RU2746991C2 - Аденоассоциированные вирусные векторы для лечения миоцилиновой (myoc) глаукомы - Google Patents
Аденоассоциированные вирусные векторы для лечения миоцилиновой (myoc) глаукомы Download PDFInfo
- Publication number
- RU2746991C2 RU2746991C2 RU2020111038A RU2020111038A RU2746991C2 RU 2746991 C2 RU2746991 C2 RU 2746991C2 RU 2020111038 A RU2020111038 A RU 2020111038A RU 2020111038 A RU2020111038 A RU 2020111038A RU 2746991 C2 RU2746991 C2 RU 2746991C2
- Authority
- RU
- Russia
- Prior art keywords
- myoc
- raav
- aav2
- aav
- nucleic acid
- Prior art date
Links
- 208000010412 Glaucoma Diseases 0.000 title claims description 90
- 238000011282 treatment Methods 0.000 title abstract description 42
- 102100029839 Myocilin Human genes 0.000 title description 54
- 101710196550 Myocilin Proteins 0.000 title description 51
- 101150104791 MYOC gene Proteins 0.000 title description 3
- 239000013603 viral vector Substances 0.000 title description 3
- 239000002245 particle Substances 0.000 claims abstract description 256
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 178
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 155
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 155
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract description 124
- 238000000034 method Methods 0.000 claims abstract description 115
- 241000124008 Mammalia Species 0.000 claims abstract description 71
- 238000006467 substitution reaction Methods 0.000 claims abstract description 70
- 108090000565 Capsid Proteins Proteins 0.000 claims abstract description 34
- 102100023321 Ceruloplasmin Human genes 0.000 claims abstract description 34
- 208000022873 Ocular disease Diseases 0.000 claims abstract description 30
- 239000013608 rAAV vector Substances 0.000 claims abstract description 30
- 239000013646 rAAV2 vector Substances 0.000 claims abstract description 17
- 210000003660 reticulum Anatomy 0.000 claims abstract description 17
- 241000702421 Dependoparvovirus Species 0.000 claims description 224
- 230000001225 therapeutic effect Effects 0.000 claims description 103
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 92
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 92
- 229920001184 polypeptide Polymers 0.000 claims description 91
- 241000282414 Homo sapiens Species 0.000 claims description 52
- 210000001585 trabecular meshwork Anatomy 0.000 claims description 31
- 108700019146 Transgenes Proteins 0.000 claims description 29
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 8
- 239000000872 buffer Substances 0.000 claims description 5
- 241000702423 Adeno-associated virus - 2 Species 0.000 claims 11
- 230000000694 effects Effects 0.000 abstract description 66
- 239000003814 drug Substances 0.000 abstract description 10
- 239000000126 substance Substances 0.000 abstract description 4
- 208000030533 eye disease Diseases 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 210
- 239000013598 vector Substances 0.000 description 201
- 101000825960 Homo sapiens R-spondin-3 Proteins 0.000 description 194
- 102100022766 R-spondin-3 Human genes 0.000 description 185
- 230000014509 gene expression Effects 0.000 description 154
- 239000003795 chemical substances by application Substances 0.000 description 150
- 101000825954 Homo sapiens R-spondin-1 Proteins 0.000 description 148
- 101000825949 Homo sapiens R-spondin-2 Proteins 0.000 description 147
- 108091027967 Small hairpin RNA Proteins 0.000 description 147
- 101000825962 Homo sapiens R-spondin-4 Proteins 0.000 description 146
- 210000001508 eye Anatomy 0.000 description 144
- 102100022762 R-spondin-1 Human genes 0.000 description 141
- 239000004055 small Interfering RNA Substances 0.000 description 141
- 102100022763 R-spondin-2 Human genes 0.000 description 140
- 102100022759 R-spondin-4 Human genes 0.000 description 140
- 210000000234 capsid Anatomy 0.000 description 137
- 108050003627 Wnt Proteins 0.000 description 130
- 102000013814 Wnt Human genes 0.000 description 130
- 230000011664 signaling Effects 0.000 description 118
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 111
- 230000009368 gene silencing by RNA Effects 0.000 description 111
- 108090000623 proteins and genes Proteins 0.000 description 93
- 230000003612 virological effect Effects 0.000 description 84
- 238000002347 injection Methods 0.000 description 77
- 239000007924 injection Substances 0.000 description 77
- 102200163242 rs74315330 Human genes 0.000 description 73
- 239000000203 mixture Substances 0.000 description 63
- 102200163184 rs74315328 Human genes 0.000 description 54
- 239000012530 fluid Substances 0.000 description 53
- 235000018102 proteins Nutrition 0.000 description 41
- 102000004169 proteins and genes Human genes 0.000 description 41
- 108010076504 Protein Sorting Signals Proteins 0.000 description 35
- 239000013612 plasmid Substances 0.000 description 35
- 238000010361 transduction Methods 0.000 description 33
- 230000026683 transduction Effects 0.000 description 33
- 108700002895 trabecular meshwork-induced glucocorticoid response Proteins 0.000 description 32
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 28
- 102000040430 polynucleotide Human genes 0.000 description 26
- 108091033319 polynucleotide Proteins 0.000 description 26
- 239000002157 polynucleotide Substances 0.000 description 26
- 230000035772 mutation Effects 0.000 description 25
- 241000699666 Mus <mouse, genus> Species 0.000 description 22
- 108091028043 Nucleic acid sequence Proteins 0.000 description 22
- 210000004176 reticulum cell Anatomy 0.000 description 22
- 101100515529 Homo sapiens MYOC gene Proteins 0.000 description 20
- 206010030348 Open-Angle Glaucoma Diseases 0.000 description 20
- 201000006366 primary open angle glaucoma Diseases 0.000 description 20
- 230000002207 retinal effect Effects 0.000 description 20
- 230000006870 function Effects 0.000 description 19
- 238000001890 transfection Methods 0.000 description 19
- 230000002401 inhibitory effect Effects 0.000 description 18
- 241000972680 Adeno-associated virus - 6 Species 0.000 description 17
- 101000834253 Gallus gallus Actin, cytoplasmic 1 Proteins 0.000 description 17
- 238000007792 addition Methods 0.000 description 17
- 238000003556 assay Methods 0.000 description 17
- 238000012217 deletion Methods 0.000 description 17
- 230000037430 deletion Effects 0.000 description 17
- 239000013607 AAV vector Substances 0.000 description 16
- 108700011259 MicroRNAs Proteins 0.000 description 16
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 16
- 230000004410 intraocular pressure Effects 0.000 description 16
- 239000002679 microRNA Substances 0.000 description 16
- 241000700605 Viruses Species 0.000 description 14
- 230000007423 decrease Effects 0.000 description 14
- 210000001525 retina Anatomy 0.000 description 14
- 241001655883 Adeno-associated virus - 1 Species 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- 210000001519 tissue Anatomy 0.000 description 13
- 241000649047 Adeno-associated virus 12 Species 0.000 description 12
- 241000701022 Cytomegalovirus Species 0.000 description 12
- 241001529936 Murinae Species 0.000 description 12
- 241000699670 Mus sp. Species 0.000 description 12
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 12
- 239000002773 nucleotide Substances 0.000 description 12
- 125000003729 nucleotide group Chemical group 0.000 description 12
- 239000008194 pharmaceutical composition Substances 0.000 description 12
- 230000028327 secretion Effects 0.000 description 12
- 241000282465 Canis Species 0.000 description 11
- 201000010099 disease Diseases 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 11
- 230000010076 replication Effects 0.000 description 11
- 241000283690 Bos taurus Species 0.000 description 10
- 241000282324 Felis Species 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 102000002938 Thrombospondin Human genes 0.000 description 10
- 108060008245 Thrombospondin Proteins 0.000 description 10
- 238000004806 packaging method and process Methods 0.000 description 10
- 208000024891 symptom Diseases 0.000 description 10
- 230000008685 targeting Effects 0.000 description 10
- 241000202702 Adeno-associated virus - 3 Species 0.000 description 9
