RU2791991C2 - Beamformer for through beamforming communication system - Google Patents
Beamformer for through beamforming communication system Download PDFInfo
- Publication number
- RU2791991C2 RU2791991C2 RU2019139727A RU2019139727A RU2791991C2 RU 2791991 C2 RU2791991 C2 RU 2791991C2 RU 2019139727 A RU2019139727 A RU 2019139727A RU 2019139727 A RU2019139727 A RU 2019139727A RU 2791991 C2 RU2791991 C2 RU 2791991C2
- Authority
- RU
- Russia
- Prior art keywords
- user
- signals
- return
- signal
- reverse
- Prior art date
Links
Images
Abstract
Description
ОБЛАСТЬ ТЕХНИКИFIELD OF TECHNOLOGY
Раскрытые системы, способы и устройства относятся к сквозному формированию лучей в системе с использованием сквозного ретранслятора.The disclosed systems, methods, and apparatuses relate to end-to-end beamforming in a system using an end-to-end repeater.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯBACKGROUND OF THE INVENTION
Системы беспроводной связи, такие как спутниковые системы связи, обеспечивают средства, с помощью которых можно передавать данные, в том числе аудио, видео и различные другие виды данных, из одного местоположения в другое. Информация исходит от первой станции, такой как первая наземная станция, и передается на беспроводной ретранслятор, такой как спутник связи. Информация, полученная беспроводным ретранслятором, повторно передается на вторую станцию, такую как вторая наземная станция. В некоторых ретрансляционных системах беспроводной связи первую или вторую станцию (или обе) устанавливают на транспортное средство, такое как самолет, плавучее средство или наземное средство. Информация может передаваться только в одном направлении (например, только с первой наземной станции на вторую наземную станцию) или может передаваться в обоих направлениях (например, также со второй наземной станции на первую наземную станцию).Wireless communication systems, such as satellite communication systems, provide a means by which data, including audio, video, and various other types of data, can be transmitted from one location to another. The information originates from a first station, such as a first ground station, and is transmitted to a wireless relay, such as a communications satellite. The information received by the wireless repeater is retransmitted to a second station, such as a second ground station. In some relay wireless communication systems, the first or second station (or both) is mounted on a vehicle, such as an aircraft, vessel, or land vehicle. The information may be transmitted in only one direction (eg, only from the first ground station to the second ground station) or may be transmitted in both directions (eg, also from the second ground station to the first ground station).
В ретрансляционной системе беспроводной связи, в которой беспроводной ретранслятор представляет собой спутник, спутник может являться геостационарным спутником, и в этом случае орбиту спутника синхронизируют с вращением Земли, при этом зона покрытия спутника остается по существу стационарной по отношению к Земле. В других случаях спутник находится на орбите вокруг Земли, и это приводит к тому, что зона покрытия спутника перемещается по поверхности Земли, когда спутник пересекает в поперечном направлении свою орбитальную траекторию.In a wireless relay system in which the wireless repeater is a satellite, the satellite may be a geostationary satellite, in which case the orbit of the satellite is synchronized with the rotation of the Earth while the coverage area of the satellite remains substantially stationary with respect to the Earth. In other cases, the satellite is in orbit around the Earth, and this results in the satellite's coverage area moving across the surface of the Earth as the satellite crosses its orbital path laterally.
Сигналы, направляемые на первую станцию или от нее, могут направляться с использованием антенны, которая имеет форму, позволяющую сфокусировать сигнал в узкий луч. Такие антенны, как правило, имеют параболический отражатель для фокусирования луча.Signals directed to or from the first station may be directed using an antenna that is shaped to focus the signal into a narrow beam. Such antennas usually have a parabolic reflector to focus the beam.
В некоторых случаях луч может быть сформирован электронным образом путем регулирования усиления и фазы (или временной задержки) сигналов, передаваемых, принимаемых или передаваемых и принимаемых несколькими элементами фазированной антенной решетки. Луч может направляться путем правильного выбора относительной фазы и усиления сигналов, передаваемых и/или принимаемых каждым элементом фазированной антенной решетки. В большинстве случаев вся энергия, передаваемая от наземной станции, предназначена для приема одним беспроводным ретранслятором. Аналогичным образом, информация, принимаемая второй станцией, как правило, принимается от одного беспроводного ретранслятора за раз. Таким образом, как правило, передаваемый луч, формируемый для передачи информации на беспроводной ретранслятор (с использованием электронного формирования луча или с использованием антенны с профилированным отражателем), является относительно узким для обеспечения направления как можно большей части передаваемой энергии на беспроводной ретранслятор. Аналогичным образом, приемный луч, формируемый для приема информации от беспроводного ретранслятора, как правило, является узким для сбора энергии с направления беспроводного ретранслятора с минимальными помехами от других источников.In some cases, the beam may be shaped electronically by adjusting the gain and phase (or time delay) of signals transmitted, received, or transmitted and received by multiple elements of a phased array antenna. The beam can be directed by properly selecting the relative phase and amplifying the signals transmitted and/or received by each element of the phased array antenna. In most cases, all of the energy transmitted from the ground station is intended to be received by a single wireless repeater. Similarly, information received by the second station is typically received from one wireless repeater at a time. Thus, in general, the transmit beam formed to transmit information to the wireless repeater (either using electronic beamforming or using a profiled reflector antenna) is relatively narrow to ensure that as much of the transmitted energy as possible is directed to the wireless repeater. Similarly, the receive beam formed to receive information from the wireless repeater is typically narrow to collect energy from the direction of the wireless repeater with minimal interference from other sources.
Во многих рассматриваемых случаях сигналы, передаваемые с беспроводного ретранслятора на первую и вторую станции, не направляют на одну станцию. Напротив, беспроводной ретранслятор способен передавать сигналы в относительно большой географической зоне. Например, в одной спутниковой системе связи спутник может обслуживать всю континентальную часть США. В таком случае говорят, что спутник имеет зону покрытия спутника, которая включает в себя всю континентальную часть США. Тем не менее, для увеличения объема данных, которые можно передать через спутник, энергию, передаваемую спутником, фокусируют в лучи. Лучи могут быть направлены в географические зоны на Земле.In many cases under consideration, the signals transmitted from the wireless repeater to the first and second stations are not directed to the same station. In contrast, a wireless repeater is capable of transmitting signals over a relatively large geographic area. For example, in one satellite communications system, a satellite can serve the entire continental United States. In such a case, the satellite is said to have a satellite coverage area that includes the entire continental United States. However, to increase the amount of data that can be transmitted via a satellite, the energy transmitted by the satellite is focused into beams. The beams can be directed to geographic areas on Earth.
КРАТКОЕ ОПИСАНИЕ ФИГУРBRIEF DESCRIPTION OF THE FIGURES
Чертежи представлены только для целей иллюстрации и просто изображают примеры. Эти чертежи представлены для облегчения понимания читателем раскрытого способа и устройства. Они не ограничивают охват, объем или применимость заявленного изобретения. Для ясности и простоты иллюстрации эти чертежи необязательно выполнены в масштабе.The drawings are for illustrative purposes only and simply represent examples. These drawings are provided to facilitate the reader's understanding of the disclosed method and apparatus. They do not limit the scope, scope or applicability of the claimed invention. For clarity and ease of illustration, these drawings are not necessarily drawn to scale.
На ФИГ. 1 представлена иллюстрация примера спутниковой системы связи.FIG. 1 is an illustration of an example satellite communication system.
На ФИГ. 2 представлена схема, показывающая пример диаграммы направленности лучей, охватывающих континентальную часть США.FIG. 2 is a diagram showing an example of a beam pattern covering the continental United States.
На ФИГ. 3 представлена иллюстрация примера прямой линии связи спутниковой системы связи, в которой спутник имеет фазированную решетку с несколькими линиями связи на луч для возможности формирования луча на борту.FIG. 3 is an illustration of an example forward link of a satellite communication system in which the satellite has a phased array with multiple links per beam to enable beamforming on board.
На ФИГ. 4 представлена иллюстрация примера прямой линии связи спутниковой системы связи, содержащей наземную систему формирования лучей.FIG. 4 is an illustration of an example forward link of a satellite communication system including a terrestrial beamformer.
На ФИГ. 5 представлена иллюстрация примера системы сквозного формирования лучей.FIG. 5 is an illustration of an example of an end-to-end beamforming system.
На ФИГ. 6 представлена иллюстрация примера трактов прохождения сигнала для сигналов, проходящих в обратном направлении.FIG. 6 is an illustration of an example signal paths for signals traveling in the reverse direction.
На ФИГ. 7 представлена иллюстрация примера трактов прохождения сигнала в обратном направлении от пользовательского терминала.FIG. 7 is an illustration of an example signal paths in the reverse direction from the user terminal.
На ФИГ. 8 представлена упрощенная иллюстрация примера модели сквозной матрицы обратного канала.FIG. 8 is a simplified illustration of an example reverse channel end-to-end matrix model.
На ФИГ. 9 представлена иллюстрация примера трактов прохождения сигнала в прямом направлении.FIG. 9 is an illustration of an example forward signal paths.
На ФИГ. 10 представлена иллюстрация примера трактов прохождения сигнала в прямом направлении к пользовательскому терминалу, расположенному в пределах зоны покрытия пользовательских лучей.FIG. 10 is an illustration of an example forward signal paths to a user terminal located within the user beam coverage area.
На ФИГ. 11 представлена упрощенная иллюстрация примера модели сквозной матрицы прямого канала.FIG. 11 is a simplified illustration of an example forward channel through-matrix model.
На ФИГ. 12 представлена иллюстрация примера спутника сквозной ретрансляции, поддерживающего передачу прямых и обратных данных.FIG. 12 is an illustration of an example of an end-to-end relay satellite supporting forward and backward data transmission.
На ФИГ. 13 представлена иллюстрация примера диапазона частот восходящей линии связи, разделенного на две части.FIG. 13 is an illustration of an example of an uplink frequency band divided into two parts.
На ФИГ. 14 представлена иллюстрация примера сквозной ретрансляции с временным мультиплексированием между прямыми и обратными данными.FIG. 14 is an illustration of an example of end-to-end relay with time multiplexing between forward and reverse data.
На ФИГ. 15 представлена блок-схема компонентов примера системы сквозной ретрансляции, реализованной в виде спутника.FIG. 15 is a block diagram of the components of an example end-to-end relay system implemented as a satellite.
На ФИГ. 16 представлена блок-схема примера транспондера, содержащего устройство сдвига фазы.FIG. 16 is a block diagram of an example of a transponder containing a phase shifter.
На ФИГ. 17 представлен график примера диаграмм мощности сигнала нескольких антенных элементов.FIG. 17 is a graph of an example signal power diagrams of several antenna elements.
На ФИГ. 18 представлена иллюстрация примера контуров мощности сигнала 3 дБ для нескольких антенных элементов.FIG. 18 is an illustration of an example of 3 dB signal power contours for several antenna elements.
На ФИГ. 19 представлена иллюстрация примера перекрытия диаграмм мощности сигнала нескольких антенных элементов.FIG. 19 is an illustration of an example of overlapping signal strength patterns of multiple antenna elements.
На ФИГ. 20А-20Е представлена иллюстрация примеров перекрытия контуров мощности сигнала 3 дБ для нескольких антенных элементов.FIG. 20A-20E are illustrations of examples of 3 dB signal power loop overlap for multiple antenna elements.
На ФИГ. 21 представлена иллюстрация примера нумерации 16 антенных элементов и перекрытия их контуров мощности сигнала 3 дБ.FIG. 21 is an illustration of an example of numbering 16 antenna elements and overlapping their 3 dB signal power contours.
На ФИГ. 22 представлена таблица, показывающая пример соответствий приемных антенных элементов и передающих антенных элементов по 16 транспондерам.FIG. 22 is a table showing an example of the correspondences of receive antenna elements and transmit antenna elements over 16 transponders.
На ФИГ. 23 представлена иллюстрация поперечного сечения параболического отражателя антенны и массива элементов, центрированных в фокальной точке параболы.FIG. 23 is a cross-sectional illustration of a parabolic reflector antenna and an array of elements centered at the focal point of the parabola.
На ФИГ. 24 представлена иллюстрация поперечного сечения параболического отражателя антенны и массива элементов, расположенных на расстоянии от фокальной точки параболы.FIG. 24 is a cross-sectional illustration of a parabolic reflector antenna and an array of elements located at a distance from the focal point of the parabola.
На ФИГ. 25 представлена иллюстрация примера зоны покрытия ретранслятора (показана одинарной поперечной штриховкой) и зоны (показана двойной поперечной штриховкой), определяемой точками, расположенными в пределах зоны покрытия ретранслятора, которые также содержатся в пределах зон покрытия шести антенных элементов.FIG. 25 is an illustration of an example of a repeater coverage area (shown with single cross hatching) and an area (shown with double cross hatching) defined by points located within the coverage area of the repeater, which are also contained within the coverage areas of the six antenna elements.
На ФИГ. 26 представлен пример диаграммы направленности антенны ретранслятора, в которой все точки, находящиеся в пределах зоны покрытия ретранслятора, также содержатся в пределах зон покрытия по меньшей мере четырех антенных элементов.FIG. 26 shows an example of a repeater antenna pattern in which all points within the coverage area of the repeater are also contained within the coverage areas of at least four antenna elements.
На ФИГ. 27 представлена иллюстрация примера распределения узлов доступа (AN) и зон покрытия пользовательских лучей.FIG. 27 is an illustration of an example distribution of access nodes (ANs) and user beam coverage areas.
На ФИГ. 28 представлен пример графика нормализованной пропускной способности прямой и обратной линии связи в зависимости от числа развернутых AN.FIG. 28 is an example plot of normalized forward and reverse link throughput versus number of deployed ANs.
На ФИГ. 29 представлена блок-схема примера наземного сегмента 502 для системы сквозного формирования лучей.FIG. 29 is a block diagram of an
На ФИГ. 30 представлена блок-схема примера формирователя прямых/обратных лучей.FIG. 30 is a block diagram of an example forward/reverse beamformer.
На ФИГ. 31 представлена блок-схема примера формирователя прямых лучей, содержащего множество формирователей обратных направленных лучей с квантованием времени с демультиплексированием и мультиплексированием во временной области.FIG. 31 is a block diagram of an example of a forward beamformer including a plurality of time-sliced reverse directional beamformers with demultiplexing and time domain multiplexing.
На ФИГ. 32 представлена иллюстрация упрощенного примера наземного сегмента, показывающая работу формирователя прямых лучей с квантованием времени (TSBF).FIG. 32 is an illustration of a simplified example of a ground segment showing the operation of a time sliced forward beamformer (TSBF).
На ФИГ. 33 представлена блок-схема примера формирователя обратных лучей, содержащего множество формирователей обратных лучей с квантованием времени, с демультиплексированием и мультиплексированием во временной области.FIG. 33 is a block diagram of an example of a return beamformer including a plurality of time sliced return beamformers with demultiplexing and time domain multiplexing.
На ФИГ. 34 представлена иллюстрация упрощенного примера наземного сегмента, показывающая работу формирователя обратных лучей, в котором применяют мультиплексирование во временной области.FIG. 34 is an illustration of a simplified example of a ground segment showing the operation of a return beamformer that employs time domain multiplexing.
На ФИГ. 35 представлена блок-схема примера многополосного формирователя прямых/обратных лучей, в котором применяют демультиплексирование и мультиплексирование подполосы.FIG. 35 is a block diagram of an example of a multiband forward/reverse beamformer using demultiplexing and subband multiplexing.
На ФИГ. 36 и ФИГ. 37 представлена иллюстрация примера тактовой синхронизации для прямой линии связи.FIG. 36 and FIG. 37 is an illustration of an example clock for the forward link.
На ФИГ. 38 представлена блок-схема примера узла доступа (AN).FIG. 38 is a block diagram of an example Access Node (AN).
На ФИГ. 39 представлена блок-схема части примера AN.FIG. 39 is a block diagram of a portion of the AN example.
На ФИГ. 40 представлена блок-схема примера AN 515, в котором обработку во множестве подполос частот выполняют по отдельности.FIG. 40 is a block diagram of an example of AN 515 in which processing on multiple subbands is performed separately.
На ФИГ. 41 представлена иллюстрация примера системы сквозного формирования лучей для обеспечения охвата различных зон покрытия пользовательской линии связи и фидерной линии связи.FIG. 41 is an illustration of an example of an end-to-end beamforming system to provide coverage of different user link and feeder link coverage areas.
На ФИГ. 42 представлена иллюстрация примера модели трактов прохождения сигнала для сигналов, несущих обратные данные по сквозной обратной линии связи.FIG. 42 is an illustration of an example signal path model for signals carrying reverse data on a reverse link end-to-end.
На ФИГ. 43 представлена иллюстрация примера модели трактов прохождения сигнала для сигналов, несущих прямые данные по сквозной прямой линии связи.FIG. 43 is an illustration of an example signal path model for signals carrying direct data over a forward link end-to-end.
На ФИГ. 44A и 44B представлены иллюстрации примеров тракта прохождения прямого сигнала и тракта прохождения обратного сигнала соответственно.FIG. 44A and 44B are illustrations of examples of a forward signal path and a reverse signal path, respectively.
На ФИГ. 45 представлена иллюстрация примера видимой зоны покрытия Земли сквозного ретранслятора.FIG. 45 is an illustration of an example of the visible Earth coverage of an end-to-end repeater.
На ФИГ. 46 представлена иллюстрация примера зоны покрытия Северной Америки сквозного ретранслятора.FIG. 46 is an illustration of an example of the North American coverage area of an end-to-end repeater.
На ФИГ. 47A и 47B представлены блок-схемы примеров тракта прохождения прямого сигнала и тракта прохождения обратного сигнала соответственно, в каждом из которых предусмотрена избирательная активация множества антенных подсистем пользовательской линии связи.FIG. 47A and 47B are block diagrams of examples of a forward signal path and a reverse signal path, respectively, each of which selectively activates a plurality of user link antenna subsystems.
На ФИГ. 48A и 48B представлена иллюстрация примера зоны покрытия сквозного ретранслятора, которая включает в себя множество избирательно активируемых зон покрытия пользователя.FIG. 48A and 48B illustrate an example of an end-to-end repeater coverage area that includes a plurality of selectively activated user coverage areas.
На ФИГ. 49 представлена блок-схема примера тракта прохождения прямого сигнала, в котором предусмотрена избирательная активация множества антенных подсистем пользовательской линии связи и множества антенных подсистем фидерной линии связи.FIG. 49 is a block diagram of an example of a forward signal path that provides for selective activation of multiple user link antenna subsystems and multiple feeder link antenna subsystems.
Ссылочные обозначения (например, 100) в настоящем документе используются для обозначения аспектов чертежей. Аналогичные или подобные аспекты, как правило, показаны с использованием одинаковых чисел. Группа аналогичных или подобных элементов может обозначаться с помощью одного ссылочного обозначения (например, 200), а отдельные элементы группы могут обозначаться с помощью ссылочных обозначений с дополнительной литерой (например, 200a, 200b).Reference symbols (eg, 100) are used herein to refer to aspects of the drawings. Similar or similar aspects are generally shown using the same numbers. A group of like or similar elements may be designated with a single reference symbol (eg 200) and individual elements of the group may be designated with a supplemental reference symbol (eg 200a, 200b).
Предполагается, что фигуры не являются исчерпывающими или ограничивающими заявленное изобретение точной раскрытой формой. Раскрытый способ и устройство могут быть реализованы на практике с модификацией и изменением, и настоящее изобретение ограничено лишь пунктами формулы изобретения и их эквивалентами.The figures are not intended to be exhaustive or to limit the claimed invention to the exact form disclosed. The disclosed method and apparatus may be practiced with modification and variation, and the present invention is limited only by the claims and their equivalents.
ПОДРОБНОЕ ОПИСАНИЕDETAILED DESCRIPTION
Это подробное описание организовано следующим образом. Во-первых, описано введение в ретрансляционные системы беспроводной связи с использованием спутниковой связи и формирования лучей. Во-вторых, описано сквозное формирование лучей в целом и на уровне системы с использованием сквозного формирования лучей посредством спутника в качестве примера, хотя применение сквозного формирования лучей не ограничено видами спутниковой связи. В-третьих, оперирование прямыми и обратными данными описано в контексте сквозного формирования лучей. В-четвертых, в качестве примера с использованием спутника связи описаны сквозные ретрансляторы и их антенны. Далее описаны наземные сети для формирования сквозных лучей, включая смежные аспекты, такие как выравнивание задержек, устранение искажений в фидерной линии связи и вычисление весового коэффициента луча. В заключение описано сквозное формирование лучей с отдельными зонами покрытия пользовательской линии связи и фидерной линии связи, а также системы с множеством зон покрытия.This detailed description is organized as follows. First, an introduction to relay wireless communication systems using satellite communications and beamforming is described. Second, end-to-end beamforming in general and at the system level is described using end-to-end beamforming by satellite as an example, although the application of end-to-end beamforming is not limited to satellite communications. Third, forward and backward data handling is described in the context of end-to-end beamforming. Fourth, end-to-end repeaters and their antennas are described using a communications satellite as an example. The following describes terrestrial networks for end-to-end beamforming, including related aspects such as delay equalization, feed-link distortion, and beam weight calculation. Finally, end-to-end beamforming with separate user link and feeder link coverage areas, as well as systems with multiple coverage areas, is described.
Спутниковая связьSatellite connection
На ФИГ. 1 представлена иллюстрация примера веерной структуры спутниковой системы 100 связи. Спутник используется в качестве примера беспроводного ретранслятора. Несмотря на то что многие примеры описаны в тексте настоящего раскрытия в контексте спутника или спутниковой системы связи, предполагается, что такие примеры не ограничены спутником; может использоваться любой другой подходящий беспроводной ретранслятор, который может работать аналогичным образом. Система 100 содержит наземную станцию 101 на Земле, спутник 103 связи и наземный источник передачи на Земле, такой как пользовательский терминал 105. Зона покрытия спутника может быть в широком смысле определена как такая зона, из которой и/или в которую источник передачи на Земле или приемник на Земле, такой как наземная станция на Земле или пользовательский терминал, могут связываться через спутник. В некоторых системах зоны покрытия для каждой линии связи (например, зона покрытия прямой восходящей линии связи, зона покрытия прямой нисходящей линии связи, зона покрытия обратной восходящей линии связи и зона покрытия обратной нисходящей линии связи) могут отличаться. Зону покрытия прямой восходящей линии связи и зону покрытия обратной восходящей линии связи в совокупности называют зоной покрытия восходящей линии связи спутника. Аналогичным образом, зону покрытия прямой нисходящей линии связи и зону покрытия обратной нисходящей линии связи в совокупности называют зоной покрытия нисходящей линии связи спутника. Хотя зона покрытия спутника активна только для спутника, который находится в эксплуатации (например, находится на эксплуатационной орбите), можно считать, что у спутника имеется (например, он может быть выполнен с возможностью наличия) диаграмма направленности спутниковой антенны, которая не зависит от относительного местоположения спутника относительно Земли. Это означает, что диаграмма направленности спутниковой антенны представляет собой диаграмму распределения энергии, передаваемой от антенны спутника (передаваемой от антенны спутника или принимаемой антенной спутника). Диаграмма направленности спутниковой антенны соответствует облучению (передаче в нее или получению из нее) конкретной зоны покрытия спутника, когда спутник находится на эксплуатационной орбите. Зона покрытия спутника определяется диаграммой направленности спутниковой антенны, орбитальным положением и пространственным положением, для которого предназначен спутник, а также заданным порогом усиления антенны. Как правило, пересечение диаграммы направленности антенны (при конкретном коэффициенте усиления антенны, например, 3 дБ, 4 дБ, 6 дБ, 10 дБ от максимального коэффициента усиления) с конкретной рассматриваемой физической зоной (например, зоной на поверхности Земли или около нее) определяет зону покрытия для антенны. Антенны могут быть выполнены с возможностью обеспечения конкретной диаграммы направленности антенны (и/или зоны покрытия), и такие диаграммы направленности антенны могут быть определены путем вычислений (например, путем анализа или моделирования) и/или путем выполнения экспериментальных измерений (например, на полигоне для испытания антенн или при фактическом использовании).FIG. 1 is an illustration of an example fan structure of a
Хотя на чертеже для упрощения показан только один пользовательский терминал 105, в системе, как правило, содержится множество пользовательских терминалов 105. Спутниковая система 100 связи функционирует как точка в многоточечной системе. Это означает, что станция 101 на Земле в пределах зоны покрытия спутника может отправлять информацию на любой из пользовательских терминалов 105 и получать информацию от него в пределах зоны покрытия спутника. Однако пользовательские терминалы 105 осуществляют связь только со станцией 101 на Земле. Станция 101 на Земле принимает прямые данные от сети 107 связи, модулирует данные с помощью модема 109 фидерной линии связи и передает данные на спутник 103 по прямой восходящей фидерной линии связи 111. Спутник 103 ретранслирует эти прямые данные на пользовательские терминалы 105 по прямой пользовательской нисходящей линии связи (иногда называемой прямой эксплуатационной нисходящей линией связи) 113. В некоторых случаях передача данных в прямом направлении от станции 101 на Земле предназначена для нескольких из пользовательских терминалов 105 (например, информация является многоадресной для пользовательских терминалов 105). В некоторых случаях передача данных в прямом направлении от станции 101 на Земле предназначена только для одного пользовательского терминала 105 (например, одноадресная передача для конкретного пользовательского терминала 105). Пользовательские терминалы 105 передают обратные данные на спутник 103 по обратной пользовательской восходящей линии связи (иногда называемой обратной эксплуатационной восходящей линией связи) 115. Спутник 103 ретранслирует обратные данные на станцию 101 на Земле по обратной фидерной нисходящей линии связи 117. Модем 109 фидерной линии связи демодулирует обратные данные, которые передаются в сеть 107 связи. Эту возможность обратной связи по существу использует некоторое число пользовательских терминалов 105.Although only one
На ФИГ. 2 представлена схема, показывающая пример одной конфигурации зон покрытия луча спутника для обслуживания континентальной части США. В примере конфигурации показаны семьдесят лучей. Первый луч 201 охватывает приблизительно две трети штата Вашингтон. Второй луч 203 рядом с первым лучом 201 охватывает зону, расположенную непосредственно к востоку от первого луча 201. Третий луч 205 приблизительно охватывает Орегон к югу от первого луча 201. Четвертый луч 207 охватывает зону, расположенную приблизительно к юго-востоку от первого луча 201. Как правило, между соседними лучами имеется некоторое перекрытие. В некоторых случаях используют многоцветную (например, двух-, трех- или четырехцветную диаграмму направленности многократного использования). В примере четырехцветной диаграммы направленности лучи 201, 203, 205, 207 по отдельности определяет уникальная комбинация частоты (например, диапазон или диапазоны частот или же один или более каналов) и/или поляризации антенны (например, в некоторых случаях антенна может быть выполнена с возможностью передачи сигналов с правой круговой поляризацией (RHCP) или с левой круговой поляризацией (LHCP); доступны и другие методики поляризации). Соответственно, между передаваемыми в разных лучах 201, 203, 205, 207 сигналами могут возникать относительно небольшие взаимные помехи. Затем эти комбинации частоты и поляризации антенны могут повторно использоваться в повторяющейся не перекрывающейся «четырехцветной» диаграмме направленности многократного использования. В некоторых ситуациях желаемая пропускная способность связи может быть достигнута с использованием одного цвета. В некоторых случаях может использоваться разделение лучей во времени и/или другие методики подавления помех.FIG. 2 is a diagram showing an example of one configuration of satellite beam coverage areas for serving the continental United States. The configuration example shows seventy beams. The
В некоторых пределах фокусирование лучей в зоны меньшего размера и, таким образом, увеличение числа лучей позволяет повышать пропускную способность передачи данных спутника, обеспечивая больше возможностей для повторного использования частоты. Однако при увеличении числа лучей может повышаться уровень сложности системы, а во многих случаях и уровень сложности спутника.To some extent, focusing the beams into smaller areas, and thus increasing the number of beams, can increase the data throughput of the satellite, providing more opportunities for frequency reuse. However, as the number of beams increases, the level of system complexity, and in many cases the level of complexity of the satellite, can also increase.
Усложнение конструкции спутника, как правило, приводит к увеличению его размера, массы и энергопотребления. Выведение спутников на орбиту связано с большими затратами. Стоимость запуска спутника отчасти определяется его массой и размером. Кроме того, существуют абсолютные ограничения по массе и размеру спутника, если его запускают с использованием доступной в настоящее время ракетной технологии. Это обуславливает необходимость выбора оптимального соотношения между признаками, которые могут характеризовать спутник. Более того, количество электроэнергии, которое может подаваться на компоненты спутника, ограничено. Поэтому масса, размер и энергопотребление являются параметрами, которые необходимо учитывать при проектировании спутника.The increasing complexity of the satellite design, as a rule, leads to an increase in its size, mass and power consumption. Putting satellites into orbit is expensive. The cost of launching a satellite is partly determined by its mass and size. In addition, there are absolute limits on the mass and size of a satellite if launched using currently available rocket technology. This necessitates the choice of the optimal ratio between the features that can characterize the satellite. Moreover, the amount of electricity that can be supplied to the components of the satellite is limited. Therefore, mass, size and power consumption are parameters that must be taken into account when designing a satellite.
В тексте настоящего раскрытия термин «приемный антенный элемент» относится к физическому преобразователю, который преобразует электромагнитный сигнал в электрический сигнал, а термин «передающий антенный элемент» относится к физическому преобразователю, который выдает электромагнитный сигнал при возбуждении электрическим сигналом. Антенный элемент может включать в себя рупор, поляризованный рупор с перегородкой (например, который может функционировать как два комбинированных элемента с разной поляризацией), многопортовый многополосный рупор (например, двухдиапазонный 20 ГГц/30 ГГц с двойной поляризацией LHCP/RHCP), резонаторно-щелевую антенну, инвертированную антенну F-типа, щелевой волновод, плоскостную антенну бегущей волны, спиральную, рамочную, прямоугольную микрополосковую антенну, антенный элемент любой другой конфигурации или комбинацию взаимосвязанных подэлементов. Антенный элемент имеет соответствующую диаграмму направленности антенны, которая описывает изменение коэффициента усиления антенны в зависимости от направления (или угла). Антенный элемент также имеет зону покрытия, которая соответствует площади (например, части поверхности Земли) или объему (например, части поверхности Земли с воздушным пространством над поверхностью), в которой антенный элемент обеспечивает требуемый уровень усиления (например, в пределах 3 дБ, 6 дБ, 10 дБ или другого значения относительно максимального коэффициента усиления антенного элемента). Зона покрытия антенного элемента может быть модифицирована с помощью различных конструкций, таких как отражатель, частотно-избирательная поверхность, линзовая антенна, обтекатель и т.п. Некоторые спутники, включая описанные в настоящем документе, могут содержать несколько транспондеров, каждый из которых способен независимо принимать и передавать сигналы. Каждый транспондер соединен с антенными элементами (например, приемным элементом и передающим элементом) с образованием тракта приема/передачи сигнала, который имеет диаграмму направленности излучения (диаграмму направленности антенны), отличную от диаграмм направленности других трактов приема/передачи сигнала, для создания уникальных лучей, которые могут быть распределены по разным зонам покрытия луча. Как правило, один тракт приема/передачи сигнала является общим для множества лучей за счет применения входных и/или выходных мультиплексоров. В обоих случаях число лучей, которое может одновременно формироваться, по существу ограничено числом развернутых на спутнике трактов приема/передачи сигнала.In the text of this disclosure, the term "receiving antenna element" refers to a physical transducer that converts an electromagnetic signal into an electrical signal, and the term "transmitting antenna element" refers to a physical transducer that outputs an electromagnetic signal when excited by an electrical signal. The antenna element may include a horn, a baffled polarized horn (e.g., which can function as two combined elements with different polarizations), a multi-port multi-band horn (e.g., a dual-band 20 GHz/30 GHz LHCP/RHCP dual polarization), a resonator slot antenna, F-type inverted antenna, slotted waveguide, plane traveling wave antenna, helical, loop, rectangular microstrip antenna, antenna element of any other configuration, or a combination of interconnected sub-elements. An antenna element has a corresponding antenna pattern that describes how the antenna gain varies with direction (or angle). The antenna element also has a coverage area, which corresponds to the area (eg, part of the Earth's surface) or volume (eg, part of the Earth's surface with airspace above the surface) in which the antenna element provides the desired level of gain (eg, within 3 dB, 6 dB , 10 dB or other value relative to the maximum gain of the antenna element). The coverage area of the antenna element can be modified with various structures such as reflector, frequency selective surface, lens antenna, radome, and the like. Some satellites, including those described herein, may contain multiple transponders, each capable of independently receiving and transmitting signals. Each transponder is connected to antenna elements (for example, a receiving element and a transmitting element) to form a signal receive / transmit path, which has a radiation pattern (antenna pattern) different from the radiation patterns of other signal receive / transmit paths, to create unique beams, which can be distributed over different beam coverage areas. As a rule, one signal receiving/transmitting path is common for multiple beams due to the use of input and/or output multiplexers. In both cases, the number of beams that can be formed simultaneously is essentially limited by the number of signal receive/transmit paths deployed on the satellite.
Формирование лучаBeamforming
Формирование луча для линии связи может быть выполнено путем регулировки фазы сигнала (или временной задержки) и иногда амплитуды сигнала для сигналов, передаваемых и/или принимаемых с помощью множества элементов одной или более антенных решеток с перекрывающимися зонами покрытия. В некоторых случаях некоторые или все антенные элементы размещены в виде массива составляющих приемных и/или передающих элементов, которые взаимодействуют так, чтобы обеспечивать сквозное формирование луча, как описано ниже. Для передач (от передающих элементов одной или более антенных решеток) регулируют относительные фазы и иногда амплитуды передаваемых сигналов так, чтобы энергия, передаваемая передающими антенными элементами, структурно накладывалась в требуемом местоположении. Эту регулировку фазы/амплитуды обычно называют «применением весовых коэффициентов луча» к передаваемым сигналам. Для приема (приемными элементами одной или более антенных решеток) регулируют относительные фазы и иногда амплитуды принимаемых сигналов (т.е. применяют одинаковые или различные весовые коэффициенты луча) так, чтобы энергия, принимаемая приемными антенными элементами из требуемого местоположения, структурно накладывалась на этих приемных антенных элементах. В некоторых случаях формирователь лучей вычисляет требуемые весовые коэффициенты луча антенного элемента. В некоторых случаях термин «формирование луча» может относиться к применению весовых коэффициентов луча. Адаптивные формирователи лучей обладают функцией динамического вычисления весовых коэффициентов луча. Для вычисления весовых коэффициентов луча может потребоваться прямое или косвенное определение характеристик канала связи. Процессы вычисления весовых коэффициентов луча и применения весовых коэффициентов луча могут выполняться в одних и тех же или в разных элементах системы.Beamforming for the link may be performed by adjusting the signal phase (or time delay) and sometimes the signal amplitude for signals transmitted and/or received by multiple elements of one or more antenna arrays with overlapping coverage areas. In some cases, some or all of the antenna elements are arranged as an array of constituent receive and/or transmit elements that cooperate to provide end-to-end beamforming, as described below. For transmissions (from the transmitting elements of one or more antenna arrays), the relative phases and sometimes the amplitudes of the transmitted signals are adjusted so that the energy transmitted by the transmitting antenna elements is structurally superimposed at the desired location. This phase/amplitude adjustment is commonly referred to as "applying beam weights" to the transmitted signals. For reception (receiving elements of one or more antenna arrays), the relative phases and sometimes the amplitudes of the received signals are adjusted (i.e., the same or different beam weights are applied) so that the energy received by the receiving antenna elements from the desired location is structurally superimposed on these receiving antenna elements. In some cases, the beamformer calculates the desired antenna element beam weights. In some cases, the term "beamforming" may refer to the application of beam weights. Adaptive beamformers have a function to dynamically calculate beam weights. The calculation of the beam weights may require direct or indirect characterization of the link. The processes of calculating the beam weights and applying the beam weights may be performed in the same or different system elements.
Антенными лучами можно управлять, их можно избирательно формировать и/или иным образом изменять конфигурацию, применяя разные весовые коэффициенты луча. Например, можно изменять во времени число активных лучей, зону покрытия лучей, размеры лучей, относительное усиление лучей и другие параметры. Такая переналаживаемость требуется в некоторых ситуациях. Антенны для формирования луча могут по существу формировать относительно узкие лучи. Узкие лучи могут позволять отделять сигналы, передаваемые посредством одного луча, от сигналов, передаваемых посредством других лучей (например, во избежание возникновения помех). Соответственно, узкие лучи могут позволять повторно использовать частоту и поляризацию в большей степени, чем при формировании больших лучей. Например, лучи, которые имеют узкую форму, могут обеспечивать две несмежные зоны покрытия, которые не перекрываются. В каждом луче может использоваться как правосторонняя поляризация, так и левосторонняя поляризация. Многократное использование может приводить к увеличению объема передаваемых и/или получаемых данных.Antenna beams can be steered, selectively shaped and/or otherwise reconfigured by applying different beam weights. For example, the number of active beams, the coverage area of the beams, the sizes of the beams, the relative gain of the beams, and other parameters can be changed over time. This flexibility is required in some situations. Beamforming antennas can substantially form relatively narrow beams. Narrow beams may allow signals transmitted via one beam to be separated from signals transmitted via other beams (eg, to avoid interference). Accordingly, narrow beams may allow frequency and polarization reuse to a greater extent than when forming large beams. For example, beams that are narrowly shaped can provide two non-contiguous coverage areas that do not overlap. Each beam can use either right-hand polarization or left-hand polarization. Repeated use may result in an increase in the amount of data transmitted and/or received.
В некоторых спутниках для электронного управления массивом антенных элементов используется формирование лучей на борту (OBBF). На ФИГ. 3 представлена иллюстрация спутниковой системы 300, в которой спутник 302 имеет фазированную решетку с несколькими фидерными линиями связи на луч (MFPB) для возможности формирования лучей на борту. В этом примере весовые коэффициенты луча вычисляют в наземном вычислительном центре, а затем передают на спутник или предварительно сохраняют на спутнике для применения (не показано). На ФИГ. 3 показана прямая линия связи, хотя эта архитектура может использоваться для прямых линий связи, обратных линий связи или как прямых, так и обратных линий связи. Формирование лучей может применяться в пользовательской линии связи, фидерной линии связи или в обеих. Проиллюстрированная прямая линия связи является трактом прохождения сигнала от одного из множества шлюзов (GW) 304 к одному или более из множества пользовательских терминалов в пределах одной или более зон 306 покрытия пятна луча. Спутник 302 содержит приемную антенную решетку 307, передающую антенную решетку 309, понижающий преобразователь (D/C) и модуль 311 усиления, формирователь 313 лучей приемной антенной решетки и формирователь 315 лучей передающей антенной решетки. Спутник 302 может формировать лучи как на фидерной линии связи 308, так и на пользовательской линии связи 310. Каждый из L элементов приемной решетки 307 принимает K сигналов от K GW 304. К каждому из K создаваемых лучей фидерной линии связи (например, один луч на GW 304) применяют отличный весовой коэффициент луча (например, регулируют фазу/амплитуду) с помощью формирователя 313 лучей приемной антенной решетки для каждого сигнала, принимаемого каждым из L элементов приемной антенной решетки (приемной антенной решетки 307). Соответственно, для K лучей, формируемых с использованием приемной антенной решетки 307, содержащей L приемных антенных элементов, K различных векторов весовых коэффициентов луча длиной L применяют к L сигналам, принимаемым L элементами приемной антенной решетки. Формирователь 313 лучей приемной антенной решетки в спутнике 302 регулирует фазу/амплитуду сигналов, принимаемых L элементами приемной антенной решетки для создания K сигналов принимаемого луча. Каждый из K принимаемых лучей фокусируют для приема сигнала от одного GW 304. Соответственно, формирователь 313 лучей приемной антенной решетки выводит K сигналов принимаемого луча на D/C и модуль 311 усиления. Один такой сигнал принимаемого луча формируется для сигнала, принимаемого от каждого передающего GW 304.Some satellites use on-board beamforming (OBBF) to electronically control the array of antenna elements. FIG. 3 is an illustration of a
Модуль 311 D/C и усиления преобразует с понижением частоты каждый из K сигналов принимаемого луча и регулирует усиление соответствующим образом. K сигналов, выводимых модулем 311 D/C и усиления, передаются в формирователь 315 лучей передающей антенной решетки. Формирователь 315 лучей передающей антенной решетки применяет вектор L весовых коэффициентов к каждому из K сигналов для в совокупности L x K весовых коэффициентов передаваемого луча для формирования K лучей по пользовательской нисходящей линии связи 310.The D/C and gain
В некоторых случаях в спутнике может потребоваться значительная производительность по обработке для управления фазой и усилением каждого антенного элемента, используемого для формирования лучей. Применение таких мощностей по обработке приводит к увеличению уровня сложности спутника. В некоторых случаях спутники могут работать с наземным формированием лучей (GBBF) для снижения уровня сложности спутника с сохранением при этом преимущества электронного формирования узких лучей.In some cases, a satellite may require significant processing power to control the phase and gain of each antenna element used for beamforming. The use of such processing power leads to an increase in the level of complexity of the satellite. In some cases, satellites may operate with terrestrial beamforming (GBBF) to reduce satellite complexity while maintaining the benefits of electronic narrow beamforming.
