в вышеупомянутом выражении, и прибавляют к ним nπ для получения разностей фаз Δψм1 и Δψм2,
при этом а(< 1,0) - коэффициент для выбора максимального диапазона измерения (aπ)max дискриминатора разности фаз, равный 0,95, и b(<1,0) - коэффициент для выбора максимального диапазона измерения (bπ)max дискриминатора разности фаз, близкий к 0,2, Сmах и Cmin - максимальная и минимальная ожидаемые скорости звука, vmax(=vmaxcosα) - максимальный диапазон измерения скорости течения.3. A method of measuring the flow velocity based on the phase difference, which provides for the propagation / reception of an ultrasonic wave at a constant angle α in directions coinciding with the flow velocity and opposite to it, and the use of the phase difference of the ultrasound, which varies proportionally to the flow velocity, including stages where the amplitude modulation frequency of the ultrasonic wave in the frequency f c f m of amplitude modulation that is less than the frequency f c, with continuous wave propagates in directions, which coincide with swift Stu flow and opposite to it, demodulates the received ultrasonic signal after spreading to the interval L in directions coinciding with the flow rate and opposite to it, for detecting a signal frequency f m of the amplitude modulation measured phase difference Δψ m1 between signals f m of amplitude modulation, the signal frequency f m amplitude modulation is detected and emitted in the direction coinciding with the flow velocity, and the phase difference Δψ m2 between the signals f m amplitude modulation received and demo which are modulated after propagation in the direction opposite to the flow velocity, multiples of m 1 and m 2 are obtained, except for the phase difference components βπ and γπ measured by the phase discriminator from the phase differences Δψ c1 and Δψ c2 between the phase of the ultrasonic wave f c during propagation and the phase the received signal f c using the following expressions
Δψ c1 / π = Δψ m1 (f c / πf m ) = m 1 + β,
Δψ c2 / π = Δψ m2 (f c / πf m ) = m 2 + γ,
where β <1.0 and γ <1.0,
remember m 1 and m 2 , measure the components of the βπ and γπ phase differences, add m 1 π and m 2 π to the measurement results to calculate the phase differences Δψ c1 and Δψ c2 and calculate the flow rate based on the following expression
V = [πf c L / cosα] [(1 / Δψ c1 ) - (1 / Δψ c2 )],
select the frequency f m amplitude modulation as follows
f m = [(n + a) / 2L] (C min -v max ),
n = [a (C min -v max ) -b (C max + v max )] / (C max -C min + 2v max )
remember n, and
Δψ m1 = nπ + aπ,
Δψ m2 = nπ + aπ,
measure the phase differences aπ and bπ, which can be measured by the discriminator of the phase difference in the above expression, and add nπ to them to obtain the phase differences Δψ m1 and Δψ m2 ,
wherein a (<1,0) is the coefficient for choosing the maximum measuring range (aπ) max of the discriminator of the phase difference, equal to 0.95, and b (<1,0) is the coefficient for choosing the maximum measuring range of (bπ) max of the discriminator of difference phases close to 0.2, C max and C min - the maximum and minimum expected sound speeds, v max (= v max cosα) - the maximum range of measurement of the flow velocity.