- 241000580270 Adeno-associated virus - 4 Species 0.000 description 9
- 241001634120 Adeno-associated virus - 5 Species 0.000 description 9
- 241001164823 Adeno-associated virus - 7 Species 0.000 description 9
- 241001164825 Adeno-associated virus - 8 Species 0.000 description 9
- 241000649045 Adeno-associated virus 10 Species 0.000 description 9
- 241000649046 Adeno-associated virus 11 Species 0.000 description 9
- 108090000994 Catalytic RNA Proteins 0.000 description 9
- 102000053642 Catalytic RNA Human genes 0.000 description 9
- 101150065069 Hsp90b1 gene Proteins 0.000 description 9
- 108060001084 Luciferase Proteins 0.000 description 9
- 239000005089 Luciferase Substances 0.000 description 9
- 108010052090 Renilla Luciferases Proteins 0.000 description 9
- 108091092562 ribozyme Proteins 0.000 description 9
- 239000011780 sodium chloride Substances 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 8
- 206010025421 Macule Diseases 0.000 description 8
- 125000000539 amino acid group Chemical group 0.000 description 8
- 239000013592 cell lysate Substances 0.000 description 8
- 230000004186 co-expression Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 102000054144 human RSPO3 Human genes 0.000 description 8
- 208000015181 infectious disease Diseases 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 230000036961 partial effect Effects 0.000 description 8
- 230000004382 visual function Effects 0.000 description 8
- 238000001262 western blot Methods 0.000 description 8
- -1 GLC1AandJOAG1) Proteins 0.000 description 7
- 101000659879 Homo sapiens Thrombospondin-1 Proteins 0.000 description 7
- 102000041829 R-spondin family Human genes 0.000 description 7
- 108091078718 R-spondin family Proteins 0.000 description 7
- 206010038848 Retinal detachment Diseases 0.000 description 7
- 102100036034 Thrombospondin-1 Human genes 0.000 description 7
- 239000000427 antigen Substances 0.000 description 7
- 108091007433 antigens Proteins 0.000 description 7
- 102000036639 antigens Human genes 0.000 description 7
- 239000006143 cell culture medium Substances 0.000 description 7
- 230000000295 complement effect Effects 0.000 description 7
- 230000002708 enhancing effect Effects 0.000 description 7
- 230000000366 juvenile effect Effects 0.000 description 7
- 229940124597 therapeutic agent Drugs 0.000 description 7
- 230000000007 visual effect Effects 0.000 description 7
- 241000283707 Capra Species 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 101000585663 Homo sapiens Myocilin Proteins 0.000 description 6
- 101100515531 Mus musculus Myoc gene Proteins 0.000 description 6
- 210000001742 aqueous humor Anatomy 0.000 description 6
- 210000004899 c-terminal region Anatomy 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 238000001415 gene therapy Methods 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 230000037361 pathway Effects 0.000 description 6
- 210000000608 photoreceptor cell Anatomy 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 230000004264 retinal detachment Effects 0.000 description 6
- 210000003994 retinal ganglion cell Anatomy 0.000 description 6
- 241000701161 unidentified adenovirus Species 0.000 description 6
- 102000014450 RNA Polymerase III Human genes 0.000 description 5
- 108010078067 RNA Polymerase III Proteins 0.000 description 5
- 102100039270 Ribulose-phosphate 3-epimerase Human genes 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 5
- 230000030279 gene silencing Effects 0.000 description 5
- 239000005090 green fluorescent protein Substances 0.000 description 5
- 102000050526 human RSPO1 Human genes 0.000 description 5
- 230000002458 infectious effect Effects 0.000 description 5
- 238000001802 infusion Methods 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 230000003834 intracellular effect Effects 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 102000008055 Heparan Sulfate Proteoglycans Human genes 0.000 description 4
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 4
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 4
- 241000288906 Primates Species 0.000 description 4
- 108090000054 Syndecan-2 Proteins 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 4
- 230000003444 anaesthetic effect Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000010171 animal model Methods 0.000 description 4
- 230000022131 cell cycle Effects 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 210000004087 cornea Anatomy 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000002571 electroretinography Methods 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 229920000669 heparin Polymers 0.000 description 4
- 229960002897 heparin Drugs 0.000 description 4
- 102000048108 human RSPO4 Human genes 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 231100000219 mutagenic Toxicity 0.000 description 4
- 230000003505 mutagenic effect Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 210000003786 sclera Anatomy 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 4
- 210000004127 vitreous body Anatomy 0.000 description 4
- 102000015735 Beta-catenin Human genes 0.000 description 3
- 108060000903 Beta-catenin Proteins 0.000 description 3
- 101100531974 Homo sapiens RSPO2 gene Proteins 0.000 description 3
- 102000010175 Opsin Human genes 0.000 description 3
- 108050001704 Opsin Proteins 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 230000004156 Wnt signaling pathway Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 238000002716 delivery method Methods 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 210000000720 eyelash Anatomy 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 210000005260 human cell Anatomy 0.000 description 3
- 230000002055 immunohistochemical effect Effects 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 208000028507 juvenile open angle glaucoma Diseases 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 238000010172 mouse model Methods 0.000 description 3
- 210000001328 optic nerve Anatomy 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- WLRMANUAADYWEA-NWASOUNVSA-N (S)-timolol maleate Chemical compound OC(=O)\C=C/C(O)=O.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1 WLRMANUAADYWEA-NWASOUNVSA-N 0.000 description 2
- CPKVUHPKYQGHMW-UHFFFAOYSA-N 1-ethenylpyrrolidin-2-one;molecular iodine Chemical compound II.C=CN1CCCC1=O CPKVUHPKYQGHMW-UHFFFAOYSA-N 0.000 description 2
- NCYCYZXNIZJOKI-IOUUIBBYSA-N 11-cis-retinal Chemical compound O=C/C=C(\C)/C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-IOUUIBBYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 108090000331 Firefly luciferases Proteins 0.000 description 2
- 108091004242 G-Protein-Coupled Receptor Kinase 1 Proteins 0.000 description 2
- 102000004437 G-Protein-Coupled Receptor Kinase 1 Human genes 0.000 description 2
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 2
- 101710128836 Large T antigen Proteins 0.000 description 2
- 239000012097 Lipofectamine 2000 Substances 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 241000699660 Mus musculus Species 0.000 description 2
- 101100531981 Mus musculus Rspo3 gene Proteins 0.000 description 2
- 206010030043 Ocular hypertension Diseases 0.000 description 2
- 102000010292 Peptide Elongation Factor 1 Human genes 0.000 description 2
- 108010077524 Peptide Elongation Factor 1 Proteins 0.000 description 2
- 102100028251 Phosphoglycerate kinase 1 Human genes 0.000 description 2
- 101710139464 Phosphoglycerate kinase 1 Proteins 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 108010071690 Prealbumin Proteins 0.000 description 2
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 2
- 239000012083 RIPA buffer Substances 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 108700008625 Reporter Genes Proteins 0.000 description 2
- 102100040756 Rhodopsin Human genes 0.000 description 2
- 108090000820 Rhodopsin Proteins 0.000 description 2
- 108090000799 Rhodopsin kinases Proteins 0.000 description 2
- 241000700584 Simplexvirus Species 0.000 description 2
- 102000007637 Soluble Guanylyl Cyclase Human genes 0.000 description 2
- 108010007205 Soluble Guanylyl Cyclase Proteins 0.000 description 2