На ФИГ. 4 представлена иллюстрация одного примера спутниковой системы 400 связи, содержащей прямое GBBF. GBBF проводят на прямой пользовательской линии связи 317 посредством массива из L элементов, аналогичных описанным выше. Фазы/амплитуды сигналов, передаваемых по пользовательской линии связи 317, взвешены так, чтобы сформировать лучи. В фидерной линии связи 319 используется схема «один фидер на луч» (SFPB), в которой каждый принимающий и передающий антенный элемент антенны 324 предназначен для одного луча фидерной линии связи.FIG. 4 is an illustration of one example of a
Перед передачей от одного GW или нескольких GW 304 к каждому из K лучей прямой фидерной линии связи формирователь 321 лучей передающей антенной решетки применяет соответствующий один из K векторов весовых коэффициентов луча, каждый из которых имеет длину L, к каждому из K передаваемых сигналов. Определение K векторов L весовых коэффициентов и их применение к сигналам позволяет формировать на земле K прямых лучей для прямой пользовательской нисходящей линии связи 317. В восходящей фидерной линии связи 319 каждый из L разных сигналов мультиплексируется с получением мультиплексированного сигнала с частотным разделением (FDM) с помощью мультиплексора 323 (или т.п.). Каждый FDM-сигнал передается с помощью GW 304 на один из приемных антенных элементов в антенне 324 по фидерной линии связи 319. FDM-приемник 325 на спутнике 327 принимает сигналы от антенны 324. Аналогово-цифровой преобразователь (A/D) 326 преобразует принятые аналоговые сигналы в цифровые сигналы. Процессор 328 цифрового канала демультиплексирует FDM-сигналы, каждый из которых был соответствующим образом взвешен формирователем 321 лучей для передачи через один из L элементов массива передающих антенных элементов передающей антенны 329. Процессор 328 цифрового канала выводит сигналы на цифро-аналоговый преобразователь (D/A) 331 для преобразования обратно в аналоговую форму. Аналоговые выходные сигналы D/A 331 преобразуются с повышением частоты и усиливаются с помощью повышающего преобразователя (U/C) и каскада 330 усиления, а затем передаются с помощью соответствующего элемента передающей антенны 329. Соответствующий процесс выполняется в обратном направлении для обратных лучей. Следует отметить, что для системы фидерной FDM-линии связи этого типа требуется в L раз большая ширина полосы пропускания, поскольку пользовательские лучи обуславливают ее неприменимость в системах с большими значениями ширины полосы для данных или в системах, которые содержат большое число элементов L.Before transmission from one GW or
Системы сквозного формирования лучейThrough beamforming systems
Описанные в настоящем документе системы сквозного формирования лучей формируют сквозные лучи через сквозной ретранслятор. Система сквозного формирования лучей может соединять пользовательские терминалы с источниками/получателями данных. В отличие от описанных выше систем формирования лучей, в системе сквозного формирования лучей в центральной системе обработки данных (CPS) вычисляют весовые коэффициенты луча, и весовые коэффициенты сквозного луча применяют в рамках наземной сети (а не на спутнике). Сигналы в сквозных лучах передаются и принимаются на массиве узлов доступа (AN), который может представлять собой спутниковый узел доступа (SAN). Как описано выше, в системе сквозного формирования лучей могут использоваться сквозные ретрансляторы любого подходящего типа, а для осуществления связи с разными типами сквозных ретрансляторов могут использоваться AN разных типов. Термин «центральная» относится к тому факту, что CPS доступна для AN, которые участвуют в передаче и/или приеме сигнала, и не относится к конкретному географическому местоположению, в котором находится CPS. Формирователь лучей в рамках CPS вычисляет один набор весовых коэффициентов сквозного луча, который учитывает: (1) тракты прохождения беспроводного сигнала в восходящей линии связи вверх к сквозному ретранслятору; (2) тракты приема/передачи сигнала через сквозной ретранслятор; и (3) тракты прохождения беспроводного сигнала в нисходящей линии связи вниз от сквозного ретранслятора. Весовые коэффициенты луча математически могут быть представлены в виде матрицы. Как описано выше, OBBF- и GBBF-спутниковые системы имеют размеры вектора весовых коэффициентов луча, определяемые числом антенных элементов на спутнике. В противоположность этому, векторы весовых коэффициентов сквозного луча имеют размеры, определяемые числом AN, а не числом элементов на сквозном ретрансляторе. В общем случае число AN не совпадает с числом антенных элементов на сквозном ретрансляторе. Дополнительно сформированные сквозные лучи не заканчиваются ни на передающих, ни на приемных антенных элементах сквозного ретранслятора. Напротив, происходит эффективная ретрансляция сформированных сквозных лучей, поскольку системы формирования сквозных лучей содержат тракты прохождения сигнала восходящей линии связи, тракты прохождения сигнала ретранслятора (посредством спутника или другого подходящего сквозного ретранслятора) и тракты прохождения сигнала нисходящей линии связи.The end-to-end beamforming systems described herein form end-to-end beams through an end-to-end repeater. An end-to-end beamforming system may connect user terminals to data sources/sinks. In contrast to the beamforming systems described above, in a central data processing system (CPS) end-to-end beamforming system, beam weights are calculated and end-to-end beam weights are applied within the terrestrial network (and not at the satellite). Through-beam signals are transmitted and received at an array of Access Nodes (ANs), which may be a Satellite Access Node (SAN). As described above, any suitable type of end-to-end relays may be used in an end-to-end beamforming system, and different types of ANs may be used to communicate with different types of end-to-end relays. The term "central" refers to the fact that the CPS is available to the ANs that are involved in transmitting and/or receiving the signal, and does not refer to the specific geographic location where the CPS is located. The beamformer within the CPS calculates one set of end-to-end beam weights that takes into account: (1) uplink wireless signal paths to the end-to-end repeater; (2) paths for receiving/transmitting a signal through an end-to-end repeater; and (3) downlink wireless signal paths from the end-to-end repeater. Beam weights can be mathematically represented as a matrix. As described above, OBBF and GBBF satellite systems have beam weight vector sizes determined by the number of antenna elements on the satellite. In contrast, end-to-end beam weight vectors have sizes determined by the number of ANs and not by the number of elements on the end-to-end relay. In general, the number of ANs does not match the number of antenna elements on the end-to-end repeater. The additionally formed through beams do not terminate either at the transmitting or receiving antenna elements of the end-to-end repeater. On the contrary, efficient retransmission of shaped end-to-end beamformers occurs because the end-to-end beamforming systems comprise uplink signal paths, repeater signal paths (via satellite or other suitable end-to-end repeater), and downlink signal paths.
Поскольку сквозное формирование луча учитывает как пользовательскую линию связи, так и фидерную линию связи (а также сквозной ретранслятор), для формирования требуемых сквозных пользовательских лучей в конкретном направлении (например, прямых пользовательских лучей или обратных пользовательских лучей) необходим лишь один набор весовых коэффициентов луча. Таким образом, один набор весовых коэффициентов сквозного прямого луча (далее называемых просто весовыми коэффициентами прямого луча) обуславливает комбинирование сигналов, передаваемых от AN через прямую восходящую линию связи, через сквозной ретранслятор, а также через прямую нисходящую линию связи, для формирования сквозных прямых пользовательских лучей (далее называемых прямыми пользовательскими лучами). И наоборот, сигналы, передаваемые обратно от пользователей через обратную восходящую линию связи, через сквозной ретранслятор и обратную нисходящую линию связи, имеют весовые коэффициенты сквозного обратного луча (далее называемые весовыми коэффициентами обратного луча), применяются для формирования сквозных обратных пользовательских лучей (далее называемых обратными пользовательскими лучами). В некоторых условиях может быть очень сложно или невозможно провести различие между характеристиками восходящей линии связи и нисходящей линии связи. Соответственно, формируемые лучи фидерной линии связи, коэффициент направленности формируемого пользовательского луча и собственное соотношение мощности сигнала на несущей к помехе (C/I) для восходящей линии связи и нисходящей линий связи могут более не иметь своей традиционной роли при проектировании системы, а концепции отношения сигнал/шум (Es/No) и сквозного C/I для восходящей линии связи и нисходящей линий связи могут быть все еще актуальными.Since end-to-end beamforming considers both the user link and the feeder link (as well as the end-to-end repeater), only one set of beam weights is needed to form the required end-to-end user beams in a particular direction (eg, forward user beams or return user beams). Thus, one set of end-to-end forward beam weights (hereinafter referred to simply as forward beam weights) causes the signals transmitted from the AN through the direct uplink, through the end-to-end repeater, and also through the direct downlink to form end-to-end direct user beams. (hereinafter referred to as direct user beams). Conversely, signals transmitted back from users through the reverse uplink, through the end-to-end repeater, and the reverse downlink have end-to-end return beam weights (hereinafter referred to as return beam weights), are applied to form end-to-end return user beams (hereinafter referred to as return custom rays). Under some conditions, it may be very difficult or impossible to distinguish between uplink and downlink characteristics. Accordingly, feedlink shaped beams, user shaped beam gain, and intrinsic carrier-to-interference (C/I) ratios for uplink and downlink may no longer have their traditional role in system design, and signal ratio concepts /noise (Es/No) and end-to-end C/I for uplink and downlink may still be relevant.
На ФИГ. 5 представлена иллюстрация примера системы 500 сквозного формирования лучей. Система 500 включает в себя: наземный сегмент 502; сквозной ретранслятор 503; и множество пользовательских терминалов 517. Наземный сегмент 502 содержит M AN 515, географически распределенных по зоне покрытия AN. AN 515 и пользовательские терминалы 517 могут в совокупности называться наземными приемниками, наземными передатчиками или наземными приемопередатчиками в зависимости от конкретной рассматриваемой функциональности, поскольку они расположены на Земле или рядом с ней и как передают, так и принимают сигналы. В некоторых случаях пользовательские терминалы 517 и/или AN 515 могут быть расположены на самолете, плавучем средстве или установлены на наземном средстве и т.д. В некоторых случаях пользовательские терминалы 517 могут быть географически распределены. AN 515 могут быть географически распределены. AN 515 обеспечивают сигналы через распределительную сеть 518 на CPS 505 в рамках наземного сегмента 502. CPS 505 подключен к источнику данных (не показан), такому как, например, интернет, головной видеоузел или другой такой объект.FIG. 5 is an illustration of an example of an end-to-
Пользовательские терминалы 517 могут быть сгруппированы с другими рядом расположенными пользовательскими терминалами 517 (например, как проиллюстрировано пользовательскими терминалами 517a и 517b). В некоторых случаях такие группы пользовательских терминалов 517 обслуживаются одним и тем же пользовательским лучом, и поэтому они находятся в пределах одной географической зоны 519 покрытия прямых и/или обратных пользовательских лучей. Пользовательский терминал 517 находится в пределах пользовательского луча, если пользовательский терминал 517 находится в пределах зоны покрытия, обслуживаемой этим пользовательским лучом. Хотя на ФИГ. 5 показана лишь одна такая зона 519 покрытия пользовательских лучей, которая содержит более одного пользовательского терминала 517, в некоторых случаях зона 519 покрытия пользовательских лучей может содержать любое подходящее число пользовательских терминалов 517. Более того, изображение на ФИГ. 5 не предназначено для указания относительного размера разных зон 519 покрытия пользовательских лучей. Это означает, что все зоны 519 покрытия пользовательских лучей могут быть примерно одного размера. Альтернативно зоны 519 покрытия пользовательских лучей могут иметь различные размеры, причем некоторые зоны 519 покрытия пользовательских лучей могут быть намного больше других. В некоторых случаях число AN 515 не равно числу зон 519 покрытия пользовательских лучей.
Сквозной ретранслятор 503 ретранслирует сигналы беспроводным образом между пользовательскими терминалами 517 и некоторым числом узлов доступа к сети, таких как AN 515, показанные на ФИГ. 5. Сквозной ретранслятор 503 содержит множество трактов прохождения сигнала. Например, каждый тракт прохождения сигнала может включать в себя по меньшей мере один приемный антенный элемент, по меньшей мере один передающий антенный элемент и по меньшей мере один транспондер (как подробно описано ниже). В некоторых случаях множество приемных антенных элементов размещено с возможностью приема сигналов, отраженных приемным отражателем, для формирования приемной антенной решетки. В некоторых случаях множество передающих антенных элементов размещено с возможностью передачи сигналов для формирования таким образом передающей антенной решетки.End-to-
В некоторых случаях сквозной ретранслятор 503 предусмотрен на спутнике. В других случаях сквозной ретранслятор 503 предусмотрен на летательном аппарате, дирижабле, башне, подводном сооружении или любой другой подходящей конструкции или транспортном средстве, в котором может быть расположен сквозной ретранслятор 503. В некоторых случаях в системе используются разные диапазоны частот (в одной и той же или в разных полосах частот) для восходящих линий связи и нисходящих линий связи. В некоторых случаях фидерные линии связи и пользовательские линии связи находятся в разных диапазонах частот. В некоторых случаях сквозной ретранслятор 503 действует в качестве пассивного или активного отражателя.In some cases, an end-to-
Как описано в настоящем документе, различные функции сквозного ретранслятора 503 обеспечивают сквозное формирование луча. Одна функция заключается в том, что сквозной ретранслятор 503 включает в себя множество транспондеров, которые в контексте систем сквозного формирования лучей индуцируют многолучевое распространение между AN 515 и пользовательскими терминалами 517. Другая функция заключается в том, что антенны (например, одна или более антенных подсистем) сквозного ретранслятора 503 участвуют в сквозном формировании луча так, чтобы при передаче правильно взвешенных сигналов лучей по многолучевому тракту, индуцированному сквозным ретранслятором 503, формировались прямые и/или обратные пользовательские лучи. Например, при прямой связи каждый из множества транспондеров принимает полученные путем наложения комбинированные прямые сигналы 521 (взвешенные по лучу) восходящей линии связи от множества (например, всех) AN 515 (называемых в настоящем документе комбинированными входными прямыми сигналами), и транспондеры выводят соответствующие составные сигналы (называемые в настоящем документе прямыми сигналами нисходящей линии связи). Каждый из прямых сигналов нисходящей линии связи может представлять собой уникальную комбинацию взвешенных по лучу прямых сигналов 521 восходящей линии связи, которые при передаче передающими антенными элементами сквозного ретранслятора 503 накладываются друг на друга с формированием пользовательских лучей 519 в требуемых местоположениях (например, в данном случае в местоположениях восстановления в пределах прямых пользовательских лучей). Возможность обратного сквозного формирования луча обеспечивается аналогичным образом. Таким образом, сквозной ретранслятор 503 может вызывать множество наложений, таким образом обеспечивая возможность сквозного формирования луча по индуцированным многолучевым каналам.As described herein, the various functions of the end-to-
Данные обратной связиFeedback data
На ФИГ. 6 представлена иллюстрация примера модели трактов прохождения сигнала для сигналов, несущих обратные данные по сквозной обратной линии связи. Данные обратной связи представляют собой данные, проходящие от пользовательских терминалов 517 на AN 515. Сигналы на ФИГ. 6 проходят справа налево. Сигналы исходят от пользовательских терминалов 517. Пользовательские терминалы 517 передают обратные сигналы 525 восходящей линии связи (которые содержат обратные потоки пользовательских данных) вверх до сквозного ретранслятора 503. Обратные сигналы 525 восходящей линии связи от пользовательских терминалов 517 в K зонах покрытия 519 пользовательских лучей принимаются массивом L трактов 1702 приема/передачи сигнала. В некоторых случаях зона покрытия восходящей линии связи для сквозного ретранслятора 503 определяется набором точек, из которых все из L приемных антенных элементов 406 могут принимать сигналы. В других случаях зона покрытия ретранслятора определяется таким набором точек, из которых подмножество (например, требуемое количество, которое больше 1, но меньше всего) L приемных антенных элементов 406 может принимать сигналы. Аналогичным образом, в некоторых случаях зона покрытия нисходящей линии связи определяется набором точек, на которые все из L передающих антенных элементов 409 могут надежно отправлять сигналы. В других случаях зона покрытия нисходящей линии связи для сквозного ретранслятора 503 определяется таким набором точек, в которые подмножество передающих антенных элементов 409 может надежно отправлять сигналы. В некоторых случаях размер подмножества приемных антенных элементов 406 или передающих антенных элементов 409 равен по меньшей мере четырем. В других случаях размер подмножества равен 6, 10, 20, 100 или любому другому числу, которое обеспечивает требуемую производительность системы.FIG. 6 is an illustration of an example of a signal path model for signals carrying reverse data on a reverse link end-to-end. The feedback data is data passing from the
Для простоты некоторые примеры описаны и/или проиллюстрированы так, что все L приемных антенных элементов 406 принимают сигналы от всех точек в зоне покрытия восходящей линии связи и/или все L передающих антенных элементов 409 передают во все точки в зоне покрытия нисходящей линии связи. Предполагается, что в таких описаниях не требуется, чтобы все L элементов принимали и/или передавали сигналы при значительном уровне сигнала. Например, в некоторых случаях подмножество L приемных антенных элементов 406 принимает сигнал восходящей линии связи (например, обратный сигнал 525 восходящей линии связи от пользовательского терминала 517 или прямой сигнал 521 восходящей линии связи от AN 515), так что подмножество приемных антенных элементов 406 принимает сигнал восходящей линии связи при уровне сигнала, близком к пиковому уровню принимаемого сигнала восходящей линии связи (например, по существу не меньше уровня сигнала, соответствующего сигналу восходящей линии связи, имеющему наивысший уровень сигнала); другие из L приемных антенных элементов 406, не входящих в подмножество, принимают сигнал восходящей линии связи при значительно более низком уровне (например, намного ниже пикового уровня принимаемого сигнала восходящей линии связи). В некоторых случаях сигнал восходящей линии связи, принимаемый каждым приемным антенным элементом подмножества, находится на уровне сигнала в пределах 10 дБ от максимального уровня сигнала, принимаемого любым из приемных антенных элементов 406. В некоторых случаях подмножество включает в себя по меньшей мере 10% приемных антенных элементов 406. В некоторых случаях подмножество включает в себя по меньшей мере 10 приемных антенных элементов 406.For simplicity, some examples are described and/or illustrated such that all L receive
Аналогичным образом, на стороне передачи подмножество L передающих антенных элементов 409 передает сигнал нисходящей линии связи на приемник на Земле (например, обратный сигнал 527 нисходящей линии связи на AN 515 или прямой сигнал 522 нисходящей линии связи на пользовательский терминал 517), так что подмножество передающих антенных элементов 409 передает сигнал нисходящей линии связи на приемник при уровне принимаемого сигнала, близком к пиковому уровню передаваемого сигнала нисходящей линии связи (например, по существу не ниже уровня сигнала, соответствующего сигналу нисходящей линии связи, имеющему наивысший уровень принимаемого сигнала); другие из L передающих антенных элементов 409, не входящие в подмножество, передают сигнал нисходящей линии связи, так что он принимается при значительно более низком уровне (например, намного ниже максимального уровня передаваемого сигнала нисходящей линии связи). В некоторых случаях уровень сигнала находится в пределах 3 дБ от уровня сигнала, соответствующего максимальному коэффициенту усиления передающих антенных элементов 409. В других случаях уровень сигнала находится в пределах 6 дБ от уровня сигнала, соответствующего максимальному коэффициенту усиления передающих антенных элементов 409. В третьих случаях уровень сигнала находится в пределах 10 дБ от уровня сигнала, соответствующего максимальному коэффициенту усиления передающих антенных элементов 409.Similarly, on the transmit side, a L subset of transmit
В некоторых случаях сигнал, принимаемый каждым приемным антенным элементом 406, происходит из одного источника (например, одного из пользовательских терминалов 517) вследствие перекрытия диаграммы направленности приемной антенны каждого приемного антенного элемента. Однако в некоторых случаях в пределах зоны покрытия сквозного ретранслятора могут иметься точки, в которых расположен пользовательский терминал и из которых не все из приемных антенных элементов могут принимать сигнал. В некоторых таких случаях может иметься значительное число приемных антенных элементов, которые не принимают (или не могут принимать) сигнал от пользовательских терминалов, находящихся в пределах зоны покрытия сквозного ретранслятора. Однако, как описано в настоящем документе, индукция многолучевого распространения сквозным ретранслятором 503 может опираться на прием сигнала по меньшей мере двумя приемными элементами.In some cases, the signal received by each receive
Как показано на ФИГ. 6 и более подробно описано ниже, в некоторых случаях тракт 1702 приема/передачи сигнала содержит приемный антенный элемент 406, транспондер 410 и передающий антенный элемент 409. В таких случаях каждый из множества транспондеров 410 принимает обратные сигналы 525 восходящей линии связи посредством соответствующего приемного антенного элемента 406. Выходной сигнал каждого тракта 1702 приема/передачи сигнала представляет собой обратный сигнал 527 нисходящей линии связи, связанный с соответствующей комбинацией принимаемых обратных сигналов восходящей линии связи. Обратный сигнал нисходящей линии связи формируется трактом 1702 приема/передачи сигнала. Обратный сигнал 527 нисходящей линии связи передается на массив из M AN 515. В некоторых случаях AN 515 помещены в географически распределенных местоположениях (например, местоположениях приема или восстановления) по всей зоне покрытия сквозного ретранслятора. В некоторых случаях каждый транспондер 410 соединяет соответствующий один из приемных антенных элементов 406 с соответствующим одним из передающих антенных элементов 409. Соответственно, существует L различных путей прохождения сигнала от пользовательского терминала 517, расположенного в зоне 519 покрытия пользовательских лучей, до конкретного AN 515. Это создает L трактов между пользовательским терминалом 517 и AN 515. L трактов между одним пользовательским терминалом 517 и одним AN 515 совместно называют сквозным обратным многолучевым каналом 1908 (см. ФИГ. 8). Соответственно, прием обратного сигнала 525 восходящей линии связи из местоположения передачи в пределах зоны 519 покрытия пользовательских лучей через L транспондеров 410 формирует L обратных сигналов 527 нисходящей линии связи, каждый из которых передается от одного из транспондеров 410 (т. е. через L совмещенных коммуникационных трактов). Каждый сквозной обратный многолучевой канал 1908 связан с вектором в матрице A r излучения восходящей линии связи, матрицей E полезной нагрузки и вектором в матрице C t излучения нисходящей линии связи. Следует отметить, что с учетом диаграмм покрытия антенных элементов в некоторых случаях некоторые из L трактов могут обладать относительно небольшой энергией (например, 6 дБ, 10 дБ, 20 дБ, 30 дБ или любым другим подходящим коэффициентом мощности, который ниже, чем у других трактов). Наложение 1706 обратного сигнала 527 нисходящей линии связи принимают на каждом из AN 515 (например, в M географически распределенных местоположениях приема или восстановления). Каждый обратный сигнал 527 нисходящей линии связи содержит наложение множества переданных обратных сигналов 527 нисходящей линии связи, что приводит к формированию соответствующего комбинированного обратного сигнала. Соответствующие комбинированные обратные сигналы соединены с формирователем 531 обратных лучей (см. ФИГ. 5 и 29).As shown in FIG. 6 and described in more detail below, in some cases, the receive/transmit
На ФИГ. 7 проиллюстрирован пример сквозной обратной линии связи 523 от одного пользовательского терминала 517, расположенного в пределах зоны 519 покрытия пользовательских лучей, на AN 515. Обратный сигнал 525 восходящей линии связи, передаваемый от пользовательского терминала 517, принимается массивом из L приемных антенных элементов 406 на сквозном ретрансляторе 503 (например, или принимается подмножеством L приемных антенных элементов 406).FIG. 7 illustrates an example of an end-to-
Ar представляет собой L x K матрицу излучения обратной восходящей линии связи. Значения матрицы излучения обратной восходящей линии связи моделируют тракт сигнала от опорного местоположения в зоне 519 покрытия пользовательских лучей до приемных антенных элементов 406 сквозного ретранслятора. Например, Ar L,1 представляет собой значение одного элемента матрицы излучения обратной восходящей линии связи (т.е. амплитуду и фазу тракта) от опорного местоположения в 1-й зоне 519 покрытия пользовательских лучей до L-го приемного антенного элемента. В некоторых случаях все из значений матрицы Ar излучения обратной восходящей линии связи могут быть ненулевыми (например, существует значительный тракт передачи сигналов от опорного местоположения до каждого из приемных антенных элементов приемной антенной решетки). Ar is an L x K reverse uplink emission matrix. The reverse uplink emission matrix values model the signal path from the reference location in the user
E (размером L x L) представляет собой матрицу полезной нагрузки и обеспечивает модель (амплитуду и фазу) трактов от приемных антенных элементов 406 на передающие антенные элементы 409. В рамках настоящего документа «полезная нагрузка» сквозного ретранслятора 503 по существу включает в себя набор компонентов сквозного ретранслятора 503, которые влияют и/или на которые влияют сигналы связи при приеме, ретрансляции через и передаче со сквозного ретранслятора 503. Например, полезная нагрузка сквозного ретранслятора может включать в себя антенные элементы, отражатели, транспондеры и т.д.; но сквозной ретранслятор может дополнительно включать в себя аккумуляторы, солнечные элементы, датчики и/или другие компоненты, не рассматриваемые в настоящем документе в качестве составной части полезной нагрузки (поскольку они не влияют на сигналы при нормальном функционировании). Рассмотрение набора компонентов в качестве полезной нагрузки позволяет математически моделировать общее воздействие сквозного ретранслятора в виде единственной матрицы E полезной нагрузки. Преобладающий тракт от каждого приемного антенного элемента 406 на каждый соответствующий передающий антенный элемент 409 моделируется значением, лежащим на диагонали матрицы E полезной нагрузки. Если предположить, что между трактами приема/передачи сигнала отсутствуют перекрестные помехи, внедиагональные значения матрицы полезной нагрузки равны нулю. В некоторых случаях перекрестные помехи могут быть не равны нулю. Изоляция трактов передачи сигнала друг от друга позволяет свести перекрестные помехи к минимуму. В некоторых случаях, поскольку перекрестные помехи пренебрежимо малы, матрицу E полезной нагрузки можно оценивать при помощи диагональной матрицы. В некоторых случаях внедиагональные значения (или любые другие подходящие значения) матрицы полезной нагрузки могут интерпретироваться как нулевые, даже когда имеется некоторое влияние на сигнал, соответствующее этим значениям, чтобы снизить математическую сложность и/или по другим причинам. E (of size L x L ) is a payload matrix and provides a model (amplitude and phase) of the paths from the receive
Ct представляет собой M x L матрицу излучения обратной нисходящей линии связи. Значения матрицы излучения обратной нисходящей линии связи моделируют тракты прохождения сигналов от передающих антенных элементов 409 до AN 515. Например, Ct 3,2 представляет собой значение матрицы излучения обратной нисходящей линии связи (например, усиление и фазу тракта) от второго передающего антенного элемента 409b на третий AN 515c. В некоторых случаях все из значений матрицы Ct излучения нисходящей линии связи могут быть ненулевыми. В некоторых случаях некоторые из значений матрицы Ct излучения нисходящей линии связи равны по существу нулю (например, диаграмма направленности антенны, создаваемая соответствующими передающими антенными элементами 409 передающей антенной решетки, такова, что передающий антенный элемент 409 не передает полезные сигналы на некоторые из AN 515). Ct is an M x L reverse downlink emission matrix. The reverse downlink emission matrix values model the signal paths from the transmit
Как можно видеть на ФИГ. 7, сквозной обратный многолучевой канал от пользовательского терминала 517 в конкретной зоне покрытия 519 пользовательских лучей до конкретного AN 515 представляет собой сумму L различных трактов. Сквозной обратный многолучевой канал имеет многолучевое распространение, индуцированное L уникальными трактами через транспондеры 410 в сквозном ретрансляторе. Как и в случае с многими многолучевыми каналами, амплитуды и фазы трактов могут складываться благоприятно (конструктивно) с определением большого усиления сквозного канала или неблагоприятно (деструктивно) с определением малого усиления сквозного канала. При большом числе разных трактов L между пользовательским терминалом и AN усиление сквозного канала может иметь распределение Рэлея амплитуды. При таком распределении нередко случается, что усиления некоторых сквозных каналов от конкретного пользовательского терминала 517 до конкретного AN 515 на 20 дБ или более ниже среднего уровня усиления канала от пользовательского терминала 517 до AN 515. Эта система сквозного формирования лучей специально индуцирует среду с многолучевым распространением для сквозного тракта от любого пользовательского терминала до любого AN.As can be seen in FIG. 7, the end-to-end reverse multipath from a
На ФИГ. 8 представлена упрощенная иллюстрация примера модели всех сквозных обратных многолучевых каналов от зон 519 покрытия пользовательских лучей до AN 515. В сквозной обратной линии связи имеется M x K таких сквозных обратных многолучевых каналов (т. е. M от каждой из K зон 519 покрытия пользовательских лучей). Каналы 1908 связывают пользовательские терминалы в одной зоне 519 покрытия пользовательских лучей с одним AN 515 по L разным трактам 1702 приема/передачи сигнала, при этом каждый тракт проходит через другой один из L трактов приема/передачи сигнала (и связанные транспондеры) ретранслятора. Хотя данный эффект в настоящем документе называется «многолучевым распространением», данное многолучевое распространение отличается от традиционного многолучевого распространения (например, в системе подвижной радиосвязи или системе многоканального входа - многоканального выхода (MIMO)), так как тракты многолучевого распространения в настоящем изобретении индуцируются намеренно (и, как описано в настоящем документе, испытывают воздействие) L трактов приема/передачи сигнала. Каждый из M x K сквозных обратных многолучевых каналов, исходящих от пользовательского терминала 517 в рамках конкретной зоны 519 покрытия пользовательских лучей, может моделироваться сквозным обратным многолучевым каналом. Каждый такой сквозной обратный многолучевой канал проходит от опорного местоположения (или местоположения восстановления) в рамках конкретной зоны 519 покрытия пользовательских лучей до одного из AN 515.FIG. 8 is a simplified illustration of an example model of all end-to-end reverse multipath channels from user
Каждый из M x K сквозных обратных многолучевых каналов 1908 может по отдельности моделироваться для вычисления соответствующего элемента M x K матрицы Hret обратных каналов. Матрица Hret обратных каналов имеет K векторов, каждый из которых обладает размерностью, равной M, так что каждый вектор моделирует усиления сквозных обратных каналов для многолучевой связи между опорным местоположением в одной из соответствующих K зон покрытия пользовательских лучей и M AN 515. Каждый сквозной обратный многолучевой канал соединяет один из M AN 515 с опорным местоположением в одном из K обратных пользовательских лучей посредством L транспондеров 410 (см. ФИГ. 7). В некоторых случаях только подмножество L транспондеров 410 на сквозном ретрансляторе 503 используется для создания сквозного обратного многолучевого канала (например, только подмножество считается входящим в тракт передачи сигналов с учетом внесения значительной энергии в сквозной обратный многолучевой канал). В некоторых случаях число пользовательских лучей K больше числа транспондеров L, входящих в тракт передачи сигналов сквозного обратного многолучевого канала. Более того, в некоторых случаях число AN M больше числа транспондеров L, входящих в тракт передачи сигналов сквозного обратного многолучевого канала 1908. В одном примере элемент Hret 4,2 матрицы Hret обратного канала соединен с каналом от опорного местоположения во второй зоне 1903 покрытия пользовательских лучей до четвертого AN 1901. Матрица Hret моделирует сквозной канал в виде произведения матриц Ct x E x Ar (см. ФИГ. 6). Каждый элемент в Hret моделирует сквозной коэффициент усиления одного сквозного обратного многолучевого канала 1908. Вследствие многолучевого характера канала он может быть подвержен глубокому замиранию. Обратные пользовательские лучи могут формироваться CPS 505. CPS 505 вычисляет весовые коэффициенты обратных лучей на основании модели этих M x K трактов передачи сигналов и формирует обратные пользовательские лучи, применяя весовые коэффициенты обратных лучей ко множеству комбинированных обратных сигналов, при этом каждый весовой коэффициент вычисляется для каждого сквозного обратного многолучевого канала, соединяющего пользовательские терминалы 517 в одной зоне покрытия пользовательских лучей с одним из множества AN 515. В некоторых случаях весовые коэффициенты обратных лучей вычисляются до приема комбинированного обратного сигнала. Существует одна сквозная обратная линия связи от каждой из K зон 519 покрытия пользовательских лучей до M AN 515. Взвешивание (т. е. присвоение комплексной относительной фазы/амплитуды) каждого из сигналов, принимаемых M AN 515, позволяет комбинировать эти сигналы, формируя обратный пользовательский луч с помощью возможности CPS 505 формировать луч в рамках наземного сегмента 502. Вычисление матрицы весовых коэффициентов луча используется для определения того, как взвешивать каждый сквозной обратный многолучевой канал 1908 для формирования множества обратных пользовательских лучей, как более подробно описано ниже. Пользовательские лучи не формируются путем непосредственного регулирования относительной фазы и амплитуды сигналов, передаваемых одним антенным элементом сквозного ретранслятора, относительно фазы и амплитуды сигналов, передаваемых другими антенными элементами сквозного ретранслятора. Вместо этого пользовательские лучи формируются путем применения весовых коэффициентов, связанных с матрицей каналов M x K, к M сигналам AN. Именно множество AN обеспечивает прием сигналов с разнесенными трактами от одного передатчика (пользовательского терминала) на множество приемников (AN), обеспечивая успешную передачу информации от любого пользовательского терминала при наличии специально индуцированного многолучевого канала.Each ofMxK end-to-end reverse
Данные прямой связиDirect connection data
На ФИГ. 9 представлена иллюстрация примера модели трактов прохождения сигнала для сигналов, несущих прямые данные по сквозной прямой линии связи 501. Данные прямой связи представляют собой данные, передаваемые от AN 515 на пользовательские терминалы 517. Сигналы на этой фигуре проходят справа налево. Сигналы исходят от M AN 515, которые расположены в зоне обслуживания сквозного ретранслятора 503. Имеется K зон 519 покрытия пользовательских лучей. Сигналы от каждого AN 515 ретранслируются L трактами 2001 приема/передачи сигнала.FIG. 9 is an illustration of an example signal path model for signals carrying forward data over the forward link end-to-
Тракты 2001 приема/передачи сигнала передают ретранслируемый сигнал на пользовательские терминалы 517 в зонах 519 покрытия пользовательских лучей. Соответственно, может иметься L различных путей прохождения сигнала от конкретного AN 515 на пользовательский терминал 517, расположенный в зоне 519 покрытия пользовательских лучей. При этом создается L трактов между каждым AN 515 и каждым пользовательским терминалом 517. Следует отметить, что вследствие диаграмм покрытия антенных элементов некоторые из L трактов могут обладать меньшей энергией, чем другие тракты.The signal receiving/transmitting
На ФИГ. 10 проиллюстрирован пример сквозной прямой линии связи 501, соединяющей множество узлов доступа в географически распределенных местоположениях с пользовательским терминалом 517 в пользовательском луче (например, расположенном в местоположении восстановления в рамках зоны 519 покрытия пользовательских лучей) посредством сквозного ретранслятора 503. В некоторых случаях сигнал прямых данных принимается на формирователе лучей до генерации прямых сигналов восходящей линии связи. Множество прямых сигналов восходящей линии связи генерируется на формирователе лучей и передается на множество AN 515. Например, каждый AN 515 принимает уникальный (взвешенный по лучу) прямой сигнал восходящей линии связи, генерируемый в соответствии с весовыми коэффициентами луча, соответствующими этому AN 515. Каждый AN 515 имеет вывод, передающий прямой сигнал восходящей линии связи посредством одной из M восходящих линий связи. Каждый прямой сигнал восходящей линии связи содержит сигнал прямых данных, связанный с прямым пользовательским лучом. Сигнал прямых данных «связан с» прямым пользовательским лучом, так как он предназначен для приема пользовательскими терминалами 517, обслуживаемыми пользовательским лучом. В некоторых случаях сигнал прямых данных содержит два или более потока пользовательских данных. Потоки пользовательских данных могут мультиплексироваться вместе путем мультиплексирования с разделением по времени или с частотным разделением и т.д. В некоторых случаях каждый поток пользовательских данных предназначен для передачи на один или более из множества пользовательских терминалов в одном прямом пользовательском луче.FIG. 10 illustrates an example of an end-to-end
Как более подробно описано ниже, каждый прямой сигнал восходящей линии связи передается с синхронизацией по времени соответствующим ему передающим AN 515. Прямые сигналы 521 восходящей линии связи, передаваемые от AN 515, принимаются множеством транспондеров 410 на сквозном ретрансляторе 503 посредством приемных антенных элементов 406 на сквозном ретрансляторе 503. Наложение 550 прямых сигналов 521 восходящей линии связи, принимаемых из географически распределенных местоположений, создает комбинированный входной прямой сигнал 545. Каждый транспондер 410 одновременно принимает комбинированный входной прямой сигнал 545. Однако каждый транспондер 410 будет принимать сигналы с немного различной синхронизацией вследствие различий в местоположении приемных антенных элементов 406, связанных с каждым транспондером 401.As described in more detail below, each direct uplink signal is transmitted in time synchronization by its respective transmit AN 515. The forward uplink signals 521 transmitted from AN 515 are received by
Cr представляет собой L x M матрицу излучения прямой восходящей линии связи. Значения матрицы излучения прямой восходящей линии связи моделируют тракт прохождения сигналов (амплитуду и фазу) от AN 515 до приемных антенных элементов 406. E представляет собой L x L матрицу полезной нагрузки и обеспечивает модель трактов прохождения сигналов транспондера от приемных антенных элементов 406 до передающих антенных элементов 409. Коэффициент усиления прямого тракта от каждого приемного антенного элемента 406 через соответствующий один из множества транспондеров до каждого соответствующего передающего антенного элемента 409 моделируется диагональными значениями матрицы полезной нагрузки. Как отмечено выше в отношении обратной линии связи, если предположить, что между элементами антенны отсутствуют перекрестные помехи, внедиагональные значения матрицы полезной нагрузки равны нулю. В некоторых случаях перекрестные помехи могут быть не равны нулю. Изоляция трактов передачи сигнала друг от друга позволяет свести перекрестные помехи к минимуму. В этом примере каждый из транспондеров 410 соединяет соответствующий один из приемных антенных элементов 406 с соответствующим одним из передающих антенных элементов 409. Соответственно, прямой сигнал 522 нисходящей линии связи, выводимый с каждого из транспондеров 410, передается каждым из множества транспондеров 410 (см. ФИГ. 9) посредством передающих антенных элементов 409 так, что прямые сигналы 522 нисходящей линии связи образуют прямой пользовательский луч (путем выполнения конструктивного и деструктивного наложения в требуемых географических местоположениях восстановления для формирования луча). В некоторых случаях формируется множество пользовательских лучей, каждый из которых соответствует географической зоне 519 покрытия пользовательских лучей, обслуживающей соответствующий набор пользовательских терминалов 517 в рамках зоны 519 покрытия пользовательских лучей. Тракт от первого передающего антенного элемента 409a (см. ФИГ. 10) до опорного местоположения (или местоположения выделения) в первой зоне 519 покрытия пользовательских лучей задан в значении At 11 матрицы излучения прямой нисходящей линии связи. Как отмечено в отношении обратной линии связи, эта система сквозного формирования лучей специально индуцирует среду с многолучевым распространением для сквозного тракта от любого AN 515 до любого пользовательского терминала 517. В некоторых случаях подмножество передающих антенных элементов 409 передает прямые сигналы 522 нисходящей линии связи, обладающие значительной энергией, на пользовательский терминал 517. Пользовательский терминал 517 (или, в более общем смысле, точка опоры или местоположение восстановления в зоне 519 покрытия пользовательских лучей для приема и/или восстановления) принимает множество прямых сигналов 522 нисходящей линии связи и восстанавливает по меньшей мере часть сигнала прямых данных из принимаемого множества прямых сигналов 522 нисходящей линии связи. Передаваемые прямые сигналы 522 нисходящей линии связи могут быть приняты пользовательским терминалом 517 при уровне сигнала в пределах 10 дБ от максимального уровня сигнала любых других сигналов, передаваемых передающими антенными элементами 409 в рамках подмножества. В некоторых случаях подмножество передающих антенных элементов включает в себя по меньшей мере 10% множества передающих антенных элементов, присутствующих в сквозном ретрансляторе 503. В некоторых случаях подмножество передающих антенных элементов включает в себя по меньшей мере 10 передающих антенных элементов независимо от того, сколько передающих антенных элементов 409 присутствуют в сквозном ретрансляторе 503. В одном случае прием множества прямых сигналов нисходящей линии связи включает в себя прием наложения 551 множества прямых сигналов нисходящей линии связи. Cr is an L x M forward uplink emission matrix. The forward uplink emission matrix values model the signal path (amplitude and phase) from the
На ФИГ. 11 представлена упрощенная иллюстрация модели всех сквозных прямых многолучевых каналов 2208 от M AN 515 до K зон 519 покрытия пользовательских лучей. Как показано на ФИГ. 11, имеется сквозной прямой многолучевой канал 2208, который соединяет каждый AN 515 с каждой зоной 519 покрытия пользовательских лучей. Каждый канал 2208 от одного AN 515 до одной зоны 519 покрытия пользовательских лучей обладает многолучевым распространением, индуцированным в результате прохождения L уникальных трактов от AN 515 через множество транспондеров к зоне 519 покрытия пользовательских лучей. Таким образом, K x M многолучевых каналов 2208 могут по отдельности моделироваться, и модель каждого используется в качестве элемента матрицы Hfwd K x M прямых каналов. Матрица Hfwd прямых каналов имеет M векторов, каждый из которых имеет размерность, равную K, так что каждый вектор моделирует сквозные прямые коэффициенты усиления для многолучевой связи между соответствующим одним из M AN 515 и опорными местоположениями (или местоположениями восстановления) в K зонах покрытия прямых пользовательских лучей. Каждый сквозной прямой многолучевой канал соединяет один из M AN 515 с пользовательскими терминалами 517, обслуживаемыми одним из K прямых пользовательских лучей посредством L транспондеров 410 (см. ФИГ. 10). В некоторых случаях только подмножество L транспондеров 410 на сквозном ретрансляторе 503 используется для создания сквозного прямого многолучевого канала (т. е. транспондеры, входящие в тракт прохождения сигналов сквозного прямого многолучевого канала). В некоторых случаях число пользовательских лучей K больше числа транспондеров L, входящих в тракт прохождения сигналов сквозного прямого многолучевого канала. Более того, в некоторых случаях число AN M больше числа транспондеров L, входящих в тракт прохождения сигналов сквозного прямого многолучевого канала.FIG. 11 is a simplified illustration of a model of all end-to-end direct
H-fwd может представлять собой сквозную прямую линию связи в виде произведения матриц At x E x Cr. Каждый элемент в Hfwd представляет собой сквозной прямой коэффициент усиления вследствие многолучевого характера тракта и может быть подвержен глубокому замиранию. Подходящий весовой коэффициент луча может вычисляться для каждого из множества сквозных прямых многолучевых каналов 2208 системой CPS 505 в рамках наземного сегмента 502 для формирования прямых пользовательских лучей от набора M AN 515 до каждой зоны 519 покрытия пользовательских лучей. Множество AN 515 обеспечивает передачу сигналов с разнесенными трактами с использованием множества передатчиков (AN) на один приемник (пользовательский терминал), обеспечивая успешную передачу информации на любой пользовательский терминал 517 при наличии специально индуцированного многолучевого канала. H-fwd may be an end-to-end direct link in the form of a product of matrices A t x E x Cr . Each element in Hfwd is an end-to-end direct gain due to the multipath nature of the path and may be subject to deep fading. A suitable beam weight may be computed for each of the multiple end-to-end direct
Комбинированные данные прямой и обратной связиCombined feed-forward and feedback data
На ФИГ. 12 проиллюстрирован пример сквозного ретранслятора, поддерживающего связь как в прямом, так и в обратном направлениях. В некоторых случаях одни и те же тракты прохождения сигналов сквозного ретранслятора (например, набор приемных антенных элементов, транспондеров и передающих антенных элементов) могут использоваться как для сквозной прямой линии связи 501, так и для сквозной обратной линии связи 523. Некоторые другие случаи включают в себя транспондеры прямой линии связи и транспондеры обратной линии связи, которые могут совместно использовать или не использовать приемные и передающие антенные элементы. В некоторых случаях система 1200 имеет множество AN и пользовательских терминалов, расположенных в одном и том же географическом регионе 1208 (который может быть, например, конкретным штатом, всей страной, регионом, всей видимой областью или любым другим подходящим географическим регионом 1208). Одиночный сквозной ретранслятор 1202 (размещенный на спутнике или любой другой подходящий сквозной ретранслятор) принимает прямые сигналы 521 восходящей линии связи от AN и передает прямые сигналы 522 нисходящей линии связи на пользовательские терминалы. В разные моменты времени или на разных частотах сквозной ретранслятор 1202 также принимает обратные сигналы 525 восходящей линии связи от пользовательских терминалов и передает обратные сигналы 527 нисходящей линии связи на AN. В некоторых случаях сквозной ретранслятор 1202 совместно используется данными прямой и обратной связи при помощи методик, таких как дуплексирование во временной области, дуплексирование в частотной области и т. п. В некоторых случаях при дуплексировании во временной области между прямыми и обратными данными используется один и тот же диапазон частот: прямые данные передаются в интервалах времени, отличающихся (не перекрывающихся) от тех, которые используются для передачи обратных данных. В некоторых случаях при дуплексировании в частотной области для прямых и обратных данных используются различные частоты, таким образом обеспечивая одновременную неинтерферирующую передачу прямых и обратных данных.FIG. 12 illustrates an example of an end-to-end repeater that supports both forward and reverse communication. In some cases, the same end-to-end relay signal paths (eg, a set of receive antenna elements, transponders, and transmit antenna elements) may be used for both the end-to-end
На ФИГ. 13 представлена иллюстрация диапазона частот восходящей линии связи, разделенного на две части. Низкочастотная (слева) часть диапазона выделена для прямой восходящей линии связи, а высокочастотная (справа) часть диапазона выделена для обратной восходящей линии связи. Диапазон восходящей линии связи может быть разделен на множество частей либо прямых, либо обратных данных.FIG. 13 is an illustration of an uplink frequency band divided into two parts. The low frequency (left) part of the band is allocated to the forward uplink, and the high frequency (right) part of the band is allocated to the reverse uplink. The uplink range may be divided into multiple portions of either forward or reverse data.