V = (ΔΦcC2)/(4πfLcosα),
включающий этапы, на которых осуществляют амплитудную модуляцию ультразвуковой волны fc в частоту fм амплитудной модуляции, осуществляют распространение амплитудно-модулированного сигнала в направлениях, совпадающих со скоростью течения и противоположных ей, осуществляют демодуляцию принимаемых сигналов после распространения, измеряют разность фаз ΔΦм(<π) между ними и получают кратное m, которое превышает π, разности фаз ΔΦc, с помощью следующего выражения
ΔΦм•(fc/πfм) = m+a (a<1,0),
измеряют разность фаз aπ между принимаемыми ультразвуковыми сигналами fc в один и тот же момент с помощью фазового дискриминатора для получения aπ, прибавляют к ним mπ для получения ΔΦc и вычисляют скорость течения в соответствии с указанным выражением, при этом частоту fм амплитудной модуляции выбирают с помощью следующего выражения
fм≅C
V = (ΔΦ c C 2 ) / (4πfLcosα),
including the stages at which the amplitude modulation of the ultrasonic wave f c to the frequency f m amplitude modulation is carried out, the amplitude-modulated signal is propagated in directions coinciding with the flow velocity and opposite to it, the received signals are demodulated after propagation, the phase difference ΔΦ m is measured (< π) between them and get a multiple of m that exceeds π, the phase difference ΔΦ c , using the following expression
ΔΦ m • (f c / πf m ) = m + a (a <1,0),
measure the phase difference aπ between the received ultrasonic signals f c at the same moment using a phase discriminator to obtain aπ, add mπ to them to obtain ΔΦ c and calculate the flow velocity in accordance with the specified expression, and the frequency f m of amplitude modulation is chosen using the following expression
f m ≅C
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1998/36337 | 1998-09-03 | ||
KR1019980036337A KR100298474B1 (en) | 1998-09-03 | 1998-09-03 | Ultrasonic flow measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
RU99118673A true RU99118673A (en) | 2001-07-20 |
RU2193208C2 RU2193208C2 (en) | 2002-11-20 |
Family
ID=19549509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU99118673/28A RU2193208C2 (en) | 1998-09-03 | 1999-08-25 | Ultrasonic method measuring current speed (versions) |
Country Status (5)
Country | Link |
---|---|
KR (1) | KR100298474B1 (en) |
CN (1) | CN1155831C (en) |
CA (1) | CA2279257A1 (en) |
DE (1) | DE19942138B4 (en) |
RU (1) | RU2193208C2 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100801643B1 (en) * | 2006-04-06 | 2008-02-11 | 박주영 | 3D Conti manufacturing system and its provision method |
RU2367912C1 (en) * | 2008-05-12 | 2009-09-20 | Закрытое Акционерное Общество "Когерент" | Device for detection of volume flow of controlled medium in pipeline |
CN102023298B (en) * | 2009-09-17 | 2013-06-05 | 建兴电子科技股份有限公司 | Method and device for setting ultrasonic detection cycle |
DE102009046561A1 (en) * | 2009-11-10 | 2011-05-12 | Robert Bosch Gmbh | Method for operating at least one ultrasonic transducer |
LT2343515T (en) | 2010-01-11 | 2020-12-28 | Kamstrup A/S | Flowmeter with variable operation conditions |
CN102103147B (en) * | 2011-01-05 | 2012-04-18 | 王毅 | Ultrasonic autocorrelation transverse flow velocity measuring method |
RU2529635C1 (en) * | 2013-06-10 | 2014-09-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тверской государственный университет" | Ultrasonic method of determining flow rate of gas medium and apparatus therefor |
CN105547385A (en) * | 2015-12-18 | 2016-05-04 | 合肥市恒昌自动化控制有限责任公司 | Channel section flow measurement method based on ultrasonic principle |
CN106443059A (en) * | 2016-09-07 | 2017-02-22 | 成都千嘉科技有限公司 | Fluid velocity measurement method, fluid metering method and flowmeter |
CN106568988B (en) * | 2016-11-10 | 2019-03-29 | 浙江清环智慧科技有限公司 | A kind of measuring system of drainage pipeline water body speed |
CN107290564B (en) * | 2017-07-28 | 2020-02-04 | 电子科技大学 | Phase difference-based ultrasonic flow velocity measurement method |
CN109253396B (en) * | 2018-08-23 | 2022-09-20 | 大唐环境产业集团股份有限公司 | Method and device for detecting flow of slurry composite pipeline |
CA3110818A1 (en) | 2018-08-30 | 2020-03-05 | Atomic Energy Of Canada Limited / Energie Atomique Du Canada Limitee | Continuous wave ultrasound or acoustic non-destructive testing |
CN110346600B (en) * | 2019-08-21 | 2021-04-06 | 南京信息工程大学 | Ultrasonic wind speed and wind direction measuring method |