- 241000251131 Sphyrna Species 0.000 description 2
- 241000701093 Suid alphaherpesvirus 1 Species 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 102000009190 Transthyretin Human genes 0.000 description 2
- 108010020277 WD repeat containing planar cell polarity effector Proteins 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000037429 base substitution Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 210000005252 bulbus oculi Anatomy 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000012761 co-transfection Methods 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 210000004292 cytoskeleton Anatomy 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 238000003119 immunoblot Methods 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 239000000644 isotonic solution Substances 0.000 description 2
- 210000001232 limbus corneae Anatomy 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 108091089534 miR-708 stem-loop Proteins 0.000 description 2
- 230000037230 mobility Effects 0.000 description 2
- 210000003733 optic disk Anatomy 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 239000013600 plasmid vector Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000002864 sequence alignment Methods 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 210000003518 stress fiber Anatomy 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000011830 transgenic mouse model Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 239000003656 tris buffered saline Substances 0.000 description 2
- 241001529453 unidentified herpesvirus Species 0.000 description 2
- 210000002845 virion Anatomy 0.000 description 2
- 230000004304 visual acuity Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QCHFTSOMWOSFHM-WPRPVWTQSA-N (+)-Pilocarpine Chemical compound C1OC(=O)[C@@H](CC)[C@H]1CC1=CN=CN1C QCHFTSOMWOSFHM-WPRPVWTQSA-N 0.000 description 1
- NWIUTZDMDHAVTP-QGZVFWFLSA-N (R)-betaxolol Chemical compound C1=CC(OC[C@H](O)CNC(C)C)=CC=C1CCOCC1CC1 NWIUTZDMDHAVTP-QGZVFWFLSA-N 0.000 description 1
- FCDYIAFWEUGQSZ-KMVOCYRZSA-N (Z)-but-2-enedioic acid (2S)-1-(tert-butylamino)-3-[(4-morpholin-4-yl-1,2,5-thiadiazol-3-yl)oxy]propan-2-ol propan-2-yl (Z)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxy-4-[3-(trifluoromethyl)phenoxy]but-1-enyl]cyclopentyl]hept-5-enoate Chemical compound OC(=O)\C=C/C(O)=O.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1.CC(C)OC(=O)CCC\C=C/C[C@H]1[C@@H](O)C[C@@H](O)[C@@H]1\C=C\[C@@H](O)COC1=CC=CC(C(F)(F)F)=C1 FCDYIAFWEUGQSZ-KMVOCYRZSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- QZHBYNSSDLTCRG-LREBCSMRSA-N 5-bromo-n-(4,5-dihydro-1h-imidazol-2-yl)quinoxalin-6-amine;(2r,3r)-2,3-dihydroxybutanedioic acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.C1=CC2=NC=CN=C2C(Br)=C1NC1=NCCN1 QZHBYNSSDLTCRG-LREBCSMRSA-N 0.000 description 1
- ZUIFJYRNWWNOPB-PPHPATTJSA-N 5-bromo-n-(4,5-dihydro-1h-imidazol-2-yl)quinoxalin-6-amine;(2s)-1-(tert-butylamino)-3-[(4-morpholin-4-yl-1,2,5-thiadiazol-3-yl)oxy]propan-2-ol Chemical compound C1=CC2=NC=CN=C2C(Br)=C1NC1=NCCN1.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1 ZUIFJYRNWWNOPB-PPHPATTJSA-N 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- XYLJNLCSTIOKRM-UHFFFAOYSA-N Alphagan Chemical compound C1=CC2=NC=CN=C2C(Br)=C1NC1=NCCN1 XYLJNLCSTIOKRM-UHFFFAOYSA-N 0.000 description 1
- 201000002862 Angle-Closure Glaucoma Diseases 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 206010002945 Aphakia Diseases 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102000007590 Calpain Human genes 0.000 description 1
- 108010032088 Calpain Proteins 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 101150044789 Cap gene Proteins 0.000 description 1
- 108010067316 Catenins Proteins 0.000 description 1
- 102000016362 Catenins Human genes 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108091033380 Coding strand Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 208000003098 Ganglion Cysts Diseases 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010001483 Glycogen Synthase Proteins 0.000 description 1
- 102000002254 Glycogen Synthase Kinase 3 Human genes 0.000 description 1
- 108010014905 Glycogen Synthase Kinase 3 Proteins 0.000 description 1
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 1
- 229920002971 Heparan sulfate Polymers 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101000933465 Homo sapiens Beta-glucuronidase Proteins 0.000 description 1
- 101000878605 Homo sapiens Low affinity immunoglobulin epsilon Fc receptor Proteins 0.000 description 1
- 101100531980 Homo sapiens RSPO3 gene Proteins 0.000 description 1
- 101000829506 Homo sapiens Rhodopsin kinase GRK1 Proteins 0.000 description 1
- 101000717377 Homo sapiens Ribokinase Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical class Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- 102100038007 Low affinity immunoglobulin epsilon Fc receptor Human genes 0.000 description 1
- 102000004857 Lymphoid enhancer-binding factor 1 Human genes 0.000 description 1
- 108090001093 Lymphoid enhancer-binding factor 1 Proteins 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 239000004909 Moisturizer Substances 0.000 description 1
- 108010006519 Molecular Chaperones Proteins 0.000 description 1
- 102000005431 Molecular Chaperones Human genes 0.000 description 1
- 241000713869 Moloney murine leukemia virus Species 0.000 description 1
- 101000834850 Mus musculus KICSTOR complex protein SZT2 Proteins 0.000 description 1
- 101000825950 Mus musculus R-spondin-2 Proteins 0.000 description 1
- 101000825961 Mus musculus R-spondin-3 Proteins 0.000 description 1
- 101000858599 Mus musculus R-spondin-4 Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010056677 Nerve degeneration Diseases 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 229920000153 Povidone-iodine Polymers 0.000 description 1
- KCLANYCVBBTKTO-UHFFFAOYSA-N Proparacaine Chemical compound CCCOC1=CC=C(C(=O)OCCN(CC)CC)C=C1N KCLANYCVBBTKTO-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 102000016611 Proteoglycans Human genes 0.000 description 1
- 108010067787 Proteoglycans Proteins 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 108020005067 RNA Splice Sites Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 208000002367 Retinal Perforations Diseases 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 101150116752 Rspo3 gene Proteins 0.000 description 1
- QCHFTSOMWOSFHM-UHFFFAOYSA-N SJ000285536 Natural products C1OC(=O)C(CC)C1CC1=CN=CN1C QCHFTSOMWOSFHM-UHFFFAOYSA-N 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 206010039729 Scotoma Diseases 0.000 description 1
- 102100030053 Secreted frizzled-related protein 3 Human genes 0.000 description 1
- 208000005400 Synovial Cyst Diseases 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 108010017842 Telomerase Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 102000006757 Wnt Receptors Human genes 0.000 description 1
- 108010047118 Wnt Receptors Proteins 0.000 description 1
- 102000052549 Wnt-3 Human genes 0.000 description 1
- 108700020985 Wnt-3 Proteins 0.000 description 1
- 102000044880 Wnt3A Human genes 0.000 description 1
- 108700013515 Wnt3A Proteins 0.000 description 1
- 241000269370 Xenopus <genus> Species 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- BZKPWHYZMXOIDC-UHFFFAOYSA-N acetazolamide Chemical compound CC(=O)NC1=NN=C(S(N)(=O)=O)S1 BZKPWHYZMXOIDC-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000695 adrenergic alpha-agonist Substances 0.000 description 1
- 229940003677 alphagan Drugs 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 210000002159 anterior chamber Anatomy 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940006133 antiglaucoma drug and miotics carbonic anhydrase inhibitors Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- IEJXVRYNEISIKR-UHFFFAOYSA-N apraclonidine Chemical compound ClC1=CC(N)=CC(Cl)=C1NC1=NCCN1 IEJXVRYNEISIKR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 230000003376 axonal effect Effects 0.000 description 1
- 239000003855 balanced salt solution Substances 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 239000002876 beta blocker Substances 0.000 description 1
- 229940097320 beta blocking agent Drugs 0.000 description 1