На ФИГ. 14 представлена иллюстрация прямых данных и обратных данных, подвергающихся мультиплексированию с временным разделением. Показан период кадра данных, в котором передача прямых данных происходит в первый интервал времени кадра, а передача обратных данных происходит в последний интервал времени кадра. Сквозной ретранслятор принимает сигнал от одного или более узлов доступа в первый (прямой) интервал времени приема и от одного или более из пользовательских терминалов во второй (обратный) интервал времени приема, который не перекрывается с первым интервалом времени приема. Сквозной ретранслятор передает сигнал на один или более пользовательских терминалов в первый (прямой) интервал времени передачи и на один или более узлов доступа во второй (обратный) интервал времени передачи, который не перекрывается с первым интервалом времени передачи. Кадр данных может повторяться или может изменяться динамически. Кадр может быть разделен на множество (например, несмежных) частей для прямых и обратных данных.FIG. 14 is an illustration of forward data and reverse data subjected to time division multiplexing. A data frame period is shown in which forward data transmission occurs in the first time slot of the frame and reverse data transmission occurs in the last time slot of the frame. The end-to-end relay receives a signal from one or more access nodes in a first (forward) receive time slot and from one or more of the user terminals in a second (reverse) receive time slot that does not overlap with the first receive time slot. The end-to-end relay transmits a signal to one or more user terminals in a first (forward) transmission time slot and to one or more access nodes in a second (reverse) transmission time interval that does not overlap with the first transmission time interval. The data frame may be repeated or may change dynamically. The frame may be divided into multiple (eg, non-contiguous) parts for forward and reverse data.
Спутники для сквозного формирования лучейSatellites for end-to-end beamforming
В некоторых случаях сквозной ретранслятор 503 реализуют на спутнике, так что спутник используется для ретрансляции сигналов от AN (которые в таких случаях могут называться узлами доступа к спутнику (SAN)) на пользовательские терминалы и наоборот. В некоторых случаях спутник находится на геостационарной орбите. Пример спутника, работающего в качестве сквозного ретранслятора, имеет массив приемных антенных элементов, массив передающих антенных элементов и некоторое число транспондеров, которые связывают приемные антенные элементы с передающими антенными элементами. Массивы содержат большое число антенных элементов с перекрывающимися зонами покрытия антенных элементов, аналогичных антеннам с фазированной антенной решеткой традиционной одинарной линии связи. Именно перекрывающиеся зоны покрытия антенных элементов как на передающих антенных элементах, так и на приемных антенных элементах создают описанную ранее среду с многолучевым распространением. В некоторых случаях диаграммы направленности антенны, сформированные соответствующими антенными элементами, и диаграммы направленности, являющиеся результатом перекрывающихся зон покрытия антенных элементов (например, перекрывающиеся диаграммы направленности составной направленной антенны), идентичны. Для целей настоящего раскрытия термин «идентичный» означает, что они имеют по существу одинаковое распределение мощности по заданному набору точек в пространстве, используя антенный элемент в качестве опорной точки для определения местонахождения точек в пространстве. Обеспечить полную идентичность очень сложно. Таким образом, диаграммы направленности с относительно небольшими отклонениями друг от друга входят в понятие «идентичных» диаграмм направленности. В других случаях диаграммы направленности приемной составной направленной антенны могут не быть идентичными и фактически могут значительно отличаться. Такие диаграммы направленности антенны могут все же приводить к перекрытию зон покрытия антенных элементов, однако получаемые при этом зоны покрытия не будут идентичными.In some cases, end-to-
Типы антенн включают в себя, без ограничений, отражатели с излучателями в виде антенной решетки, конфокальные решетки, прямоизлучающие решетки и другие формы антенных решеток. Каждая антенна может представлять собой систему, включающую в себя дополнительные оптические компоненты, способствующие приему и/или передаче сигналов, такие как один или более отражателей. В некоторых случаях спутник включает в себя компоненты, способствующие тактовой синхронизации системы и калибровке формирования лучей.Antenna types include, without limitation, array-radiator reflectors, confocal arrays, direct-radiating arrays, and other forms of antenna arrays. Each antenna may be a system that includes additional optical components to help receive and/or transmit signals, such as one or more reflectors. In some cases, the satellite includes components to assist in system clocking and beamforming calibration.
На ФИГ. 15 представлена схема примера спутника 1502, который может использоваться в качестве сквозного ретранслятора 503. В некоторых случаях спутник 1502 имеет передающую антенну 401, имеющую отражатель с излучателем в виде антенной решетки, и приемную антенну 402, имеющую отражатель с излучателем в виде антенной решетки. Приемная антенна 402 содержит приемный отражатель (не показан) и массив приемных антенных элементов 406. Приемные антенные элементы 406 облучаются приемным отражателем. Передающая антенна 401 содержит передающий отражатель (не показан) и массив передающих антенных элементов 409. Передающие антенные элементы 409 размещены с возможностью облучения передающего отражателя. В некоторых случаях как для приема, так и для передачи используется один отражатель. В некоторых случаях один порт антенного элемента используется для приема, а другой порт - для передачи. Некоторые антенны обладают способностью различать сигналы различной поляризации. Например, антенный элемент может включать в себя четыре волноводных порта для приема сигнала с правой круговой поляризацией (RHCP), приема сигнала с левой круговой поляризацией (LHCP), передачи сигнала RHCP и передачи сигнала LHCP соответственно. В некоторых случаях для увеличения пропускной способности системы может использоваться двойная поляризация. В других случаях может использоваться одиночная поляризация для снижения интерференции (например, с другими системами, в которых используется другая поляризация).FIG. 15 is a diagram of an
Пример спутника 1502 также содержит множество транспондеров 410. Транспондер 410 связывает выход одного приемного антенного элемента 406 со входом передающего антенного элемента 409. В некоторых случаях транспондер 410 усиливает принимаемый сигнал. Каждый приемный антенный элемент выводит уникальный принимаемый сигнал. В некоторых случаях подмножество приемных антенных элементов 406 принимает сигнал от наземного передатчика, такого как пользовательский терминал 517, в случае обратного сигнала линии связи или AN 515 в случае прямого сигнала линии связи. В некоторых из этих случаев коэффициент усиления каждого приемного антенного элемента в подмножестве для принимаемого сигнала находится в пределах относительно малого диапазона. В некоторых случаях диапазон составляет 3 дБ. В других случаях диапазон составляет 6 дБ. В еще одних случаях диапазон составляет 10 дБ. Соответственно, на каждом из множества приемных антенных элементов 406 спутника он будет принимать сигнал связи, исходящий от наземного передатчика, так чтобы подмножество приемных антенных элементов 406 принимало сигнал связи при уровне сигнала по существу не меньше уровня сигнала, соответствующего максимальному коэффициенту усиления приемного антенного элемента 406.The
В некоторых случаях на спутнике 1502 предусмотрены по меньшей мере 10 транспондеров 410. В другом случае на спутнике 1502 предусмотрены по меньшей мере 100 транспондеров 410. В еще одном случае число транспондеров на полярность может находиться в диапазоне 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, или может находиться между указанными числами, или превышать их. В некоторых случаях транспондер 410 включает в себя малошумящий усилитель (МШУ) 412, преобразователь частоты и связанные с ними фильтры 414 и усилитель мощности (PA) 420. В некоторых случаях, когда частота восходящей линии связи и частота нисходящей линии связи одинаковы, транспондер не содержит преобразователь частоты. В других случаях множество приемных антенных элементов работает на первой частоте. Каждый приемный антенный элемент 406 связан с одним транспондером 410. Приемный антенный элемент 406 соединен со входом МШУ 412. Соответственно, МШУ независимо усиливает уникальный принимаемый сигнал, обеспечиваемый приемным антенным элементом, связанным с транспондером 410. В некоторых случаях выход МШУ 412 соединен с преобразователем частоты 414. Преобразователь частоты 414 преобразует усиленный сигнал во вторую частоту.In some cases, at least 10
Выход транспондера соединен с соответствующим одним из передающих антенных элементов. В этих примерах между транспондером 410, соответствующим приемным антенным элементом 406 и соответствующим передающим антенным элементом 409 существует взаимно-однозначное соответствие, так что выход каждого приемного антенного элемента 406 соединен со входом одного и только одного транспондера, а выход этого транспондера соединен со входом одного и только одного передающего антенного элемента.The output of the transponder is connected to the corresponding one of the transmitting antenna elements. In these examples, there is a one-to-one correspondence between
На ФИГ. 16 представлена иллюстрация примера транспондера 410. Транспондер 410 может представлять собой пример транспондера сквозного ретранслятора 503, как описано выше (например, спутник 1502 на ФИГ. 15). В этом примере транспондер включает в себя устройство 418 сдвига фазы в дополнение к малошумящему усилителю (МШУ) 412, преобразователю частоты и связанным фильтрам 414, а также усилитель мощности (PA) транспондера 410. Как проиллюстрировано на ФИГ. 16, пример транспондера 410 также может быть соединен с контроллером 427 сдвига фазы. Например, контроллер 427 сдвига фазы может быть соединен (непосредственно или опосредованно) с каждым из некоторых или всех транспондеров сквозного ретранслятора 503, так что контроллер 427 сдвига фазы может по отдельности задавать фазы для каждого транспондера. Устройства сдвига фазы могут быть полезны при калибровке, например, как описано ниже.FIG. 16 is an illustration of an
АнтенныAntennas
Для создания среды с многолучевым распространением зоны покрытия антенных элементов могут перекрываться с зонами покрытия антенных элементов по меньшей мере одного другого антенного элемента с такой же полярностью, частотой и типом (передающим или приемным соответственно). В некоторых случаях множество диаграмм направленности приемной составной направленной антенны, действующих при одинаковой поляризации приема и частоте приема (например, имеющих по меньшей мере участок общей частоты приема), перекрывается друг с другом. Например, в некоторых случаях по меньшей мере 25% диаграмм направленности приемной составной направленной антенны, действующих при одинаковой поляризации приема и частоте приема (например, имеющих по меньшей мере общий участок частоты приема), перекрываются с по меньшей мере пятью другими диаграммами направленности приемной составной направленной антенны приемных антенных элементов. Аналогичным образом, в некоторых случаях по меньшей мере 25% диаграмм направленности передающей составной направленной антенны, действующих при одинаковой поляризации и частоте передачи (например, имеющих по меньшей мере общий участок частоты передачи), перекрываются с по меньшей мере пятью другими диаграммами направленности передающей составной направленной антенны. Величина перекрытия различается в разных системах. В некоторых случаях по меньшей мере один из приемных антенных элементов 406 имеет диаграммы направленности составной направленной антенны, которые перекрываются с диаграммами направленности других приемных антенных элементов 406, действующих при той же частоте приема (например, имеющих по меньшей мере общий участок частоты приема) и той же поляризации приема. Таким образом, по меньшей мере некоторые из множества приемных антенных элементов способны принимать одни и те же сигналы от одного и того же источника. В некоторых случаях по меньшей мере один из передающих антенных элементов 409 имеет диаграмму направленности составной направленной антенны, которая перекрывается с диаграммами направленности других передающих антенных элементов 409, действующих при той же частоте передачи (например, имеющих по меньшей мере общий участок частоты передачи) и той же поляризации передачи. Таким образом, по меньшей мере некоторые из множества передающих антенных элементов способны передавать сигналы, имеющие одинаковую частоту, при одинаковой поляризации на один и тот же приемник. В некоторых случаях перекрывающиеся диаграммы направленности составной направленной антенны могут иметь коэффициенты усиления, отличающиеся менее чем на 3 дБ (или любое другое подходящее значение) по всей общей географической зоне. Антенные элементы, приемные или передающие, могут иметь широкую диаграмму направленности составной направленной антенны и, таким образом, относительно широкую зону покрытия антенного элемента. В некоторых случаях сигналы, передаваемые наземным передатчиком, таким как пользовательский терминал 517 или узел 515 доступа, принимаются всеми из приемных антенных элементов 406 сквозного ретранслятора (например, спутника). В некоторых случаях подмножество элементов 406 принимает сигналы от наземного передатчика. В некоторых случаях подмножество включает в себя по меньшей мере 50% приемных антенных элементов. В других случаях подмножество включает в себя по меньшей мере 75% приемных антенных элементов. В третьих случаях подмножество включает в себя по меньшей мере 90% (например, до и включая все) приемных антенных элементов. Разные подмножества приемных антенных элементов 406 могут принимать сигналы от разных наземных передатчиков. Аналогичным образом, в некоторых случаях подмножество элементов 409 передает сигналы, которые могут быть приняты пользовательским терминалом 517. В некоторых случаях подмножество включает в себя по меньшей мере 50% передающих антенных элементов. В других случаях подмножество включает в себя по меньшей мере 75% передающих антенных элементов. В третьих случаях подмножество включает в себя по меньшей мере 90% (например, до и включая все) передающих антенных элементов. Разные подмножества элементов 409 могут передавать сигналы, которые могут приниматься разными пользовательскими терминалами. Более того, пользовательские терминалы могут находиться в пределах нескольких сформированных зон 519 покрытия пользовательских лучей. Для цели настоящего раскрытия диаграмма направленности антенны представляет собой диаграмму распределения энергии, передаваемой или принимаемой антенной. В некоторых случаях энергия может непосредственно излучаться от антенного элемента и на него. В других случаях энергия от одного или более передающих антенных элементов может отражаться одним или более отражателями, формирующими диаграмму направленности антенного элемента. Аналогичным образом, приемный элемент может принимать энергию непосредственно или после того, как энергия отразится от одного или более отражателей. В некоторых случаях антенны могут состоять из нескольких элементов, каждый из которых имеет диаграмму направленности составной направленной антенны, которая устанавливает соответствующую зону покрытия антенного элемента. Аналогичным образом, все или подмножество приемных или передающих антенных элементов, которые принимают и передают сигналы на AN 515, могут перекрываться, так что множество приемных антенных элементов принимает сигналы от одного и того же AN 515 и/или множество передающих антенных элементов передает сигналы на один и тот же AN 515.To create a multipath environment, antenna element coverage areas may overlap with antenna element coverage areas of at least one other antenna element of the same polarity, frequency, and type (transmitting or receiving, respectively). In some cases, a plurality of receive composite directional antenna patterns operating at the same receive polarization and receive frequency (eg, having at least a portion of a common receive frequency) overlap with each other. For example, in some cases, at least 25% of the receive composite directional antenna patterns operating at the same receive polarization and receive frequency (e.g., having at least a common receive frequency region) overlap with at least five other receive composite directional antenna patterns. antennas of receiving antenna elements. Similarly, in some cases, at least 25% of the transmitting composite directional antenna patterns operating at the same polarization and transmit frequency (e.g., having at least a common transmit frequency portion) overlap with at least five other transmitting composite directional antenna patterns. antennas. The amount of overlap varies from system to system. In some cases, at least one of the receive
На ФИГ. 17 представлена иллюстрация диаграмм направленности составной направленной антенны, создаваемая несколькими антенными элементами (либо приемными антенными элементами 406, либо передающими антенными элементами 409), которые пересекаются в точках 3 дБ. Диаграмма направленности 1301 составной направленной антенны первого антенного элемента имеет максимальный коэффициент усиления составной направленной антенны вдоль электрической оси 1303 направленной антенны. Как показано, диаграмма 1301 направленности составной направленной антенны затухает приблизительно на 3 дБ до того, как она пересекается с диаграммой 1305 направленности составной направленной антенны. Поскольку перекрытие каждой пары из двух смежных диаграмм направленности составной направленной антенны происходит по линии 1307, соответствующей 3 дБ, только для относительно небольшого участка диаграмм направленности составной направленной антенны, антенные элементы, создающие эти диаграммы направленности составной направленной антенны, считаются неперекрывающимися.FIG. 17 is an illustration of the radiation patterns of a composite directional antenna produced by multiple antenna elements (either receive
На ФИГ. 18 показаны идеализированные контуры 3901, 3902, 3903 диаграммы направленности антенны по уровню 3 дБ нескольких элементов 406, 409 с максимальным коэффициентом усиления, обозначенным литерой «x». Контуры 3901, 3902, 3903 в настоящем документе называют «идеализированными», поскольку для простоты контуры показаны круговыми. Однако контуры 3901, 3902, 3903 необязательно должны быть круговыми. Каждый контур указывает место, в котором мощность передаваемого или принимаемого сигнала находится на 3 дБ ниже максимального уровня. За пределами контура сигнал более чем на 3 дБ ниже максимума. Внутри контура сигнал ниже максимума менее чем на 3 дБ (т. е. находится в пределах 3 дБ от максимума). В системе, в которой зона покрытия диаграммы направленности приемной составной направленной антенны охватывает все точки, для которых коэффициент усиления приемной составной направленной антенны находится в пределах 3 дБ от максимального коэффициента усиления приемной составной направленной антенны, зону внутри контура называют «зоной покрытия антенного элемента». Контур диаграммы направленности антенны по уровню 3 дБ для каждого элемента 406, 409 не перекрывается. Это означает, что только относительно небольшой участок зоны внутри контура 3901 диаграммы направленности антенны по уровню 3 дБ перекрывается с зоной, которая находится внутри смежных контуров 3902, 3903 диаграммы направленности антенны по уровню 3 дБ.FIG. 18 shows idealized 3 dB
На ФИГ. 19 представлена иллюстрация диаграмм 1411, 1413, 1415 направленности антенны нескольких антенных элементов (либо приемных антенных элементов 406, либо передающих антенных элементов 409). В отличие от диаграмм направленности составной направленной антенны на ФИГ. 17, диаграммы направленности составной направленной антенны, показанные на ФИГ. 19, пересекаются 1417 в области выше линии 1307, соответствующей уровню 3 дБ.FIG. 19 is an illustration of
На ФИГ. 20A-20E проиллюстрированы контуры диаграммы направленности антенны по уровню 3 дБ для нескольких антенных элементов 406, 409 с центральной точкой луча (максимальный коэффициент усиления), обозначенной литерой «x». На ФИГ. 20A показан конкретный контур 1411 диаграммы направленности антенны первого антенного элемента 406. На ФИГ. 20B показаны контуры 1411, 1413 диаграммы направленности антенны по уровню 3 дБ для двух конкретных элементов 406. На ФИГ. 20C показаны контуры диаграммы направленности антенны по уровню 3 дБ для трех элементов 406. На ФИГ. 20D показаны контуры диаграммы направленности антенны по уровню 3 дБ для четырех элементов 406. На ФИГ. 20E показаны контуры диаграммы направленности антенны по уровню 3 дБ для массива из 16 антенных элементов 406. Контуры диаграммы направленности антенны по уровню 3 дБ показаны перекрывающимися в области 1418 (например, показаны 16 контуров диаграммы направленности антенны по уровню 3 дБ). Антенные элементы либо в приемной, либо в передающей антенне могут быть размещены в любой из нескольких разных конфигураций. Например, если элементы имеют по существу круговой рупорный облучатель, они могут быть размещены в виде сотовой конфигурации для плотной упаковки элементов в небольшом объеме пространства. В некоторых случаях антенные элементы выровнены в горизонтальных строках и вертикальных столбцах.FIG. 20A-20E illustrate 3 dB antenna contours for
На ФИГ. 21 представлен пример иллюстрации относительных положений контуров диаграммы направленности приемной антенны по уровню 3 дБ, связанных с приемными антенными элементами 406. Центры лучей элемента 406 пронумерованы от 1 до 16, причем элемент 4064 идентифицирован номером «4» слева вверху, присвоенным индикатору «x» центра луча. В некоторых случаях может быть более чем 16 приемных антенных элементов 406. Однако для простоты на ФИГ. 21 показаны только 16. Соответствующий массив передающих антенных элементов 409 и связанные с ними контуры диаграммы направленности антенны по уровню 3 дБ будут выглядеть аналогично ФИГ. 21. Таким образом, для простоты показан только массив приемных антенных элементов 406. Зона 2101 в центре представляет собой область, где перекрываются все зоны покрытия антенных элементов.FIG. 21 is an exemplary illustration of the relative positions of the 3 dB receive antenna footprints associated with the receive
В некоторых случаях по меньшей мере одна точка в пределах зоны покрытия ретранслятора (например, зоны покрытия спутника) находится в пределах контура диаграммы направленности антенны по уровню 3 дБ парциальных лучей нескольких антенных элементов 406. В одном таком случае по меньшей мере одна точка находится в пределах контура диаграммы направленности антенны по уровню 3 дБ по меньшей мере 100 разных антенных элементов 406. В другом случае по меньшей мере 10% зоны покрытия ретранслятора находится в пределах контуров диаграммы направленности антенны по уровню 3 дБ по меньшей мере 30 разных антенных элементов. В другом случае по меньшей мере 20% зоны покрытия ретранслятора находится в пределах контуров диаграммы направленности антенны по уровню 3 дБ по меньшей мере 20 разных антенных элементов. В другом случае по меньшей мере 30% зоны покрытия ретранслятора находится в пределах контуров диаграммы направленности антенны по уровню 3 дБ по меньшей мере 10 разных антенных элементов. В другом случае по меньшей мере 40% зоны покрытия ретранслятора находится в пределах контуров диаграммы направленности антенны по уровню 3 дБ по меньшей мере восьми разных антенных элементов. В другом случае по меньшей мере 50% зоны покрытия ретранслятора находится в пределах контуров диаграммы направленности антенны по уровню 3 дБ по меньшей мере четырех разных антенных элементов. Однако в некоторых случаях более одного из этих взаимоотношений могут быть действительными.In some cases, at least one point within the coverage area of a repeater (e.g., the coverage area of a satellite) is within the 3 dB antenna pattern contour of the partial beams of
В некоторых случаях сквозной ретранслятор имеет зону покрытия ретранслятора (например, зону покрытия спутника), в которой по меньшей мере 25% точек в зоне покрытия ретранслятора восходящей линии связи находятся в пределах (например, охватывают) перекрывающиеся зоны покрытия по меньшей мере шести приемных антенных элементов 406. В некоторых случаях 25% точек в пределах зоны покрытия ретранслятора восходящей линии связи находятся в пределах (например, охватывают) перекрывающихся зон покрытия по меньшей мере четырех приемных антенных элементов 406. В некоторых случаях сквозной ретранслятор имеет зону покрытия, в которой по меньшей мере 25% точек в зоне покрытия ретранслятора нисходящей линии связи находятся в пределах (например, охватывают) перекрывающихся зон покрытия по меньшей мере шести передающих антенных элементов 409. В некоторых случаях 25% точек в пределах зоны покрытия ретранслятора нисходящей линии связи находятся в пределах (например, охватывают) перекрывающихся зон покрытия по меньшей мере четырех передающих антенных элементов 409.In some cases, the end-to-end repeater has a repeater coverage area (e.g., satellite coverage area) in which at least 25% of the points in the uplink repeater coverage area are within (e.g., span) overlapping coverage areas of at least six receive
В некоторых случаях приемная антенна 402 может быть наведена приблизительно на ту же зону покрытия, что и передающая антенна 401, так чтобы некоторые зоны покрытия приемных антенных элементов могли естественным образом соответствовать конкретным зонам покрытия передающих антенных элементов. В этих случаях приемные антенные элементы 406 могут быть поставлены в соответствие с соответствующими передающими антенными элементами 409 посредством транспондеров 410, создавая аналогичные зоны покрытия передающих и приемных антенных элементов для каждого тракта приема/передачи сигнала. Однако в некоторых случаях может быть целесообразно поставить в соответствие приемные антенные элементы 406 с передающими антенными элементами 409, которые не соответствуют той же зоне покрытия парциального луча. Соответственно, порядок постановки в соответствие элементов 406 приемной антенны 402 с элементами 409 передающей антенны 401 может изменяться случайным (или другим) образом. Такая перестановка включает в себя случай, который приводит к тому, что приемные антенные элементы 406 не поставлены в соответствие с передающими антенными элементами 409, находящимися в том же относительном местоположении в пределах массива или имеющими такую же зону покрытия. Например, каждый приемный антенный элемент 406 в пределах массива приемных антенных элементов может быть связан с тем же транспондером 410, что и передающий антенный элемент 409, размещенный в зеркальном местоположении массива передающих антенных элементов. Любая другая перестановка может использоваться для постановки в соответствие приемных антенных элементов 406 с передающими антенными элементами 409 согласно перестановке (например, сопряжения каждого приемного антенного элемента 406 с тем же транспондером, с которым соединен соответствующий передающий антенный элемент 409 согласно конкретной перестановке приемного антенного элемента 406 и передающего антенного элемента 409).In some cases, the receive
На ФИГ. 22 представлена таблица 4200, показывающая пример соответствий приемных антенных элементов 406 и передающих антенных элементов 409 по 16 транспондерам 410. Каждый транспондер 410 имеет вход, соединенный исключительно с соответствующим приемным антенным элементом 406, и выход, соединенный исключительно с соответствующим передающим антенным элементом 409 (например, существует взаимно-однозначное соответствие между каждым приемным антенным элементом 406, одним транспондером 410 и одним передающим антенным элементом 409). В некоторых случаях на сквозном ретрансляторе (например, спутнике) могут присутствовать другие приемные антенные элементы, транспондеры и передающие антенные элементы, которые не выполнены с возможностью взаимно-однозначного соответствия (и не работают в составе системы сквозного формирования лучей).FIG. 22 is a table 4200 showing an example of the correspondences of receive
Первый столбец 4202 таблицы 4200 идентифицирует транспондер 410. Второй столбец 4204 идентифицирует приемный антенный элемент 406, с которым соединен транспондер 410 из первого столбца. Третий столбец 4206 таблицы 4200 идентифицирует связанный передающий антенный элемент 409, с которым соединен выход транспондера 410. Каждый приемный антенный элемент 406 соединен со входом транспондера 410, идентифицированного в той же строке таблицы 4200. Аналогичным образом, каждый передающий антенный элемент 409 соединен с выходом транспондера 410, идентифицированного в той же строке таблицы 4200. В третьем столбце таблицы 4200 показан пример прямого сопоставления, при котором каждый приемный антенный элемент 406 приемной антенной решетки соединен с тем же транспондером 410, что и передающий антенный элемент 409, находящийся в том же относительном местоположении в пределах передающей антенной решетки. В четвертом столбце 4208 таблицы 4200 показан пример перемежающегося сопоставления, при котором первый приемный антенный элемент 406 соединен с первым транспондером 410 и десятым передающим антенным элементом 409. Второй приемный антенный элемент 406 соединен со вторым транспондером 410 и девятым передающим антенным элементом 409 и так далее. В некоторых случаях используются другие перестановки, включая произвольное сопоставление, при котором конкретное сопряжение приемного антенного элемента 406 и передающего элемента 409 с транспондером 410 выбирается произвольно.The
Прямое сопоставление, которое стремится поддерживать зоны покрытия приемного и передающего антенных элементов как можно ближе для каждого тракта приема/передачи сигнала, по существу создает наивысшую полную пропускную способность системы. Произвольные и перемежающиеся перестановки по существу дают несколько меньшую пропускную способность, но обеспечивают более надежную систему на случай отключений AN, выхода из строя световодов в наземной сети или потери трактов приема/передачи сигнала вследствие отказов электроники на сквозном ретрансляторе (например, в одном или более транспондерах). Произвольные и перемежающиеся перестановки обеспечивают использование менее дорогостоящих нерезервированных AN. Произвольные и перемежающиеся перестановки также обеспечивают меньший разброс между пропускной способностью в наиболее эффективном луче и пропускной способностью в наименее эффективном луче. Произвольные и перемежающиеся перестановки могут также быть более полезными на начальном этапе работы системы только с частью AN, вследствие чего будет доступна только часть полной пропускной способности, но без уменьшения зоны покрытия. Примером этого является поэтапное развертывание AN, при котором система сначала работает только с 50% развернутых AN. Это может обеспечивать пропускную способность, которая меньше полной, позволяя в то же время работать по всей зоне покрытия. По мере увеличения потребности развертывается большее число AN для увеличения пропускной способности до тех пор, пока не будет достигнута полная пропускная способность, при которой все AN активны. В некоторых случаях изменение состава AN приводит к повторному расчету весовых коэффициентов лучей. Изменение состава может включать в себя изменение числа или характеристик одного или более AN. Это может потребовать повторного расчета сквозных коэффициентов усиления в прямом и/или обратном направлении.Direct matching, which seeks to keep the coverage areas of the receive and transmit antenna elements as close as possible for each receive/transmit signal path, essentially creates the highest overall system throughput. Random and interleaved permutations essentially give slightly less capacity, but provide a more robust system in the event of AN outages, failure of terrestrial fibers, or loss of receive/transmit signal paths due to electronic failures at the end-to-end repeater (for example, in one or more transponders ). Random and interleaved permutations enable the use of less expensive non-redundant ANs. The random and interleaved permutations also provide a smaller spread between the throughput in the most efficient path and the throughput in the least efficient path. Random and interleaved permutations may also be more useful early on in a system with only a portion of the AN, whereby only a fraction of the total bandwidth will be available, but without reducing the coverage area. An example of this is the phased deployment of ANs, where the system initially works with only 50% of the deployed ANs. This can provide throughput that is less than full capacity while still allowing operation over the entire coverage area. As demand increases, more ANs are deployed to increase throughput until full throughput is reached where all ANs are active. In some cases, changing the composition of the AN causes the beam weights to be recalculated. Changing the composition may include changing the number or characteristics of one or more ANs. This may require recalculation of the forward and/or reverse end-to-end gains.
В некоторых случаях антенна представляет собой зеркальную антенну с многоэлементным облучателем и параболическим отражателем. В других случаях отражатель не имеет параболической формы. Массив приемных антенных элементов 406 может быть размещен с возможностью приема сигналов, отраженных отражателем. Аналогичным образом, массив передающих антенных элементов 409 может быть размещен с возможностью образования массива для облучения отражателя. Один способ обеспечения элементов с перекрывающимися диаграммами направленности составной направленной антенны заключается в расфокусировании (дефокусировании) элементов 406, 409 вследствие того, что фокальная плоскость отражателя располагается позади (или спереди) массива элементов 406, 409 (т.е. приемная антенная решетка размещена за пределами фокальной плоскости приемного отражателя).In some cases, the antenna is a reflector antenna with a multi-element feed and a parabolic reflector. In other cases, the reflector does not have a parabolic shape. An array of receive
На ФИГ. 23 представлена иллюстрация параболического отражателя 1521 с центральным расположением облучателя в поперечном сечении. Фокусная точка 1523 лежит в фокальной плоскости 1525, перпендикулярной центральной оси 1527 отражателя 1521. Принимаемые сигналы, которые достигают отражателя 1521, двигаясь параллельно центральной оси 1527, фокусируются в фокусной точке 1523. Аналогичным образом, сигналы, которые передаются от антенного элемента, размещенного в фокусной точке, и достигают отражателя 1521, будут отражаться от отражателя 1521 с формированием сфокусированного луча параллельно центральной оси 1527. Такое размещение часто используется в системах «один облучатель на луч» для максимального увеличения направленности каждого луча и сведения к минимуму перекрытия с лучами, сформированными смежными облучателями.FIG. 23 is an illustration of a
На ФИГ. 24 представлена иллюстрация другого параболического отражателя 1621. При размещении антенных элементов 1629 (либо приемных антенных элементов, либо передающих антенных элементов 406, 409, 3416, 3419, 3426, 3429) за пределами фокальной плоскости (например, перед фокальной плоскостью 1625 отражателя 1621) тракт передаваемых сигналов 1631, которые достигают отражателя 1621, не будут параллельны друг другу при их отражении от отражателя 1621, что приводит к увеличению ширины луча по сравнению со сфокусированным лучом. В некоторых случаях отражатели имеют формы, отличные от параболической. Такие отражатели могут также приводить к расфокусированию антенны. В системе сквозного формирования лучей может использоваться этот тип расфокусированной антенны для создания перекрытия в зоне покрытия смежных антенных элементов и, таким образом, обеспечения большого числа полезных трактов приема/передачи для заданных местоположений луча в зоне покрытия ретранслятора.FIG. 24 is an illustration of another
В одном случае устанавливается зона покрытия ретранслятора, в которой 25% точек в пределах зоны покрытия ретранслятора находятся в пределах зон покрытия антенных элементов по меньшей мере шести диаграмм направленности составной направленной антенны при развертывании сквозного ретранслятора (например, сквозной спутниковый ретранслятор находится на эксплуатационной орбите). Альтернативно 25% точек в пределах зоны покрытия ретранслятора находятся в пределах зон покрытия по меньшей мере четырех приемных антенных элементов. На ФИГ. 25 представлена иллюстрация примера зоны 3201 покрытия ретранслятора (для сквозного спутникового ретранслятора, также называемой зоной покрытия спутника) (показана одинарной поперечной штриховкой) и зоны 3203 (показана двойной поперечной штриховкой), определяемой точками в пределах зоны 3201 покрытия ретранслятора, которые также содержатся в пределах зон 3205, 3207, 3209, 3211, 3213, 3215 покрытия шести антенных элементов. Зона 3201 покрытия и зоны 3205, 3207, 3209, 3211, 3213, 3215 покрытия антенных элементов могут являться либо зонами покрытия приемных антенных элементов, либо зонами покрытия передающих антенных элементов и могут быть связаны только с прямой линией связи или только с обратной линией связи. Размер зон 3205, 3207, 3209, 3211, 3213, 3215 покрытия антенных элементов определяется требуемой производительностью, которая должна обеспечиваться системой. Более устойчивая к ошибкам система может иметь более крупные зоны покрытия антенных элементов, чем менее устойчивая система. В некоторых случаях каждая зона 3205, 3207, 3209, 3211, 3213, 3215 покрытия антенных элементов охватывает все точки, для которых коэффициент усиления составной направленной антенны находится в пределах 10 дБ от максимального коэффициента усиления составной направленной антенны для антенного элемента, задающего диаграмму направленности составной направленной антенны. В других случаях каждая зона 3205, 3207, 3209, 3211, 3213, 3215 покрытия антенных элементов охватывает все точки, для которых коэффициент усиления составной направленной антенны находится в пределах 6 дБ от максимального коэффициента усиления составной направленной антенны. В третьих случаях каждая зона 3205, 3207, 3209, 3211, 3213, 3215 покрытия антенных элементов охватывает все точки, для которых коэффициент усиления составной направленной антенны находится в пределах 3 дБ от максимального коэффициента усиления составной направленной антенны. Даже когда сквозной ретранслятор еще не был развернут (например, сквозной спутниковый ретранслятор не находится на эксплуатационной орбите), сквозной ретранслятор все же имеет диаграммы направленности составной направленной антенны, которые соответствуют определению выше. Это означает, что зоны покрытия антенного элемента, соответствующие сквозному ретранслятору на орбите, могут быть рассчитаны по диаграммам направленности составной направленной антенны, даже когда сквозной ретранслятор не находится на эксплуатационной орбите. Сквозной ретранслятор может включать в себя дополнительные антенные элементы, которые не участвуют в формировании луча и, таким образом, могут не иметь вышеперечисленных характеристик.In one case, a repeater coverage area is established where 25% of the points within the repeater coverage area are within antenna element coverage areas of at least six composite directional antenna patterns when an end-to-end repeater is deployed (e.g., an end-to-end satellite repeater is in operational orbit). Alternatively, 25% of the points within the coverage area of the repeater are within the coverage areas of at least four receive antenna elements. FIG. 25 is an illustration of an example of a repeater coverage area 3201 (for an end-to-end satellite repeater, also referred to as a satellite coverage area) (shown in single cross hatching) and an area 3203 (shown in double cross hatching) defined by points within the
На ФИГ. 26 представлена иллюстрация диаграммы 3300 направленности антенны сквозного ретранслятора (например, спутника), в которой все из точек, находящихся в пределах зоны 3301 покрытия ретранслятора (например, зоны покрытия спутника), также содержатся в пределах зон 3303, 3305, 3307, 3309 покрытия по меньшей мере четырех антенных элементов. На сквозном ретрансляторе могут иметься другие антенные элементы, которые могут иметь зоны 3311 покрытия антенных элементов, содержащие не все точки, находящиеся в пределах зоны 3301 покрытия ретранслятора.FIG. 26 is an illustration of an end-to-end repeater (e.g., satellite)
Система может работать в любом подходящем спектре. Например, система сквозного формирования лучей может работать в C, L, S, X, V, Ka, Ku или другой подходящей полосе или полосах. В некоторых таких системах средства приема работают в C, L, S, X, V, Ka, Ku или другой подходящей полосе или полосах. В некоторых случаях прямая восходящая линия связи и обратная восходящая линия связи могут работать в одном и том же диапазоне частот (например, вблизи 30 ГГц); а прямая нисходящая линия связи и обратная нисходящая линия связи могут работать в неперекрывающемся диапазоне частот (например, вблизи 20 ГГц). Сквозная система может использовать любую подходящую ширину полосы (например, 500 МГц, 1 ГГц, 2 ГГц, 3,5 ГГц и т.д.). В некоторых случаях прямая и обратная линии связи используют одни и те же транспондеры.The system can operate in any suitable spectrum. For example, the end-to-end beamforming system may operate in C, L, S, X, V, Ka, Ku, or other suitable band or bands. In some such systems, the receiving means operates in C, L, S, X, V, Ka, Ku, or other suitable band or bands. In some cases, the forward uplink and reverse uplink may operate in the same frequency range (eg, around 30 GHz); and the forward downlink and reverse downlink may operate in a non-overlapping frequency range (eg, around 20 GHz). The end-to-end system may use any suitable bandwidth (eg, 500 MHz, 1 GHz, 2 GHz, 3.5 GHz, etc.). In some cases, the forward and reverse links use the same transponders.
Для того чтобы способствовать тактовой синхронизации системы, длины трактов L транспондеров заданы так, чтобы в некоторых случаях они соответствовали временным задержкам распространения сигналов, например, путем подбора подходящей длины кабеля. Сквозной ретранслятор (например, спутник) в некоторых случаях имеет генератор 426 радиомаяка ретранслятора (например, спутникового радиомаяка) в рамках модуля 424 поддержки калибровки (см. ФИГ. 15). Генератор 426 радиомаяка генерирует сигнал радиомаяка ретранслятора. Сквозной ретранслятор транслирует сигнал радиомаяка ретранслятора, чтобы дополнительно содействовать тактовой синхронизации системы, а также поддерживать калибровку фидерной линии связи. В некоторых случаях сигнал радиомаяка ретранслятора представляет собой псевдослучайную (известную как PN) последовательность, такую как сигнал с расширенным спектром с кодом прямой последовательности PN, который проходит с высокой скоростью передачи элементов сигнала (например, 100, 200, 400 или 800 миллионов элементарных сигналов в секунду (Мчип/с) или любое другое подходящее значение). В некоторых случаях радиомаяк ретранслятора (например, спутника) с линейной поляризацией транслирует сигналы, принимаемые антеннами RHCP и LHCP, в широкой зоне покрытия антенной, такой как рупорная антенна (не показана), или соединен с одним или более транспондерами 410 для передачи через связанный передающий антенный элемент 409. В одном примере системы лучи формируются во множестве каналов с шириной полосы 500 МГц в Ka-полосе, а PN-код 400 Мчип/с подвергается фильтрации или изменению формы импульса так, чтобы она входила в канал с шириной полосы 500 МГц. При использовании множества каналов в каждом из каналов может передаваться один и тот же PN-код. В системе может использоваться один радиомаяк для каждого канала или один радиомаяк для двух или более каналов.In order to promote system clock synchronization, the lengths of the paths L of the transponders are set so that in some cases they correspond to the propagation time delays of the signals, for example, by selecting an appropriate cable length. An end-to-end repeater (eg, satellite) in some cases has a repeater (eg, satellite beacon)
Поскольку в сквозном ретрансляторе может иметься большое число трактов приема/передачи сигнала, резервирование отдельных трактов приема/передачи сигнала может не требоваться. При отказе тракта приема/передачи сигнала система может по-прежнему работать на уровне производительности, очень близком к ее прежнему уровню, хотя для того, чтобы учесть потери, может применяться модификация коэффициентов формирования лучей.Since there may be a large number of signal receiving/transmitting paths in an end-to-end repeater, redundancy of individual signal receiving/transmitting paths may not be required. In the event of a failure of the receive/transmit signal path, the system may still operate at a performance level very close to its previous level, although a modification of the beamforming factors may be applied to account for losses.