CN111220816B (en) * | 2020-01-19 | 2022-04-08 | 中船重工海声科技有限公司 | Time Difference Ultrasonic Velocity Measurement Method Using Frequency Hopping Signal |
CN112729441B (en) * | 2020-12-21 | 2022-03-22 | 唐山学院 | A high-precision flow measurement method based on pulse-type flow sensor |
CN113701835B (en) * | 2021-08-30 | 2023-12-08 | 安徽理工大学 | High-precision self-correction ultrasonic coal bed gas extraction pipe network flowmeter |
CN113770010B (en) * | 2021-09-14 | 2022-07-01 | 天津理工大学 | An ultrasonic excitation circuit |
CN114384003A (en) * | 2022-01-07 | 2022-04-22 | 鞍钢股份有限公司 | Seawater erosion corrosion test device and using method |
CN114814285B (en) * | 2022-06-23 | 2022-09-09 | 沈阳佳德联益能源科技股份有限公司 | Ultrasonic flow measurement method |
CN118428108B (en) * | 2024-06-27 | 2024-09-10 | 长江水利委员会水文局 | Ultrasonic time difference method flow calculation method and system based on multi-objective optimization algorithm |
CN118548948B (en) * | 2024-07-30 | 2024-10-11 | 泰能天然气有限公司 | Natural gas high-precision metering method, equipment and system |
CN119555168B (en) * | 2025-01-27 | 2025-04-08 | 中国石油集团科学技术研究院有限公司 | Wide-range ratio ultrasonic flow testing system and testing method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2943810C2 (en) * | 1979-10-30 | 1982-12-09 | Erwin Sick Gmbh Optik-Elektronik, 7808 Waldkirch | Measurement arrangement for the speed of flowable media by determining the transit time of sound waves |
US4787252A (en) * | 1987-09-30 | 1988-11-29 | Panametrics, Inc. | Differential correlation analyzer |
EP0535364A1 (en) * | 1991-09-30 | 1993-04-07 | Siemens Aktiengesellschaft | High precision and unambiguous method for the ultrasonic measurement of speed of flow |
DE4302368C1 (en) * | 1993-01-28 | 1994-07-21 | Spanner Pollux Gmbh | Ultrasonic measuring method for fluid flow velocity |
KR960013251B1 (en) * | 1993-08-25 | 1996-10-02 | 주식회사 창민물산 | Ultrasonic Flow Measurement Method and Device |
KR0170815B1 (en) * | 1996-05-27 | 1999-05-01 | 남상용 | Ultrasonic multi-line flowmeter |
-
1998
- 1998-09-03 KR KR1019980036337A patent/KR100298474B1/en not_active IP Right Cessation
-
1999
- 1999-07-30 CA CA002279257A patent/CA2279257A1/en not_active Abandoned
- 1999-08-16 CN CNB99117917XA patent/CN1155831C/en not_active Expired - Fee Related
- 1999-08-25 RU RU99118673/28A patent/RU2193208C2/en not_active IP Right Cessation
- 1999-09-03 DE DE19942138A patent/DE19942138B4/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU99118673A (en) | ULTRASONIC METHOD FOR MEASURING FLOW SPEED | |
RU2193208C2 (en) | Ultrasonic method measuring current speed (versions) | |
US9404890B2 (en) | Method for noninvasive determination of acoustic properties of fluids inside pipes | |
EP0441531B1 (en) | Method and system for digital measurement of acoustic burst travel time in a fluid medium | |
US8100832B2 (en) | Ultrasound diagnostic apparatus | |
EP0508675A1 (en) | Ultrasound high velocity flow correlation measurement using coded pulses | |
EP0298165B1 (en) | System and method for measuring ice thickness | |
US20010037676A1 (en) | Ultrasonic flow velocity measuring method | |
RU2186399C2 (en) | Ultrasonic device measuring flow velocity | |
JPH0812092B2 (en) | Doppler measuring device | |
Iwashita et al. | Doppler measurement using a pair of FM-chirp signals | |
US4391150A (en) | Electro-acoustic flowmeter | |
US5602343A (en) | Method of, and apparatus for, measuring the velocity of a fluid | |
US20010037688A1 (en) | Ultrasonic flow velocity measuring method | |
US4065745A (en) | Doppler speedometer | |
DE59607938D1 (en) | Method for ultrasonic measurement of flow rates of flowing fluids | |
JP2869692B2 (en) | Ultrasonic snow depth measuring method and ultrasonic snow depth measuring device. | |
JP3752340B2 (en) | Ultrasonic Doppler flow velocity / flow meter | |
KR101158792B1 (en) | Coherent doppler velocity measuring method using signal mixing technique and device therefor | |
KR920003944A (en) | How to measure the speed and vortex of blood flow in the human body | |
JPS5852487Y2 (en) | Flow rate measurement device using correlation technology | |
Shiozaki et al. | A new modulation method with range resolution for ultrasonic Doppler flow sensing | |
JPH0324607B2 (en) | ||
JPS5918364Y2 (en) | current meter | |
JP3024312B2 (en) | Vortex flow meter |