- 229940064804 betadine Drugs 0.000 description 1
- 229940059219 betoptic s Drugs 0.000 description 1
- AQOKCDNYWBIDND-FTOWTWDKSA-N bimatoprost Chemical compound CCNC(=O)CCC\C=C/C[C@H]1[C@@H](O)C[C@@H](O)[C@@H]1\C=C\[C@@H](O)CCC1=CC=CC=C1 AQOKCDNYWBIDND-FTOWTWDKSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 108010006025 bovine growth hormone Proteins 0.000 description 1
- HCRKCZRJWPKOAR-JTQLQIEISA-N brinzolamide Chemical compound CCN[C@H]1CN(CCCOC)S(=O)(=O)C2=C1C=C(S(N)(=O)=O)S2 HCRKCZRJWPKOAR-JTQLQIEISA-N 0.000 description 1
- 229960000722 brinzolamide Drugs 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229960004484 carbachol Drugs 0.000 description 1
- AIXAANGOTKPUOY-UHFFFAOYSA-N carbachol Chemical compound [Cl-].C[N+](C)(C)CCOC(N)=O AIXAANGOTKPUOY-UHFFFAOYSA-N 0.000 description 1
- 239000003489 carbonate dehydratase inhibitor Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000023549 cell-cell signaling Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 230000007541 cellular toxicity Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 210000003161 choroid Anatomy 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 229940025781 combigan Drugs 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 229940069275 cosopt Drugs 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- RWZVPVOZTJJMNU-UHFFFAOYSA-N demarcarium Chemical compound C=1C=CC([N+](C)(C)C)=CC=1OC(=O)N(C)CCCCCCCCCCN(C)C(=O)OC1=CC=CC([N+](C)(C)C)=C1 RWZVPVOZTJJMNU-UHFFFAOYSA-N 0.000 description 1
- 229960004656 demecarium Drugs 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 229940099238 diamox Drugs 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000000916 dilatatory effect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- OSRUSFPMRGDLAG-QMGYSKNISA-N dorzolamide hydrochloride Chemical compound [Cl-].CC[NH2+][C@H]1C[C@H](C)S(=O)(=O)C2=C1C=C(S(N)(=O)=O)S2 OSRUSFPMRGDLAG-QMGYSKNISA-N 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
- 210000000887 face Anatomy 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012595 freezing medium Substances 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000012226 gene silencing method Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000010820 immunofluorescence microscopy Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000017532 inherited retinal dystrophy Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229940095437 iopidine Drugs 0.000 description 1
- XXUPXHKCPIKWLR-JHUOEJJVSA-N isopropyl unoprostone Chemical compound CCCCCCCC(=O)CC[C@H]1[C@H](O)C[C@H](O)[C@@H]1C\C=C/CCCC(=O)OC(C)C XXUPXHKCPIKWLR-JHUOEJJVSA-N 0.000 description 1
- 229940044339 istalol Drugs 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- GGXICVAJURFBLW-CEYXHVGTSA-N latanoprost Chemical compound CC(C)OC(=O)CCC\C=C/C[C@H]1[C@@H](O)C[C@@H](O)[C@@H]1CC[C@@H](O)CCC1=CC=CC=C1 GGXICVAJURFBLW-CEYXHVGTSA-N 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 1
- 229940112534 lumigan Drugs 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 150000002690 malonic acid derivatives Chemical class 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 230000001333 moisturizer Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000002637 mydriatic agent Substances 0.000 description 1
- 230000023105 myelination Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 238000013536 ocular coherence tomography Methods 0.000 description 1
- 201000005111 ocular hyperemia Diseases 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 238000002577 ophthalmoscopy Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 239000000734 parasympathomimetic agent Substances 0.000 description 1
- 230000001499 parasympathomimetic effect Effects 0.000 description 1
- 229940005542 parasympathomimetics Drugs 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 150000008298 phosphoramidates Chemical group 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 229960001416 pilocarpine Drugs 0.000 description 1
- 238000000711 polarimetry Methods 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 208000015768 polyposis Diseases 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 229960001621 povidone-iodine Drugs 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 229960003981 proparacaine Drugs 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical compound CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 230000010344 pupil dilation Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000000844 retinal pigment epithelial cell Anatomy 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000009450 sialylation Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000003206 sterilizing agent Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 210000002301 subretinal fluid Anatomy 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 239000012096 transfection reagent Substances 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- MKPLKVHSHYCHOC-AHTXBMBWSA-N travoprost Chemical compound CC(C)OC(=O)CCC\C=C/C[C@H]1[C@@H](O)C[C@@H](O)[C@@H]1\C=C\[C@@H](O)COC1=CC=CC(C(F)(F)F)=C1 MKPLKVHSHYCHOC-AHTXBMBWSA-N 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 229950008081 unoprostone isopropyl Drugs 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229940002639 xalatan Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
- A61K48/0058—Nucleic acids adapted for tissue specific expression, e.g. having tissue specific promoters as part of a contruct
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0048—Eye, e.g. artificial tears
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7105—Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/1703—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- A61K38/1709—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/06—Antiglaucoma agents or miotics
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/111—General methods applicable to biologically active non-coding nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
- C12N15/864—Parvoviral vectors, e.g. parvovirus, densovirus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0075—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the delivery route, e.g. oral, subcutaneous
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/50—Physical structure
- C12N2310/53—Physical structure partially self-complementary or closed
- C12N2310/531—Stem-loop; Hairpin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
- C12N2320/31—Combination therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2330/00—Production
- C12N2330/50—Biochemical production, i.e. in a transformed host cell
- C12N2330/51—Specially adapted vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14132—Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14171—Demonstrated in vivo effect
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Microbiology (AREA)
- Epidemiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Ophthalmology & Optometry (AREA)
- Virology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Marine Sciences & Fisheries (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Peptides Or Proteins (AREA)
Abstract
Группа изобретений относится к области медицины, а именно к офтальмологии, и предназначена для лечения глазного расстройства, связанного с трабекулярной сетью глаза. Способ доставки нуклеиновой кислоты в трабекулярную сеть глаза млекопитающего включает введение частицы AAV серотипа 2 (AAV2), содержащей вектор rAAV, в глаз млекопитающего. Вектор rAAV содержит нуклеиновую кислоту, а частица AAV2 содержит капсидный белок AAV2, содержащий аминокислотную замену R471A, нумерация основана на VP1 AAV2. Также представлен способ лечения глазного расстройства, связанного с трабекулярной сетью глаза, у млекопитающего, включающий введение частицы AAV2, содержащей указанный вектор rAAV, в глаз млекопитающего. В другом воплощении обеспечивается набор для доставки нуклеиновой кислоты в трабекулярную сеть глаза млекопитающего, включающий частицу rAAV2, содержащую указанный вектор rAAV. Использование группы изобретений позволяет повысить эффективность лечения глазного расстройства, связанного с трабекулярной сетью глаза. 3 н. и 15 з.п. ф-лы, 16 ил., 6 пр.