Наземные сетиTerrestrial networks
Наземная сеть примера системы сквозного формирования лучей содержит некоторое число географически распределенных наземных станций узлов доступа (AN), наведенных на общий сквозной ретранслятор. Рассматривая сначала прямую линию связи, отметим, что центральная система обработки данных (CPS) вычисляет весовые коэффициенты луча для передачи пользовательских данных и взаимодействует с AN через распределительную сеть. CPS также взаимодействует с источниками данных, предоставляемых на пользовательские терминалы. Распределительная сеть может быть реализована различными способами, например, с использованием волоконно-оптической кабельной инфраструктуры. Синхронизация между CPS и SAN может быть детерминированной (например, с использованием коммутируемых каналов) или недетерминированной (например, с использованием сети с коммутацией пакетов). В некоторых случаях CPS реализуют в единственном пункте, например, с использованием специализированных интегральных схем (ASIC) для управления обработкой сигналов. В некоторых случаях CPS реализуют распределенным образом, например, с использованием методик облачных вычислений.The terrestrial network of an exemplary end-to-end beamforming system comprises a number of geographically dispersed access node (AN) ground stations pointed to a common end-to-end repeater. Considering the forward link first, note that the central data processing system (CPS) calculates the beam weights for transmitting user data and communicates with the AN via a distribution network. The CPS also interacts with data sources provided to user terminals. The distribution network can be implemented in various ways, for example, using a fiber optic cable infrastructure. Synchronization between the CPS and the SAN may be deterministic (eg, using switched circuits) or non-deterministic (eg, using a packet-switched network). In some cases, the CPS is implemented at a single point, such as using application specific integrated circuits (ASICs) to control signal processing. In some cases, the CPS is implemented in a distributed manner, such as using cloud computing techniques.
Как показано в примере на ФИГ. 5, CPS 505 может включать в себя множество модемов 507 фидерной линии связи. Для прямой линии связи каждый из модемов 507 фидерной линии связи принимает прямые потоки 509 пользовательских данных от различных источников данных, таких как интернет, головной видеоузел (не показаны) и т.д. Принимаемые прямые потоки 509 пользовательских данных модулируются модемами 507 с формированием K сигналов 511 прямого луча. В некоторых случаях K может находиться в диапазоне 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 или промежуточных или больших чисел. Каждый из K сигналов прямого луча переносит прямые потоки пользовательских данных, подлежащих передаче одним из K прямых пользовательских лучей. Соответственно, если K = 400, то имеется 400 сигналов 511 прямого луча, каждый из которых передается по соответствующему одному из 400 прямых пользовательских лучей в зону 519 покрытия прямых пользовательских лучей. K сигналов 511 прямых лучей соединены с формирователем прямых лучей.As shown in the example in FIG. 5,
Если в наземном сегменте 502 присутствуют M AN 515, выход формирователя прямых лучей представляет собой M специфических для узла доступа прямых сигналов 516, каждый из которых содержит взвешенные сигналы прямого луча, соответствующие некоторым или всем из K сигналов 511 прямого луча. Формирователь прямых лучей может генерировать M специфических для узла доступа прямых сигналов 516 на основе матричного произведения матрицы K x M весовых коэффициентов прямого луча на K сигналов прямых данных. Распределительная сеть 518 распределяет каждый из M специфических для узла доступа прямых сигналов к соответствующему одному из M AN 515. Каждый AN 515 передает прямой сигнал 521 восходящей линии связи, содержащий соответствующий специфический для узла доступа прямой сигнал 516. Каждый AN 515 передает свой соответствующий прямой сигнал 521 восходящей линии связи для ретранслятора в одну или более (например, до и включая все) зон покрытия прямых пользовательских лучей по одному или более (например, до и включая все) трактам приема/передачи прямого сигнала сквозного ретранслятора. Транспондеры 410, 411 в рамках сквозного ретранслятора 503 принимают комбинированный входной прямой сигнал, содержащий наложение 550 прямых сигналов 521 восходящей линии связи, передаваемых множеством (например, до и включая все) AN 515. Каждый транспондер (например, каждый тракт приема/передачи сигнала через ретранслятор) ретранслирует комбинированный входной прямой сигнал в качестве соответствующего прямого сигнала нисходящей линии связи на пользовательский терминал 517 по нисходящей линии связи в прямом направлении.If
На ФИГ. 27 представлена иллюстрация примера распределения AN 515. Каждая из меньших пронумерованных окружностей представляет местоположение AN 515. Каждая из более крупных окружностей указывает зону 519 покрытия пользовательских лучей. В некоторых случаях AN 515 разнесены приблизительно равномерно по зоне покрытия сквозного ретранслятора 503. В других случаях AN 515 могут быть распределены неравномерно по всей зоне покрытия. В третьих случаях AN 515 могут быть распределены равномерно или неравномерно по одной или более подобластям зоны покрытия ретранслятора. Как правило, производительность системы наивысшая, когда AN 515 равномерно распределены по всей зоне покрытия. Однако факторы могут обуславливать компромиссы при размещении AN. Например, AN 515 может быть размещен с учетом величины интерференции, дождя или других условий окружающей среды, стоимости объекта недвижимости, доступа к распределительной сети и т.д. Например, для системы сквозного ретранслятора на базе спутника, чувствительной к дождю, большее число AN 515 может быть помещено в зоны, которые с меньшей вероятностью будут подвергаться замиранию, вызванному дождем (например, на западе США). В качестве другого примера, AN 515 могут быть более плотно размещены в дождливых районах (например, на юго-востоке США) для обеспечения некоторого коэффициента усиления при разнесенном приеме с целью противодействия эффектам замирания, вызванным дождем. AN 515 могут быть размещены вдоль волоконно-оптических трасс для снижения затрат на распределение, связанных с AN 515.FIG. 27 is an illustration of an example of an AN 515 distribution. Each of the smaller numbered circles represents the location of the
Число AN 515 M может представлять собой выбираемый параметр, который может быть выбран на основе нескольких критериев. Меньшее число AN может приводить к созданию более простого и менее дорогостоящего наземного сегмента и меньшим эксплуатационным расходам на распределительную сеть. При большем числе AN система будет иметь более высокую производительность. На ФИГ. 28 показано моделирование нормализованной пропускной способности прямой и обратной линий связи в зависимости от числа развернутых AN в примере системы. Нормализованная пропускная способность представляет собой пропускную способность при M AN, разделенную на пропускную способность, полученную при наибольшем числе AN при моделировании. Пропускная способность возрастает по мере увеличения числа AN, но не увеличивается неограниченно. Пропускная способность как прямой, так и обратной линии связи приближается к асимптотическому пределу по мере увеличения числа AN. Это моделирование выполнялось при L = 517 передающих и приемных антенных элементов и при AN, распределенных равномерно по зоне покрытия, но это асимптотическое поведение пропускной способности можно наблюдать и при других значениях L и других пространственных распределениях AN. Кривые, аналогичные показанным на ФИГ. 28, могут быть полезны при выборе M, числа развертываемых AN, и для понимания того, как пропускная способность системы может вводиться в эксплуатацию по мере поэтапного развертывания AN, как описано ранее.The number AN 515 M may be a selectable parameter that may be selected based on several criteria. Fewer ANs can result in a simpler and less costly ground segment and lower operating costs for the distribution network. With more ANs, the system will have better performance. FIG. 28 shows a simulation of the normalized throughput of the forward and reverse links as a function of the number of ANs deployed in the example system. The normalized throughput is the throughput at M AN divided by the throughput obtained at the largest number of ANs in the simulation. Throughput increases as the number of ANs increases, but does not increase indefinitely. The throughput of both the forward and reverse links approaches the asymptotic limit as the number of ANs increases. This simulation was performed with L = 517 transmit and receive antenna elements and with AN distributed uniformly over the coverage area, but this asymptotic behavior of the throughput can be observed for other values of L and other spatial distributions of AN. Curves similar to those shown in FIG. 28 can be useful in choosing M , the number of ANs to be deployed, and in understanding how system capacity can be brought into use as ANs are phased in as described previously.
На ФИГ. 29 представлена блок-схема примера наземного сегмента 502 для системы сквозного формирования лучей. На ФИГ. 29 может быть проиллюстрирован, например, наземный сегмент 502 ФИГ. 5. Наземный сегмент 502 содержит CPS 505, распределительную сеть 518 и AN 515. CPS 505 содержит интерфейс 524 сигнала луча, формирователь 513 прямых/обратных лучей, распределительный интерфейс 536 и генератор 910 весовых коэффициентов луча.FIG. 29 is a block diagram of an
Для прямой линии связи интерфейс 524 сигнала луча получает сигналы 511 прямого луча (FBS), связанные с каждым из прямых пользовательских лучей. Интерфейс 524 сигнала луча может включать в себя мультиплексор 526 данных прямого луча и модулятор 528 потока данных прямого луча. Мультиплексор 526 данных прямого луча может принимать прямые потоки 509 пользовательских данных, содержащие прямые данные для передачи на пользовательские терминалы 517. Прямые потоки 509 пользовательских данных могут содержать, например, пакеты данных (например, TCP-пакеты, UDP-пакеты и т.д.) для передачи на пользовательские терминалы 517 посредством системы 500 сквозного формирования лучей на ФИГ. 5. Мультиплексор 526 данных прямого луча группирует (например, мультиплексирует) прямые потоки 509 пользовательских данных по соответствующим им зонам покрытия прямых пользовательских лучей для получения потоков 532 данных прямого луча. Мультиплексор 526 данных прямого луча может использовать, например, мультиплексирование во временной области, мультиплексирование в частотной области или комбинацию методик мультиплексирования для генерирования потоков 532 данных прямого луча. Модулятор 528 потока данных прямого луча может модулировать потоки 532 данных прямого луча согласно одной или более схемам модуляции (например, определение соответствия битов данных с символами модуляции) для создания сигналов 511 прямого луча, которые поступают на формирователь 513 прямых/обратных лучей. В некоторых случаях модулятор 528 может выполнять частотное мультиплексирование множества модулированных сигналов для создания сигнала 511 с несколькими несущими. Интерфейс 524 сигнала луча может, например, реализовывать функциональность модемов 507 фидерной линии связи, описанных со ссылкой на ФИГ. 5.For the forward link, the
Формирователь 513 прямых/обратных лучей может включать в себя формирователь 529 прямых лучей и формирователь 531 обратных лучей. Генератор 910 весовых коэффициентов луча генерирует матрицу 918 из M x K весовых коэффициентов прямого луча. Методики генерирования матрицы 918 из M x K весовых коэффициентов прямого луча более подробно описаны ниже. Формирователь 529 прямых лучей может включать в себя матричный умножитель, который рассчитывает M специфических для узла доступа прямых сигналов 516 (ANFS). Например, этот расчет может быть основан на матричном произведении матрицы 918 из M x K весовых коэффициентов прямого луча и вектора из K сигналов 511 прямого луча. В некоторых примерах каждый из K сигналов 511 прямого луча может быть связан с одной из F подполос частот в прямом направлении. В этом случае формирователь 529 прямых лучей может генерировать выборки для M специфических для узла доступа прямых сигналов 516 для каждой из F подполос частот в прямом направлении (например, фактически реализуя операцию матричного произведения для каждой из F подполос для соответствующих подмножеств из K сигналов 511 прямого луча). Распределительный интерфейс 536 распределяет (например, посредством распределительной сети 518) M специфических для узла доступа прямых сигналов 516 по соответствующим AN 515.The forward/reverse
Для обратной линии связи распределительный интерфейс 536 получает комбинированные обратные сигналы 907 от AN 515 (например, посредством распределительной сети 518). Каждый сигнал обратных данных от пользовательских терминалов 517 может быть включен во множество (например, до и включая все) комбинированных обратных сигналов 907. Генератор 910 весовых коэффициентов луча генерирует матрицу 937 из K x M весовых коэффициентов обратного луча. Методики генерирования матрицы 937 из K x M весовых коэффициентов обратного луча более подробно описаны ниже. Формирователь 531 обратных лучей рассчитывает K сигналов 915 обратного луча для K зон покрытия обратных пользовательских лучей. Например, этот расчет может быть основан на матричном произведении матрицы 937 из весовых коэффициентов обратного луча и вектора из соответствующих комбинированных обратных сигналов 907. Интерфейс 524 сигнала луча может включать в себя демодулятор 552 сигналов обратного луча и демультиплексор 554 данных обратного луча. Демодулятор 552 сигналов обратного луча может демодулировать каждый из сигналов обратного луча для получения K потоков 534 данных обратного луча, связанных с K зонами покрытия обратных пользовательских лучей. Демультиплексор 554 потока данных обратного луча может демультиплексировать каждый из K потоков 534 данных обратного луча в соответствующие обратные потоки 535 пользовательских данных, связанные с сигналами обратных данных, передаваемых от пользовательских терминалов 517. В некоторых примерах каждый из обратных пользовательских лучей может быть связан с одной из R подполос частот в обратном направлении. В этом случае формирователь 531 обратных лучей может генерировать соответствующие подмножества сигналов 915 обратного луча, связанных с каждой из R подполос частот в обратном направлении (например, фактически реализуя операцию матричного произведения для каждой из R подполос частот в обратном направлении для соответствующих подмножеств сигналов 915 обратного луча).For the reverse link,
На ФИГ. 30 представлена блок-схема примера формирователя 513 прямых/обратных лучей. Формирователь 513 прямых/обратных лучей содержит формирователь 529 прямых лучей, прямой модуль 945 синхронизации, формирователь 531 обратных лучей и модуль 947 синхронизации. Прямой модуль 945 синхронизации связывает каждый из M специфических для узла доступа прямых сигналов 516 с временной меткой (например, мультиплексирует временную метку со специфическим для узла доступа прямым сигналом с формированием мультиплексированного специфического для узла доступа прямого сигнала), которая указывает, когда сигнал должен достичь сквозного ретранслятора. Таким образом, данные K сигналов 511 прямого луча, которые разделяются в модуле 904 разделения в рамках формирователя 529 прямых лучей, могут передаваться в соответствующий момент времени на каждый из AN 515. Модуль 947 синхронизации выстраивает принимаемые сигналы на основе временных меток. Выборки M комбинированных обратных сигналов 907 AN (CRS) связаны с временными метками, указывающими, когда конкретные выборки были переданы со сквозного ретранслятора. Вопросы синхронизации и генерация временных меток более подробно описаны ниже.FIG. 30 is a block diagram of an example of forward/reverse
Формирователь 529 прямых лучей содержит вход 925 данных, вход 920 весовых коэффициентов луча и выход 923 узла доступа. Формирователь 529 прямых лучей применяет значения M x K матрицы весовых коэффициентов луча к каждому из K прямых сигналов 511 данных для генерации M специфических для узла доступа прямых сигналов 521, каждый из которых содержит K взвешенных сигналов прямого луча. Формирователь 529 прямых лучей может содержать модуль 904 разделения и M модулей 533 присвоения прямых весовых коэффициентов и суммирования. Модуль 904 разделения разделяет (например, дублирует) каждый из K сигналов 511 прямого луча на M групп 906 K сигналов прямого луча, по одной группе 906 для каждого из M модулей 533 присвоения прямых весовых коэффициентов и суммирования. Соответственно, каждый модуль 533 присвоения прямых весовых коэффициентов и суммирования принимает все K прямых сигналов 511 данных.
Генератор 917 весовых коэффициентов прямого луча генерирует M x K матрицу 918 весовых коэффициентов прямого луча. В некоторых случаях матрицу 918 весовых коэффициентов прямого луча генерируют на основе матрицы канала, элементы которой представляют собой оценки сквозных прямых коэффициентов усиления для каждого из K x M сквозных прямых многолучевых каналов для формирования матрицы прямого канала, как дополнительно описано ниже. Оценки сквозного прямого коэффициента усиления получают из модуля 919 оценки канала. В некоторых случаях модуль оценки канала содержит хранилище 921 данных канала, в котором хранятся данные, относящиеся к различным параметрам сквозных многолучевых каналов, как более подробно описано ниже. Модуль 919 оценки канала выводит расчетный сигнал сквозного усиления для обеспечения генерации генератором 917 весовых коэффициентов прямого луча матрицы 918 весовых коэффициентов прямого луча. Каждый из модулей 533 присвоения весовых коэффициентов и суммирования соединен для приема соответствующих векторов весовых коэффициентов формирования луча из матрицы 918 весовых коэффициентов прямого луча (для простоты на ФИГ. 30 показано лишь одно такое соединение). Первый модуль 533 присвоения весовых коэффициентов и суммирования применяет весовой коэффициент, равный значению элемента 1,1 M x K матрицы 918 весовых коэффициентов прямого луча, к первому из K сигналов 511 прямого луча (более подробно описано ниже). Весовой коэффициент, равный значению элемента 1,2 M x K матрицы 918 весовых коэффициентов прямого луча, применяют ко второму из K сигналов 511 прямого луча. Другие весовые коэффициенты матрицы применяют аналогичным образом к K-му сигналу 511 прямого луча, который взвешен с использованием значения, равного элементу 1,K M x K матрицы 918 весовых коэффициентов прямого луча. Затем каждый из K взвешенных сигналов 903 прямого луча суммируют и выводят из первого модуля 533 присвоения весовых коэффициентов и суммирования в виде специфического для узла доступа прямого сигнала 516. Затем специфический для узла доступа прямой сигнал 516, выводимый первым модулем 533 присвоения весовых коэффициентов и суммирования, передают в модуль 945 синхронизации. Модуль 945 синхронизации выводит специфический для узла доступа прямой сигнал 516 на первый AN 515 через распределительную сеть 518 (см. ФИГ. 5). Аналогичным образом, каждый из других модулей 533 присвоения весовых коэффициентов и суммирования принимает K сигналов 511 прямого луча и выполняет присвоение весовых коэффициентов и суммирование K сигналов 511 прямого луча. Выходные сигналы от каждого из M модулей 533 присвоения весовых коэффициентов и суммирования передают через распределительную сеть 518 на связанные M AN 515 таким образом, чтобы выходной сигнал от m-го модуля присвоения весовых коэффициентов и суммирования был передан на m-й AN 515. В некоторых случаях модуль 945 синхронизации выполняет обработку в случаях неустойчивой синхронизации и неравномерной задержки в распределительной сети, а также при возникновении некоторых других проблем синхронизации путем связывания метки времени с данными. Подробная информация о примере методики синхронизации приведена ниже в отношении ФИГ. 36 и 37.The forward
В результате применения весовых коэффициентов луча формирователем 529 прямых лучей в наземном сегменте 502 сигналы, передаваемые с AN 515 через сквозной ретранслятор 503, образуют пользовательские лучи. Размер и местоположение лучей, которые можно сформировать, могут зависеть от числа развернутых AN 515, числа и диаграмм направленности антенных элементов ретранслятора, через которые проходит сигнал, местоположения сквозного ретранслятора 503 и/или географического разнесения AN 515.As a result of the application of the beam weights by the
Что касается сквозной обратной линии 523 связи, показанной на ФИГ. 5, то пользовательский терминал 517 в пределах одной из зон 519 покрытия пользовательских лучей передает сигналы до сквозного ретранслятора 503. Затем сигналы ретранслируются вниз в наземный сегмент 502. Сигналы принимаются AN 515.With regard to the end-to-
Как также показано на ФИГ. 30, M обратных сигналов 527 нисходящей линии связи принимаются с помощью M AN 515, и передаются в виде комбинированных обратных сигналов 907 от M AN 515 через распределительную сеть 518, и принимаются на входе 931 узла доступа формирователя 531 обратных лучей. Модуль 947 синхронизации выстраивает комбинированные обратные сигналы от M AN 515 друг с другом и выводит синхронизированные по времени сигналы на формирователь 531 обратных лучей. Генератор 935 весовых коэффициентов обратного луча генерирует весовые коэффициенты обратного луча в виде K x M матрицы 937 весовых коэффициентов обратного луча на основании информации, хранящейся в хранилище 941 данных канала в рамках модуля 943 оценки канала. Формирователь 531 обратных лучей содержит вход 939 весовых коэффициентов луча, через который формирователь 531 обратных лучей принимает матрицу 937 весовых коэффициентов обратного луча. Каждый из M комбинированных обратных сигналов 907 AN передается на соответствующий один из M модулей 539 разветвителя и присвоения весового коэффициента в рамках формирователя 531 обратных лучей. Каждый модуль 539 разветвителя и присвоения весового коэффициента разделяет синхронизированный по времени сигнал на K копий 909. Модуль 539 разветвителя и присвоения весового коэффициента присваивает весовой коэффициент каждой из K копий 909 с использованием элемента k, m K x M матрицы 937 весовых коэффициентов обратного луча. Более подробная информация в отношении K x M матрицы весовых коэффициентов обратного луча приведена ниже. Затем каждый набор из K взвешенных комбинированных обратных сигналов 911 передается на модуль 913 объединения. В некоторых случаях модуль 913 объединения объединяет k-й взвешенный комбинированный обратный сигнал 911, выводимый из каждого модуля 539 разветвителя и присвоения весового коэффициента. Формирователь 531 обратных лучей содержит выход 933 обратных сигналов данных, который выводит K сигналов 915 обратного луча, каждый из которых содержит выборки, связанные с одним из K обратных пользовательских лучей 519 (например, выборки, принимаемые через каждый из M AN). Каждый из K сигналов 915 обратного луча может содержать выборки с одного или более пользовательских терминалов 517. K скомбинированных и выстроенных сформированных сигналов 915 обратного луча передается на модемы 507 фидерной линии связи (см. ФИГ. 5). Следует отметить, что регулировка обратной синхронизации может выполняться после разделения и присвоения весового коэффициента. Аналогичным образом, для прямой линии связи регулировка прямой синхронизации может быть выполнена до формирования луча.As also shown in FIG. thirty,M downlink feedback signals 527 are received
Как описано выше, формирователь 529 прямых лучей может выполнять операции матричного произведения с входными выборками K сигналов 511 прямого луча для расчета M специфических для узла доступа прямых сигналов 516 в реальном времени. Так как ширина полосы луча увеличивается (например, для поддержки более короткой протяженности символа) и/или значения K и M становятся большими, операция матричного произведения требует много времени и затрат для вычислений, и требуемый объем вычислений может превышать возможности одного вычислительного узла (например, одного вычислительного сервера и т.д.). Операции формирователя 531 обратных лучей являются аналогичными по интенсивности вычислений. Для разделения вычислительных ресурсов множества вычислительных узлов в формирователе 513 прямых/обратных лучей можно использовать различные подходы. В одном примере формирователь 529 прямых лучей на ФИГ. 30 может быть разделен на отдельные модули 533 присвоения весовых коэффициентов и суммирования для каждого из M AN 515, которые могут быть распределены по разным вычислительным узлам. По существу факторы, которые необходимо учитывать при реализации, включают в себя затраты, энергопотребление, масштабируемость относительно K, M и ширину полосы, доступность системы (например, вследствие сбоя узла и т.д.), модернизируемость и задержки в системе. Вышеприведенный пример представлен для строки (или столбца). Возможен и обратный вариант. Могут рассматриваться и другие способы группировки матричных операций (например, разделение на четыре с [1,1 для K/2,M/2], […], вычисляемыми по отдельности и суммируемыми).As described above,
В некоторых случаях формирователь 513 прямых/обратных лучей может включать в себя архитектуру мультиплексирования во временной области для обработки операций присвоения лучу весовых коэффициентов формирователями лучей с квантованием времени. На ФИГ. 31 представлена блок-схема примера формирователя 529 прямых лучей, содержащего множество формирователей прямых лучей с квантованием времени, с демультиплексированием и мультиплексированием во временной области. Формирователь 529 прямых лучей включает в себя демультиплексор 3002 сигналов прямого луча, N формирователей 3006 прямых лучей с квантованием времени и мультиплексор 3010 прямых сигналов узла доступа.In some cases, forward/reverse
Демультиплексор 3002 сигналов прямого луча принимает сигналы 511 прямого луча и демультиплексирует K сигналов 511 прямого луча с формированием входов 3004 прямого луча с квантованием времени (FTSI) для ввода в N формирователей 3006 прямых лучей с квантованием времени. Например, демультиплексор 3002 сигналов прямого луча направляет первое подмножество во временной области выборок для K сигналов 511 прямого луча на первый формирователь 3006 прямых лучей с квантованием времени, который генерирует выборки, связанные с M специфическими для узла доступа прямыми сигналами, соответствующими первому подмножеству во временной области выборок. Формирователь 3006 прямых лучей с квантованием времени выводит выборки, соответствующие M специфическим для узла доступа прямым сигналам для первого подмножества во временной области выборок, посредством своего вывода 3008 прямого луча с квантованием времени (FTSO) на мультиплексор 3010 прямых сигналов узла доступа. Формирователь 3006 прямых лучей с квантованием времени может выводить выборки, связанные с каждым из M специфических для узла доступа прямых сигналов, с информацией о времени синхронизации (например, соответствующим индексом квантования времени и т.д.), используемой узлами доступа для обеспечения синхронизации (например, путем предварительной корректировки) соответствующих специфических для узла доступа прямых сигналов при приеме сквозным ретранслятором. Мультиплексор 3010 прямых сигналов узла доступа мультиплексирует подмножества во временной области выборок для M специфических для узла доступа прямых сигналов, принимаемых посредством N выводов 3008 прямого луча с квантованием времени, для генерации M специфических для узла доступа прямых сигналов 516. Каждый из формирователей 3006 прямых лучей с квантованием времени может содержать буфер данных, буфер матрицы луча и процессор для весовых коэффициентов луча, выполняющий операцию матричного произведения. Это означает, что каждый из формирователей 3006 прямых лучей с квантованием времени может выполнять вычисления, математически эквивалентные вычислениям, выполняемым модулем 904 разветвления и модулями 533 присвоения прямых весовых коэффициентов и суммирования, показанными для формирователя 529 прямых лучей на ФИГ. 30, в процессе обработки выборок одного индекса квантования времени. Обновление матрицы весовых коэффициентов луча может выполняться пошагово. Например, буферы матрицы весовых коэффициентов луча для формирователей прямых лучей с квантованием времени могут обновляться в период отсутствия нагрузки при смене индексов t квантования интервала через N формирователей 3006 прямых лучей с квантованием времени. Альтернативно каждый формирователь прямых лучей с квантованием времени может содержать два буфера, которые могут использоваться в конфигурации с попеременным переключением (например, один может обновляться при использовании другого). В некоторых случаях может использоваться множество буферов для хранения весовых коэффициентов лучей, соответствующих множеству диаграмм направленности пользовательских лучей (например, множеству зон покрытия пользователя). Буферы весового коэффициента луча и буферы данных для формирователей 3006 прямых лучей с квантованием времени могут быть реализованы в виде запоминающего устройства или хранилища любого типа, включая динамическое или статическое оперативное запоминающее устройство (ОЗУ). Обработка весовых коэффициентов луча может быть реализована в специализированной интегральной схеме (ASIC) и/или программируемой пользователем матрице логических элементов (FPGA) и может включать в себя одно или более процессорных ядер (например, в среде облачных вычислений). Дополнительно или альтернативно буфер весового коэффициента луча, буфер данных и процессор для весовых коэффициентов луча могут быть интегрированы в один компонент.The forward
На ФИГ. 32 проиллюстрирован упрощенный пример наземного сегмента, показывающий работу формирователя 529 прямых лучей с квантованием времени. В примере на ФИГ. 32 формирователь 529 прямых лучей принимает четыре сигнала прямого луча (например, K = 4), генерирует специфические для узла доступа прямые сигналы для пяти AN (например, M = 5) и содержит три формирователя прямых лучей с квантованием времени (например, N = 3). Сигналы прямого луча обозначаются FBk : t, где k представляет собой индекс сигнала прямого луча, а t представляет собой индекс квантования времени (например, соответствующий подмножеству во временной области выборок). Демультиплексор 3002 сигналов прямого луча принимает четыре подмножества во временной области выборок сигналов прямого луча, связанных с четырьмя прямыми пользовательскими лучами, и демультиплексирует каждый сигнал прямого луча таким образом, что один входной сигнал 3004 прямого луча с квантованием времени включает в себя для конкретного индекса t квантования времени подмножество во временной области выборок из каждого из сигналов 511 прямого луча. Например, подмножества во временной области могут представлять собой отдельную выборку, сплошной блок выборок или несплошной (например, перемежающийся) блок выборок, как описано ниже. Формирователи 3006 прямых лучей с квантованием времени генерируют (например, на основе сигналов 511 прямого луча и матрицы 918 весовых коэффициентов прямого луча) каждый из M специфических для узла доступа прямых сигналов для индекса t квантования времени, который обозначают AFm : t. Например, подмножества во временной области выборок FB1 : 0, FB2 : 0, FB3 : 0 и FB4 : 0 для индекса t = 0 квантования времени представляют собой входные данные для первого устройства TSBF[1] 3006 формирования прямых лучей с квантованием времени, которое генерирует соответствующие выборки специфических для узла доступа прямых сигналов AF1 : 0, AF2 : 0, AF3 : 0, AF4 : 0 и AF5 : 0 на выходе 3008 прямого луча с квантованием времени. Для последующих значений индекса t = 1, 2 квантования времени подмножества во временной области выборок сигналов 511 прямого луча демультиплексируют с помощью демультиплексора 3002 сигналов прямого луча для ввода на второй и третий формирователи 3006 прямых лучей с квантованием времени, которые генерируют специфические для узла доступа прямые сигналы, связанные с соответствующими индексами t квантования времени, на выходы 3008 прямого луча с квантованием времени. На ФИГ. 32 также показано, что при значении t = 3 индекса квантования времени первый формирователь прямых лучей с квантованием времени генерирует специфические для узла доступа прямые сигналы, связанные с соответствующим индексом 3 квантования времени. Операция матричного произведения, выполняемая каждым формирователем 3006 прямых лучей с квантованием времени для одного значения t индекса квантования времени может длиться дольше по сравнению с реальным временем подмножества во временной области выборок (например, число выборок S, умноженное на интервал t S выборки). Однако каждый формирователь 3006 прямых лучей с квантованием времени может обрабатывать только одно подмножество во временной области выборок для каждого из N индексов t квантования времени. Мультиплексор 3010 прямых сигналов узла доступа принимает прямые выходные данные 3030 с квантованием времени от каждого из формирователей 3006 прямых лучей с квантованием времени и мультиплексирует подмножества во временной области выборок для генерации M специфических для узла доступа прямых сигналов 516 для распределения по соответствующим AN.FIG. 32 illustrates a simplified example of a ground segment showing the operation of a time sliced
На ФИГ. 33 представлена блок-схема примера формирователя 531 обратных лучей, содержащего множество формирователей обратных лучей с квантованием времени, с демультиплексированием и мультиплексированием во временной области. Формирователь 531 обратных лучей включает в себя демультиплексор 3012 обратного комбинированного сигнала, N формирователей 3016 обратных лучей с квантованием времени и мультиплексор 3020 сигналов обратного луча. Демультиплексор 3012 обратного комбинированного сигнала принимает M комбинированных обратных сигналов 907 (например, от M AN) и демультиплексирует M комбинированных обратных сигналов 907 во входные сигналы 3014 обратного луча с квантованием времени (RTSI) для ввода на N формирователей 3016 обратных лучей с квантованием времени. Каждый из формирователей 3016 обратных лучей с квантованием времени выводит выборки, связанные с K сигналами 915 обратного луча, для соответствующих подмножеств во временной области выборок посредством соответствующих выходов 3018 обратного луча с квантованием времени (RTSO) на мультиплексор 3020 сигналов обратного луча. Мультиплексор 3020 сигналов обратного луча мультиплексирует подмножества во временной области выборок для K сигналов обратного луча, принимаемых посредством N выходов 3018 обратного луча с квантованием времени, для генерации K сигналов 915 обратного луча. Каждый из формирователей 3016 обратных лучей с квантованием времени может содержать буфер данных, буфер матрицы луча и процессор для весовых коэффициентов луча, выполняющий операцию матричного произведения. Это означает, что каждый из формирователей 3016 обратных лучей с квантованием времени может выполнять вычисления, математически эквивалентные вычислениям, выполняемым модулем 539 разветвителя и присвоения весового коэффициента, а также модулем 913 объединения, показанными с формирователем 531 обратных лучей на ФИГ. 30, во время обработки выборок для одного индекса квантования времени. Как описано выше в отношении формирователей прямых лучей с квантованием времени, обновление матрицы весовых коэффициентов луча можно выполнять пошагово с использованием конфигурации буфера весовых коэффициентов луча с попеременным переключением (например, один может обновляться во время использования другого). В некоторых случаях может использоваться множество буферов для хранения весовых коэффициентов лучей, соответствующих множеству диаграмм направленности пользовательских лучей (например, множеству зон покрытия пользователя). Буферы весового коэффициента луча и буферы данных для формирователей 3016 обратных лучей с квантованием времени могут быть реализованы в виде запоминающего устройства или хранилища любого типа, включая динамическое или статическое оперативное запоминающее устройство (ОЗУ). Обработка весовых коэффициентов луча может быть реализована в специализированной интегральной схеме (ASIC) и/или программируемой пользователем матрице логических элементов (FPGA) и может включать в себя одно или более процессорных ядер. Дополнительно или альтернативно буфер весового коэффициента луча, буфер данных и процессор для весовых коэффициентов луча могут быть интегрированы в один компонент.FIG. 33 is a block diagram of an example of a
На ФИГ. 34 проиллюстрирован упрощенный пример наземного сегмента, показывающий работу формирователя 531 обратных лучей, в котором применяют мультиплексирование во временной области. В примере на ФИГ. 33 формирователь 531 обратных лучей принимает пять комбинированных обратных сигналов (например, М = 5), генерирует сигналы обратного луча (RBS) для четырех обратных пользовательских лучей (например, K = 5) и содержит три формирователя обратных лучей с квантованием времени (например, N = 3). Комбинированные обратные сигналы обозначают RCm : t, где m представляет собой индекс AN, а t представляет собой индекс квантования времени (например, соответствующий подмножеству во временной области выборок). Демультиплексор 3012 обратного комбинированного сигнала принимает четыре подмножества во временной области выборок комбинированных обратных сигналов от пяти AN и демультиплексирует каждый комбинированный обратный сигнал таким образом, что один входной сигнал 3014 обратного луча с квантованием времени включает в себя для конкретного индекса t квантования времени соответствующие подмножества во временной области выборок из каждого из комбинированных обратных сигналов 907. Например, подмножества во временной области могут представлять собой отдельную выборку, сплошной блок выборок или несплошной (например, перемежающийся) блок выборок, как описано ниже. Формирователи 3016 обратных лучей с квантованием времени генерируют (например, на основе комбинированных обратных сигналов 907 и матрицы 937 весовых коэффициентов обратного луча) каждый из K сигналов обратного луча для индекса t квантования времени, которые обозначают RBk : t. Например, подмножества во временной области выборок RC1 : 0, RC2 : 0, RC3 : 0, RC4 : 0 и RC5 : 0 для индекса t = 0 квантования времени представляют собой входные данные для первого формирователя 3016 обратных лучей с квантованием времени, который генерирует соответствующие выборки сигналов RB1 : 0, RB2 : 0, RB3 : 0 и RB4 : 0 обратного луча на выход 3018 обратного луча с квантованием времени. Для последующих значений индекса t = 1, 2 квантования времени подмножества во временной области выборок комбинированных обратных сигналов 907 демультиплексируются с помощью демультиплексора 3012 обратного комбинированного сигнала для ввода соответственно во второй и третий формирователи 3016 обратных лучей с квантованием времени, которые генерируют выборки для сигналов обратного луча, связанные с соответствующими индексами t квантования времени, на выходы 3018 обратного луча с квантованием времени. На ФИГ. 34 также показано, что при значении t = 3 индекса квантования времени первый формирователь обратных лучей с квантованием времени генерирует выборки сигналов обратных лучей, связанных с соответствующим индексом 3 квантования времени. Операция матричного произведения, выполняемая каждым формирователем 3016 обратных лучей с квантованием времени для одного значения t индекса квантования времени, может длиться дольше по сравнению с реальным временем подмножества во временной области выборок (например, число выборок S, умноженное на интервал t S выборки). Однако каждый формирователь 3016 обратных лучей с квантованием времени может обрабатывать лишь одно подмножество во временной области выборок каждого из N индексов t квантования времени. Мультиплексор 3020 сигналов обратного луча принимает выходные сигналы 3018 обратного луча с квантованием времени от каждого из формирователей 3016 обратных лучей с квантованием времени и мультиплексирует подмножества во временной области выборок для генерации K сигналов 915 обратного луча.FIG. 34 illustrates a simplified example of a ground segment showing the operation of a
Хотя на ФИГ. 31-34 проиллюстрировано одинаковое число N формирователей 3006 прямых лучей с квантованием времени и формирователей 3016 обратных лучей с квантованием времени, в некоторых реализациях может применяться большее или меньшее число формирователей 3006 прямых лучей с квантованием времени, чем формирователей 3016 обратных лучей с квантованием времени. В некоторых примерах формирователь 529 прямых лучей и/или формирователь 531 обратных лучей может иметь резерв пропускной способности для обеспечения отказоустойчивости узла. Например, если каждый формирователь 3006 прямых лучей с квантованием времени тратит t FTS на обработку одного набора выборок для индекса t квантования времени, имеющего длительность t D квантования времени в реальном времени, где tFTS = N∙t D, формирователь 529 прямых лучей может содержать N + E формирователей 3006 прямых лучей с квантованием времени. В некоторых примерах каждый из N + E формирователей 3006 прямых лучей с квантованием времени используют в работе, причем каждый формирователь 3006 прямых лучей с квантованием времени имеет эффективную дополнительную мощность E / N. Если один формирователь 3006 прямых лучей с квантованием времени выходит из строя, выполнение операций может быть перенесено на другой формирователь 3006 прямых лучей с квантованием времени (например, путем регулирования маршрутизации выборок во временной области (или групп выборок) посредством демультиплексирования и мультиплексирования во временной области). Таким образом, формирователь 529 прямых лучей может быть устойчивым к сбою до E формирователей 3006 прямых лучей с квантованием времени, прежде чем это начнет влиять на производительность системы. Кроме того, дополнительная мощность позволяет проводить техническое обслуживание и модернизацию формирователей лучей с квантованием времени во время работы системы. Например, модернизация формирователей лучей с квантованием времени может выполняться постепенно, поскольку система может работать с различными по производительности формирователями лучей с квантованием времени. Выборки данных, связанные с индексом t квантования времени, могут быть перемежающимися. Например, первый индекс t0 квантования времени может быть связан с выборками 0, P, 2P. . . (S - 1) * P, а второй индекс t 1 квантования времени может быть связан с выборками 1, P + 1, 2P + 1. . . (S - 1) * P + 1 и т.д., где S представляет собой число выборок в каждом наборе выборок, а P представляет собой продолжительность перемежения. Также благодаря перемежению система может стать более устойчивой к отказам формирователя лучей с квантованием времени, поскольку каждый блок выборок формирователя лучей с квантованием времени отделен по времени таким образом, что ошибки вследствие недостающего блока будут распределены во времени, что аналогично преимуществу от применения перемежения при прямой коррекции ошибок. Фактически распределенные ошибки, вызванные сбоем формирователя лучей с квантованием времени, могут вызывать эффекты, подобные шуму, и не приводить к возникновению каких-либо ошибок в пользовательских данных, особенно в случае применения прямого кодирования ошибок. Хотя были проиллюстрированы примеры, где N = 3, могут использоваться и другие значения N, и N необязательно имеет какую-либо конкретную взаимосвязь с K или M. Although FIG. 31-34 illustrate the same number N of time sliced forward beamformers 3006 and time sliced
Как описано выше, формирователь 529 прямых лучей и формирователь 531 обратных лучей, проиллюстрированные на ФИГ. 31 и 33 соответственно, могут выполнять демультиплексирование и мультиплексирование во временной области для формирования луча с квантованием времени для одного канала или подполосы частот. Используя дополнительный уровень переключения мультиплексирования/демультиплексирования подполосы, можно обрабатывать множество подполос независимо. На ФИГ. 35 представлена блок-схема примера многополосного формирователя 513 прямых/обратных лучей, в котором применяют демультиплексирование и мультиплексирование подполосы. Многополосный формирователь 513 прямых/обратных лучей может поддерживать F прямых подполос и R обратных подполос.As described above, the
Многополосный формирователь 513 прямых/обратных лучей содержит F формирователей 3026 лучей прямой подполосы, R формирователей 3036 лучей обратной подполосы и мультиплексор/демультиплексор 3030 подполосы. Например, сигналы 511 прямого луча могут быть разделены на F прямых подполос. Каждая из F прямых подполос может быть связана с подмножеством K зон покрытия прямых пользовательских лучей. Это означает, что K зон покрытия прямых пользовательских лучей могут включать в себя множество подмножеств зон покрытия прямых пользовательских лучей, связанных с разными (например, с разной частотой и/или поляризацией и т.д.) подполосами частот, где зоны покрытия прямых пользовательских лучей в пределах каждого из подмножеств могут быть неперекрывающимися (например, в контурах сигнала по уровню 3 дБ и т.д.). Таким образом, каждый из входных сигналов 3024 формирователя лучей прямой подполосы может включать в себя подмножество K 1 сигналов 511 прямого луча. Каждый из F формирователей 3026 прямых лучей может иметь функциональность формирователя 529 прямых лучей, генерируя выходные сигналы 3028 формирователя лучей прямой подполосы, которые содержат M специфических для узла доступа прямых сигналов, связанных с подмножеством сигналов 511 прямого луча (например, матричное произведение из K 1 сигналов прямого луча и M x K 1 матрицы весовых коэффициентов прямого луча). Таким образом, каждый из AN 515 может принимать множество специфических для узла доступа прямых сигналов, связанных с разными подполосами частот (например, для каждой из F прямых подполос). AN могут комбинировать (например, суммировать) сигналы в разных подполосах в прямых сигналах восходящей линии связи, как более подробно описано ниже. Аналогичным образом, AN 515 могут генерировать множество комбинированных обратных сигналов 907 для R разных обратных подполос. Каждая из R обратных подполос может быть связана с подмножеством K зон покрытия обратных пользовательских лучей. Это означает, что K зон покрытия обратных пользовательских лучей могут включать в себя множество подмножеств зон покрытия обратных пользовательских лучей, связанных с разными подполосами частот, где зоны покрытия обратных пользовательских лучей в пределах каждого из подмножеств могут быть неперекрывающимися (например, в контурах сигнала по уровню 3 дБ и т.д.). Мультиплексор/демультиплексор 3030 подполосы может разделять комбинированные обратные сигналы 907 на R входных сигналов 3034 формирователя лучей обратной подполосы. Затем каждый из формирователей 3036 лучей обратной подполосы может генерировать выходной сигнал 3038 формирователя лучей обратной подполосы, который может включать в себя сигналы 915 обратного луча для подмножества обратных пользовательских лучей (например, для модемов 507 фидерной линии связи или демодулятора сигналов обратного луча и т.д.). В некоторых примерах многополосный формирователь 513 прямых/обратных лучей может поддерживать множество типов поляризации (например, правую круговую поляризацию (RHCP), левую круговую поляризацию (LHCP) и т.д.), что в некоторых случаях может фактически удваивать число подполос.The multi-band forward/reverse
В некоторых случаях мультиплексирование и демультиплексирование с квантованием времени для формирователя 529 прямых лучей и формирователя 531 обратных лучей (например, с помощью демультиплексора 3002 сигналов прямого луча, мультиплексора 3010 прямых сигналов узла доступа, демультиплексора 3012 обратных комбинированных сигналов, мультиплексора 3020 сигналов обратного луча) и мультиплексирование/демультиплексирование подполосы (мультиплексор/демультиплексор 3030 подполосы) можно выполнять путем коммутации пакетов (например, путем коммутации в сети Ethernet и т.д.). В некоторых случаях коммутацию с квантованием времени и подполосы можно выполнять в одних и тех же коммутационных узлах или в другом порядке. Например, может использоваться архитектура коммутационной матрицы, где каждый узел коммутационной матрицы может быть соединен с подмножеством AN 515, формирователей 3006 прямых лучей с квантованием времени, формирователей 3016 обратных лучей с квантованием времени или модемов 507 фидерной линии связи. Архитектура коммутационной матрицы может позволять, например, подключать любой AN (например, посредством переключателей и/или соединительной панели коммутационной матрицы) к любому формирователю прямых лучей с квантованием времени или формирователю обратных лучей с квантованием времени в иерархически плоскую архитектуру с малой задержкой. В одном примере система, поддерживающая ширину полосы K ≤ 600, M ≤ 600 и 500 МГц (например, на подполосу) с четырнадцатью подполосами для прямой или обратной линий связи, может быть реализована с использованием доступной в продаже коммутационной платформы с 2048 портами 10GigE.In some cases, time-slice multiplexing and demultiplexing for forward beamformer 529 and return beamformer 531 (e.g., using forward
Коррекция задержкиDelay Correction
В некоторых случаях различия в задержках распространения сигнала по каждому из трактов между сквозным ретранслятором 503 и CPS 505 несущественны. Например, в обратной линии связи, когда один и тот же сигнал (например, данные, передаваемые конкретному пользователю или от него) принимается множеством AN 515, каждый экземпляр сигнала может поступать на CPS, будучи по существу согласованным с каждым другим экземпляром сигнала. Аналогичным образом, когда один и тот же сигнал передают на пользовательский терминал 517 через несколько AN 515, каждый экземпляр сигнала может поступать на пользовательский терминал 517, будучи по существу согласованным с каждым другим экземпляром сигнала. Иными словами, сигналы могут быть согласованы по фазе и времени с достаточной точностью, чтобы сигналы были когерентно комбинированы, так чтобы эффекты задержки распространения сигнала и эффекты формирования луча были малы относительно скорости передачи символа. В качестве иллюстративного примера, если разница в задержке распространения сигнала составляет 10 микросекунд, ширина полосы формирования луча может составлять порядка десятков кГц, и можно использовать узкополосный сигнал, например ≈ 10 кбит/с, с возможным небольшим ухудшением характеристик. Скорость передачи сигнала 10 кбит/с соответствует протяженности символа 100 микросекунд, а разброс задержки 10 микросекунд составляет лишь одну десятую от протяженности символа. В этих случаях для целей анализа системы можно предположить, что сигналы, принимаемые сквозным ретранслятором в один момент времени, будут ретранслированы и переданы по существу в одно и то же время, как описано ранее.In some cases, the differences in propagation delays along each path between end-to-
В других случаях может быть значительная разница в задержке распространения сигнала по отношению к интервалу передачи (протяженности передаваемого символа) сигналов, передаваемых передающими антенными элементами 409 на AN 515. При прохождении сигналов по тракту от каждого AN 515 через распределительную сеть 518 могут происходить значительные колебания задержки. В этих случаях для установки соответствия значений задержки распространения сигнала может применяться коррекция задержки.In other cases, there may be a significant difference in propagation delay with respect to the transmission interval (transmitted symbol length) of the signals transmitted by the transmitting
Принятые CPS 505 через распределительную сеть 518 сигналы сквозной обратной линии связи могут быть соотнесены по времени с помощью сигнала радиомаяка ретранслятора, передаваемого от сквозного ретранслятора, например PN-радиомаяка, как описано ранее. Каждый AN 515 может создавать метку времени комбинированного обратного сигнала с использованием сигнала радиомаяка ретранслятора в качестве опорного. Таким образом, разные AN 515 могут принимать один и тот же сигнал в разные моменты времени, но принятые в каждом AN 515 сигналы могут иметь метку времени, позволяющую CPS 505 соотносить их во времени. CPS 505 может буферизовать сигналы таким образом, чтобы формирование луча выполнялось путем объединения сигналов, имеющих одинаковую метку времени.The end-to-end reverse link signals received by
Как показано на ФИГ. 33 и 34, коррекция задержки для обратной линии связи может осуществляться путем демультиплексирования комбинированных обратных сигналов для формирователей 3016 обратных лучей с квантованием времени. Например, каждый AN может разделять комбинированный обратный сигнал на наборы выборок, связанных с индексами t квантования времени, которые могут включать в себя перемежающиеся выборки комбинированного обратного сигнала. Индексы t квантования времени могут быть определены на основании сигнала радиомаяка ретранслятора. AN могут направлять подмножества выборок, мультиплексированных с соответствующими индексами t квантования времени (например, в виде мультиплексированного комбинированного обратного сигнала), на формирователь 531 обратных лучей, которые могут использоваться как информация о времени синхронизации в обратной линии связи. Подмножества выборок от каждого AN могут быть демультиплексированы (например, посредством переключения), а один формирователь 3016 обратных лучей с квантованием времени может принимать подмножества выборок от каждого AN для индекса t квантования времени (в некоторых случаях для одной из множества подполос). При выполнении операции матричного произведения для матрицы весовых коэффициентов обратного луча и подмножества выборок из каждого из M комбинированных обратных сигналов, связанных с индексом t квантования времени, формирователь 3016 обратных лучей с квантованием времени может в то же время согласовывать сигналы, ретранслируемые сквозным ретранслятором, для применения матрицы весовых коэффициентов обратного луча.As shown in FIG. 33 and 34, delay correction for the reverse link may be performed by demultiplexing the combined return signals for the time sliced
Для прямой линии связи формирователь 513 лучей в рамках CPS 505 может генерировать метку времени, которая указывает, когда каждый специфический для узла доступа прямой сигнал, передаваемый AN 515, должен достичь сквозного ретранслятора 503. Каждый AN 515 может передавать сигнал 2530 радиомаяка узла доступа, например закольцованный PN-сигнал. Каждый такой сигнал может быть закольцован и передан обратно на AN 515 сквозным ретранслятором 503. AN 515 могут принимать как сигнал радиомаяка ретранслятора, так и ретранслируемые (закольцованные) сигналы радиомаяка узла доступа от любого или всех из AN. Принятая синхронизация сигнала радиомаяка узла доступа относительно времени синхронизации сигнала радиомаяка ретранслятора указывает, когда сигнал радиомаяка узла доступа достиг сквозного ретранслятора. Если отрегулировать синхронизацию сигнала радиомаяка узла доступа таким образом, чтобы после ретрансляции сквозным ретранслятором он достигал AN одновременно с достижением сигналом радиомаяка ретранслятора AN, сигнал радиомаяка узла доступа будет поступать на сквозной ретранслятор синхронно с сигналом радиомаяка ретранслятора. После выполнения этой функции на всех AN все сигналы радиомаяка узла доступа будут поступать на сквозной ретранслятор синхронно с сигналом радиомаяка ретранслятора. Последний этап процесса заключается в том, чтобы каждый AN передавал свои специфические для узла доступа прямые сигналы синхронно со своим сигналом радиомаяка узла доступа. Это может быть выполнено с помощью меток времени, как описано впоследствии. Альтернативно CPS может управлять коррекцией задержки путем направления соответствующих специфических для узла доступа прямых сигналов, смещенных путем соответствующих смещений во временной области, на AN (например, если синхронизация посредством распределительной сети является детерминированной).For the forward link, the
На ФИГ. 36 представлена иллюстрация PN-последовательностей, используемых для соотнесения синхронизации в системе. Горизонтальная ось на фигуре отражает время. PN-последовательность 2301 AN1 из элементов сигнала 2303 передается в сигнале радиомаяка узла доступа от первого AN. Относительное время достижения этой последовательностью сквозного ретранслятора показано PN-последовательностью 2305. Существует временной сдвиг PN-последовательности 2305 относительно PN-последовательности 2301 AN1 вследствие задержки распространения сигнала от AN до сквозного ретранслятора. PN-последовательность 2307 радиомаяка ретранслятора генерируется в рамках сквозного ретранслятора и передается от него в сигнале радиомаяка ретранслятора. PN-элемент сигнала PN-последовательности 2307 радиомаяка ретранслятора в момент времени T0 2315 согласован с PN-элементом сигнала 2316 PN-принимаемого сигнала 2305 AN1 в момент времени T0. PN-элемент сигнала 2316 PN-принимаемого сигнала 2305 AN1 согласован с PN-элементом сигнала 2315 PN-последовательности 2307 радиомаяка ретранслятора, когда отрегулирована правильная величина времени передачи для AN1. PN-последовательность 2305 закольцована от сквозного ретранслятора, а PN-последовательность 2317 принимается на AN1. PN-последовательность 2319, передаваемая со сквозного ретранслятора в PN-последовательности радиомаяка ретранслятора, принимается на AN1. Следует отметить, что PN-последовательности 2317, 2319 на AN1 согласованы, что указывает на то, что они были согласованы на сквозном ретрансляторе.FIG. 36 is an illustration of the PN sequences used to map timing in the system. The horizontal axis on the figure reflects time.