Description
ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ
По этой заявке испрашивается приоритет временной заявки США № 62/051299, поданной 16 сентября 2014 года, которая полностью включена в настоящее описание посредством ссылки.
ПРЕДСТАВЛЕНИЕ ПЕРЕЧНЯ ПОСЛЕДОВАТЕЛЬНОСТЕЙ В ТЕКСТОВОМ ФАЙЛЕ ASCII
Содержание нижеследующего представленного текстового файла ASCII включено в данный документ посредством ссылки во всей своей полноте: машиночитаемая форма (CRF) перечня последовательностей (название файла: 159792012540SeqList.txt, дата составления: 15 сентября 2015 года, размер: 31 кБ).
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к векторам на основе AAV и способам применения векторов на основе AAV для лечения миоцилиновой (MYOC) глаукомы.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Миоцилиновые (MYOC) мутации обуславливают 2%-4% случаев первичной открытоугольной глаукомы (POAG; ~90000 пациентов в США). В частности, глаукоматозные мутации MYOC P370L или Y437H обуславливают 10%-30% случаев ювенильной формы POAG (JOAG; ~6000 пациентов в США) и связаны с повышенным внутриглазным давлением (IOP), гибелью ганглиозных клеток сетчатки и повреждением головки зрительного нерва (ONH) (Shimizu et al. (2000) Am. J. Ophthalmol. 130:165-77; Fan и Wiggs (2010) J. Clin. Invest. 120:3064-72).
Несмотря на наличие взаимосвязи между мутациями MYOC и глаукомой, эффект мутантов MYOC на глазную функцию остается неясным. Соответственно, необходимо дополнительное понимание функции MYOC и мутантного MYOC для раскрытия новых терапевтических стратегий лечения миоцилиновой (MYOC) глаукомы.
Настоящее изобретение предусматривает способы лечения миоцилиновой (MYOC) глаукомы у млекопитающего, включающие введение в глаз млекопитающего средства, которое усиливает передачу сигнала Wnt в глазу млекопитающего. В некоторых вариантах осуществления средство усиливает передачу сигнала Wnt в клетке трабекулярной сети (TM) глаза млекопитающего. В некоторых вариантах осуществления средство усиливает активность R-спондина 1 (RSPO1), R-спондина 2 (RSPO2), R-спондина 3 (RSPO3) и/или R-спондина 4 (RSPO4) в глазу млекопитающего. В некоторых вариантах осуществления средство применяют в комбинации с одним или несколькими дополнительными средствами, которые усиливают один или несколько видов активности RSPO в глазу млекопитающего. В некоторых вариантах осуществления средство усиливает активность RSPO1 в TM глаза млекопитающего. В некоторых вариантах осуществления средство представляет собой RSPO1 или его функциональный вариант. В некоторых вариантах осуществления средство представляет собой частицу рекомбинантного аденоассоциированного вируса (rAAV), содержащую вектор, кодирующий RSPO1 или его функциональный вариант. В некоторых вариантах осуществления RSPO1 представляет собой усеченный RSPO1. В некоторых вариантах осуществления средство усиливает активность RSPO2 в TM глаза млекопитающего. В некоторых вариантах осуществления средство представляет собой RSPO2 или его функциональный вариант. В некоторых вариантах осуществления средство представляет собой частицу рекомбинантного аденоассоциированного вируса (rAAV), содержащую вектор, кодирующий RSPO2 или его функциональный вариант. В некоторых вариантах осуществления RSPO2 представляет собой усеченный RSPO2. В некоторых вариантах осуществления средство усиливает активность RSPO3 в TM глаза млекопитающего. В некоторых вариантах осуществления средство представляет собой RSPO3 или его функциональный вариант. В некоторых вариантах осуществления средство представляет собой частицу рекомбинантного аденоассоциированного вируса (rAAV), содержащую вектор, кодирующий RSPO3 или его функциональный вариант. В некоторых вариантах осуществления RSPO3 представляет собой усеченный RSPO3. В некоторых вариантах осуществления средство усиливает активность RSPO4 в TM глаза млекопитающего. В некоторых вариантах осуществления средство представляет собой RSPO4 или его функциональный вариант. В некоторых вариантах осуществления средство представляет собой частицу рекомбинантного аденоассоциированного вируса (rAAV), содержащую вектор, кодирующий RSPO4 или его функциональный вариант. В некоторых вариантах осуществления RSPO4 представляет собой усеченный RSPO4.
В некоторых аспектах в настоящем изобретении предусматривают введение второго средства, которое усиливает передачу сигнала Wnt в глазу млекопитающего. В некоторых вариантах осуществления второе средство усиливает передачу сигнала Wnt в TM глаза млекопитающего. В некоторых вариантах осуществления второе средство снижает или ингибирует экспрессию миоцилина (MYOC) в глазу млекопитающего. В некоторых вариантах осуществления второе средство снижает или ингибирует экспрессию MYOC в TM глаза млекопитающего. В некоторых вариантах осуществления второе средство представляет собой частицу рекомбинантного аденоассоциированного вируса (rAAV), содержащую вектор, кодирующий ингибирующую нуклеиновую кислоту, которая целенаправленно воздействует на экспрессию MYOC. В некоторых вариантах осуществления ингибирующая нуклеиновая кислота представляет собой средство для RNAi в отношении MYOC, которое целенаправленно воздействует на экспрессию MYOC. В некоторых вариантах осуществления средство для RNAi в отношении MYOC представляет собой shRNA для MYOC, которая целенаправленно воздействует на экспрессию MYOC.
В некоторых аспектах средство по настоящему изобретению снижает или ингибирует экспрессию миоцилина (MYOC) в глазу млекопитающего. В некоторых вариантах осуществления средство снижает или ингибирует экспрессию MYOC в TM глаза млекопитающего. В некоторых вариантах осуществления средство представляет собой частицу рекомбинантного аденоассоциированного вируса (rAAV), содержащую вектор, кодирующий ингибирующую нуклеиновую кислоту, которая целенаправленно воздействует на экспрессию MYOC. В некоторых вариантах осуществления ингибирующая нуклеиновая кислота представляет собой средство для RNAi в отношении MYOC, которое целенаправленно воздействует на экспрессию MYOC. В дополнительных вариантах осуществления средство для RNAi в отношении MYOC представляет собой shRNA для MYOC, которая целенаправленно воздействует на экспрессию MYOC.