На ФИГ. 37 показан пример AN2, на котором неправильно настроена синхронизация PN-последовательности, сгенерированной в AN2. Следует отметить, что PN-последовательность 2311, сгенерированная на AN2, принимается на сквозном ретрансляторе, что показано как последовательность 2309 со смещением на величину dt относительно PN-последовательности 2307 радиомаяка ретранслятора. Это смещение связано с ошибкой синхронизации, которая используется для генерации последовательности в AN2. Также следует отметить, что достижение AN2 PN-последовательностью 2321 AN2 смещено относительно достижения AN2 2323 PN-последовательностью радиомаяка ретранслятора на такую же величину dt. При обработке сигнала в AN2 эта ошибка будет обнаружена, и может выполняться коррекция синхронизации передачи путем корректировки синхронизации на величину dt для согласования PN-последовательностей 2321, 2323.FIG. 37 shows an example of an AN 2 where the timing of the PN sequence generated in AN 2 is incorrectly adjusted. It should be noted that the
На ФИГ. 36 и 37 одинаковая частота следования PN-элементов сигнала используется для PN-последовательности радиомаяка ретранслятора и всех (закольцованных) из PN-сигналов AN для простоты иллюстрации понятия. Понятия одинаковой синхронизации могут применяться при разных значениях частоты следования PN-элементов сигнала. Как показано на ФИГ. 31 и 32, индексы t квантования времени могут использоваться для синхронизации специфических для узла доступа прямых сигналов, принимаемых сквозным ретранслятором от каждого из AN. Например, индексы t квантования времени могут мультиплексироваться со специфическими для узла доступа прямыми сигналами 516. Каждый AN может передавать выборки специфических для узла доступа прямых сигналов с конкретным индексом t квантования времени, согласованным с соответствующей информацией о синхронизации, в PN-последовательности элементов сигнала, передаваемых в соответствующих сигналах радиомаяка узла доступа. Поскольку соответствующие сигналы радиомаяка узла доступа были скорректированы для компенсации соответствующих задержек распространения сигнала и сдвигов фазы между AN и сквозным ретранслятором, выборки, связанные с индексом t квантования времени, поступят на сквозной ретранслятор синхронизированными по времени и с правильно согласованной относительно друг друга фазой.FIG. 36 and 37, the same PN chip rate is used for the repeater beacon PN sequence and all (loopbacked) of the AN PN signals for ease of illustration of the concept. The concepts of the same timing can be applied at different values of the PN-chip repetition rate. As shown in FIG. 31 and 32, the time slice indices t may be used to synchronize the access node-specific forward signals received by the end-to-end relay from each of the ANs. For example, time slice indices t may be multiplexed with access node-specific
В случаях, когда AN принимает свои собственные сигналы радиомаяка узла доступа, возможно закольцевать сигналы радиомаяка узла доступа с использованием того же коммуникационного оборудования сквозного ретранслятора, которое также переносит данные в прямом направлении. В этих случаях коэффициенты относительного усиления и/или фазы транспондеров в сквозном ретрансляторе могут быть скорректированы, как описано впоследствии.In cases where the AN receives its own access point beacon signals, it is possible to loop back the access node beacon signals using the same end-to-end relay communication equipment that also carries data in the forward direction. In these cases, the relative gains and/or phases of the transponders in the end-to-end repeater can be adjusted as described later.
На ФИГ. 38 представлена блок-схема примера AN 515. AN 515 содержит приемник 4002, регулятор 4024 синхронизации и фазы при приеме, демодулятор 2511 сигналов радиомаяка ретранслятора, мультиплексор 4004, сетевой интерфейс 4006, контроллер 2523, демультиплексор 4060, компенсатор 4020 синхронизации и фазы при передаче и передатчик 4012. Сетевой интерфейс 4006 может быть подключен, например, к CPS 505 посредством сетевого порта 4008.FIG. 38 is a block diagram of an
В обратной линии связи приемник 4002 принимает обратный сигнал 527 нисходящей линии связи. Обратный сигнал 527 нисходящей линии связи может включать в себя, например, комбинацию обратных сигналов восходящей линии связи, ретранслированных сквозным ретранслятором (например, посредством множества трактов приема/передачи сигнала и т.д.) и сигнал радиомаяка ретранслятора. Приемник 4002 может выполнять, например, преобразование с понижением частоты и выборку. Демодулятор 2511 сигналов радиомаяка ретранслятора может демодулировать сигнал радиомаяка ретранслятора в оцифрованный комбинированный обратный сигнал 907 для получения информации 2520 о синхронизации ретрансляции. Например, демодулятор 2511 сигналов радиомаяка ретранслятора может выполнять демодуляцию для восстановления синхронизации элемента сигнала, связанного с PN-кодом ретрансляции, и генерировать метки времени, соответствующие времени передачи от сквозного ретранслятора для выборок оцифрованного комбинированного обратного сигнала 527. Мультиплексор 4004 может мультиплексировать информацию 2520 о синхронизации ретрансляции с выборками оцифрованного комбинированного обратного сигнала (например, для формирования мультиплексированного комбинированного обратного сигнала), который должен быть направлен на CPS 505 (например, посредством сетевого интерфейса 4006). Мультиплексирование информации 2520 о синхронизации ретрансляции может включать в себя генерацию подмножеств выборок, соответствующих индексам t квантования времени, для направления на CPS 505. Например, мультиплексор 4004 может выводить подмножества выборок, связанных с каждым индексом t квантования времени, для ввода в архитектуру формирования обратных лучей с квантованием времени, описанную выше со ссылкой на ФИГ. 33, 34 и 35. В некоторых случаях мультиплексор 4004 может включать в себя перемежитель 4044 для перемежения образцов для каждого подмножества выборок.On the reverse link, the
В прямой линии связи сетевой интерфейс 4006 может получать входной сигнал 4014 AN (например, посредством сетевого порта 4008). Демультиплексор 4060 может демультиплексировать входной сигнал 4014 AN для получения специфического для узла доступа прямого сигнала 516 и информации 4016 о синхронизации передачи прямого сигнала, указывающей время передачи для специфического для узла доступа прямого сигнала 516. Например, специфический для узла доступа прямой сигнал 516 может содержать информацию о синхронизации передачи прямого сигнала (например, мультиплексированную с выборками данных и т.д.). В одном примере специфический для узла доступа прямой сигнал 516 содержит наборы выборок (например, в пакетах данных), где каждый набор выборок связан с индексом t квантования времени. Например, каждый набор выборок может представлять собой выборки специфического для узла доступа прямого сигнала 516, генерируемого в соответствии с архитектурой формирования прямых лучей с квантованием времени, описанной выше со ссылкой на ФИГ. 31, 32 и 35. Демультиплексор 4060 может включать в себя обращенный перемежитель 4050 для обратного перемежения выборок, связанных с индексами t квантования времени.On the forward link,
Компенсатор 4020 синхронизации и фазы при передаче может принимать и буферизовать специфический для узла доступа прямой сигнал 516 и выводить выборки 4022 прямых сигналов восходящей линии связи для передачи передатчиком 4012 в соответствующий момент времени в виде прямого сигнала 521 восходящей линии связи. Передатчик 4012 может выполнять цифро-аналоговое преобразование и преобразование с повышением частоты для вывода прямого сигнала 521 восходящей линии связи. Выборки 4022 прямых сигналов восходящей линии связи могут включать в себя специфический для узла доступа прямой сигнал 516 и сигнал 2530 радиомаяка узла доступа (например, закольцованный PN-сигнал), который может включать в себя информацию о синхронизации передачи (например, информацию о синхронизации элемента сигнала с PN-кодом, информацию о синхронизации кадра и т.д.). Компенсатор 4020 синхронизации и фазы при передаче может мультиплексировать специфический для узла доступа прямой сигнал 516 с сигналом 2530 радиомаяка узла доступа так, чтобы информация 4016 о синхронизации и фазе при передаче прямого сигнала была синхронизирована с соответствующей информацией о синхронизации и фазе при передаче в сигнале 2530 радиомаяка узла доступа.The transmit timing and
В некоторых примерах генерирование сигнала 2530 радиомаяка узла доступа выполняется локально в AN 515 (например, в генераторе 2529 сигналов радиомаяка узла доступа). Альтернативно сигнал 2530 радиомаяка узла доступа может генерироваться в отдельном компоненте (например, CPS 505) и направляться на AN 515 (например, посредством сетевого интерфейса 4006). Как описано выше, сигнал 2530 радиомаяка узла доступа может использоваться для компенсации прямого сигнала 521 восходящей линии связи для учета различий в распространении сигнала и сдвигов фазы между AN и сквозным ретранслятором. Например, сигнал 2530 радиомаяка узла доступа может передаваться в прямом сигнале 521 восходящей линии связи и ретранслироваться сквозным ретранслятором, а затем снова приниматься приемником 4002. Контроллер 2523 может сравнивать ретранслированную информацию 4026 о синхронизации и фазе при передаче, получаемую (например, при демодуляции и т.д.) из ретранслированного сигнала радиомаяка узла доступа с информацией 4028 о синхронизации и фазе при приеме, получаемой (например, при демодуляции и т.д.) из сигнала радиомаяка ретранслятора. Контроллер 2523 может генерировать сигнал регулировки 2524 синхронизации и фазы для ввода в компенсатор 4020 синхронизации и фазы при передаче с целью коррекции сигнала 2530 радиомаяка узла доступа для компенсации задержки распространения сигнала и сдвигов фазы. Например, сигнал 2530 радиомаяка узла доступа может содержать PN-код и информацию о синхронизации кадра (например, один или более битов номера кадра и т.д.). Компенсатор 4020 синхронизации и фазы при передаче может, например, корректировать информацию о синхронизации кадра для грубой компенсации задержки распространения сигнала (например, информации о синхронизации выходного кадра в сигнале радиомаяка узла доступа так, что ретранслируемый сигнал радиомаяка узла доступа будет содержать ретранслируемую информацию о синхронизации кадра при передаче, грубо согласованную с соответствующей информацией о синхронизации кадра в сигнале радиомаяка ретранслятора, при изменении которой элемент PN-кода рассматривают как младший бит (LSB), и т.д.). Дополнительно или альтернативно компенсатор 4020 синхронизации и фазы при передаче может выполнять регулировку синхронизации и фазы для выборок 4022 прямых сигналов восходящей линии связи с целью компенсации разницы в синхронизации или фазе между ретранслируемой информацией 4026 о синхронизации и фазе при передаче и информацией 4028 о синхронизации и фазе при приеме. Например, там, где сигнал 2530 радиомаяка узла доступа генерируется на основе локального осциллятора, разницы в синхронизации или фазе между сигналами локального осциллятора и принимаемым сигналом радиомаяка ретранслятора могут быть скорректированы путем регулировки синхронизации и фазы для выборок 4022 прямых сигналов восходящей линии связи. В некоторых примерах демодуляцию сигнала радиомаяка узла доступа выполняют локально на AN 515 (например, с помощью демодулятора 2519 сигналов радиомаяка узла доступа). Альтернативно демодуляция сигнала радиомаяка узла доступа может выполняться в отдельном компоненте (например, CPS 505), и ретранслированная информация 4026 о синхронизации и фазе при передаче может быть получена при другой передаче (например, посредством сетевого интерфейса 4006). Например, глубокое замирание может затруднять прием и демодуляцию собственного ретранслированного сигнала радиомаяка узла доступа AN, если передачу осуществляют не с более высокой мощностью, чем при другой передаче сигнала, что может приводить к снижению бюджета мощности для сигналов связи. Таким образом, комбинирование приема ретранслированного сигнала радиомаяка узла доступа от множества AN 515 может увеличивать эффективную принимаемую мощность и точность демодуляции для ретранслированного сигнала радиомаяка узла доступа. Таким образом, демодуляция сигнала радиомаяка узла доступа от одного AN 515 может выполняться с использованием сигналов нисходящей линии связи, принятых на множестве AN 515. Демодуляция сигнала радиомаяка узла доступа может быть выполнена в CPS 505 на основе комбинированных обратных сигналов 907, которые также могут содержать информацию о сигнале для сигналов радиомаяка узла доступа от большинства или всех AN 515. При необходимости сквозное формирование луча для сигналов радиомаяка узла доступа может быть выполнено с учетом восходящих линий связи радиомаяка узла доступа (например, C r ), закольцовывания ретранслятора (например, E) и/или нисходящих линий связи радиомаяка узла доступа (например, C t ).In some examples, the generation of the access
Устранение искажений в фидерной линии связиElimination of distortion in the feeder line
В дополнение к коррекции задержки в трактах прохождения сигнала к сквозному ретранслятору от всех AN перед формированием луча могут устраняться сдвиги фазы, индуцируемые фидерными линиями связи. Сдвиг фазы каждой из линий связи между сквозным ретранслятором и M AN будет разным. Причины различия сдвигов фазы для каждой линии связи включают в себя, без ограничений, длину тракта распространения сигнала, атмосферные условия, такие как сцинтилляция, доплеровский сдвиг частоты и разные ошибки осциллятора AN. Эти сдвиги фазы по существу разные для каждого AN и изменяются во времени (вследствие сцинтилляции, доплеровского сдвига и разных ошибок осциллятора AN). Путем устранения динамических искажений в фидерной линии связи скорость адаптации весовых коэффициентов луча может быть ниже, чем в альтернативном варианте, где адаптация весовых коэффициентов луча происходит достаточно быстро для отслеживания динамики фидерной линии связи.In addition to delay correction in the signal paths to the end-to-end repeater from all ANs, phase shifts induced by the feeder links can be eliminated before beamforming. The phase shift of each of the links between the end-to-end repeater and M AN will be different. Reasons for different phase shifts for each link include, without limitation, signal path length, atmospheric conditions such as scintillation, Doppler frequency shift, and different AN oscillator errors. These phase shifts are essentially different for each AN and change over time (due to scintillation, Doppler shift and different AN oscillator errors). By eliminating dynamic distortion in the feeder link, the rate of adaptation of the beam weights can be slower than in the alternative where the adaptation of the beam weights is fast enough to track the dynamics of the feeder link.
В обратном направлении искажения нисходящей фидерной линии связи на AN являются общими как для PN радиомаяка ретранслятора, так и для сигналов пользовательских данных (например, обратных сигналов нисходящей линии связи). В некоторых случаях когерентная демодуляция PN радиомаяка ретранслятора позволяет получить информацию о канале, которая используется для устранения большей части или всех из этих искажений из обратного сигнала данных. В некоторых случаях PN-сигнал радиомаяка ретранслятора представляет собой известную PN-последовательность, которая постоянно передается и находится в пределах диапазона данных сеансов связи. Эквивалентная (или эффективная) изотропно излучаемая мощность (EIRP) этого внутридиапазонного PN-сигнала устанавливается так, чтобы помехи в данных сеансов связи не превышали максимально допустимого уровня. В некоторых случаях процесс устранения искажений в фидерной линии связи для обратной линии связи включает в себя когерентную демодуляцию и отслеживание синхронизации и фазы принимаемого PN-сигнала радиомаяка ретранслятора. Например, демодулятор 2511 сигналов радиомаяка ретранслятора может определять регулировки 2512 синхронизации и фазы при приеме для компенсации искажения в фидерной линии связи на основе сравнения PN-сигнала радиомаяка ретранслятора с локальным эталонным сигналом (например, локального осциллятора или ФАПЧ). Затем устраняют полученные различия синхронизации и фазы в обратном сигнале нисходящей линии связи (например, с помощью регулятора 4024 синхронизации и фазы при приеме), таким образом устраняя искажения в фидерной линии связи из сигнала связи (например, обратных сигналов 527 нисходящей линии связи). После устранения искажений в фидерной линии связи сигналы обратной линии связи из луча будут иметь общую частотную ошибку на всех AN и, таким образом, пригодны для формирования луча. Общая частотная ошибка может включать в себя, без ограничений, доли частотной ошибки пользовательского терминала, доплеровского сдвига восходящей линии связи пользовательского терминала, частотной ошибки преобразования частоты сквозного ретранслятора и частотной ошибки PN радиомаяка ретранслятора.In the reverse direction, downlink distortion at the AN is common to both the repeater beacon PN and user data signals (eg, reverse downlink signals). In some cases, coherent PN demodulation of the repeater beacon provides channel information that is used to eliminate most or all of these distortions from the return data signal. In some cases, the PN signal of the relay beacon is a known PN sequence that is constantly transmitted and is within the range of the data sessions. The equivalent (or effective) isotropically radiated power (EIRP) of this in-band PN signal is set so that the interference in these communications does not exceed the maximum allowable level. In some cases, the feeder link debuffing process for the reverse link includes coherent demodulation and tracking the timing and phase of the received repeater beacon PN signal. For example, the
В прямом направлении сигнал радиомаяка узла доступа от каждого AN может использоваться для обеспечения устранения искажений в восходящей фидерной линии связи. Искажения в восходящей фидерной линии связи будут накладываться на данные прямой линии связи (например, специфический для конкретного узла доступа сигнал), а также сигнал радиомаяка узла доступа. Когерентная демодуляция сигнала радиомаяка узла доступа может использоваться для получения различий синхронизации и фазы сигнала радиомаяка узла доступа (например, относительно сигнала радиомаяка ретранслятора). Затем полученные различия синхронизации и фазы устраняют из передаваемого сигнала радиомаяка узла доступа так, чтобы поступивший сигнал радиомаяка узла доступа находился в фазе с сигналом радиомаяка ретранслятора.In the forward direction, the access point beacon signal from each AN may be used to provide uplink de-aliasing. The uplink distortion will be superimposed on the forward link data (eg, access point-specific signal) as well as the access point beacon signal. Coherent demodulation of the access point beacon signal can be used to obtain timing and phase differences of the access point beacon signal (eg, relative to the repeater beacon signal). The resulting timing and phase differences are then removed from the transmitted beacon signal of the access point so that the received beacon signal of the access point is in phase with the beacon signal of the repeater.
В некоторых случаях процесс устранения искажений в прямой фидерной линии связи представляет собой систему фазовой автоматической подстройки частоты (ФАПЧ) с задержкой распространения сигнала от AN до сквозного ретранслятора и обратно в пределах закольцованной конструкции. В некоторых случаях задержка при распространении сигнала в прямом и обратном направлениях от AN до сквозного ретранслятора и обратно к AN может быть существенной. Например, геосинхронный спутник, функционирующий в качестве сквозного ретранслятора, будет генерировать задержку при распространении сигнала в прямом и обратном направлениях приблизительно 250 миллисекунд (мс). Для поддержания стабильности этой петли при наличии большой задержки может использоваться очень узкая ширина полосы петли. При задержке 250 мс ширина полосы пропускания при замкнутой петле обратной связи системы ФАПЧ, как правило, может составлять менее одного Гц. В таких случаях могут использоваться осцилляторы с высокой стабильностью как на спутнике, так и на AN для поддержания надежной фазовой автоматической подстройки частоты, как указано блоком 2437 на ФИГ. 39 (см. ниже).In some cases, the forward link de-distortion process is a phase locked loop (PLL) system with a propagation delay from the AN to the end-to-end repeater and back within the loopback design. In some cases, the round trip delay from the AN to the end-to-end repeater and back to the AN can be significant. For example, a geosynchronous satellite operating as an end-to-end relay will generate a round trip delay of approximately 250 milliseconds (ms). A very narrow loop bandwidth can be used to keep this loop stable in the presence of a large delay. With a delay of 250 ms, the PLL closed-loop bandwidth can typically be less than one Hz. In such cases, high stability oscillators at both the satellite and the AN can be used to maintain reliable phase lock, as indicated by
В некоторых случаях сигнал радиомаяка узла доступа представляет собой пакетный сигнал, который передается только во время калибровочных интервалов. Во время калибровочного интервала данные сеансов связи не передаются для устранения этих помех в сигнале радиомаяка узла доступа. Поскольку во время калибровочного интервала данные сеансов связи не передаются, передаваемая мощность сигнала радиомаяка узла доступа может быть высокой по сравнению с той, которая была бы необходима при передаче данных сеанса связи. Это связано с отсутствием проблемы создания помех для данных сеансов связи (в это время данные сеансов связи отсутствуют). Данная методика обеспечивает высокое отношение сигнал/шум (SNR) для сигнала радиомаяка узла доступа, когда его передают во время калибровочного интервала. Частота использования калибровочных интервалов является величиной, обратной времени, прошедшему между калибровочными интервалами. Поскольку каждый калибровочный интервал обеспечивает выборку фазы для ФАПЧ, эта частота калибровки представляет собой частоту дискретизации этой ФАПЧ с дискретным временем. В некоторых случаях частота дискретизации достаточно высока для поддержания ширины полосы при замкнутой петле обратной связи ФАПЧ с незначительными искажениями информации. Произведение частоты калибровки (частоты дискретизации петли) и калибровочного интервала представляет собой долю времени, в течение которого сквозной ретранслятор не может использоваться для данных сеансов связи без дополнительных помех от сигнала с контактного датчика зондирования канала. В некоторых случаях используются значения менее чем 0,1, а в некоторых случаях используются значения менее чем 0,01.In some cases, the access point beacon signal is a burst signal that is transmitted only during calibration intervals. No session data is transmitted during the calibration interval to eliminate this interference in the access point's beacon signal. Since no session data is transmitted during the calibration interval, the transmit power of the access node's beacon signal may be high compared to what would be needed when the session data was transmitted. This is because there is no problem of interfering with the session data (there is no session data at this time). This technique provides a high signal-to-noise ratio (SNR) for the access point beacon signal when it is transmitted during the calibration interval. The frequency of use of calibration intervals is the reciprocal of the time elapsed between calibration intervals. Because each calibration interval provides a phase sample for the PLL, this calibration frequency is the sample rate of that discrete-time PLL. In some cases, the sampling rate is high enough to maintain the bandwidth of a closed PLL with little information distortion. The product of the calibration frequency (loop sampling rate) and the calibration interval is the fraction of time that the end-to-end repeater cannot be used for these communications without additional interference from the channel probe signal. In some cases, values less than 0.1 are used, and in some cases values less than 0.01 are used.
На ФИГ. 39 представлена блок-схема примера приемопередатчика 2409 AN. Вход 2408 приемопередатчика 2409 AN принимает сигналы сквозной обратной линии связи, принимаемые AN 515 (например, для одной из множества подполос частот). Вход 2408 соединен со входом 2501 понижающего преобразователя (D/C) 2503. Выход D/C 2503 соединен с аналого-цифровым преобразователем (A/D) 2509. Выход A/D 2509 соединен с регулятором 2515 времени при приеме Rx и/или с регулятором 2517 фазы Rx. Регулятор 2515 времени при приеме Rx и регулятор 2517 фазы Rx могут проиллюстрировать аспекты регулятора 4024 синхронизации и фазы при приеме на ФИГ. 38. D/C 2503 представляет собой квадратурный понижающий преобразователь. Соответственно, D/C 2503 выдает синфазные и квадратурные выходные сигналы на A/D 2509. Принимаемые сигналы могут включать в себя сигналы связи (например, комбинацию обратных сигналов восходящей линии связи, передаваемых пользовательскими терминалами), сигналы радиомаяка узла доступа (например, передаваемые теми же AN и/или другими AN) и сигнал радиомаяка ретранслятора. Цифровые выборки передаются на демодулятор 2511 сигналов радиомаяка ретранслятора. Демодулятор 2511 сигналов радиомаяка ретранслятора демодулирует сигнал радиомаяка ретранслятора. Кроме того, демодулятор 2511 сигналов радиомаяка ретранслятора генерирует сигнал 2513 контроля времени и сигнал 2514 контроля фазы для устранения искажений в фидерной линии связи на основе принятого сигнала радиомаяка ретранслятора. Такие искажения включают в себя доплеровский сдвиг, частотную ошибку AN, сцинтилляционные эффекты, изменения длины тракта прохождения сигнала и т.д. При выполнении когерентной демодуляции сигнала радиомаяка ретранслятора для устранения большинства или всех этих ошибок может использоваться система фазовой автоматической подстройки частоты (ФАПЧ). При исправлении ошибок в сигнале радиомаяка ретранслятора также происходит исправление соответствующих ошибок в сигналах связи и сигналах радиомаяка узла доступа в фидерной линии связи (например, вследствие того, что такие ошибки являются общими для сигнала радиомаяка ретранслятора, сигналов радиомаяка узла доступа и сигналов связи). После устранения искажений в фидерной линии связи коммуникационный сигнал сквозной обратной линии связи от пользовательского терминала 517 номинально имеет одинаковую частотную ошибку на каждом из M AN 515. Эта общая ошибка включает себя частотную ошибку пользовательского терминала, доплеровский сдвиг пользовательской линии связи, ошибку преобразования частоты сквозного ретранслятора и частотную ошибку сигналов радиомаяка ретранслятора.FIG. 39 is a block diagram of an example 2409 AN transceiver.
Цифровые выборки, в которых устранены искажения фидерной линии связи, передаются на мультиплексор 2518, который может представлять собой пример мультиплексора 4004 на ФИГ. 38. Мультиплексор 2518 связывает (например, с помощью меток времени) выборки с информацией 2520 о синхронизации ретрансляции от демодулятора 2511 сигналов радиомаяка ретранслятора. Выход мультиплексора 2518 соединен с выходным портом 2410 приемопередатчика 2409 AN. Выходной порт 2410 соединен с мультиплексором 2413 и через интерфейс 2415 (см. ФИГ. 40) с CPS 505. Затем CPS 505 может использовать метки времени, связанные с принимаемыми цифровыми выборками, для согласования цифровых выборок, принимаемых от каждого из AN 515. Дополнительно или альтернативно устранение искажений в фидерной линии связи может выполняться на CPS 505. Например, цифровые выборки сигналов сквозной обратной линии связи с включенным сигналом радиомаяка ретранслятора могут быть направлены с AN 515 на CPS 505, а CPS 505 может использовать информацию о времени синхронизации (например, включенный сигнал радиомаяка ретранслятора) в каждом из комбинированных обратных сигналов с целью определения соответствующих корректировок для соответствующих комбинированных обратных сигналов для компенсации искажений в канале нисходящей линии связи.The digital samples that have the feeder link distortion removed are passed to
Сигнал 2530 радиомаяка узла доступа может генерироваться локально генератором 2529 сигналов радиомаяка узла доступа. Демодулятор 2519 сигналов радиомаяка узла доступа демодулирует сигнал радиомаяка узла доступа, принимаемый AN 515 (например, после ретрансляции сквозным ретранслятором и приема на входе 2408). Демодулятор 2511 сигналов радиомаяка ретранслятора передает принятый сигнал 2521 с информацией о синхронизации и фазе ретранслятора на контроллер 2523. Контроллер 2523 также принимает ретранслированный сигнал 2525 с информацией о синхронизации и фазе при передаче от демодулятора 2519 сигналов радиомаяка узла доступа. Контроллер 2523 сравнивает принятую информацию о синхронизации и фазе ретранслятора с ретранслированной информацией о синхронизации и фазе при передаче и генерирует сигнал 2527 грубой настройки времени. Сигнал 2527 грубой настройки времени передается на генератор 2529 сигналов радиомаяка узла доступа. Генератор 2529 сигналов радиомаяка узла доступа генерирует сигнал 2530 радиомаяка узла доступа со встроенной информацией о синхронизации при передаче, который должен передаваться с AN 515 на сквозной ретранслятор 503. Как упомянуто в описании выше, разницу между информацией о синхронизации и фазе ретранслятора (включенной в сигнал радиомаяка ретранслятора) и информацией о времени и фазе при передаче (включенной в сигнал радиомаяка узла доступа) используют для коррекции информации о синхронизации и фазе при передаче для синхронизации ретранслируемой информации о синхронизации и фазе при передаче с принимаемой информацией о синхронизации и фазе ретранслятора. Грубое время корректируется с помощью сигнала 2527 на генератор 2529 сигналов радиомаяка узла доступа, а точное время корректируется с помощью сигнала 2540 на регулятор 2539 времени при передаче (Tx). С помощью ретранслированной информации 2525 о синхронизации и фазе при передаче от демодулятора 2519 сигналов радиомаяка узла доступа, синхронизированной с принятой информацией 2521 о синхронизации и фазе ретранслятора, генератор 2529 сигналов радиомаяка узла доступа генерирует метки 2531 времени, которые способствуют синхронизации сигнала 2530 радиомаяка узла доступа и передаваемого специфического для узла доступа прямого сигнала от CPS 505. Это означает, что выборки данных от CPS 505 принимаются на входной порт 2423 вместе с метками 2535 времени, которые указывают, когда связанные с ними выборки данных должны достичь сквозного ретранслятора 503. Модуль 2537 буферизации, временной синхронизации и суммирования буферизует выборки данных, передаваемые от CPS 505, и суммирует их с выборками от генератора 2529 сигналов радиомаяка узла доступа на основе меток 2535, 2531 времени. PN-выборки и выборки данных сеанса связи с идентичными значениями времени, обозначенными метками времени, суммируются друг с другом. В этом примере множественные сигналы луча (xk(n) * bk) суммируются друг с другом в CPS 505, а специфический для узла доступа прямой сигнал, содержащий комбинацию множества сигналов лучей, направляют на AN с помощью CPS 505.The access
Когда выборки данных надлежащим образом согласованы на AN, они поступают на сквозной ретранслятор 503 в требуемый момент времени (например, в тот же момент времени, в который от других AN поступают такие же выборки данных). Регулятор 2539 времени при передаче выполняет корректировки точного времени на основе выходного сигнала 2540 контроллера точного времени от модуля 2523 контроллера времени. Регулятор 2541 фазы при передаче выполняет корректировки фазы сигнала в ответ на сигнал 2542 контроля фазы, генерируемый демодулятором 2519 сигналов радиомаяка узла доступа. Регулятор 2539 времени при передаче и регулятор 2541 фазы при передаче могут иллюстрировать, например, аспекты компенсатора 4020 синхронизации и фазы при передаче на ФИГ. 38.When the data samples are properly matched at the AN, they arrive at the end-to-
Выход регулятора 2541 фазы при передаче соединен со входом цифро-аналогового преобразователя (D/A) 2543. Квадратурный аналоговый выход от D/A 2543 соединен с повышающим преобразователем (U/C) 2545, чтобы передать с помощью HPA 2433 (см. ФИГ. 40) на сквозной ретранслятор 503. Сигнал 2547 контроля амплитуды, обеспечиваемый демодулятором 2519 сигналов радиомаяка узла доступа, обеспечивает обратную связь по амплитуде на U/C 2545 для компенсации явлений, таких как замирания сигнала восходящей линии связи при дожде.The output of the transmit
В некоторых случаях PN-код, используемый каждым AN для сигнала 2530 радиомаяка узла доступа, отличается от кода, используемого каждым другим AN. В некоторых случаях каждый из PN-кодов в сигналах радиомаяка узла доступа отличается от PN-кода ретранслятора, используемого в сигнале радиомаяка ретранслятора. Соответственно, каждый AN 515 может быть способен различать свой собственный сигнал радиомаяка узла доступа среди сигналов других AN 515. AN 515 могут различать свои собственные сигналы радиомаяка узла доступа и сигнал радиомаяка ретранслятора.In some cases, the PN code used by each AN for the access
Как было описано ранее, канал со сквозным усилением из любой точки в зоне покрытия в любую другую точку в зоне представляет собой многолучевой канал с L разными трактами, который может приводить к очень глубоким замираниям сигнала для некоторых двухточечных каналов. Разнесение передачи (прямой линии связи) и разнесение приема (обратной линии связи) очень эффективны для уменьшения степени глубоких замираний сигнала и обеспечения работы системы связи. Однако для сигналов радиомаяка узла доступа разнесение передачи и приема отсутствует. В результате этого двухточечная линия связи закольцованного сигнала, который представляет собой сигнал, передаваемый от AN обратно на тот же AN, может иметь коэффициенты сквозного усиления, которые гораздо ниже среднего. Значения на 20 дБ ниже среднего могут возникать в большом числе трактов приема/передачи сигнала (L). Эти немного меньшие значения коэффициентов сквозного усиления приводят к снижению SNR для этих AN и могут затруднять подключение линии связи. Соответственно, в некоторых случаях в AN используются антенны с более высоким коэффициентом усиления. Альтернативно, как показано на примере транспондера на ФИГ. 16, регулятор 418 фазы может быть включен в каждый из трактов приема/передачи сигнала. Регулятор 418 фазы может независимо регулироваться с помощью контроллера 427 сдвига фазы (например, управляемого по линии связи телеметрии, слежения и управления (TT&C) из наземного центра управления). Коррекция относительных фаз может быть эффективной при повышении коэффициентов сквозного усиления закольцованных трактов с низким коэффициентом усиления. Например, цель может заключаться в выборе настроек сдвига фазы для увеличения значения усиления в обратной петле, соответствующего наиболее жестким условиям (усиление от AN и обратно). Следует отметить, что выбор фаз по существу не изменяет распределение коэффициентов усиления при выполнении оценки для всех точек в зоне покрытия на все остальные точки в зоне покрытия, но может увеличивать коэффициенты усиления в закольцованных трактах с низким коэффициентом усиления.As previously described, an end-to-end gain link from anywhere in the coverage area to any other point in the coverage area is a multipath channel with L different paths, which can result in very deep signal fading for some point-to-point channels. Transmit (forward link) diversity and receive (reverse link) diversity are very effective in reducing deep signal fading and maintaining communication system performance. However, there is no transmit/receive diversity for access node beacon signals. As a result, the point-to-point link of the looped signal, which is the signal transmitted from the AN back to the same AN, can have end-to-end gains that are much lower than average. Values 20 dB below average can occur in a large number of signal paths ( L ). These slightly lower end-to-end gains result in reduced SNR for these ANs and can make link connection difficult. Accordingly, in some cases, higher gain antennas are used in the AN. Alternatively, as shown in the example of the transponder in FIG. 16, a
Для проработки этого вопроса рассмотрим набор коэффициентов усиления от каждого из M AN 515 на все остальные AN 515. Существует M 2 коэффициентов усиления, лишь M из которых относятся к закольцованным трактам. Рассмотрим два варианта распределения коэффициентов усиления, причем первый представляет собой общее распределение для всех трактов (M 2), которое можно оценить путем составления гистограммы для всех M 2 трактов. Для AN, равномерно распределенных по всей зоне покрытия, это распределение может быть показательным как распределение сквозного усиления от любой точки до любой другой точки в зоне покрытия. Второй вариант распределения представляет собой распределение коэффициентов усиления в обратной петле (кольцевое распределение), которое можно оценить путем составления гистограммы лишь для M закольцованных трактов. Во многих случаях пользовательский выбор параметров фазы тракта приема/передачи сигнала (и необязательно настроек усиления) не обеспечивает существенного изменения общего распределения. Это в особенности характерно для случайного или перемежающегося сопоставлений передачи на приемные элементы. Однако в большинстве случаев кольцевое распределение можно улучшить с помощью пользовательского выбора (в отличие от случайных значений) настроек фазы (и необязательно усиления). Это связано с тем, что набор значений кольцевого усиления состоит из M трактов (в противоположность общему числу M 2 трактов), а число степеней свободы при коррекции фазы и усиления равно L. Зачастую L имеет тот же порядок, что и M, что позволяет значительно повысить коэффициенты усиления в обратной петле с низкими коэффициентами усиления с помощью пользовательского выбора фазы. Другой способ рассмотрения этого вопроса заключается в том, что выбор пользовательской фазы необязательно устраняет значения низкого сквозного коэффициента усиления, а вместо этого переносит их из набора коэффициентов кольцевого усиления (M элементов в наборе) в набор коэффициентов некольцевого усиления (M 2-M элементов). Для нетривиальных значений M больший набор часто гораздо больше первого.To work this out, consider a set of gains from each of the M AN 515s to all the other AN 515s. There are M 2 gains, only M of which are looped paths. Consider two options for the distribution of gains, the first is the overall distribution for all paths ( M 2 ), which can be estimated by compiling a histogram for all M 2 paths. For ANs uniformly distributed throughout the coverage area, this distribution can be indicative of the distribution of end-to-end gain from any point to any other point in the coverage area. The second distribution is the loopback gain distribution (ring distribution), which can be estimated by plotting a histogram for only the M looped paths. In many cases, the user's choice of phase parameters of the receive/transmit signal path (and optional gain settings) does not provide a significant change in the overall distribution. This is especially the case for random or interleaved transmission-to-receiver mappings. However, in most cases, the ring distribution can be improved with user-selectable (as opposed to random) phase (and optionally gain) settings. This is because the set of ring gain values consists of M paths (as opposed to the total number of M 2 paths), and the number of degrees of freedom in phase and gain correction is L . Often, L is of the same order as M , which allows for much higher loop gains with low gains through custom phase selection. Another way of looking at this is that choosing a custom phase does not necessarily eliminate low end-to-end gain values, but instead moves them from a ring gain set ( M elements in the set) to a non-ring gain set ( M 2 - M elements). For non-trivial values of M, the larger set is often much larger than the first.
AN 515 может обрабатывать одну или более подполос частот. На ФИГ. 40 представлена блок-схема примера AN 515, в котором обработку во множестве подполос частот выполняют по отдельности. На сквозной обратной линии связи 523 (см. ФИГ. 5) AN 515 принимает обратные сигналы 527 нисходящей линии связи от сквозного ретранслятора 503 через малошумящий усилитель (МШУ) 2401. Усиленные сигналы передаются от МШУ 2401 на делитель 2403 мощности. Делитель 2403 мощности разделяет сигнал на множество выходных сигналов. Каждый сигнал выводится на один из выходных портов 2405, 2407 делителя 2403 мощности. Один из выходных портов 2407 может использоваться как тестовый порт. Другие порты 2405 соединены со входом 2408 соответствующего одного из множества приемопередатчиков 2409 AN (показан только один). Приемопередатчики 2409 AN обрабатывают сигналы, принимаемые в соответствующих подполосах. Приемопередатчик 2409 AN выполняет несколько функций, подробно описанных выше. Выходы 2410 приемопередатчиков 2409 AN соединены с входными портами 2411 мультиплексора 2413 подполосы. Выходы комбинируются в мультиплексоре 2413 подполосы и выводятся в интерфейс 2415 распределительной сети. Интерфейс 2415 обеспечивает интерфейс для данных от AN 515 или на него и на CPS 505 или от него по распределительной сети (см. ФИГ. 5). Обработка подполос частот может иметь преимущество при снижении требований к производительности для РЧ-компонентов, используемых для реализации сквозного ретранслятора и AN. Например, при разделении ширины полосы 3,5 ГГц (которая, например, может использоваться в системе Ka-полосы) на семь подполос каждая подполоса имеет ширину всего 500 МГц. Это означает, что каждый из специфических для узла доступа прямых сигналов может включать в себя множество подсигналов, связанных с разными подполосами (например, связанных с разными подмножествами зон покрытия прямых пользовательских лучей), а приемопередатчики 2409 AN могут осуществлять преобразование с повышением частоты подсигналов для разных несущих частот. Данное разделение ширины полосы может позволить использовать компоненты с меньшим допуском, поскольку колебания амплитуды и фазы в разных подполосах могут быть скомпенсированы с помощью отдельных весовых коэффициентов формирования луча, калибровки и т.д. для разных подполос. Конечно же, в других системах может использоваться другое число подполос и/или тестовых портов. В некоторых случаях может использоваться одна подполоса и могут отсутствовать некоторые показанные в настоящем документе компоненты (например, может быть опущен делитель 2403 мощности и мультиплексор 2413).AN 515 may handle one or more subbands. FIG. 40 is a block diagram of an example of AN 515 in which processing on multiple subbands is performed separately. On the end-to-end reverse link 523 (see FIG. 5), the
В сквозной прямой линии связи 501 данные принимаются от CPS 505 с помощью интерфейса 2415. Принимаемые данные передают на вход 2417 демультиплексора 2419 подполосы. Демультиплексор 2419 подполосы разделяет данные на множество сигналов данных. Сигналы данных подаются с выходных портов 2421 демультиплексора 2419 подполосы на входные порты 2423 приемопередатчиков 2409 AN. Выходные порты 2425 приемопередатчиков 2409 AN соединены с входными портами 2427 модуля 2429 суммирования. Модуль 2429 суммирования суммирует сигналы, выдаваемые семью приемопередатчиками 2409 AN. С выходного порта 2431 модуля 2429 суммирования выходной сигнал модуля 2429 суммирования передается на входной порт 2433 усилителя 2435 высокой мощности (HPA). Выход HPA 2435 соединен с антенной (не показана), которая передает выходные сигналы на сквозной ретранслятор 503. В некоторых случаях сверхстабильный осциллятор 2437 соединен с приемопередатчиками 2409 AN для обеспечения устойчивого источника эталонной частоты.On the through
Вычисление весового коэффициента лучаBeam Weight Calculation
Как показано на ФИГ. 8, которая представляет собой пример описания сигналов на обратной линии связи, математическая модель сквозной обратной линии связи может использоваться для описания линии связи следующим образом:As shown in FIG. 8, which is an example of the description of signals on the reverse link, the mathematical model of the end-to-end reverse link can be used to describe the communication link as follows:
УР. 1, UR. 1,
гдеWhere
x представляет собой K x 1 вектор-столбцов передаваемого сигнала. В некоторых случаях квадрат величины каждого элемента в x определяется как единица (одинаковая мощность передачи). В некоторых случаях это может быть не так. x is the K x 1 column vectors of the transmitted signal. In some cases, the square of the magnitude of each element in x is defined as one (same transmit power). In some cases, this may not be the case.
y представляет собой K x 1 вектор-столбцов принимаемого сигнала после формирования луча. y is the K x 1 column vectors of the received signal after beamforming.
Ar представляет собой L x K матрицу излучения обратной восходящей линии связи. Элемент a lk содержит коэффициент усиления и фазу тракта от опорного местоположения, размещенного в луче K, до l-го (литера «эль») приемного антенного элемента 406 в решетке Rx. В некоторых случаях значения матрицы излучения обратной восходящей линии связи хранятся в хранилище 941 данных канала (см. ФИГ. 30). Ar is an L x K reverse uplink emission matrix. Element a lk contains the gain and phase of the path from the reference location located in beam K to the l th (letter "el") receive
E представляет собой L x L матрицу полезной нагрузки. Элемент e ij определяет коэффициент усиления и фазу сигнала от j антенного элемента 406 в приемной решетке до i антенного элемента 409 в передающей решетке. В некоторых случаях помимо вариантов со случайными перекрестными помехами между трактами (вследствие ограниченной изоляции электроники) матрица E представляет собой диагональную матрицу. Матрица E может быть нормализована таким образом, что сумма квадрата величины всех элементов в матрице равна L. В некоторых случаях значения матрицы полезной нагрузки хранятся в хранилище 941 данных канала (см. ФИГ. 29). E is an L x L payload matrix. Element e ij determines the gain and phase of the signal from the
Ct представляет собой M x L матрицу излучения обратной нисходящей линии связи. Элемент c ml содержит коэффициент усиления и фазу тракта от l-го (литера «эль») антенного элемента в матрице Tx до m-го AN 515 среди M AN 515. В некоторых случаях значения матрицы излучения обратной нисходящей линии связи хранятся в хранилище 941 данных канала (см. ФИГ. 29). Ct is an M x L reverse downlink emission matrix. Element c ml contains the gain and phase of the path from the l th (letter "el") antenna element in the Tx matrix to the m th AN 515 among
Hret представляет собой матрицу обратного канала M x K, равную произведению Ct x E x Ar. Hret is a reverse channel matrix M x K equal to the product Ct x E x Ar .
n ul представляет собой вектор шума L x 1 сложного гауссового шума. Ковариация шума восходящей линии связи представляет собой единичную матрицу L x L. n ul represents
σ2 представляет собой изменение шума. испытано в восходящей линии связи, а испытано в нисходящей линии связи.σ 2 represents the change in noise. tested in the uplink, and tested in the downlink.
n dl представляет собой вектор шума M x 1 сложного гауссового шума. Ковариация шума нисходящей линии связи представляет собой единичную матрицу M x M. n dl is the noise vector M x 1 of complex Gaussian noise. Downlink noise covariance is the identity matrix M x M .
Bret представляет собой K x M матрицу весовых коэффициентов луча сквозной обратной линии связи. Bret is a K x M matrix of end-to-end reverse link beam weights.
Примеры, по существу описанные выше (например, со ссылкой на ФИГ. 6-11) таким образом, который предполагает наличие некоторых сходств между прямым и обратным сквозными многолучевыми каналами. Например, матрицы прямого и обратного каналов описаны выше со ссылкой по существу на M, K, E и другие модели. Однако такие описания предназначены лишь для упрощения описания для большей ясности и не предназначены для ограничения примеров лишь случаями с идентичными конфигурациями в прямом и обратном направлениях. Например, в некоторых случаях одни и те же транспондеры используются как для прямого, так и для обратного трафика, а матрица E полезной нагрузки может быть одинаковой для сквозного формирования луча как в прямом, так и в обратном направлениях (и соответствующих вычислений весового коэффициента луча) соответственно. В других случаях для прямого и обратного трафика используются разные транспондеры, а для моделирования соответствующих сквозных многолучевых каналов и для вычисления соответствующих весовых коэффициентов лучей могут использоваться разные матрицы - матрица (Efwd) полезной нагрузки в прямом направлении и матрица (Eret) полезной нагрузки в обратном направлении. Аналогичным образом, в некоторых случаях одни и те же M AN 515 и K пользовательских терминалов 517 считаются частью как прямых, так и обратных сквозных многолучевых каналов. В других случаях значения M и K могут относиться к разным подмножествам AN 515, и/или пользовательским терминалам 517, и/или к разным числам AN 515, и/или пользовательским терминалам 517 в прямом и обратном направлениях.The examples are essentially described above (eg, with reference to FIGS. 6-11) in a manner that suggests some similarities between forward and reverse end-to-end multipath channels. For example, the forward and reverse channel matrices are described above with reference essentially to M , K , E and other models. However, such descriptions are only intended to simplify the description for greater clarity and are not intended to limit the examples to only cases with identical forward and reverse configurations. For example, in some cases the same transponders are used for both forward and return traffic, and the payload matrix E may be the same for both forward and return end-to-end beamforming (and associated beam weight calculations) respectively. In other cases, different transponders are used for forward and reverse traffic, and different matrices may be used to model the respective end-to-end multipath channels and calculate the respective path weights - the payload matrix ( Efwd ) in the forward direction and the payload matrix ( Eret ) in the reverse direction. . Similarly, in some cases, the
Весовые коэффициенты лучей могут вычисляться разными способами для удовлетворения системных требований. В некоторых случаях они вычисляются после развертывания сквозного ретранслятора. В некоторых случаях матрицу E полезной нагрузки создают перед развертыванием. В некоторых случаях весовые коэффициенты лучей вычисляют с целью увеличения отношения сигнал/смесь помехи с шумом (SINR) для каждого луча, и они могут вычисляться следующим образом:Beam weights can be calculated in a variety of ways to meet system requirements. In some cases, they are calculated after the end-to-end relay is deployed. In some cases, the payload matrix E is created prior to deployment. In some cases, beam weights are calculated to increase the signal-to-interference-to-noise ratio (SINR) for each beam, and they can be calculated as follows:
УР. 2, 3, UR. 2, 3,
где R представляет собой ковариацию принимаемого сигнала, а ( * ) H представляет собой сопряженный (эрмитов) оператор операции транспонирования.WhereR is the covariance of the received signal, and( * ) H represents the adjoint (Hermitian) operator of the transposition operation.
Элемент k, m матрицы K x M весовых коэффициентов обратного луча Bret обеспечивает весовые коэффициенты для формирования луча на m-й AN 515 от пользовательского терминала в k-м пользовательском луче. Соответственно, в некоторых случаях каждый из весовых коэффициентов обратного луча, используемых для формирования обратных пользовательских лучей, вычисляют путем оценки коэффициентов сквозного обратного усиления (т.е. элементов матрицы Hret канала) для каждого из сквозных многолучевых каналов (например, каждого из сквозных обратных многолучевых каналов).The k , m element of the K x M return beam weight matrix Bret provides the weights for beamforming at the m-th AN 515 from the user terminal in the k -th user beam. Accordingly, in some cases, each of the return beam weights used to generate the return user beams is calculated by estimating the end-to-end return gain factors (i.e., channel matrix elements Hret ) for each of the end-to-end multipath channels (e.g., each of the end-to-end return multipath channels).
УР. 2 будет справедливым, где R представляет собой ковариацию принимаемого сигнала, как предусмотрено в УР. 3. Таким образом, когда известны все из матриц УР. 1, 2 и 3, можно непосредственно определить весовые коэффициенты лучей, используемые для формирования сквозных лучей.UR. 2 will be true, where R is the received signal covariance as provided in the UR. 3. Thus, when all of the SD matrices are known. 1, 2, and 3, the beam weights used to form the through beams can be directly determined.
Этот набор весовых коэффициентов лучей позволяет снизить среднеквадратичную ошибку между x и y. Оно также позволяет увеличить отношение сквозной сигнал/смесь помехи с шумом (SINR) для каждого из K сигналов 525 сквозной обратной линии связи (происходящих от каждого из K лучей).This set of beam weights allows you to reduce the standard error between x and y . It also makes it possible to increase the end-to-end signal-to-interference-to-noise ratio (SINR) for each of the K end-to-end reverse link signals 525 (derived from each of the K beams).
Первый член в УР. 3 представляет собой ковариацию шума нисходящей линии связи (которая некоррелирована). Второй член в УР. 3 представляет собой ковариацию шума восходящей линии связи (которая коррелирована на AN). Третий член HH H в УР. 3 представляет собой ковариацию сигнала. Установка дисперсии шума восходящей линии связи в нуль и опускание последнего члена (HH H ) приводит к получению набора весовых коэффициентов, которые увеличивают отношение сигнал/шум в нисходящей линии связи путем согласования фазы принимаемых сигналов на каждом из M AN 515. Установка дисперсии шума нисходящей линии связи в нуль и опускание 3 члена приводит к получению набора весовых коэффициентов, что увеличивает SINR для восходящей линии связи. Установка дисперсии шумов как в восходящей линии связи, так и в нисходящей линии связи в нуль приводит к декорреляции при приеме, что увеличивает отношение мощности сигнала на несущей к помехе (C/I).First Member in UR. 3 is the downlink noise covariance (which is uncorrelated). Second term in UR. 3 is the uplink noise covariance (which is correlated on the AN). The third member of HH H in UR. 3 represents the signal covariance. Setting the uplink noise variance to zero and omitting the last term ( HH H ) results in a set of weights that increase the downlink signal-to-noise ratio by matching the phase of the received signals at each of the
В некоторых случаях весовые коэффициенты лучей нормализуются так, чтобы сумма квадрата величины любой строки Bret была равна единице.In some cases, the beam weights are normalized so that the sum of the square of the magnitude of any Bret row is equal to one.
В некоторых случаях решение УР. 2 определяется наличием априорной информации о матрицах Ar, Ct и E, а также дисперсий векторов шума n ul и n dl . Информация о значениях элементов матриц может быть получена при измерениях, выполняемых во время изготовления и тестирования соответствующих компонентов сквозного ретранслятора. Это может действовать в системах, в которых не происходит значительного изменения значений в матрицах во время работы системы. Однако для некоторых систем, в особенности для работающих в высокочастотных полосах, такая вероятность может отсутствовать. В таких случаях матрицы Ar, Ct и E могут быть оценены после развертывания носителя (такого как спутник), на котором размещен сквозной ретранслятор.In some cases, the decision of the UR. 2 is determined by the presence of a priori information about the matrices Ar , Ct and E , as well as the dispersions of the noise vectors n ul and n dl . Information about the values of the matrix elements can be obtained from measurements performed during the manufacture and testing of the corresponding components of the end-to-end repeater. This may work in systems where the values in the matrices do not change significantly while the system is running. However, for some systems, especially those operating in high frequency bands, this possibility may not exist. In such cases, the Ar , Ct , and E matrices can be estimated after the deployment of the carrier (such as a satellite) hosting the end-to-end repeater.
В некоторых случаях там, где априорную информацию не используют для установки весовых коэффициентов, решение УР. 2 может быть определено путем оценки значений R и H. В некоторых случаях назначенные пользовательские терминалы 517 в центре каждой зоны 519 покрытия пользовательских лучей передают известные сигналы x в периоды калибровки. Вектор, принятый в AN 515:In some cases, where a priori information is not used to set the weights, the decision of the UR. 2 can be determined by evaluating the R and H values. In some cases, assigned
u = H x + Ct E n ul + n dl УР. 4 u = H x + Ct E n ul +
В одном примере CPS 505 оценивает значения R и H на основании следующих соотношений:In one example,
представляет собой оценку ковариационной матрицы представляет собой оценку матрицы H канала, а k представляет собой оценку вектора корреляции, представляет собой сопряженное число k-го компонента вектора передачи с частотной ошибкой, возникающей при передаче в восходящей линии связи. В некоторых случаях в период калибровки обратные данные сеанса связи не передаются. Это означает, что в период калибровки по сквозной обратной линии связи передаются лишь калибровочные сигналы, которые известны AN, для обеспечения определения значения из принятого вектора u с использованием уравнения выше. Это, в свою очередь, позволяет определить значение . Как оценку ковариационной матрицы , так и оценку матрицы канала получают на основе сигналов, принятых в период калибровки. is an estimate of the covariance matrix is an estimate of the matrix H of the channel, and k is the estimate of the correlation vector, is the conjugate of the k th component of the transmission vector with the frequency error occurring in the uplink transmission. In some cases, no reverse session data is transmitted during the calibration period. This means that during the calibration period, only calibration signals that are known to the AN are transmitted on the reverse link end-to-end to ensure that the value from the received vector u using the equation above. This, in turn, makes it possible to determine the value . How to estimate the covariance matrix , and an estimate of the matrix the channel is obtained based on the signals received during the calibration period.
В некоторых случаях CPS 505 может выполнять оценку ковариационной матрицы при наличии данных сеанса связи (например, даже если x неизвестно). Это может быть обусловлено тем фактом, что определяется только на основе принимаемого сигнала u. Тем не менее, значение оценивается на основе сигналов, принятых в период калибровки, в который передаются лишь калибровочные сигналы по обратной линии связи.In some cases, the
В некоторых случаях оценки как матрицы канала, так ковариационной матрицы выполняются, когда данные сеанса связи передаются по обратной линии связи. В этом случае ковариационную матрицу оценивают так, как упомянуто выше. Однако значение x определяется путем демодуляции принятого сигнала. После того, как значение x стало известно, можно оценить матрицу канала, как упомянуто выше в УР. 6 и УР. 7.In some cases, estimates as matrices channel, so the covariance matrix are performed when session data is transmitted on the reverse link. In this case, the covariance matrix evaluated as mentioned above. However, the value of x is determined by demodulating the received signal. Once the value of x is known, the channel matrix can be estimated as mentioned above in the EP. 6 and UR. 7.
Сигнальная и помеховая составляющие сигнала после формирования луча содержатся в векторе Bret H x. Мощности сигнала и помехи для каждого из лучей содержатся в K x K матрице Bret H. Мощность в k-м диагональном элементе Bret H представляет собой требуемую мощность сигнала из луча k. Сумма квадратов величин всех элементов в строке k, за исключением диагонального элемента, представляет собой мощность помех в луче k. Следовательно, C/I для луча k равно:The signal and noise components of the signal after beamforming are contained in the vector Bret H x . The signal and interference powers for each of the beams are contained in the K x K matrix Bret H . The power in the kth diagonal element Bret H is the required signal power from the beam k . The sum of the squares of the values of all elements in row k , excluding the diagonal element, is the interference power in beam k . Therefore, C/I for ray k is:
УР. 8, UR. 8,
где s kj представляют собой элементы Bret H. Шум восходящей линии связи содержится в векторе Bret Ct En ul , которому соответствует K x K ковариационная матрица . k-й диагональный элемент ковариационной матрицы содержит мощность шума восходящей линии связи в луче k. Тогда отношение сигнал/шум восходящей линии связи для луча k вычисляется следующим образом:where s kj are elements of Bret H . The uplink noise is contained in the vector Bret Ct En ul , which corresponds to the K x K covariance matrix . The k th diagonal element of the covariance matrix contains the uplink noise power in beam k . Then the uplink signal-to-noise ratio for path k is calculated as follows:
УР. 9, UR. 9,
где t kk представляет собой k-й диагональный элемент ковариационной матрицы восходящей линии связи. Шум нисходящей линии связи содержится в векторе Bret n dl , которому соответствует ковариация , основанная на нормализованных весовых коэффициентах лучей. Следовательно, отношение сигнал/шум для нисходящей линии связи следующее:where t kk is the k th diagonal element of the uplink covariance matrix. The downlink noise is contained in the vector Bret n dl , which corresponds to the covariance , based on normalized beam weights. Therefore, the signal-to-noise ratio for the downlink is:
УР. 10 UR. 10
Сквозное SINR представляет собой комбинацию УР. 8-10:End-to-end SINR is a combination of UR. 8-10:
УР. 11 UR. eleven
Уравнения выше описывают способ расчета сквозного SINR с учетом матрицы E полезной нагрузки. Матрицу полезной нагрузки можно построить путем рационального выбора коэффициента усиления и фаз для каждого из элементов E. Коэффициент усиления и фаза диагональных элементов E, которые оптимизируют некоторый вспомогательный показатель (который является по существу функцией SINR K луча в соответствии с вычислением выше), могут быть выбраны и реализованы путем настройки устройства 418 сдвига фазы в каждом из L транспондеров 411. Представляющие интерес функции включают в себя, без ограничений, сумму SINRk (общее значение SINR), сумму Log(1 + SINRk) (пропорциональную общей пропускной способности) или общую мощность в матрице канала H. В некоторых случаях улучшение вспомогательной функции путем подстройки коэффициентов усиления и фаз очень мало и незначительно. Иногда это имеет место в случае использования случайного или перемежающегося сопоставлений антенных элементов. В некоторых случаях вспомогательную функцию можно улучшить с помощью нетривиальной величины путем пользовательского выбора коэффициента усиления и фазы принимаемого/передаваемого сигнала.The equations above describe how the end-to-end SINR is calculated given the payload matrix E. The payload matrix can be constructed by rationally choosing the gain and phases for each of the E elements. The gain and phase of the diagonal E elements that optimize some auxiliary metric (which is essentially a function of the SINR K of the beam according to the calculation above) can be chosen and implemented by adjusting the
Как показано на ФИГ. 9, математическая модель сквозной прямой линии связи 501 может использоваться для описания линии связи 501 следующим образом:As shown in FIG. 9, a mathematical model of the end-to-end
УР. 12, UR. 12,
гдеWhere
x представляет собой K x 1 вектор-столбцов передаваемого сигнала. Квадрат величины каждого элемента в x определяется как единица (одинаковая мощность сигнала). В некоторых случаях неодинаковая мощность передачи может быть достигнута путем выбора весовых коэффициентов прямого луча. x is the K x 1 column vectors of the transmitted signal. The square of the magnitude of each element in x is defined as one (same signal strength). In some cases, unequal transmit power can be achieved by choosing forward beam weights.
y представляет собой K x 1 вектор-столбцов принимаемого сигнала. y is the K x 1 column vectors of the received signal.
Cr представляет собой L x M матрицу излучения прямой восходящей линии связи. Элемент c lm содержит коэффициент усиления и фазу тракта 2002 от m-го AN 515 до l-го (литера «эль») приемного антенного элемента 406 решетки Rx антенны на сквозном ретрансляторе 503. В некоторых случаях значения матрицы излучения прямой восходящей линии связи хранятся в хранилище 921 данных канала (см. ФИГ. 29). Cr is an L x M forward uplink emission matrix. Element c lm contains the gain and phase of the
E представляет собой L x L матрицу полезной нагрузки. Элемент e ij определяет коэффициент усиления и фазу сигнала от j-го элемента приемной антенной решетки до i-го антенного элемента передающей решетки. Во всех случаях, за исключением вариантов со случайными перекрестными помехами между трактами (вследствие ограниченной изоляции электроники), матрица E представляет собой диагональную матрицу. В некоторых случаях матрица E нормализована так, чтобы сумма квадрата величины всех элементов в матрице была равна L. В некоторых случаях значения матрицы полезной нагрузки хранятся в хранилище 921 данных канала (см. ФИГ. 29). E is an L x L payload matrix. Element e ij determines the gain and phase of the signal from the j-th element of the receiving antenna array to the i -th antenna element of the transmitting array. In all cases, with the exception of cases with random crosstalk between paths (due to the limited isolation of the electronics), the matrix E is a diagonal matrix. In some cases, the matrix E is normalized so that the sum of the squared magnitude of all elements in the matrix is equal to L . In some cases, the payload matrix values are stored in the channel data store 921 (see FIG. 29).
At представляет собой K x L матрицу излучения прямой нисходящей линии связи. Элемент a kl содержит коэффициент усиления и фазу тракта от антенного элемента L (литера «эль») в решетке Tx сквозного ретранслятора 503 до опорного местоположения в пользовательском луче k. В некоторых случаях значения матрицы излучения прямой нисходящей линии связи хранятся в хранилище 921 данных канала (см. ФИГ. 29). At is the K x L emission matrix of the forward downlink. Element a kl contains the gain and phase of the path from the antenna element L (letter "el") in the Tx lattice of the end-to-
Hfwd представляет собой K x M матрицу прямого канала, равную произведению A t EC r . Hfwd is a K x M forward channel matrix equal to the product of A t EC r .
n ul представляет собой вектор шума L x 1 сложного гауссового шума. Ковариация шума восходящей линии связи равна: n ul is the noise vector L x 1 of complex Gaussian noise. The uplink noise covariance is:
, ,
где I L представляет собой L x L единичную матрицу.where I L is the L x L identity matrix.
n dl представляет собой вектор шума K x 1 сложного гауссового шума. Ковариация шума нисходящей линии связи равна: n dl is the
, ,
где I K представляет собой K x K единичную матрицу.where I K is the K x K identity matrix.
Bfwd представляет собой M x K матрицу весовых коэффициентов луча из весовых коэффициентов лучей сквозной прямой линии связи. Bfwd is an M x K beamweight matrix of end-to-end forward link beamweights.
Весовые коэффициенты лучей для пользовательского луча k представляют собой элементы в столбце k Bfwd. В отличие от обратной линии связи, C/I для луча k не определяется с помощью весовых коэффициентов лучей для луча k. Весовые коэффициенты для луча k определяют отношение сигнал/шум (SNR) восходящей линии связи и SNR нисходящей линии связи, а также мощность несущей (C) в C/I. Однако мощность помех в луче k определяется на основе весовых коэффициентов луча для всех других лучей, за исключением луча k. В некоторых случаях весовой коэффициент луча для луча k выбирается для увеличения SNR. Такие весовые коэффициенты луча также увеличивают C/I для луча k, поскольку увеличивается C. Однако могут генерироваться помехи для других лучей. Таким образом, в отличие от случая с обратной линией связи, оптимальные весовые коэффициенты луча не вычисляются на основе двух лучей (независимо от других лучей).The beam weights for user beam k are the entries in column k Bfwd . Unlike the reverse link, the C/I for path k is not determined using the beam weights for path k . The weights for path k determine the uplink signal-to-noise ratio (SNR) and downlink SNR, as well as the carrier power (C) in C/I. However, the interference power in beam k is determined based on the beam weights for all other beams except beam k . In some cases, the beam weight for beam k is chosen to increase the SNR. Such beam weights also increase the C/I for path k as C increases. However, interference to other beams may be generated. Thus, unlike the reverse link case, optimal beam weights are not calculated based on two beams (independently of the other beams).
В некоторых случаях весовые коэффициенты луча (включая матрицы излучения и полезной нагрузки, используемые для их вычисления) определяются после развертывания сквозного ретранслятора. В некоторых случаях матрицу E полезной нагрузки создают перед развертыванием. В некоторых случаях можно вычислить набор весовых коэффициентов луча с использованием помех, созданных в других лучах, по лучу k и принять его за помехи в луче k. Несмотря на то что этот подход не позволяет вычислить оптимальные весовые коэффициенты луча, его можно использовать для упрощения вычисления. Это позволяет определять набор весовых коэффициентов для каждого луча независимо от всех других лучей. Затем полученные весовые коэффициенты прямого луча вычисляют аналогично весовым коэффициентам обратного луча:In some cases, the beam weights (including the radiation and payload matrices used to calculate them) are determined after the end-to-end relay has been deployed. In some cases, the payload matrix E is created prior to deployment. In some cases, it is possible to compute a set of beam weights using interference from other beams on path k and take it as interference on path k . Although this approach does not calculate the optimal beam weights, it can be used to simplify the calculation. This allows you to define a set of weights for each beam independently of all other beams. The resulting forward beam weights are then computed similarly to the back beam weights:
, где УР. 13 , where UR. 13
УР. 14 UR. 14
Первый член в УР. 14 представляет собой ковариацию шума нисходящей линии связи (некоррелированную). Второй член представляет собой ковариацию шума восходящей линии связи (которая коррелирована на AN). Третий член HH H представляет собой ковариацию сигнала. Настройка дисперсии шума восходящей линии связи в нуль и опускание последнего члена (HH H ) позволяют получить набор весовых коэффициентов, которые увеличивают отношение сигнал/шум в нисходящей линии связи путем согласования фазы принимаемых сигналов на M AN 515. Настройка дисперсии шума нисходящей линии связи в нуль и опускание 3 члена приводят к получению набора весовых коэффициентов, что увеличивает SINR для восходящей линии связи. Настройка дисперсии шумов как в восходящей линии связи, так и в нисходящей линии связи в нуль приводит к декорреляции при приеме, в результате чего увеличивается отношение C/I. В прямой линии связи по существу преобладают шум и помехи нисходящей линии связи. Таким образом, эти члены по существу можно использовать для вычисления весового коэффициента луча. В некоторых случаях второй член в УР. 14 (шум восходящей линии связи) незначителен по сравнению с первым членом (шум нисходящей линии связи). В таких случаях второй член может быть опущен в ковариационных расчетах, что еще больше упрощает расчет, но при этом позволяет получать набор весовых коэффициентов луча, которые увеличивают сквозное SINR.First Member in UR. 14 is the downlink noise covariance (uncorrelated). Second member is the uplink noise covariance (which is correlated on the AN). The third term HH H is the signal covariance. Setting the uplink noise variance to zero and omitting the last term ( HH H ) results in a set of weights that increase the downlink signal-to-noise ratio by phase-matching the received signals at
Как и в случае с обратной линией связи, весовые коэффициенты луча могут быть нормализованы. Для весовых коэффициентов передатчика, распределенных с одинаковой мощностью во всех K сигналах прямой линии связи, каждый столбец Bfwd можно масштабировать так, чтобы сумма квадратов величин всех элементов в любом столбце была равна единице. При равном распределении мощности каждый из сигналов имеет одинаковую долю от общей мощности AN (общая мощность от всех AN, выделенных для сигнала xk). В некоторых случаях для прямых линий связи реализуют неравное распределение мощности между сигналами прямой линии связи. Соответственно, в некоторых случаях некоторые сигналы луча характеризуются мощностью, которая больше равной части общей мощности AN. Этот факт может использоваться для выравнивания SINR во всех лучах или для обеспечения большего значения SINR для более важных лучей, чем для менее важных лучей. Для получения весовых коэффициентов луча при неравном распределении мощности M x K матрицу весовых коэффициентов луча для равных мощностей Bfwd умножают на K x K диагональную матрицу P. Таким образом, новая матрица Bfwd = Bfwd P. Предположим, чтоAs with the reverse link, the beam weights can be normalized. For transmitter weights distributed with the same power across all K forward link signals, each Bfwd column can be scaled such that the sum of the squared values of all elements in any column is equal to one. With equal power distribution, each of the signals has the same share of the total power AN (total power from all ANs assigned to the signal x k ). In some cases, forward links implement unequal power distribution between the forward link signals. Accordingly, in some cases, some beam signals have a power that is greater than an equal part of the total power AN. This fact can be used to equalize the SINR across all beams, or to provide a larger SINR for more important beams than less important beams. To obtain the beam weights for unequal power distribution M x K , the beam weight matrix for equal powers Bfwd is multiplied by the K x K diagonal matrix P . Thus, the new matrix Bfwd = Bfwd P . Let's pretend that
тогда квадрат значения k-го диагонального элемента представляет собой мощность, выделенную для пользовательского сигнала xk. Матрица P распределения мощности нормализована так, что сумма или квадрат диагональных элементов равна (равен) K (недиагональные элементы равны нулю).then the square of the valuek-th diagonal element represents the power allocated to the user signal xk. MatrixP power distribution is normalized such that the sum or square of the diagonal elements is (equal to)K (off-diagonal elements are equal to zero).
В некоторых случаях решение УР. 13 определяется наличием априорной информации о матрицах At, Cr и E, а также дисперсий векторов шума n ul и n dl . В некоторых случаях информация о значениях элементов матриц может быть получена при измерениях, выполняемых во время изготовления и тестирования соответствующих компонентов сквозного ретранслятора. Это может хорошо действовать в системах, в которых не происходит значительного изменения значений в матрицах по сравнению со значениями, измеренными во время работы системы. Однако в некоторых системах, в особенности в тех, которые работают в высокочастотных полосах, это может быть не так.In some cases, the decision of the UR. 13 is determined by the presence of a priori information about the matrices At , Cr and E , as well as the dispersions of the noise vectors n ul and n dl . In some cases, information about the values of the matrix elements can be obtained from measurements performed during the manufacture and testing of the corresponding components of the end-to-end repeater. This can work well in systems where there is no significant change in the values in the matrices compared to the values measured while the system is running. However, in some systems, especially those operating in the high frequency bands, this may not be the case.
В некоторых случаях, где априорную информацию не используют для задания весовых коэффициентов, значения R и H для прямой линии связи можно оценивать для определения решения УР. 13. В некоторых случаях в периоды калибровки AN передают сигнал зондирования канала. Сигналы зондирования канала могут представлять собой сигналы множества разных типов. В одном случае каждая AN передает разные ортогональные и известные PN-последовательности. Сигналы зондирования канала могут быть предварительно скорректированы по времени, частоте и/или фазе для устранения искажений в фидерной линии связи (как дополнительно описано ниже). В интервале калибровки все данные сеанса связи могут быть исключены для снижения помех в сигналах зондирования канала. В некоторых случаях сигналы зондирования канала могут быть такими же, как сигналы, используемые для устранения искажений в фидерной линии связи.In some cases, where a priori information is not used to specify the weighting factors, the R and H values for the forward link can be estimated to determine the UR solution. 13. In some cases, a channel sounding signal is transmitted during AN calibration periods. The channel sounding signals may be of many different types of signals. In one case, each AN transmits different orthogonal and known PN sequences. The channel sounding signals may be pre-corrected in time, frequency, and/or phase to eliminate distortion on the feeder link (as described further below). During the calibration interval, all session data may be omitted to reduce interference in the channel sounding signals. In some cases, the channel sounding signals may be the same as the signals used to de-alias the feeder link.