В некоторых вариантах осуществления настоящего изобретения способы дополнительно включают введение второго средства, которое усиливает передачу сигнала Wnt в глазу млекопитающего. В некоторых вариантах осуществления второе средство усиливает передачу сигнала Wnt в TM глаза млекопитающего. В некоторых вариантах осуществления второе средство усиливает активность R-спондина 1 (RSPO1), R-спондина 2 (RSPO2), R-спондина 3 (RSPO3) или R-спондина 4 (RSPO4) в глазу млекопитающего. В некоторых вариантах осуществления второе средство усиливает активность RSPO1 в TM глаза млекопитающего. В некоторых вариантах осуществления второе средство представляет собой RSPO1 или его функциональный вариант. В некоторых вариантах осуществления второе средство представляет собой частицу рекомбинантного аденоассоциированного вируса (rAAV), содержащую вектор, кодирующий RSPO1 или его функциональный вариант. В некоторых вариантах осуществления RSPO1 представляет собой усеченный RSPO1. В некоторых вариантах осуществления второе средство усиливает активность RSPO2 в TM глаза млекопитающего. В некоторых вариантах осуществления второе средство представляет собой RSPO2 или его функциональный вариант. В некоторых вариантах осуществления второе средство представляет собой частицу рекомбинантного аденоассоциированного вируса (rAAV), содержащую вектор, кодирующий RSPO2 или его функциональный вариант. В некоторых вариантах осуществления RSPO2 представляет собой усеченный RSPO2. В некоторых вариантах осуществления второе средство усиливает активность RSPO3 в TM глаза млекопитающего. В некоторых вариантах осуществления второе средство представляет собой RSPO3 или его функциональный вариант. В некоторых вариантах осуществления второе средство представляет собой частицу рекомбинантного аденоассоциированного вируса (rAAV), содержащую вектор, кодирующий RSPO3 или его функциональный вариант. В некоторых вариантах осуществления RSPO3 представляет собой усеченный RSPO3. В некоторых вариантах осуществления второе средство усиливает активность RSPO4 в TM глаза млекопитающего. В некоторых вариантах осуществления второе средство представляет собой RSPO4 или его функциональный вариант. В некоторых вариантах осуществления второе средство представляет собой частицу рекомбинантного аденоассоциированного вируса (rAAV), содержащего вектор, кодирующий RSPO4 или его функциональный вариант. В некоторых вариантах осуществления RSPO4 представляет собой усеченный RSPO4.
В некоторых аспектах настоящего изобретения предусматривают способы лечения миоцилиновой (MYOC) глаукомы у млекопитающего, которые включают введение в глаз млекопитающего частицы рекомбинантного аденоассоциированного вируса (rAAV), содержащей вектор, кодирующий RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант. В некоторых аспектах настоящего изобретения предусматривают способы лечения миоцилиновой (MYOC) глаукомы у млекопитающего, которые включают введение в глаз млекопитающего частицы рекомбинантного аденоассоциированного вируса (rAAV), содержащей вектор, кодирующий средство для RNAi в отношении MYOC, которое целенаправленно воздействует на экспрессию миоцилина (MYOC) у млекопитающего. В других аспектах настоящего изобретения предусматривают способы лечения миоцилиновой (MYOC) глаукомы у млекопитающего, включающие введение в глаз млекопитающего средства, которое усиливает передачу сигнала Wnt в глазу млекопитающего, и средства, которое снижает или ингибирует экспрессию миоцилина у млекопитающего. В других аспектах настоящего изобретения предусматривают способы лечения миоцилиновой (MYOC) глаукомы у млекопитающего, которые включают введение в глаз млекопитающего частицы рекомбинантного аденоассоциированного вируса (rAAV), содержащей вектор, кодирующий RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, и частицы rAAV, содержащей вектор, кодирующий средство для RNAi в отношении MYOC, которое целенаправленно воздействует на экспрессию миоцилина у млекопитающего. Еще в других аспектах настоящего изобретения предусматривают способы лечения миоцилиновой (MYOC) глаукомы у млекопитающего, которые включают введение в глаз млекопитающего частицы рекомбинантного аденоассоциированного вируса (rAAV), содержащей вектор, кодирующий RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант и кодирующий shRNA для MYOC, которая целенаправленно воздействует на экспрессию миоцилина (shRNA для MYOC) у млекопитающего. В некоторых вариантах осуществления средство для RNAi представляет собой shRNA, целенаправленно воздействующую на MYOC. В некоторых вариантах осуществления shRNA снижает или ингибирует экспрессию MYOC.
В некоторых аспектах настоящего изобретения предусматривают способы усиления передачи сигнала Wnt в клетках трабекулярной сети млекопитающего, имеющего глазное нарушение, которые включают введение в глаз млекопитающего частицы рекомбинантного аденоассоциированного вируса (rAAV), содержащей вектор, кодирующий RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант. В некоторых аспектах настоящего изобретения предусматривают способы усиления передачи сигнала Wnt в клетках трабекулярной сети млекопитающего, имеющего глазное нарушение, которые включают введение в глаз млекопитающего частицы рекомбинантного аденоассоциированного вируса (rAAV), содержащей вектор, кодирующий ингибирующую нуклеиновую кислоту, которая целенаправленно воздействует на экспрессию миоцилина (MYOC) у млекопитающего. В других аспектах настоящего изобретения предусматривают способы усиления передачи сигнала Wnt в клетках трабекулярной сети млекопитающего, имеющего глазное нарушение, которые включают введение в глаз млекопитающего частицы рекомбинантного аденоассоциированного вируса (rAAV), содержащей вектор, кодирующий средство для RNAi в отношении MYOC, которое целенаправленно воздействует на экспрессию миоцилина (MYOC) у млекопитающего. В других аспектах настоящего изобретения предусматривают способы усиления передачи сигнала Wnt в клетках трабекулярной сети млекопитающего, имеющего глазное нарушение, которые включают введение в глаз млекопитающего частицы рекомбинантного аденоассоциированного вируса (rAAV), содержащей вектор, кодирующий RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, и частицы rAAV, содержащей вектор, кодирующий средство для RNAi в отношении MYOC, которое целенаправленно воздействует на экспрессию миоцилина у млекопитающего. В других аспектах настоящего изобретения предусматривают способы усиления передачи сигнала Wnt в клетках трабекулярной сети млекопитающего, имеющего глазное нарушение, которые включают введение в глаз млекопитающего частицы рекомбинантного аденоассоциированного вируса (rAAV), содержащей вектор, кодирующий RSPO1, RSPO2, RSPO3, RSPO4, или их функциональный вариант и кодирующий средство для RNAi в отношении MYOC, которое целенаправленно воздействует на экспрессию миоцилина (MYOC) у млекопитающего. В некоторых вариантах осуществления глазное нарушение представляет собой миоцилиновую (MYOC) глаукому.