В интервале калибровки в центре каждого луча может быть назначен терминал для приема и обработки сигналов зондирования канала. Вектор K x 1 u сигналов, принимаемых в период калибровки: u = H x + At E n ul + n dl , где x представляет собой вектор M x 1 передаваемых сигналов зондирования канала. В некоторых случаях каждый назначенный терминал сначала устраняет ошибку паразитной частоты (вызванную доплеровским сдвигом и ошибкой осциллятора терминала), а затем коррелирует полученный сигнал с каждой из M известных ортогональных PN-последовательностей. Результаты этих корреляций представляют собой M комплексных чисел (амплитуда и фаза) для каждого терминала, и эти результаты передаются обратно на CPS посредством обратной линии связи. M комплексных чисел, рассчитанных терминалом в центре k-го луча, могут использоваться для формирования k-й строки оценки матрицы канала . С использованием измерений от всех K назначенных терминалов получается оценка всей матрицы канала. Во многих случаях для улучшения оценки матрицы канала целесообразно комбинировать результаты измерений за множество интервалов калибровки. После того как получена оценка матрицы канала, оценку ковариационной матрицы можно получить из УР. 14 с использованием значения 0 для второго члена. Эта оценка ковариационной матрицы может быть очень точной, если шум восходящей линии связи (второй член в УР. 14) пренебрежимо мал по отношению к шуму нисходящей линии связи (первый член в УР. 14). После этого весовые коэффициенты луча прямой линии связи можно вычислить с использованием оценок матрицы канала и ковариационной матрицы в УР. 13. Соответственно, в некоторых случаях вычисление весовых коэффициентов луча включает в себя оценку коэффициентов сквозного прямого усиления (т.е. значений элементов матрицы Hfwd канала) для каждого из сквозных прямых многолучевых каналов между AN 515 и опорным местоположением в зоне покрытия пользовательских лучей. В других случаях вычисление весовых коэффициентов луча включает в себя оценку коэффициентов сквозного прямого усиления для K x M сквозных прямых многолучевых каналов от M AN 515 до опорных местоположений, размещенных в пределах K зон покрытия пользовательских лучей.In a calibration interval, a terminal may be assigned at the center of each beam to receive and process channel sounding signals. Vector K x 1 u of signals received during the calibration period: u = H x + At E n ul + n dl , where x is the M x 1 vector of channel sounding signals transmitted. In some cases, each assigned terminal first removes the spurious frequency error (caused by Doppler and terminal oscillator error) and then correlates the received signal with each of the M known orthogonal PN sequences. The results of these correlations are M complex numbers (amplitude and phase) for each terminal, and these results are fed back to the CPS via the reverse link. The M complex numbers computed by the terminal at the center of the kth beam may be used to form the kth row of the channel matrix estimate . Using the measurements from all K assigned terminals, an estimate of the entire channel matrix is obtained. In many cases, to improve the estimate of the channel matrix, it is advisable to combine the results of measurements over multiple calibration intervals. After the channel matrix estimate is obtained, the covariance matrix estimate can be obtained from UR. 14 using the
Сигнальная и помеховая составляющие сигнала после формирования луча содержатся в векторе H Bfwd x (произведение H, Bfwd, x). Значения мощности сигнала и помех для каждого из лучей содержатся в K x K матрице H Bfwd. Мощность в k-м диагональном элементе H Bfwd представляет собой требуемую мощность сигнала для луча k. Сумма квадратов величин всех элементов в строке k, за исключением диагонального элемента, представляет собой мощность помех в луче k. Следовательно, C/I для луча k равно:The signal and noise components of the signal after beamforming are contained in the vector H Bfwd x (the product of H , Bfwd , x ) . The signal strength and interference values for each of the beams are contained in the K x K matrix H Bfwd . The power at the k th diagonal element H Bfwd is the required signal power for beam k . The sum of the squares of the values of all elements in row k , excluding the diagonal element, is the interference power in beam k . Therefore, C/I for ray k is:
УР. 15 UR. 15
где s kj представляют собой элементы H B fwd. Шум восходящей линии связи содержится в векторе A t E n ul , которому соответствует K x K ковариационная матрица . k-й диагональный элемент ковариационной матрицы содержит мощность шума восходящей линии связи в луче k. Тогда отношение сигнал/шум восходящей линии связи для луча k вычисляется следующим образом:where s kj are elements of HB fwd . The uplink noise is contained in the vector A t E n ul , which corresponds to the K x K covariance matrix . The k th diagonal element of the covariance matrix contains the uplink noise power in beam k . Then the uplink signal-to-noise ratio for path k is calculated as follows:
УР. 16 UR. 16
где tkk представляет собой k-й диагональный элемент ковариационной матрицы восходящей линии связи. Шум нисходящей линии связи содержится в векторе n dl , которому соответствует ковариация . Следовательно, отношение сигнал/шум для нисходящей линии связи следующее:where t kk is the k th diagonal element of the uplink covariance matrix. The downlink noise is contained in the vector n dl , which corresponds to the covariance . Therefore, the signal-to-noise ratio for the downlink is:
УР. 17 UR. 17
Сквозное SINR представляет собой комбинацию УР. 15-УР. 17:End-to-end SINR is a combination of UR. 15-UR. 17:
УР. 18 UR. 18
Уравнения выше описывают способ расчета сквозного SINR с учетом матрицы E полезной нагрузки. Матрица полезной нагрузки может быть построена путем рационального выбора коэффициента усиления и фаз каждого из элементов E. Коэффициент усиления и фаза диагональных элементов E, которые оптимизируют некоторый вспомогательный показатель (который является по существу функцией SINR K луча в соответствии с вычислением выше), могут быть выбраны и реализованы путем установки устройства 418 сдвига фазы в каждом из L транспондеров 411. Представляющие интерес функции включают в себя, без ограничений, сумму SINRk (общее значение SINR), сумму Log(1 + SINRk) (пропорциональную общей пропускной способности) или общую мощность в матрице канала H. В некоторых случаях улучшение вспомогательной функции путем подстройки коэффициентов усиления и фаз очень мало и незначительно. Иногда это имеет место в случае использования случайного или перемежающегося сопоставлений антенных элементов. В некоторых случаях вспомогательную функцию можно улучшить с помощью нетривиальной величины путем пользовательского выбора коэффициента усиления и фазы принимаемого/передаваемого сигнала.The equations above describe how the end-to-end SINR is calculated given the payload matrix E. The payload matrix can be constructed by rationally choosing the gain and phases of each of the E elements. The gain and phase of the diagonal elements E that optimize some auxiliary measure (which is essentially a function of the SINR K of the beam in accordance with the calculation above) can be selected and implemented by installing a
Обособленные зоны покрытияSeparate coverage areas
В некоторых описанных выше примерах мы исходим из того, что сквозной ретранслятор 503 выполнен с возможностью обслуживания одной зоны покрытия, совместно используемой как пользовательскими терминалами 517, так и AN 515. Например, в некоторых случаях описывается спутник, содержащий антенную систему, которая излучает в зоне покрытия спутника, и как AN, так и пользовательские терминалы географически распределены по всей зоне покрытия спутника (например, как на ФИГ. 27). На число лучей, которые могут быть сформированы в зоне покрытия спутника, а также на размеры (зон покрытия луча) этих лучей могут влиять аспекты конструкции антенной системы, такие как число и размещение антенных элементов, размер отражателя и т.д. Например, реализация очень высокой пропускной способности может включать в себя развертывание большого числа AN (например, сотен) с достаточным расстоянием между AN для обеспечения сквозного формирования луча. Например, как упомянуто выше со ссылкой на ФИГ. 28, увеличение числа AN может увеличивать пропускную способность системы, хотя при увеличении числа снижается отдача. Когда одна антенная система обслуживает как пользовательские терминалы, так и AN, выполнение такого развертывания с достаточным расстоянием между AN может приводить к очень обширному географическому распределению AN (например, по всей зоне покрытия спутника, как на ФИГ. 27). На практике осуществление такого распределения может включать в себя помещение AN в нежелательных местоположениях, таких как районы с плохим доступом к высокоскоростной сети (например, с плохой оптоволоконной инфраструктурой обратно на CPS 505, с пересечением одного или более океанов и т.д.), множество юрисдикций, размещение в дорогих и/или густонаселенных районах и т.д. Соответственно, помещение AN часто связано с различными компромиссами.In some of the examples described above, we assume that the end-to-
Некоторые примеры сквозного ретранслятора 503 сконструированы с многоантенными системами, таким образом обеспечивая отдельное обслуживание двух или более обособленных зон покрытия с помощью одного сквозного ретранслятора 503. Как описано ниже, сквозной ретранслятор 503 может включать в себя по меньшей мере первую антенную систему, которая обслуживает зону покрытия AN, и по меньшей мере вторую антенную систему, которая обслуживает зону покрытия пользователя. Поскольку обслуживание пользовательского терминала и зон покрытия AN обеспечивается разными антенными системами, каждая антенная система может быть выполнена с возможностью соответствия разным конструктивным параметрам, и каждая зона покрытия может быть по меньшей мере частично обособленной (например, по географии, размеру и/или плотности луча, полосе частот и т.д.). Например, использование подхода с такой многоантенной системой может обеспечивать возможность обслуживания пользовательских терминалов, распределенных по относительно большой географической зоне (например, по всей территории США), большим числом AN, распределенных по относительно небольшой географической зоне (например, восточной части США). Например, зона покрытия AN может представлять собой некоторую долю (например, менее половины, менее одной четверти, менее одной пятой, менее одной десятой) зоны покрытия пользователя по физической площади.Some examples of end-to-
На ФИГ. 41 представлена иллюстрация примера системы 3400 сквозного формирования лучей. Система 3400 представляет собой систему сквозного формирования лучей, которая включает в себя: множество географически распределенных узлов доступа (AN) 515; сквозной ретранслятор 3403); и множество пользовательских терминалов 517. Сквозной ретранслятор 3403 может представлять собой пример сквозного ретранслятора 503, описанного в настоящем документе. AN 515 географически распределены в зоне 3450 покрытия AN, а пользовательские терминалы 517 географически распределены в зоне 3460 покрытия пользователя. Обе из зоны 3450 покрытия AN и зоны 3460 покрытия пользователя находятся в пределах зоны покрытия сквозного ретранслятора 3403, но зона 3450 покрытия AN отличается от зоны 3460 покрытия пользователя. Иными словами, зона AN не является такой же, как зона покрытия пользователя, а представляет собой существенную (нетривиальную) зону (например, более одной четверти, половину и т.д. зоны покрытия AN), которая не перекрывается с зоной покрытия пользователя. Например, в некоторых случаях по меньшей мере половина зоны покрытия пользователя не перекрывает зону покрытия AN. Как описано выше (например, на ФИГ. 5), AN 515 могут обеспечивать сигналы через распределительную сеть 518 на CPS 505 в пределах наземного сегмента 502, а CPS 505 может быть подключен к источнику данных.FIG. 41 is an illustration of an example of an end-to-
Сквозной ретранслятор 3403 содержит отдельную антенную подсистему 3410 фидерной линии связи и антенную подсистему 3420 пользовательской линии связи. Каждая из антенной подсистемы 3410 фидерной линии связи и антенной подсистемы 3420 пользовательской линии связи способна поддерживать сквозное формирование луча. Например, как описано ниже, каждая антенная подсистема может содержать свой (свои) собственный(-ые) массив(-ы) взаимодействующих антенных элементов, свой (свои) собственный(-ые) отражатель(-и) и т.д. Антенная подсистема 3410 фидерной линии связи может содержать массив взаимодействующих составляющих приемных элементов 3416 фидерной линии связи и массив взаимодействующих составляющих передающих элементов 3419 фидерной линии связи. Антенная подсистема 3420 пользовательской линии связи может содержать массив взаимодействующих составляющих приемных элементов 3426 пользовательской линии связи и массив взаимодействующих составляющих передающих элементов 3429 пользовательской линии связи. Составляющие элементы «взаимодействуют» в том смысле, что массив таких составляющих элементов имеет характеристики, благодаря которым соответствующая им антенная подсистема подходит для использования в системе формирования лучей. Например, данный составляющий приемный элемент 3426 пользовательской линии связи может принимать наложенные комбинированные обратные сигналы восходящей линии связи от множества (например, всех) зон 519 покрытия пользовательских лучей таким образом, который способствует формированию обратных пользовательских лучей. Данный составляющий передающий элемент 3429 пользовательской линии связи может передавать прямой сигнал нисходящей линии связи таким образом, чтобы он накладывался на соответствующие сигналы, передаваемые другими составляющими передающими элементами 3429 пользовательской линии связи, для формирования некоторых или всех прямых пользовательских лучей. Данный составляющий приемный элемент 3416 фидерной линии связи может принимать наложенные комбинированные прямые сигналы восходящей линии связи от множества (например, всех) AN 515 таким образом, который способствует формированию прямых пользовательских лучей (например, путем индукции многолучевого распространения на сквозном ретрансляторе 3403). Данный составляющий передающий элемент 3419 фидерной линии связи может передавать обратный сигнал нисходящей линии связи таким образом, чтобы он накладывался на соответствующие передачи от других составляющих передающих элементов 3419 фидерной линии связи, способствуя формированию некоторых или всех обратных пользовательских лучей (например, путем обеспечения приема на AN 515 комбинированных обратных сигналов, которым могут быть присвоены весовые коэффициенты луча, для формирования обратных пользовательских лучей).The end-to-
Пример сквозного ретранслятора 3403 содержит множество транспондеров 3430 прямой линии связи и множество транспондеров 3440 обратной линии связи. Транспондеры могут представлять собой любой подходящий тип тракта прохождения сигнала с прямой ретрансляцией между антенными подсистемами. Каждый транспондер 3430 прямой линии связи соединяет соответствующий один из составляющих приемных элементов 3416 фидерной линии связи с соответствующим одним из составляющих передающих элементов 3429 пользовательской линии связи. Каждый транспондер 3440 обратной линии связи соединяет соответствующий один из составляющих приемных элементов 3426 пользовательской линии связи с соответствующим одним из составляющих передающих элементов 3419 фидерной линии связи. Например, как описано, в некоторых примерах существует взаимно-однозначное соответствие между каждым составляющим приемным элементом 3426 пользовательской линии связи и соответствующим составляющим передающим элементом 3419 фидерной линии связи (или наоборот), или каждый составляющий приемный элемент 3426 пользовательской линии связи соединен с «одним и только одним» составляющим передающим элементом 3419 фидерной линии связи (или наоборот), или т.п. В некоторых таких случаях одна сторона каждого транспондера соединена с одним приемным элементом, а другая сторона транспондера соединена с одним передающим элементом. В других таких случаях одна или обе стороны транспондера могут быть избирательно соединены (например, с помощью переключателя или других средств, описанных ниже) с одним из множества элементов. Например, сквозной ретранслятор 3403 может содержать одну антенную подсистему 3410 фидерной линии связи и две антенных подсистемы 3420 пользовательской линии связи; и каждый транспондер может быть соединен с одной стороны с одним элементом фидерной линии связи, а с другой стороны избирательно соединен либо с одним элементом пользовательской линии связи первой антенной подсистемы 3420 пользовательской линии связи, либо с одним элементом пользовательской линии связи второй антенной подсистемы 3420 пользовательской линии связи. В таких случаях с избирательным соединением каждую сторону каждого транспондера в любой заданный времени все же можно рассматривать (например, для конкретной связанной с сигналом транзакции) как связанную с «одним и только одним» элементом или т.п.An example of an end-to-
Для сеансов прямой связи сигналы передачи от AN 515 могут быть приняты (посредством фидерных восходящих линий связи 521) составляющими приемными элементами 3416 фидерной линии связи, ретранслироваться транспондерами 3430 прямой линии связи на составляющие передающие элементы 3429 пользовательской линии связи и переданы составляющими передающих элементов 3429 пользовательской линии связи на пользовательские терминалы 517 в зоне 3460 покрытия пользователя. Для сеансов обратной связи сигналы передачи от пользовательских терминалов 517 могут быть приняты составляющими приемными элементами пользовательской линии связи, ретранслированы транспондерами 3440 обратной линии связи на составляющие передающие элементы 3419 фидерной линии связи и переданы составляющими передающими элементами 3419 фидерной линии связи на AN 515 в зоне 3450 покрытия AN (посредством сигналов 527 фидерной нисходящей линии связи). Полный тракт прохождения сигнала от AN 515 до пользовательского терминала 517 посредством сквозного ретранслятора 3403 называют сквозной прямой линией связи 501; а полный тракт прохождения сигнала от пользовательского терминала 517 до AN 515 посредством сквозного ретранслятора 3403 называют сквозной обратной линией связи 523. Как описано в настоящем документе, каждая из сквозной прямой линии связи 501 и сквозной обратной линии связи 523 может содержать множество многолучевых каналов для прямого и обратного сеансов связи.For direct communication sessions, transmission signals from the
В некоторых случаях каждый из множества географически распределенных узлов доступа (например, AN 515) содержит выход взвешенных по сквозному лучу прямых сигналов восходящей линии связи. Сквозной ретранслятор (например, сквозной ретранслятор 3403) содержит массив взаимодействующих составляющих приемных элементов 3416 фидерной линии связи, находящихся в беспроводной связи с распределенными узлами доступа, массив взаимодействующих составляющих передающих элементов 3419 пользовательской линии связи, находящихся в беспроводной связи с множеством пользовательских терминалов 517, и множество транспондеров 3430 прямой линии связи. Транспондеры 3430 прямой линии связи представляют собой транспондеры с прямой ретрансляцией (или без обработки), так что каждый транспондер выводит сигнал, который соответствует принимаемому им сигналу с незначительной обработкой или без нее. Например, каждый транспондер 3430 прямой линии связи может усиливать и/или преобразовывать частоту принимаемого им сигнала, но не выполнять более сложную обработку (например, не может осуществлять демодуляцию и/или модуляцию, формирование луча на борту и т.д.). В некоторых случаях каждый транспондер 3430 прямой линии связи принимает входной сигнал в первой полосе частот (например, 30 ГГц, LHCP) и выводит во второй полосе частот (например, 20 ГГц, RHCP), а каждый транспондер 3440 обратной линии связи принимает входной сигнал в первой полосе частот (например, 30 ГГц, RHCP) и выводит во второй полосе частот (например, 20 ГГц, LHCP). Может использоваться любая подходящая комбинация частоты и/или поляризации, а для пользовательской линии связи и фидерной линии связи могут использоваться одинаковые или разные диапазоны частот. Каждый транспондер 3430 прямой линии связи подсоединяется между соответствующим одним из составляющих приемных элементов 3416 фидерной линии связи и соответствующим одним из составляющих передающих элементов 3419 пользовательской линии связи (например, с взаимно однозначным соответствием). Транспондеры 3430 прямой линии связи преобразуют наложения множества взвешенных по лучу прямых сигналов восходящей линии связи посредством составляющих приемных элементов 3416 фидерной линии связи в прямые сигналы нисходящей линии связи (например, комбинированные входные прямые сигналы). Передача прямых сигналов нисходящей линии связи с помощью составляющих передающих элементов 3429 пользовательской линии связи способствует формированию прямого пользовательского луча, обслуживающего по меньшей мере некоторые из множества пользовательских терминалов 517. Как описано в настоящем документе, прямые сигналы восходящей линии связи могут быть взвешены по сквозному лучу и синхронизированы (например, синхронизированы по фазе и при необходимости синхронизированы по времени) перед передачей от AN 515, что может обеспечивать требуемое наложение этих сигналов в составляющих приемных элементах 3416 фидерной линии связи.In some cases, each of a plurality of geographically dispersed access nodes (eg, AN 515) contains an output of end-to-end beam-weighted direct uplink signals. An end-to-end relay (eg, end-to-end relay 3403) includes an array of cooperating feeder
Передача способствует формированию прямого пользовательского луча в том смысле, что формирование луча является сквозным, как описано в настоящем документе; формирование луча является результатом множества этапов, включая вычисление и применение соответствующих весовых коэффициентов к прямым сигналам восходящей линии связи до передачи на ретранслятор от AN 515, индукцию многолучевого распространения с помощью множества транспондеров 3430 прямой линии связи сквозного ретранслятора 3403 и передачу прямых сигналов нисходящей линии связи с помощью антенной решетки пользовательской линии связи. Однако для целей упрощения некоторые описания могут определять прямой луч как формируемый путем наложения передаваемых прямых сигналов нисходящей линии связи. В некоторых случаях каждый из множества пользовательских терминалов 517 находится в беспроводной связи с массивом взаимодействующих составляющих передающих элементов 3429 пользовательской линии связи для приема комбинированных (например, с наложением) передаваемых прямых сигналов нисходящей линии связи.The transmission facilitates forward user beamforming in the sense that beamforming is end-to-end, as described herein; beamforming is the result of a variety of steps, including calculating and applying appropriate weights to direct uplink signals prior to transmission to the repeater from the
В некоторых случаях сквозной ретранслятор 3403 дополнительно содержит массив составляющих приемных элементов 3426 пользовательской линии связи, находящихся в беспроводной связи с пользовательскими терминалами 517, массив взаимодействующих составляющих передающих элементов 3419 фидерной линии связи, находящихся в беспроводной связи с распределенными AN 515, и множество транспондеров 3440 обратной линии связи. Транспондеры 3440 обратной линии связи могут быть аналогичны или идентичны транспондеру 3430 прямой линии связи (например, транспондерам с прямой ретрансляцией), за исключением того, что каждый из них подсоединен между соответствующим одним из составляющих приемных элементов 3426 пользовательской линии связи и соответствующим одним из составляющих передающих элементов 3419 фидерной линии связи. При приеме обратных сигналов восходящей линии связи посредством массива взаимодействующих составляющих приемных элементов 3426 пользовательской линии связи формируются обратные сигналы нисходящей линии связи в транспондерах 3440 обратной линии связи. В некоторых случаях каждый обратный сигнал нисходящей линии связи представляет собой соответствующее наложение обратных сигналов восходящей линии связи, принимаемых составляющим приемным элементом 3426 пользовательской линии связи от множества пользовательских терминалов 517 (например, из множества зон 519 покрытия пользовательских лучей). В некоторых случаях каждый из множества пользовательских терминалов находится в беспроводной связи с массивом взаимодействующих составляющих приемных элементов 3426 пользовательской линии связи для передачи соответствующего обратного сигнала восходящей линии связи на множество составляющих приемных элементов 3426 пользовательской линии связи.In some cases, the end-to-
В некоторых случаях обратные сигналы нисходящей линии связи передаются с помощью составляющего передающего элемента 3419 фидерной линии связи на географически распределенные AN 515. Как описано в настоящем документе, каждый AN 515 может принимать наложенные комбинированные обратные сигналы нисходящей линии связи, передаваемые от составляющих передающих элементов 3419 фидерной линии связи (т.е. которые соответствуют обратным сигналам нисходящей линии связи). Принимаемые обратные сигналы нисходящей линии связи (называемые комбинированными принимаемыми сигналами) могут передаваться на формирователь обратных лучей, который может комбинировать, синхронизировать, применять весовые коэффициенты луча и осуществлять любую другую подходящую обработку. Например, формирователь обратных лучей может применять весовые коэффициенты к принятым наложениям 1706 обратных сигналов нисходящей линии связи (т.е. применять весовые коэффициенты обратного луча к комбинированным обратным сигналам) до объединения сигналов. Формирователь обратных лучей также может синхронизировать комбинированные обратные сигналы перед объединением сигналов для учета по меньшей мере соответствующих различий в задержке распространения сигнала между сквозным ретранслятором 3403 и AN 515. В некоторых случаях синхронизация может выполняться в соответствии с принимаемым сигналом радиомаяка (принимаемым одним или более или всеми из AN 515).In some instances, downlink return signals are transmitted by feeder link
Вследствие сквозного характера формирования луча правильное применение весовых коэффициентов обратного луча формирователем обратных лучей позволяет формировать обратные пользовательские лучи даже несмотря на то, что формирователь обратных лучей может быть соединен со стороной фидерной линии связи сквозных многолучевых каналов, а пользовательские лучи могут быть сформированы со стороны пользовательской линии связи сквозных многолучевых каналов. Соответственно, формирователь обратных лучей может называться способствующим формированию обратных пользовательских лучей (ряд других аспектов системы 3400 также способствует формированию сквозного обратного луча, такому как индукция многолучевого распространения с помощью транспондеров 3440 обратной линии связи сквозного ретранслятора 3403). Однако формирователь обратных лучей для упрощения можно называть формирующим обратные пользовательские лучи.Due to the end-to-end nature of beamforming, the correct application of the return beamweights by the return beamformer allows return user beams to be generated even though the return beamformer may be connected to the feeder link side of end-to-end multipath channels and the user beams may be formed on the user line side. communication of end-to-end multipath channels. Accordingly, the return beamformer may be referred to as enabling user return beamforming (a number of other aspects of
В некоторых случаях сквозной ретранслятор 3403 дополнительно содержит антенную подсистему 3410 фидерной линии связи для излучения в зоне покрытия узла доступа (зоны 3450 покрытия AN), в пределах которой размещено множество распределенных узлов доступа. Антенная подсистема 3410 фидерной линии связи содержит массив взаимодействующих составляющих приемных элементов 3416 фидерной линии связи. В некоторых случаях сквозной ретранслятор 3403 также содержит антенную подсистему 3420 пользовательской линии связи для излучения в зоне 3460 покрытия пользователя, в пределах которой географически распределено множество пользовательских терминалов 517 (например, во множестве зон 519 покрытия пользовательских лучей). Антенная подсистема 3420 пользовательской линии связи содержит массив взаимодействующих составляющих передающих элементов 3429 пользовательской линии связи. В некоторых случаях антенная подсистема 3420 пользовательской линии связи содержит массив приема пользовательской линии связи и массив передачи пользовательской линии связи (например, отдельные полудуплексные массивы взаимодействующих составляющих элементов пользовательской линии связи). Массив приема пользовательской линии связи и массив передачи пользовательской линии связи могут быть пространственно перемежающимися (например, для направления на один и тот же отражатель), пространственно разделенными (например, для направления на приемные и передающие отражатели соответственно) или размещенными любым другим подходящим образом. В других случаях антенная подсистема 3420 пользовательской линии связи содержит полнодуплексные элементы (например, каждый составляющий передающий элемент 3429 пользовательской линии связи использует излучающую конструкцию совместно с соответствующим составляющим приемным элементом 3426 пользовательской линии связи). Аналогичным образом, в некоторых случаях антенная подсистема 3410 фидерной линии связи содержит массив приема фидерной линии связи и массив передачи фидерной линии связи, которые могут быть пространственно связаны любым подходящим образом и могут непосредственно излучать, быть направленными на один отражатель, быть направленными на отдельные передающие и приемные отражатели и т.д. В других случаях антенная подсистема 3410 фидерной линии связи содержит полнодуплексные элементы. Антенная подсистема 3410 фидерной линии связи и антенная подсистема 3420 пользовательской линии связи могут иметь апертуру одинакового или разного размеров. В некоторых случаях антенная подсистема 3410 фидерной линии связи и антенная подсистема 3420 пользовательской линии связи работают в одной и той же полосе частот (например, в Ka-полосе и т.д.). В некоторых случаях антенная подсистема 3410 фидерной линии связи и антенная подсистема 3420 пользовательской линии связи работают в разных полосах частот (например, для фидерной линии связи используется V-полоса, а для пользовательской линии связи используется Ka-полоса и т.д.).In some cases, the end-to-
В примерах, например в тех, которые проиллюстрированы на ФИГ. 41, зона 3450 покрытия AN отличается от зоны 3460 покрытия пользователя. Зона 3450 покрытия AN может представлять собой единую непрерывную зону покрытия или множество несвязных зон покрытия. Аналогично (и независимо от того, является ли зона покрытия AN единой или состоящей из множества частей) зона 3460 покрытия пользователя может представлять собой единую непрерывную зону покрытия или множество несвязных зон покрытия. В некоторых случаях зона 3450 покрытия AN представляет собой подмножество зоны 3460 покрытия пользователя. В некоторых случаях по меньшей мере половина зоны 3460 покрытия пользователя не перекрывает зону 3450 покрытия AN. Как описано ниже, в некоторых случаях антенная подсистема 3410 фидерной линии связи дополнительно содержит один или более отражателей фидерной линии связи, а антенная подсистема 3420 пользовательской линии связи дополнительно содержит один или более отражателей пользовательской линии связи. В некоторых случаях отражатель фидерной линии связи значительно больше (например, имеет по меньшей мере в два раза большую, по меньшей мере в пять раз большую, в десять раз большую, в пятьдесят раз большую, в восемьдесят раз большую физическую площадь и т.д.), чем отражатель пользовательской линии связи. В некоторых случаях отражатель фидерной линии связи имеет приблизительно такую же физическую площадь (например, в пределах 5%, 10%, 25%), что и отражатель пользовательской линии связи.In examples, such as those illustrated in FIG. 41, AN
В некоторых случаях система 3400 работает в контексте функций наземной сети, как описано со ссылкой на ФИГ. 5. Например, сквозной ретранслятор 3403 связывается с AN 515, которые связываются с CPS 505 посредством распределительной сети 518. В некоторых случаях CPS 505 содержит формирователь 529 прямых лучей и/или формирователь 531 обратных лучей, например, как описано со ссылкой на ФИГ. 29. Как описано выше, формирователь 529 прямых лучей может участвовать в формировании прямых сквозных лучей путем применения вычисленных весовых коэффициентов прямого луча (например, обеспечиваемых генератором 918 весовых коэффициентов прямого луча) к сигналам прямой линии связи; а формирователь 531 обратных лучей может участвовать в формировании обратных сквозных лучей путем применения вычисленных весовых коэффициентов обратного луча (например, обеспечиваемых генератором 935 весовых коэффициентов обратного луча) к сигналам обратной линии связи. Как описано выше, весовые коэффициенты сквозного прямого луча и/или набор весовых коэффициентов сквозного обратного луча можно вычислять в соответствии с оценочными коэффициентами сквозного усиления для сквозных многолучевых каналов, причем каждый сквозной многолучевой канал соединяет с возможностью связи соответствующий один из распределенных AN 515 с соответствующим местоположением в зоне покрытия пользователя (например, с пользовательским терминалом 517 или любым подходящим опорным местоположением) посредством соответствующего множества транспондеров 3430 с прямой ретрансляцией прямой линии связи и/или посредством соответствующего множества транспондеров 3440 с прямой ретрансляцией обратной линии связи. В некоторых случаях, хотя это не показано, сквозной ретранслятор 3403 содержит передатчик сигналов радиомаяка. Передатчик сигналов радиомаяка может быть реализован так, как описано выше, со ссылкой на генератор сигналов радиомаяка и модуль 424 поддержки калибровки на ФИГ. 15. В некоторых случаях генерируемый сигнал радиомаяка может использоваться так, чтобы множество распределенных AN 515 было связано посредством беспроводной связи с синхронизацией по времени со сквозным ретранслятором 3403 (например, с помощью множества составляющих приемных элементов 3416 фидерной линии связи в соответствии с сигналом радиомаяка).In some cases, the
В некоторых случаях система 3400 включает в себя систему для формирования множества прямых пользовательских лучей с использованием сквозного формирования луча. В таких случаях используются средства для передачи множества прямых сигналов восходящей линии связи из множества географически распределенных местоположений, причем множество прямых сигналов восходящей линии связи формируется из взвешенной комбинации множества сигналов пользовательских лучей и причем каждый сигнал пользовательского луча соответствует одному и только одному пользовательскому лучу. Например, множество географически распределенных местоположений может включать в себя множество AN 515, а средства для передачи множества прямых сигналов восходящей линии связи могут включать в себя некоторые или все из формирователей 529 прямых лучей, распределительную сеть 518 и географически распределенные AN 515 (находящиеся в связи со сквозным ретранслятором 3403). В таких случаях также могут использоваться средства для ретрансляции множества прямых сигналов восходящей линии связи для формирования множества прямых сигналов нисходящей линии связи. Каждый прямой сигнал нисходящей линии связи создается за счет усиления уникального наложения множества прямых сигналов восходящей линии связи, а множество прямых сигналов нисходящей линии связи накладывается с формированием множества пользовательских лучей, причем каждый сигнал пользовательского луча преобладает в пределах соответствующего пользовательского луча. Например, средства для ретрансляции множества прямых сигналов восходящей линии связи для формирования множества прямых сигналов нисходящей линии связи могут включать в себя сквозной ретранслятор 3403 (находящийся в связи с одним или более пользовательскими терминалами в зонах 519 покрытия пользовательских лучей) с его совмещенным множеством трактов прохождения сигнала, которые могут включать в себя транспондеры 3430 прямой линии связи и транспондеры 3440 обратной линии связи.In some cases, the
В некоторых таких случаях используются первые средства для приема первого наложения множества прямых сигналов нисходящей линии связи и восстановления первого из множества сигналов пользовательских лучей. Такие первые средства могут включать в себя пользовательский терминал 517 (например, включающий в себя антенну пользовательского терминала и модем или другие компоненты для восстановления сигналов пользовательских лучей из прямых сигналов нисходящей линии связи). В некоторых таких случаях также используются вторые средства (например, включая второй пользовательский терминал 517) для приема второго наложения множества прямых сигналов нисходящей линии связи и восстановления второго одного из множества сигналов пользовательских лучей. Например, первое средство для приема расположено в пределах первого пользовательского луча, а второе средство для приема расположено в пределах второго пользовательского луча.In some such cases, first means are used to receive the first overlay of a plurality of forward downlink signals and recover the first of the plurality of user beam signals. Such first means may include a user terminal 517 (eg, including a user terminal antenna and a modem or other components for recovering user beam signals from forward downlink signals). In some such cases, second means (eg, including the second user terminal 517) are also used to receive a second overlay of the plurality of direct downlink signals and recover a second one of the plurality of user beam signals. For example, the first receiving means is located within the first user beam and the second receiving means is located within the second user beam.