В некоторых вариантах осуществления млекопитающее является человеком. В некоторых вариантах осуществления настоящего изобретения миоцилиновая (MYOC) глаукома связана с мутацией миоцилина. В некоторых вариантах осуществления миоцилиновая (MYOC) глаукома связана с мутацией миоцилина человека. В некоторых вариантах осуществления мутация миоцилина предусматривает одну или несколько аминокислотных замен, выбранных из E323K, K398R, Q368X, G364V, P370L, D380A, K423E, Y437H, и I477S. В некоторых вариантах осуществления мутация миоцилина предусматривает аминокислотную замену P370L. В некоторых вариантах осуществления мутация миоцилина предусматривает аминокислотную замену Y437H. В некоторых вариантах осуществления миоцилиновая (MYOC) глаукома представляет собой первичную открытоугольную глаукому (POAC). В некоторых вариантах осуществления миоцилиновая (MYOC) глаукома представляет собой ювенильную форму первичной открытоугольной глаукомы (JOAC). В некоторых вариантах осуществления настоящего изобретения лечение облегчает симптом миоцилиновой (MYOC) глаукомы. В некоторых вариантах осуществления облегчение симптома миоцилиновой (MYOC) глаукомы представляет собой снижение внутриглазного давления, снижение накопления MYOC в трабекулярной сети, снижение глазной гипертензии или усиление оттока водянистой влаги из трабекулярной сети.
В некоторых вариантах осуществления RSPO1 представляет собой RSPO1 человека. В некоторых вариантах осуществления RSPO1 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с RSPO1 человека. В некоторых вариантах осуществления RSPO1 содержит аминокислотную последовательность под SEQ ID NO: 8. В некоторых вариантах осуществления RSPO1 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO: 8. В некоторых вариантах осуществления RSPO1 содержит аминокислотную последовательность под SEQ ID NO: 11. В некоторых вариантах осуществления RSPO1 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO: 11. В некоторых вариантах осуществления RSPO1 содержит аминокислотную последовательность под SEQ ID NO: 12. В некоторых вариантах осуществления RSPO1 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO: 12. В некоторых вариантах осуществления RSPO2 представляет собой RSPO2 человека. В некоторых вариантах осуществления RSPO2 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с RSPO2 человека. В некоторых вариантах осуществления RSPO2 содержит аминокислотную последовательность под SEQ ID NO: 9. В некоторых вариантах осуществления RSPO2 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO: 9. В некоторых вариантах осуществления RSPO2 содержит аминокислотную последовательность под SEQ ID NO: 13. В некоторых вариантах осуществления RSPO2 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO: 13. В некоторых вариантах осуществления RSPO2 содержит аминокислотную последовательность под SEQ ID NO: 14. В некоторых вариантах осуществления RSPO2 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO: 14. В некоторых вариантах осуществления RSPO3 представляет собой RSPO3 человека. В некоторых вариантах осуществления RSPO3 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с RSPO3 человека. В некоторых вариантах осуществления RSPO3 содержит аминокислотную последовательность под SEQ ID NO: 1. В некоторых вариантах осуществления RSPO3 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO: 1. В некоторых вариантах осуществления RSPO3 содержит аминокислотную последовательность под SEQ ID NO: 15. В некоторых вариантах осуществления RSPO3 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO: 15. В некоторых вариантах осуществления RSPO3 содержит аминокислотную последовательность под SEQ ID NO: 16. В некоторых вариантах осуществления RSPO3 содержит аминокислотную последовательность под SEQ ID NO: 17. В некоторых вариантах осуществления RSPO3 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO: 17. В некоторых вариантах осуществления RSPO4 представляет собой RSPO4 человека. В некоторых вариантах осуществления RSPO4 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с RSPO4 человека. В некоторых вариантах осуществления RSPO4 содержит аминокислотную последовательность под SEQ ID NO: 10. В некоторых вариантах осуществления RSPO4 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO: 10. В некоторых вариантах осуществления RSPO4 содержит аминокислотную последовательность под SEQ ID NO: 18. В некоторых вариантах осуществления RSPO4 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO: 18. В некоторых вариантах осуществления RSPO4 содержит аминокислотную последовательность под SEQ ID NO: 19. В некоторых вариантах осуществления RSPO4 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO: 12. В некоторых вариантах осуществления RSPO1, RSPO2, RSPO3, RSPO4 и/или их функциональный вариант функционально связаны с промотором. В некоторых вариантах осуществления промотор способен обеспечивать экспрессию RSPO1, RSPO2, RSPO3, RSPO4 и/или их функционального варианта в глазу млекопитающего. В некоторых вариантах осуществления промотор способен обеспечивать экспрессию RSPO1, RSPO2, RSPO3, RSPO4 и/или их функционального варианта в клетках трабекулярной сети. В некоторых вариантах осуществления промотор представляет собой гибридный промотор β-актина курицы (CBA).
В некоторых вариантах осуществления средство для RNAi в отношении MYOC, которое целенаправленно воздействует на экспрессию MYOC по настоящему изобретению, целенаправленно воздействует на MYOC человека. В некоторых вариантах осуществления средство для RNAi представляет собой малую ингибирующую РНК (siRNA), микроРНК (miRNA) или малую шпилечную РНК (shRNA). В некоторых вариантах осуществления средство для RNAi в отношении MYOC представляет собой shRNA для MYOC. В некоторых вариантах осуществления shRNA целенаправленно воздействует на аминокислотную последовательность MYOC, изложенную под SEQ ID NO: 6. В некоторых вариантах осуществления shRNA содержит последовательность петли под SEQ ID NO: 7. В некоторых вариантах осуществления средство для RNAi в отношении MYOC (например, shRNA) функционально связано с промотором. В некоторых вариантах осуществления промотор способен обеспечивать экспрессию средства для RNAi в отношении MYOC (например, shRNA) в глазу млекопитающего. В дополнительных вариантах осуществления промотор способен обеспечивать экспрессию средства для RNAi в отношении MYOC (например, shRNA) в клетках трабекулярной сети. В некоторых вариантах осуществления промотор представляет собой гибридный промотор β-актина курицы (CBA). В некоторых вариантах осуществления промотор представляет собой промотор РНК-полимеразы III. В некоторых вариантах осуществления экспрессия средства для RNAi в отношении MYOC (например, shRNA) снижает или ингибирует экспрессию MYOC в глазу млекопитающего. В некоторых вариантах осуществления экспрессия средства для RNAi в отношении MYOC (например, shRNA) снижает или ингибирует экспрессию MYOC в клетках трабекулярной сети млекопитающего. В некоторых вариантах осуществления MYOC представляет собой MYOC дикого типа. В некоторых вариантах осуществления MYOC представляет собой мутантный MYOC. В некоторых вариантах осуществления MYOC представляет собой MYOC дикого типа и мутантный MYOC. В дополнительных вариантах осуществления мутантный MYOC содержит аминокислотные замены, соответствующие аминокислотным заменам P370L и/или Y437H в MYOC человека. В некоторых вариантах осуществления мутация миоцилина предусматривает одну или несколько аминокислотных замен, выбранных из E323K, K398R, Q368X, G364V, P370L, D380A, K423E, Y437H и I477S.