На ФИГ. 42 представлена иллюстрация примера модели трактов прохождения сигнала для сигналов, несущих обратные данные по сквозной обратной линии связи 523. Пример модели может работать аналогично модели, описанной со ссылкой на ФИГ. 6-8, за исключением того, что сквозной ретранслятор 3403 включает в себя тракты 3502 прохождения сигнала обратной линии связи, предназначенные для связи по обратной линии связи. Каждый тракт 3502 прохождения сигнала обратной линии связи может включать в себя транспондер 3440 обратной линии связи, подсоединенный между составляющим приемным элементом 3426 пользовательской линии связи и составляющим передающим элементом 3419 фидерной линии связи. Сигналы, исходящие от пользовательских терминалов 517 в K зонах 519 покрытия пользовательских лучей, передаются (в качестве обратных сигналов 525 восходящей линии связи) на сквозной ретранслятор 3403, принимаются массивом L трактов 3502 прохождения сигнала обратной линии связи, передаются во время сеанса связи через L транспондеров 3440 обратной линии связи на L соответствующих составляющих передающих элементов 3419 фидерной линии связи и передаются каждым из L составляющих передающих элементов 3419 фидерной линии связи на некоторые или все из M AN 515 (аналогично тому, что показано на ФИГ. 7). Таким образом, множество трактов 3502 прохождения сигнала обратной линии связи (например, транспондеры 3440 обратной линии связи) индуцирует многолучевое распространение во время связи по обратной линии связи. Например, выходной сигнал каждого тракта 3502 прохождения сигнала обратной линии связи представляет собой обратный сигнал 527 нисходящей линии связи, относящийся к соответствующему одному из принимаемых обратных сигналов 525 восходящей линии связи (например, относящийся к принимаемым комбинированным обратным сигналам 525 восходящей линии связи, передаваемым из множества зон 519 покрытия пользовательских лучей), и передается по обратным сигналам 527 нисходящей линии связи на M AN 515 (например, географически распределенных по зоне 3450 покрытия AN). Как описано выше, имеется L (или до L) разных способов получения сигнала от пользовательского терминала 517, размещенного в зоне 519 покрытия пользовательских лучей, на конкретный AN 515. Таким образом, сквозной ретранслятор 3403 создает L трактов между пользовательским терминалом 517 и AN 515, в совокупности называемыми сквозным обратным многолучевым каналом 1908 (например, аналогично ФИГ. 8).FIG. 42 is an illustration of an example signal path model for signals carrying reverse data on the reverse link end-to-
Сквозные обратные многолучевые каналы могут быть смоделированы образом, аналогичным описанному выше. Например, Ar представляет собой L x K матрицу излучения обратной восходящей линии связи, Ct представляет собой M x L матрицу излучения обратной нисходящей линии связи, а Eret представляет собой L x L матрицу полезной нагрузки в обратном направлении для трактов от составляющих приемных элементов 3426 пользовательской линии связи до составляющих передающих элементов 3419 фидерной линии связи. Как описано выше, сквозной обратный многолучевой канал от пользовательского терминала 517 в конкретной зоне 519 покрытия пользовательских лучей до конкретного AN 515 характеризуется сетевым эффектом L разных трактов прохождения сигнала, индуцированных L уникальными трактами 3502 прохождения сигнала обратной линии связи через сквозной ретранслятор 3403. С помощью K зон 519 покрытия пользовательских лучей и M AN 515 может обеспечиваться M x K индуцируемых сквозных обратных многолучевых каналов в сквозной обратной линии связи 523 (посредством сквозного ретранслятора 3403), и каждая может быть по отдельности смоделирована для вычисления соответствующего элемента M x K матрицы обратного канала Hret (C t x Eret x Ar). Как упомянуто выше (например, со ссылкой на ФИГ. 6-8), не все AN 515, зоны 519 покрытия пользовательских лучей и/или транспондеры 3440 обратной линии связи должны быть частью сквозных обратных многолучевых каналов. В некоторых случаях число пользовательских лучей K больше числа транспондеров L в тракте прохождения сигнала сквозного обратного многолучевого канала и/или число AN М больше числа транспондеров L в тракте прохождения сигнала сквозного обратного многолучевого канала. Как описано со ссылкой на ФИГ. 5, CPS 505 может обеспечивать формирование обратных пользовательских лучей путем применения весовых коэффициентов обратного луча к принятым обратным сигналам 527 нисходящей линии связи (принятые сигналы после приема AN называются комбинированными обратными сигналами 907, как дополнительно поясняется ниже). Весовые коэффициенты обратного луча могут вычисляться на основе модели M x K трактов прохождения сигнала для каждого сквозного обратного многолучевого канала, который соединяет пользовательские терминалы 517 в одной зоне 519 покрытия пользовательских лучей с одним из множества AN 515.End-to-end reverse multipath channels may be modeled in a manner similar to that described above. For example, Ar is an L x K reverse uplink emission matrix, Ct is an M x L reverse downlink emission matrix, and Eret is an L x L reverse payload matrix for paths from user link constituent receive
На ФИГ. 43 представлена иллюстрация примера модели трактов прохождения сигнала для сигналов, несущих прямые данные по сквозной прямой линии связи 501. Пример модели может работать аналогично модели, описанной со ссылкой на ФИГ. 9-11, за исключением того, что сквозной ретранслятор 3403 включает в себя тракты 3602 прохождения сигнала прямой линии связи, предназначенные для сеансов связи по прямой линии связи. Каждый тракт 3602 прохождения сигнала прямой линии связи может включать в себя транспондер 3430 прямой линии связи, подсоединенный между составляющим приемным элементом 3416 фидерной линии связи и составляющим передающим элементом 3429 пользовательской линии связи. Как описано выше, каждому прямому сигналу 521 восходящей линии связи присваивается весовой коэффициент луча (например, в формирователе 515 прямых лучей в CPS 505 наземного сегмента 502) до передачи от AN 515. Каждый AN 515 принимает уникальный прямой сигнал 521 восходящей линии связи и передает уникальный прямой сигнал 521 восходящей линии связи посредством одной из M восходящих линий связи (например, с синхронизацией по времени). Прямые сигналы 521 восходящей линии связи принимаются из географически распределенных местоположений (например, от AN 515) с помощью некоторых или всех из транспондеров 3430 прямой линии связи методом наложения, который позволяет создавать комбинированные входные прямые сигналы 545. Каждый транспондер 3430 прямой линии связи одновременно принимает комбинированный входной прямой сигнал 545, хотя и немного отличающийся по синхронизации вследствие различий в местоположениях каждого составляющего приемного элемента 3416 фидерной линии связи, связанного с каждым транспондером 3430 прямой линии связи. Например, несмотря на то что каждый составляющий приемный элемент 3416 фидерной линии связи может принимать комбинацию из такого же множества прямых сигналов 521 восходящей линии связи, принимаемые комбинированные входные прямые сигналы 545 могут немного различаться. Комбинированные входные прямые сигналы 545 принимаются с помощью L транспондеров 3430 прямой линии связи посредством соответствующих составляющих приемных элементов 3416 фидерной линии связи, передаются во время сеанса связи через L транспондеров 3430 прямой линии связи на L соответствующих составляющих передающих элементов 3429 пользовательской линии связи и передаются L составляющими передающими элементами 3429 пользовательской линии связи в одну или более из K зон 519 покрытия пользовательских лучей (например, в качестве прямого сигнала 522 нисходящей линии связи, каждый из которых связан с соответствующим одним из принимаемых комбинированных входных прямых сигналов 521). Таким образом, множество трактов 3602 прохождения сигнала прямой линии связи (например, транспондеры 3430 прямой линии связи) индуцирует многолучевое распространение при сеансах связи в прямой линии связи. Как описано выше, есть L разных способов получения сигнала от AN 515 на конкретный пользовательский терминал 517 в зоне 519 покрытия пользовательских лучей. Таким образом, сквозной ретранслятор 3403 индуцирует множество (например, до L) трактов прохождения сигнала между одним AN 515 и одним пользовательским терминалом 517 (или одной зоной 519 покрытия пользовательских лучей), которые в совокупности могут называться сквозным прямым многолучевым каналом 2208 (например, аналогично ФИГ. 10).FIG. 43 is an illustration of an example signal path model for signals carrying direct data over the
Сквозные прямые многолучевые каналы 2208 могут быть смоделированы таким образом, который аналогичен описанному выше. Например, Cr представляет собой L x М матрицу излучения прямой восходящей линии связи, At представляет собой K x L матрицу излучения прямой нисходящей линии связи, а Efwd представляет собой L x L матрицу полезной нагрузки в прямом направлении для трактов от составляющих приемных элементов 3416 фидерной линии связи до составляющих передающих элементов 3429 пользовательской линии связи. В некоторых случаях матрица полезной нагрузки в прямом направлении Efwd и матрица полезной нагрузки в обратном направлении Eret могут быть разными для отражения различий между трактами 3602 прохождения сигнала прямой линии связи и трактами 3502 прохождения сигнала обратной линии связи. Как описано выше, сквозной прямой многолучевой канал от конкретного AN 515 до пользовательского терминала 517 в конкретной зоне 519 покрытия пользовательских лучей характеризуется сетевым эффектом L разных трактов прохождения сигнала, индуцируемых L уникальными трактами прохождения сигнала 3602 прямой линии связи через сквозной ретранслятор 3403. С помощью K зон 519 покрытия пользовательских лучей и M AN 515 может обеспечиваться M x K индуцируемых сквозных прямых многолучевых каналов в сквозной прямой линии связи 501, и каждая из них может быть по отдельности смоделирована для вычисления соответствующего элемента M x K матрицы прямого канала Hfwd (At x Efwd x Cr). Как упомянуто выше со ссылкой на обратное направление, не все AN 515, зоны 519 покрытия пользовательских лучей и/или транспондеры 3430 прямой линии связи должны быть частью сквозных прямых многолучевых каналов. В некоторых случаях число пользовательских лучей K больше числа транспондеров L в тракте прохождения сигнала сквозного прямого многолучевого канала, и/или число AN М больше числа транспондеров L в тракте прохождения сигнала сквозного прямого многолучевого канала. Как описано со ссылкой на ФИГ. 5, соответствующий весовой коэффициент луча может вычисляться для каждого из множества сквозных прямых многолучевых каналов с помощью CPS 505 для формирования прямых пользовательских лучей. Использование множества передатчиков (AN 515) с одним приемником (пользовательский терминал 517) может обеспечивать разнесение в тракте передачи для обеспечения успешной передачи информации на любой пользовательский терминал 517 при наличии специально индуцированного многолучевого канала.End-to-end forward
На ФИГ. 41-43 изображены сквозные ретрансляторы 3403, реализованные с отдельными транспондерами 3430 прямой линии связи и транспондерами 3440 обратной линии связи. На ФИГ. 44A и 44B показаны иллюстрации примеров тракта 3700 прохождения прямого сигнала (аналогичного тракту 3602 прохождения прямого сигнала на ФИГ. 43) и тракта 3750 прохождения обратного сигнала (аналогичного тракту 3502 прохождения обратного сигнала на ФИГ. 42) соответственно. Как описано выше, тракт 3700 прохождения прямого сигнала включает в себя транспондер 3430 прямой линии связи, подсоединенный между составляющим приемным элементом 3416 фидерной линии связи и составляющим передающим элементом 3429 пользовательской линии связи. Тракт 3750 прохождения обратного сигнала включает в себя транспондер 3440 обратной линии связи, подсоединенный между составляющим приемным элементом 3426 пользовательской линии связи и составляющим передающим элементом 3419 фидерной линии связи. В некоторых случаях каждый транспондер 3430 прямой линии связи и каждый транспондер 3440 обратной линии связи являются транспондерами с поперечным полюсом. Например, транспондер 3430 прямой линии связи принимает прямой сигнал восходящей линии связи на частоте восходящей линии связи с левой круговой поляризацией (LHCP) и выводит прямой сигнал нисходящей линии связи на частоте нисходящей линии связи с правой круговой поляризацией (RHCP), и каждый транспондер 3440 обратной линии связи принимает обратный сигнал восходящей линии связи на частоте восходящей линии связи с правой круговой поляризацией (RHCP) и выводит обратный сигнал нисходящей линии связи на частоте нисходящей линии связи с левой круговой поляризацией (LHCP). Один такой случай (т.е. с поляризациями, описанными в предшествующем примере) проиллюстрирован только сплошными линиями на ФИГ. 44А и 44В, а другой такой случай (т.е. с противоположными поляризациями по сравнению с описанными в предшествующем примере) проиллюстрирован только пунктирными линиями на ФИГ. 44А и 44В. В других случаях некоторые или все транспондеры могут обеспечивать двухполюсную пару трактов прохождения сигнала. Например, если следовать как сплошной, так и пунктирной линиям на ФИГ. 44A и 44B, транспондеры 3430 прямой линии связи и транспондеры 3440 обратной линии связи могут принимать прямые сигналы восходящей линии связи на частоте восходящей линии связи или на другой частоте с обоими типами поляризации (LHCP и RHCP) и могут одновременно выводить прямые сигналы нисходящей линии связи на частоте нисходящей линии связи или на другой частоте с обоими типами поляризации (RHCP и LHCP). Например, такие случаи могут обеспечивать работу множества систем параллельно с использованием любого подходящего типа методик подавления помех (например, с использованием разделения по времени, частотного разделения и т.д.). В некоторых случаях сквозной ретранслятор 3403 содержит большое число транспондеров, например 512 транспондеров 3430 прямой линии связи и 512 транспондеров 3440 обратной линии связи (например, в совокупности 1024 транспондера). В других реализациях могут использоваться меньшие количества транспондеров, например 10 или любое другое подходящее число. В некоторых случаях антенные элементы реализуются в виде полнодуплексных конструкций, так что каждый приемный антенный элемент использует конструкцию совместно с соответствующим передающим антенным элементом. Например, каждый проиллюстрированный антенный элемент может быть реализован в виде двух из четырех волноводных портов излучающей конструкции, выполненной с возможностью как передачи, так и приема сигналов. В некоторых случаях только элементы фидерной линии связи или только элементы пользовательской линии связи являются полнодуплексными. В других реализациях могут использоваться разные типы поляризации. Например, в некоторых реализациях транспондеры могут быть подсоединены между приемным антенным элементом и передающим антенным элементом с одинаковой полярностью.FIG. 41-43 depict end-to-
Как пример транспондера 3430 прямой линии связи, так и пример транспондера 3440 обратной линии связи могут содержать малошумящие усилители (МШУ) 3705, преобразователи частоты и связанные с ними фильтры 3710, канальные усилители 3715, устройства 3720 сдвига фазы, усилители 3725 мощности (например, усилители на лампе бегущей волны (TWTA), твердотельные усилители мощности (SSPA) и т.д.) и фильтры 3730 гармоник (HF). В двухполюсных реализациях, как показано, каждый полюс имеет свой собственный тракт прохождения сигнала со своим собственным набором компонентов транспондера. В некоторых реализациях может использоваться большее или меньшее число компонентов. Например, применение преобразователей частоты и связанных с ними фильтров 3710 может быть целесообразным в случаях, когда частоты восходящей и нисходящей линий связи различаются. В качестве одного примера каждый транспондер 3430 прямой линии связи может принимать входной сигнал в первой полосе частот и может выводить сигналы во второй полосе частот, и каждый транспондер 3440 обратной линии связи может принимать входной сигнал в первой полосе частот и может выводить сигналы во второй полосе частот.Both the example
В некоторых случаях используется множество подполос (например, семь подполос 500 МГц, как описано выше Например, в некоторых случаях могут обеспечиваться транспондеры, которые работают в одинаковых подполосах, используемых при реализации наземной сети с множеством подполос, что по существу позволяет обеспечить множество независимых и параллельных систем сквозного формирования лучей посредством одного сквозного ретранслятора (каждая система сквозного формирования лучей работает в другой подполосе). В других случаях в широкополосной системе сквозного формирования лучей может использоваться множество подполос в наземной сети, но передаваться одна или более (или все) подполос через широкополосные транспондеры (например, передаваться 7 подполос, каждая шириной 500 МГц, через транспондеры с шириной полосы 3,5 ГГц). В таких случаях каждый транспондер может содержать множество преобразователей частоты и связанных фильтров 3710 и/или других компонентов, предназначенных для обработки одной или более подполос.). Использование множества подполос частот может позволить применять менее жесткие требования к амплитудной и фазовой характеристикам транспондера, поскольку наземная сеть может по отдельности определять весовые коэффициенты луча, используемые в каждой из подполос, фактически калибруя изменение амплитуды и фазы полосы частот транспондеров. Например, в случае отдельных прямых и обратных транспондеров и использования 7 подполос для каждого луча можно использовать в совокупности 14 разных весовых коэффициентов луча, т.е. 7 подполос * 2 направления (прямое и обратное). В некоторых случаях каждый тракт транспондера содержит только МШУ 3705, канальный усилитель 3715 и усилитель 3725 мощности. В некоторых реализациях сквозного ретранслятора 3403 применяются контроллеры сдвига фазы и/или другие контроллеры, которые могут по отдельности задавать фазы и/или другие характеристики каждого транспондера, как описано выше.In some cases, multiple subbands are used (e.g., seven 500 MHz subbands as described above. For example, in some cases, transponders can be provided that operate on the same subbands used in implementing a terrestrial network with multiple subbands, essentially allowing for multiple independent and parallel end-to-end beamforming systems via a single end-to-end repeater (each end-to-end beamforming system operates in a different subband) In other cases, a wideband end-to-end beamforming system may use multiple subbands in the terrestrial network, but transmit one or more (or all) subbands via wideband transponders (e.g. 7 sub-bands, each 500 MHz wide, transmitted over 3.5 GHz bandwidth transponders) In such cases, each transponder may contain multiple frequency converters and associated 3710 filters and/or other components designed to process one or more more subband.). The use of multiple subbands may allow for less stringent transponder amplitude and phase requirements since the terrestrial network can individually determine the beam weights used in each of the subbands, effectively calibrating the amplitude and phase variation of the transponder bandwidth. For example, in the case of separate forward and reverse transponders and using 7 subbands for each beam, a total of 14 different beam weights could be used, i.e. 7 subbands * 2 directions (forward and reverse). In some cases, each transponder path contains only LNA 3705, channel amplifier 3715, and power amplifier 3725. Some implementations of the end-to-
Антенные элементы могут передавать и/или принимать сигналы любым подходящим образом. В некоторых случаях сквозной ретранслятор 3403 содержит один или более отражателей с излучателем в виде антенной решетки. Например, антенная подсистема 3410 фидерной линии связи может содержать отражатель фидерной линии связи как для передачи, так и для приема или отдельный отражатель передачи фидерной линии связи и отдельный отражатель приема фидерной линии связи. Аналогичным образом, антенная подсистема 3420 пользовательской линии связи может содержать отражатель пользовательской линии связи как для передачи, так и для приема или отдельный отражатель передачи пользовательской линии связи и отдельный отражатель приема пользовательской линии связи. В одном примере антенная подсистема 3410 фидерной линии связи содержит массив излучающих конструкций, а каждая излучающая конструкция содержит составляющий приемный элемент 3416 фидерной линии связи и составляющий передающий элемент 3419 фидерной линии связи. В таком случае антенная подсистема 3410 фидерной линии связи также может содержать отражатель фидерной линии связи, который облучает составляющие приемные элементы 3416 фидерной линии связи, а его облучают составляющие передающие элементы 3419 фидерной линии связи. В некоторых случаях отражатель реализован в виде множества отражателей, которые могут иметь разные формы, размеры, ориентации и т.д. В других случаях антенная подсистема 3410 фидерной линии связи и/или антенная подсистема 3420 пользовательской линии связи реализована без отражателей, например в виде прямоизлучающей решетки.The antenna elements may transmit and/or receive signals in any suitable manner. In some cases, the end-to-
Как упомянуто выше, разделение антенной подсистемы 3410 фидерной линии связи и антенной подсистемы 3420 пользовательской линии связи может обеспечивать обслуживание одной или более зон 3450 покрытия AN, которые отличаются от одной или более зон 3460 покрытия пользователя. Например, антенная подсистема 3410 фидерной линии связи может быть реализована с отражателем, имеющим значительно большую физическую площадь, чем отражатель зоны 3460 покрытия пользователя. Больший отражатель может обеспечивать географическое распределение большого числа AN 515 в значительно меньшей зоне 3450 покрытия AN, например в небольшом подмножестве зоны 3460 покрытия пользователя. Некоторые примеры показаны на ФИГ. 45 и 46.As mentioned above, the separation of the feeder
На ФИГ. 45 показан пример видимой зоны 3800 покрытия Земли сквозного ретранслятора 3403 (например, спутника). В примере сквозного ретранслятора 3403 антенная подсистема 3410 фидерной линии связи включает в себя 18-метровый отражатель фидерной линии связи, а антенная подсистема 3420 пользовательской линии связи включает в себя 2-метровый отражатель пользовательской линии связи (например, площадь отражателя фидерной линии связи приблизительно в восемьдесят раз больше площади отражателя пользовательской линии связи). Каждая антенная подсистема также включает в себя массив из 512 взаимодействующих составляющих приемных/передающих элементов. Например, пример сквозного ретранслятора 3403 может включать в себя 512 транспондеров 3430 прямой линии связи (например, формирующих 512 трактов 3700 прохождения прямого сигнала, как показано на ФИГ. 44А) и 512 транспондеров 3440 обратной линии связи (например, формирующих 512 трактов 3750 прохождения обратного сигнала, как показано на ФИГ. 44В). Зона 3460 покрытия пользователя включает в себя 625 зон 519 покрытия пользовательских лучей. Небольшая заштрихованная область в восточной части США представляет собой зону 3450 покрытия AN, которая включает в себя 597 распределенных по ней AN 515. Зона 3450 покрытия AN представляет собой небольшое подмножество большой зоны 3460 покрытия пользователя, но все же обеспечивает высокую пропускную способность за счет большого числа AN 515. Такая относительно плотная зона 3450 покрытия AN в настоящем документе называется «пулом AN».FIG. 45 shows an example of the
На ФИГ. 46 показан пример зоны покрытия 3900 континентальной части США (CONUS) сквозным ретранслятором 3403 (например, спутником). Пример сквозного ретранслятора 3403 аналогичен примеру, показанному на ФИГ. 45, за исключением того, что антенная подсистема 3420 пользовательской линии связи включает в себя 5-метровый отражатель пользовательской линии связи (например, отражатель фидерной линии связи приблизительно в четыре раза больше отражателя пользовательской линии связи). Зона 3460 покрытия пользователя включает в себя 523 зоны 519 покрытия пользовательских лучей. Зона 3450 покрытия AN (пул AN) является такой же, как на ФИГ. 45: область в восточной части США, содержащая 597 распределенных в ней AN 515, которая является небольшим подмножеством зоны 3460 покрытия пользователя.FIG. 46 shows an example of a Continental United States (CONUS)
Множество зон покрытияMultiple coverage areas
В описанном выше примере сквозного ретранслятора 3403 антенная подсистема 3420 пользовательской линии связи описана как подсистема с одной антенной (например, с одним отражателем пользовательской линии связи), а антенная подсистема 3410 фидерной линии связи описана как подсистема с одной антенной (например, с одним отражателем фидерной линии связи). В некоторых случаях антенная подсистема 3420 пользовательской линии связи может включать в себя одну или более антенных подсистем (например, два или более подмассивов составляющих антенных элементов), связанных с одним или более отражателями пользовательской линии связи, а антенная подсистема 3410 фидерной линии связи может включать в себя одну или более антенных подсистем, связанных с одним или более отражателями фидерной линии связи. Например, некоторые сквозные ретрансляторы 3403 могут содержать антенную подсистему 3420 пользовательской линии связи, которая включает в себя первый набор составляющих приемных/передающих элементов пользовательской линии связи, связанных с первым отражателем пользовательской линии связи (например, каждый элемент размещен с возможностью облучения первого отражателя пользовательской линии связи и/или облучения первым отражателем пользовательской линии связи), и второй набор составляющих приемных/передающих элементов пользовательской линии связи, связанных со вторым отражателем пользовательской линии связи. В некоторых случаях два отражателя пользовательской линии связи имеют приблизительно одинаковую физическую площадь (например, в пределах 5%, 10%, 25%, 50%) друг с другом. В некоторых случаях один отражатель пользовательской линии связи значительно больше (например, по меньшей мере вдвое больше по физической площади) другого. Каждый набор составляющих приемных/передающих элементов пользовательской линии связи и связанный с ним отражатель пользовательской линии связи может излучать в соответствующей обособленной зоне покрытия пользователя. Например, зоны из множества зон покрытия пользователя могут быть неперекрывающимися, частично перекрывающимися, полностью перекрывающимися (например, меньшая зона покрытия пользователя может содержаться в пределах большей зоны покрытия пользователя) и т.д. В некоторых случаях множество зон покрытия пользователя может быть активным (облучаемым) в один момент времени. В других случаях, как описано ниже, может обеспечиваться возможность избирательной активации разных частей составляющих приемных/передающих элементов пользовательской линии связи, таким образом активируя разные зоны покрытия пользователя в разные моменты времени. Переключение между зонами из множества зон покрытия может быть скоординировано с CPS. Например, калибровка формирования луча, расчет весового коэффициента луча и применение весового коэффициента луча могут происходить в двух параллельных формирователях лучей, по одному для каждой из двух разных зон покрытия. Использование соответствующих весовых коэффициентов в формирователях лучей может быть синхронизировано так, чтобы оно соответствовало работе сквозного ретранслятора. В некоторых случаях весовые коэффициенты луча могли изменяться при квантовании времени в случае применения формирователей лучей с квантованием времени.In the end-to-end repeater example 3403 described above, the user
На ФИГ. 47A и 47B показан пример тракта 4000 прохождения прямого сигнала и тракта 4050 прохождения обратного сигнала соответственно, в каждом из которых предусмотрена избирательная активация множества антенных подсистем 3420 пользовательской линии связи. Каждый тракт прохождения сигнала включает в себя транспондер, подсоединенный между составляющими антенными элементами. Как показано на ФИГ. 47А, транспондер 3430 прямой линии связи аналогичен описанному со ссылкой на ФИГ. 44А, за исключением того, что выходная сторона транспондера 3430 прямой линии связи избирательно соединена с одной из двух составляющих передающих элементов 3429 пользовательской линии связи, каждый из которых является частью отдельной антенной подсистемы 3420 пользовательской линии связи (например, каждый из которых является частью отдельного массива взаимодействующих составляющих передающих элементов 3429 пользовательской линии связи). Как описано выше, транспондер 3430 прямой линии связи может включать в себя некоторые или все МШУ 3705, преобразователи частоты и связанные фильтры 3710, канальные усилители 3715, устройства 3720 сдвига фазы, усилители 3725 мощности и фильтры 3730 гармоник.FIG. 47A and 47B show an example of a
Транспондер 3430 прямой линии связи на ФИГ. 47A дополнительно содержит переключатели 4010 (переключатели прямой линии связи), которые избирательно соединяют транспондер либо с первым составляющим передающим элементом 3429a пользовательской линии связи (первой антенной подсистемы 3420 пользовательской линии связи) посредством первого набора усилителей 3725 мощности и фильтров 3730 гармоник, либо со второй составляющей передающего элемента 3429b пользовательской линии связи (второй антенной подсистемы 3420 пользовательской линии связи) посредством второго набора усилителей 3725 мощности и фильтров 3730 гармоник. Например, в первом режиме переключения транспондер 3430 прямой линии связи фактически формирует тракт прохождения сигнала между составляющим приемным элементом 3416 фидерной линии связи и первым составляющим передающим элементом 3429 пользовательской линии связи, а во втором режиме переключения транспондер 3430 прямой линии связи фактически формирует тракт прохождения сигнала между этим же составляющим приемным элементом 3416 фидерной линии связи и вторым составляющим передающим элементом 3429 пользовательской линии связи. Переключатели 4010 (SW) могут быть реализованы с использованием любого подходящего средства переключения, такого как электромеханический переключатель, реле, транзистор и т.д. Хотя они показаны как переключатели 4010, в других реализациях может использоваться любое другое подходящее средство для избирательного соединения входа транспондера 3430 прямой линии связи с множеством выходов. Например, в качестве переключателей могут использоваться усилители 3725 мощности (например, обеспечивающие высокий коэффициент усиления в положении «включено» и нулевой (или отрицательный) коэффициент усиления в положении «выключено»).The
Как показано на ФИГ. 47B, транспондер 3440 обратной линии связи функционально повторяет транспондер 3430 прямой линии связи на ФИГ. 47А. Вместо избирательного подключения выходной стороны транспондера, как в случае с прямой линией связи на ФИГ. 47A, входную сторону транспондера 3440 обратной линии связи на ФИГ. 47B избирательно соединяют с одним из двух составляющих приемных элементов 3426 пользовательской линии связи. Опять же, каждый составляющий приемный элемент 3426 пользовательской линии связи может являться частью отдельной антенной подсистемы 3420 пользовательской линии связи (например, каждой части отдельного массива взаимодействующих составляющих приемных элементов 3426 пользовательской линии связи). Как описано выше (например, на ФИГ. 44B), транспондер 3440 обратной линии связи может включать в себя некоторые или все МШУ 3705, преобразователи частоты и связанные фильтры 3710, канальные усилители 3715, устройства 3720 сдвига фазы, усилители 3725 мощности и фильтры 3730 гармоник.As shown in FIG. 47B, the
Транспондер 3440 обратной линии связи на ФИГ. 47В дополнительно содержит переключатели 4010 (переключатели обратной линии связи), которые избирательно соединяют транспондер либо с первым составляющим приемным элементом 3426 пользовательской линии связи (первой антенной подсистемы 3420 пользовательской линии связи) посредством первого набора МШУ 3705, либо со второй составляющей приемного элемента 3426 пользовательской линии связи (второй антенной подсистемы 3420 пользовательской линии связи) посредством второго набора МШУ 3705. Например, в первом режиме переключения транспондер 3440 обратной линии связи фактически формирует тракт прохождения сигнала между первым составляющим приемным элементом 3426 пользовательской линии связи и составляющим передающим элементом 3419 фидерной линии связи; а во втором режиме переключения транспондер 3440 обратной линии связи по существу формирует тракт прохождения сигнала между вторым составляющим приемным элементом 3426 пользовательской линии связи и таким же составляющим передающим элементом 3419 фидерной линии связи. Переключатели 4010 могут быть реализованы с использованием любого подходящего средства переключения, такого как электромеханический переключатель, реле, транзистор и т.д. Хотя они показаны как переключатели 4010, в других реализациях может использоваться любое другое подходящее средство для избирательного соединения входа транспондера 3430 прямой линии связи с множеством выходов. Например, в качестве переключателей могут использоваться усилители 3705 (например, обеспечивающие высокий коэффициент усиления в положении «включено» и нулевой (или отрицательный) коэффициент усиления в положении «выключено»).The
Примеры сквозного ретранслятора 3403 могут включать в себя контроллер 4070 переключения для избирательного переключения некоторых или всех из переключателей 4010 (или другого подходящего средства избирательного соединения) в соответствии с программой переключения. Например, программа переключения может храниться на бортовом устройстве хранения сквозного ретранслятора 3403. В некоторых случаях программа переключения фактически выбирает, какую антенную подсистему 3420 пользовательской линии связи активировать (например, какой набор пользовательских лучей излучать) в каждом из множества интервалов времени (например, временных промежутков). В некоторых случаях при переключении выделяется равное количество времени для множества антенных подсистем 3420 пользовательской линии связи (например, каждая из двух подсистем активируется приблизительно в течение половины этого времени). В других случаях переключение может использоваться для достижения целей распределения пропускной способности. Например, одна антенная подсистема 3420 пользовательской линии связи может быть связана с пользователями с большим числом запросов, и для нее может выделяться большая часть времени в программе, тогда как другая антенная подсистема 3420 пользовательской линии связи может быть связана с пользователями с меньшим числом запросов, и для нее может выделяться меньшая часть времени в программе.Examples of end-to-
На ФИГ. 48A и 48B показан пример зон 4100 и 4150 покрытия сквозного ретранслятора 3403, которые включают в себя множество избирательно активируемых зон 3460a, 3460b покрытия пользователя. Пример сквозного ретранслятора 503 аналогичен сквозным ретрансляторам, показанным на ФИГ. 38 и 39, за исключением разных антенных подсистем. В этом примере антенная подсистема 3420 пользовательской линии связи включает в себя два 9-метровых отражателя пользовательской линии связи, а транспондеры выполнены с возможностью избирательной активации лишь половины пользовательских лучей в любой заданный момент времени (например, транспондеры реализованы так, как показано на ФИГ. 47A и 47B). Например, в первый интервал времени, как показано на ФИГ. 48А, зона 3460a покрытия пользователя включает в себя пятьсот девяносто активных зон 519 покрытия пользовательских лучей. Активные зоны 519 покрытия пользовательских лучей фактически охватывают западную половину США. Зона 3450 покрытия AN (пул AN) является такой же, как на ФИГ. 38 и 39: область в восточной части США, содержащая 597 распределенных в ней AN 515. В первый интервал времени зона 3450 покрытия AN не перекрывается с активной зоной 3460 покрытия пользователя. Во второй интервал времени, как показано на ФИГ. 48В, зона 3460b покрытия пользователя включает в себя другие пятьсот девяносто активных зон 519 покрытия пользовательских лучей. Активные зоны 519 покрытия пользовательских лучей во второй интервал времени фактически охватывают восточную половину США. Зона 3450 покрытия AN не изменяется. Однако во второй интервал времени зона 3450 покрытия AN полностью перекрывается активной зоной 3460 покрытия пользователя (представляет собой ее подмножество). Пропускную способность можно гибко распределять по различным областям (например, между восточными и западными зонами покрытия пользователя) путем динамической регулировки соотношения времени, выделяемого соответствующим антенным подсистемам пользовательской линии связи.FIG. 48A and 48B show an example of
Хотя предыдущий пример иллюстрирует две зоны покрытия пользователя с одинаковыми размерами, может обеспечиваться другое число зон покрытия пользователя (например, три или более), и они могут иметь разные размеры (например, покрытие всей поверхности Земли, только континентальной части США, только США, только региона и т.д.). В случаях с множеством зон 3460 покрытия пользователя зоны 3460 покрытия пользователя могут иметь любое подходящее географическое соотношение. В некоторых случаях первая и вторая зоны 3460 покрытия пользователя частично перекрываются (например, как показано на ФИГ. 48А и 48В). В других случаях вторая зона 3460 покрытия пользователя может представлять собой подмножество первой зоны 3460 покрытия пользователя (например, как показано на ФИГ. 45 и 46). В других случаях первая и вторая зоны покрытия пользователя не перекрываются (например, являются разнородными).Although the previous example illustrates two user coverage areas with the same dimensions, a different number of user coverage areas (e.g., three or more) may be provided and they may have different sizes (e.g., coverage of the entire surface of the Earth, continental US only, US only, only region, etc.). In cases with multiple
На ФИГ. 47A-47B описан выбор тракта прохождения сигнала со стороны пользовательской линии связи. Однако в некоторых случаях альтернативно или дополнительно используется переключение тракта прохождения сигнала со стороны фидерной линии связи. На ФИГ. 49 показан пример тракта 4200 прохождения прямого сигнала, в котором предусмотрена избирательная активация множества антенных подсистем 3420 пользовательской линии связи и множества антенных подсистем 3410 фидерной линии связи. Тракт прохождения сигнала включает в себя транспондер 3430 прямой линии связи, подсоединенный между составляющими антенными элементами. Как описано выше, транспондер 3430 прямой линии связи может включать в себя некоторые или все МШУ 3705, преобразователи частоты и связанные фильтры 3710, канальные усилители 3715, устройства 3720 сдвига фазы, усилители 3725 мощности и фильтры 3730 гармоник. Входная сторона транспондера 3430 прямой линии связи избирательно соединяется с одним из двух составляющих приемных элементов 3416 фидерной линии связи (например, с использованием переключателей 4010a и 4010b или любого другого подходящего средства выбора тракта). Каждый составляющий приемный элемент 3416 фидерной линии связи может быть частью отдельной антенной подсистемы 3410 фидерной линии связи (например, каждой из частей отдельного массива взаимодействующих составляющих приемных элементов 3416 фидерной линии связи). Выходная сторона транспондера 3430 прямой линии связи избирательно соединяется с одним из двух составляющих передающих элементов 3429 пользовательской линии связи (например, с использованием переключателей 4010с и 4010d или любого другого подходящего средства выбора тракта). Каждый составляющий передающий элемент 3429 пользовательской линии связи может быть частью отдельной антенной подсистемы 3420 пользовательской линии связи (например, каждой частью отдельного массива взаимодействующих составляющих передающих элементов 3429 пользовательской линии связи). Один или более контроллеров переключения (не показаны) могут быть включены в сквозной ретранслятор 3403 для выбора между некоторыми или всеми из четырех возможных трактов прохождения сигнала, обеспечиваемых транспондером 3430 прямой линии связи. Транспондеры на ФИГ. 47А, 47В и 49 предназначены только для иллюстрации нескольких из множества возможных случаев. Более того, в некоторых случаях может использоваться выбор тракта между более чем двумя антенными подсистемами 3420 пользовательской линии связи и/или более чем двумя антенными подсистемами 3410 фидерной линии связи. Аналогичным образом, выбор дополнительного тракта может быть возможен в случаях, когда антенная подсистема 3420 пользовательской линии связи и/или составляющий приемный элемент 3416 фидерной линии связи имеют отдельные отражатели для передачи и приема или т.п.FIG. 47A-47B describe user link side signal path selection. However, in some cases, alternatively or additionally, switching of the signal path from the feeder link side is used. FIG. 49 shows an example of a
Аналогичным образом, также может быть предусмотрено множество зон покрытия AN. В качестве одного примера может быть желательно остановить трафик конкретных географических областей в соответствующих им областях. Например, сквозной ретранслятор 3403 с парными транспондерами или без них, как проиллюстрированные на ФИГ. 49, может обслуживать первую зону 3450 покрытия AN и первую зону 3460 покрытия пользователя, обе в Северной Америке, и вторую зону 3450 покрытия AN и вторую зону 3460 покрытия пользователя, обе в Южной Америке. В случае использования выбора тракта (например, переключения) в транспондерах один сквозной ретранслятор 3403 (например, один спутник) может обслуживать трафик, связанный с зоной 3460 покрытия пользователя в Северной Америке, с использованием AN 515 в зоне 3450 покрытия AN в Северной Америке и обслуживать трафик, связанный с зоной 3460 покрытия пользователя в Южной Америке, с использованием AN 515 в зоне 3450 покрытия AN в Южной Америке. Пропускную способность можно гибко распределять по различным областям (например, между зонами покрытия пользователя в Северной и Южной Америках) путем динамического регулирования соотношения времени, выделяемого для соответствующих антенных подсистем.Similarly, a plurality of AN coverage areas may also be provided. As one example, it may be desirable to stop the traffic of specific geographic areas in their respective areas. For example, an end-to-
В общем случае характеристики сквозного ретранслятора 3403, описанного на ФИГ. 41, позволяют обслуживать по меньшей мере одну зону 519 покрытия пользовательских лучей, отличную от по меньшей мере одной зоны 3450 покрытия AN. В некоторых случаях обособленное обслуживание зоны покрытия может обеспечивать использование пулов AN для обеспечения высокой пропускной способности для большой зоны 3460 покрытия пользователя. На ФИГ. 45, 46, 48A и 48B показаны различные примеры таких реализаций пула AN. Развертывание большого числа AN 515 в относительно небольшой географической зоне может обеспечивать ряд характеристик. Например, может быть легче обеспечить развертывание большего числа (или даже всех) AN 515 ближе к высокоскоростной сети (например, в регионе с возможностью хорошего оптоволоконного соединения с CPS 505) в пределах границ одной страны или региона, на суше и т.д. с меньшим отклонением от идеального распределения AN 515. Реализация обособленного обслуживания зон покрытия с выбором тракта (например, как на ФИГ. 47А-47В) может обеспечивать дополнительные характеристики. Например, как описано выше, для избирательного обслуживания множества зон 3460 покрытия пользователя может использоваться один пул AN (и один сквозной ретранслятор 3403). Аналогичным образом, один сквозной ретранслятор 3403 может использоваться для различения и обслуживания трафика по регионам.In general, the characteristics of the end-to-
В некоторых случаях обособленное обслуживание зон покрытия с выбором тракта может обеспечивать различные функции управления помехами и/или управления пропускной способностью. Например, как показано на ФИГ. 48А и 48В, можно рассматривать четыре категории линий связи: связь по прямой линии связи от пула AN до западной активной зоны 3460 покрытия пользователя на ФИГ. 48A («линия связи A»); связь по прямой линии связи от пула AN до восточной активной зоны 3460 покрытия пользователя на ФИГ. 48В («линия связи В»); связь по обратной линии связи от западной активной зоны 3460 покрытия пользователя на ФИГ. 48A до пула AN («линия связи С»); и связь по обратной линии связи от восточной активной зоны 3460 покрытия пользователя на ФИГ. 48В до пула AN («линия связи D»). В первом интервале времени активна восточная зона 3460 покрытия пользователя на ФИГ. 48B, так что связь осуществляется по линии связи B и линии связи D. Поскольку существует полное перекрытие между зоной 3450 покрытия AN и восточной зоной 3460 покрытия пользователя, между линиями связи B и D потенциально могут возникать помехи. Соответственно, в первый интервал времени для линии связи B может быть выделена первая часть ширины полосы (например, 2 ГГц), а для линии связи D может быть выделена вторая часть ширины полосы (например, 1,5 ГГц). В первый второй интервал активна западная зона 3460 покрытия пользователя на ФИГ. 48А, так что связь осуществляется по линии связи А и линии связи С. Поскольку между зоной 3450 покрытия AN и западной зоной 3460 покрытия пользователя перекрытие отсутствует, во второй интервал времени между линиями связи А и С можно использовать полную ширину полосы (например, 3,5 ГГц) сквозного ретранслятора 3403. Например, в первый интервал времени прямые сигналы восходящей линии связи могут приниматься с использованием первого диапазона частот, а обратные сигналы восходящей линии связи могут приниматься с использованием второго диапазона частот, отличного от первого диапазона частот; а во второй интервал времени прямые сигналы восходящей линии связи и обратные сигналы восходящей линии связи могут приниматься с использованием одного и того же диапазона частот (например, первого, второго или другого диапазона частот). В некоторых случаях может быть реализовано повторное использование частоты как в первый, так и во второй интервалы времени с использованием других методик подавления помех в первый интервал времени. В некоторых случаях может быть выбрана синхронизация выбора тракта для компенсации такой разницы в выделении ширины полосы в разные интервалы времени. Например, первый интервал времени может быть длиннее второго интервала времени, так что для линий связи B и D выделяется меньшая ширина полосы в течение большего периода времени, чтобы по меньшей мере частично компенсировать выделение для линий связи A и C большей ширины полосы в течение более короткого периода времени.In some cases, separate path selection coverage area services may provide different interference management and/or bandwidth management functions. For example, as shown in FIG. 48A and 48B, four categories of links can be considered: forward link communication from the AN pool to the western
В некоторых случаях первые обратные сигналы восходящей линии связи принимаются в первый интервал времени с помощью множества взаимодействующих составляющих приемных элементов 3426a пользовательской линии связи от первой части множества пользовательских терминалов 517, географически распределенных по всей первой зоне покрытия пользователя (например, восточной зоне 3460 покрытия пользователя) или по ее некоторой части, а вторые обратные сигналы восходящей линии связи принимаются во второй интервал времени с помощью множества взаимодействующих составляющих приемных элементов 3426b пользовательской линии связи от второй части множества пользовательских терминалов 517, географически распределенных по всей второй зоне покрытия пользователя (например, западной зоне 3460 покрытия пользователя) или по ее некоторой части. Когда зона 3450 покрытия AN (пул AN) представляет собой подмножество первой зоны покрытия пользователя (например, как проиллюстрировано на ФИГ. 48A и 48B), синхронизация AN может быть откалибрована с помощью сквозного ретранслятора 3403 в первый интервал времени (например, когда существует перекрытие между зоной 3460 покрытия пользователя и зоной 3450 покрытия AN).In some cases, the first reverse uplink signals are received in a first time slot by a plurality of cooperating user
Как описано выше, некоторые случаи могут включать в себя определение соответствующей относительной регулировки синхронизации для каждого из множества AN 515 так, чтобы связанные передачи от множества AN 515 достигали сквозного ретранслятора 3403 синхронно (например, с достаточной степенью координированной синхронизации относительно продолжительности символа, которая, как правило, представляет собой долю продолжительности символа, например 10%, 5%, 2% или другое подходящее значение). В таких случаях прямые сигналы восходящей линии связи передаются множеством AN 515 согласно соответствующим относительным регулировкам синхронизации. В некоторых таких случаях сигнал синхронизации радиомаяка (например, PN-сигнал, генерируемый генератором сигналов радиомаяка, как описано выше) принимается по меньшей мере некоторыми из множества AN 515 от сквозного ретранслятора 3403, а соответствующие относительные регулировки синхронизации определяются в соответствии с сигналом синхронизации радиомаяка. В других таких случаях некоторые или все из AN 515 могут принимать закольцованные передачи от сквозного ретранслятора 3403, а соответствующие относительные регулировки синхронизации определяются в соответствии с закольцованными передачами. Применение различных подходов к калибровке AN 515 может зависеть от способности AN 515 осуществлять связь со сквозным ретранслятором 3403. Соответственно, в некоторых случаях калибровка AN 515 может быть выполнена только в интервалы времени, во время которых происходит облучение соответствующих зон покрытия. Например, закольцованные передачи могут использоваться только в интервалы времени, во время которых существует некоторое перекрытие между зоной 3450 покрытия AN и зоной 3460 покрытия пользователя (например, AN 515 осуществляют связь по закольцованному лучу, который может использовать как антенную подсистему 3410 фидерной линии связи, так и антенную подсистему 3420 пользовательской линии связи сквозного ретранслятора 3403). В некоторых случаях правильная калибровка может дополнительно зависеть от некоторого перекрытия между диапазоном частот фидерной нисходящей линии связи и диапазоном частот пользовательской нисходящей линии связи.As described above, some cases may include determining an appropriate relative timing adjustment for each of the plurality of
ЗаключениеConclusion
Хотя раскрытый способ и устройство описаны выше в контексте различных примеров, случаев и реализаций, следует понимать, что конкретные характеристики, аспекты и функциональность, описанные в одном или более из отдельных примеров, могут быть применимы к другим примерам. Таким образом, охват и объем заявленного изобретения не ограничены ни одним из приведенных выше примеров, а определяются формулой изобретения.Although the disclosed method and apparatus have been described above in the context of various examples, cases, and implementations, it should be understood that the specific features, aspects, and functionality described in one or more of the individual examples may be applicable to other examples. Thus, the scope and scope of the claimed invention is not limited to any of the above examples, but is defined by the claims.
Использованные в настоящем документе термины и фразы, а также их вариации, если явно не указано иное, следует считать не имеющими ограничительного характера, а не ограничивающими. В качестве примеров вышеуказанного: термин «включающий в себя» используется в значении «включающий в себя, без ограничений» или т.п.; термин «пример» используется для обеспечения примеров реализации элемента описания, но не исчерпывающего или ограничивающего их перечня; термины в единственном числе используются в значении «по меньшей мере один», «один или более» или т.п.Terms and phrases used in this document, as well as their variations, unless expressly stated otherwise, should be considered non-limiting and not limiting. As examples of the above: the term "including" is used to mean "including, without limitation" or the like; the term "example" is used to provide examples of the implementation of the description element, but not an exhaustive or limiting list; terms in the singular are used to mean "at least one", "one or more", or the like.
В тексте описания термин «соединять» или «соединенный» используется в широком смысле для обозначения либо физического, либо электрического (включая беспроводное) соединения между компонентами. В некоторых случаях первый компонент может быть соединен со вторым компонентом через промежуточный третий компонент, размещенный между первым и вторым компонентами. Например, компоненты могут быть соединены через прямые соединения, согласующие цепи, усилители, аттенюаторы, фильтры, блоки постоянного тока, блоки переменного тока и т.д.In the text of the description, the term "connect" or "connected" is used in a broad sense to refer to either a physical or electrical (including wireless) connection between components. In some cases, the first component may be connected to the second component through an intermediate third component placed between the first and second components. For example, components can be connected via direct connections, matching circuits, amplifiers, attenuators, filters, DC blocks, AC blocks, and so on.
Если группа объектов связана союзом «и», это не означает, что все и каждый из этих объектов должны присутствовать в группе, а означает, что группа включает в себя все объекты или любое их подмножество, если прямо не указано иное. Аналогичным образом, группу объектов, связанных союзом «или», не следует интерпретировать как требующую взаимной исключительности объектов в группе, а следует интерпретировать как включающую в себя все объекты или любое их подмножество, если прямо не указано иное. Более того, хотя объекты, элементы или компоненты раскрытого способа и устройства могут быть описаны или заявлены в единственном числе, предполагается, что множественное число входит в их объем, если явно не указано ограничение единственным числом.If a group of objects is connected by the conjunction "and", this does not mean that all and each of these objects must be present in the group, but means that the group includes all objects or any subset of them, unless otherwise expressly indicated. Similarly, a group of objects linked by "or" should not be interpreted as requiring mutual exclusivity of the objects in the group, but should be interpreted as including all or any subset of the objects unless expressly stated otherwise. Moreover, while the objects, elements, or components of the disclosed method and apparatus may be described or claimed in the singular, the plural is intended to be included within their scope unless limited to the singular is explicitly stated.
Присутствие расширяющих слов и фраз, таких как «один или более», «по меньшей мере» или других подобных фраз в некоторых случаях не означает, что в тех случаях, когда такие расширяющие фразы могут отсутствовать, предполагается или требуется более узкое значение.The presence of expanding words and phrases such as "one or more", "at least" or other similar phrases in some cases does not mean that, in cases where such expanding phrases may be absent, a narrower meaning is assumed or required.
Хотя ссылочные позиции могут быть включены в формулу изобретения, они обеспечены исключительно для функции облегчения понимания формулы изобретения, а включение (или исключение) ссылочных позиций не следует рассматривать как ограничение объема предмета, защищенного формулой изобретения.Although reference numerals may be included in the claims, they are provided solely for the function of facilitating the understanding of the claims, and the inclusion (or exclusion) of reference numerals should not be construed as limiting the scope of the subject matter covered by the claims.
Claims (42)
Applications Claiming Priority (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562145804P | 2015-04-10 | 2015-04-10 | |
US201562145810P | 2015-04-10 | 2015-04-10 | |
US62/145,804 | 2015-04-10 | ||
US62/145,810 | 2015-04-10 | ||
US201562164456P | 2015-05-20 | 2015-05-20 | |
US62/164,456 | 2015-05-20 | ||
US201662278368P | 2016-01-13 | 2016-01-13 | |
US62/278,368 | 2016-01-13 | ||
US201662298911P | 2016-02-23 | 2016-02-23 | |
US62/298,911 | 2016-02-23 | ||
US201662312342P | 2016-03-23 | 2016-03-23 | |
US62/312,342 | 2016-03-23 | ||
US201662314921P | 2016-03-29 | 2016-03-29 | |
US62/314,921 | 2016-03-29 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019121097A Division RU2709492C1 (en) | 2015-04-10 | 2016-04-08 | Beam shaper for communication system with through formation of beams |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2019139727A RU2019139727A (en) | 2021-06-07 |
RU2791991C2 true RU2791991C2 (en) | 2023-03-15 |
Family
ID=
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5619503A (en) * | 1994-01-11 | 1997-04-08 | Ericsson Inc. | Cellular/satellite communications system with improved frequency re-use |
US6016124A (en) * | 1997-04-07 | 2000-01-18 | Nortel Networks Corporation | Digital beamforming in a satellite communication system |
RU2388161C2 (en) * | 2005-05-18 | 2010-04-27 | Квэлкомм Инкорпорейтед | Efficient support for antenna pattern formation, with duplex time division through forced frequency hopping and control signal transmission upon request |
KR101268480B1 (en) * | 2011-05-20 | 2013-06-04 | 인하대학교 산학협력단 | End-to-End level SVD transmission scheme in a multi-user MIMO Relay System |
US8923756B1 (en) * | 2010-03-19 | 2014-12-30 | RKF Engineering Solutions, LLC | Calibration of amplitude and phase |
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5619503A (en) * | 1994-01-11 | 1997-04-08 | Ericsson Inc. | Cellular/satellite communications system with improved frequency re-use |
US6016124A (en) * | 1997-04-07 | 2000-01-18 | Nortel Networks Corporation | Digital beamforming in a satellite communication system |
RU2388161C2 (en) * | 2005-05-18 | 2010-04-27 | Квэлкомм Инкорпорейтед | Efficient support for antenna pattern formation, with duplex time division through forced frequency hopping and control signal transmission upon request |
US8923756B1 (en) * | 2010-03-19 | 2014-12-30 | RKF Engineering Solutions, LLC | Calibration of amplitude and phase |
KR101268480B1 (en) * | 2011-05-20 | 2013-06-04 | 인하대학교 산학협력단 | End-to-End level SVD transmission scheme in a multi-user MIMO Relay System |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2731627C1 (en) | Satellite for through beam direct formation | |
AU2019283883B2 (en) | System for End-to-End Beamforming with Multi-Frequency Access Nodes | |
RU2791991C2 (en) | Beamformer for through beamforming communication system | |
RU2805479C2 (en) | Satellite for end-to-end formation of direct beam | |
RU2737436C1 (en) | Techniques of application of clusters of access nodes during end-to-end beam formation | |
NZ769423B2 (en) | System and method for return end-to-end beamforming | |
NZ769436B2 (en) | Method for forward end-to-end beamforming | |
NZ769423A (en) | System and method for return end-to-end beamforming |