В некоторых вариантах осуществления аспектов и вариантов осуществления, описанных выше, вирусная частица AAV содержит AAV1, AAV2, AAV3, AAV4, AAV5, AAV6 (например, капсид AAV6 дикого типа или капсид варианта AAV6, такого как ShH10, как описано в публикации заявки на патент США 2012/0164106), AAV7, AAV8, AAVrh8, AAVrh8R, AAV9 (например, капсид AAV9 дикого типа или капсид модифицированного AAV9, как описано в публикации заявки на патент США 2013/0323226), AAV10, AAVrh10, AAV11, AAV12, мутантного капсида, содержащего тирозин, мутантного капсида с гепарин-связывающим мотивом, капсида AAV2R471A, капсида AAVAAV2/2-7m8, капсида AAV DJ (например, капсид AAV-DJ/8, капсид AAV-DJ/9 или любой другой из капсидов, описанных в публикации заявки на патент США 2012/0066783), капсида AAV2 N587A, капсида AAV2 E548A, капсида AAV2 N708A, капсида AAV V708K, капсида козьего AAV, химерного капсида AAV1/AAV2, капсида бычьего AAV, капсида мышиного AAV, капсида rAAV2/HBoV1, капсида AAV, описанных в патенте США № 8283151 или в Международной публикации № WO/2003/042397. В некоторых вариантах осуществления вирусная частица AAV содержит капсид AAV, содержащий аминокислотную замену в одном или нескольких положениях R484, R487, K527, K532, R585 или R588, нумерация которых приведена согласно VP1 AAV2. В дополнительных вариантах осуществления частица AAV содержит капсидные белки серотипа AAV из клад A-F. В некоторых вариантах осуществления вирусная частица rAAV содержит капсид AAV серотипа 2. В дополнительных вариантах осуществления капсид AAV серотипа 2 содержит капсидный белок AAV2, содержащий аминокислотную замену R471A, нумерация которой приведена согласно VP1 AAV2. В некоторых вариантах осуществления вектор содержит инвертированные концевые повторы (ITR) серотипов AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAVrh8, AAVrh8R, AAV9, AAV10, AAVrh10, AAV11, AAV12, AAV2R471A, AAV DJ, козьего AAV, бычьего AAV или мышиного AAV. В некоторых вариантах осуществления вектор содержит ITR AAV серотипа 2. В некоторых вариантах осуществления вирусная частица AAV содержит один или несколько ITR и капсид, полученные из одного и того же серотипа AAV. В других вариантах осуществления вирусная частица AAV содержит один или несколько ITR, полученных из серотипа AAV, отличного от такового для капсида вирусных частиц rAAV. В некоторых вариантах осуществления вирусная частица rAAV содержит капсид AAV2, и при этом вектор содержит ITR AAV2. В дополнительных вариантах осуществления капсид AAV2 содержит капсидный белок AAV2, содержащий аминокислотную замену R471A, нумерация которой приведена согласно VP1 AAV2.
В некоторых вариантах осуществления млекопитающему вводят по меньшей мере 1×109 копий генома частиц rAAV. В некоторых вариантах осуществления AAV вводят в роговицу, в сетчатку и/или в склеру глаза млекопитающего. В некоторых вариантах осуществления частицу AAV вводят с помощью интравитреальной инъекции и/или интракамеральной инъекции. В некоторых вариантах осуществления rAAV вводят в более чем одно местположение в глазу.
В некоторых вариантах осуществления настоящего изобретения предусматривают способы лечения миоцилиновой (MYOC) глаукомы у млекопитающего, при этом млекопитающее является человеком. В некоторых вариантах осуществления миоцилиновая (MYOC) глаукома представляет собой первичную открытоугольную глаукому (POAC). В некоторых вариантах осуществления миоцилиновая (MYOC) глаукома представляет собой ювенильную форму первичной открытоугольной глаукомы (JOAC).
В некоторых вариантах осуществления по настоящему изобретению вирусная частица rAAV находится в фармацевтической композиции. В дополнительных вариантах осуществления фармацевтическая композиция дополнительно содержит фармацевтически приемлемый носитель.
В некоторых вариантах осуществления вышеуказанных способов, средство (например, частицу AAV) применяют в комбинации с одним или несколькими дополнительными средствами, которые повышают активность R-спондина (например, RSPO1, RSPO2, RSPO3 и/или RSPO4).
В некоторых аспектах в настоящем изобретении предусматривают рекомбинантные частицы AAV, содержащие вектор на основе AAV, при этом вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант. В других аспектах в настоящем изобретении предусматривают частицы rAAV, содержащие вектор, кодирующий ингибирующую нуклеиновую кислоту, которая целенаправленно воздействует на экспрессию миоцилина (MYOC) у млекопитающего. В других аспектах в настоящем изобретении предусматривают частицы rAAV, содержащие вектор, кодирующий средство для RNAi в отношении MYOC, которое целенаправленно воздействует на экспрессию миоцилина (MYOC) у млекопитающего. Еще в других аспектах в настоящем изобретении предусматривают частицы rAAV, содержащие вектор, кодирующий RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, и кодирующий средство для RNAi в отношении MYOC, которое целенаправленно воздействует на экспрессию миоцилина у млекопитающего.
В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO1 или его функциональный вариант, и RSPO1 или его функциональный вариант представляют собой RSPO1 человека. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO1 или его функциональный вариант, и RSPO1 или его функциональный вариант содержат аминокислотную последовательность под SEQ ID NO: 8, 11 и/или 12. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO1 или его функциональный вариант, и RSPO1 или его функциональный вариант содержат аминокислотную последовательность, которая характеризуется 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с аминокислотной последовательностью под SEQ ID NO: 8, 11 и/или 12. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO2 или его функциональный вариант, и RSPO2 или его функциональный вариант представляют собой RSPO2 человека. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO2 или его функциональный вариант, и RSPO2 или его функциональный вариант содержат аминокислотную последовательность под SEQ ID NO: 9, 13 и/или 14. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO2 или его функциональный вариант, и RSPO2 или его функциональный вариант содержат аминокислотную последовательность, которая характеризуется 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с аминокислотной последовательностью под SEQ ID NO: 9, 13 и/или 14. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO3 или его функциональный вариант, и RSPO3 или его функциональный вариант представляют собой RSPO3 человека. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO3 или его функциональный вариант, и RSPO3 или его функциональный вариант содержат аминокислотную последовательность под SEQ ID NO: 1 и/или 15-17. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO3 или его функциональный вариант, и RSPO3 или его функциональный вариант содержат аминокислотную последовательность, которая характеризуется 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с аминокислотной последовательностью под SEQ ID NO: 1 и/или 15-17. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO4, и RSPO4 представляет собой RSPO4 человека. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO4 или его функциональный вариант, и RSPO4 или его функциональный вариант содержат аминокислотную последовательность под SEQ ID NO: 10, 18 и/или 19. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO4 или его функциональный вариант, и RSPO4 или его функциональный вариант содержат аминокислотную последовательность, которая характеризуется 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с аминокислотной последовательностью под SEQ ID NO: 10, 18 и/или 19. В дополнительных вариантах осуществления RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант функционально связаны с промотором. В дополнительных вариантах осуществления промотор способен обеспечивать экспрессию RSPO1, RSPO2, RSPO3, RSPO4 или их функционального варианта в глазу млекопитающего. В некоторых вариантах осуществления промотор способен обеспечивать экспрессию RSPO1, RSPO2, RSPO3, RSPO4 или их функционального варианта в клетках трабекулярной сети. В некоторых вариантах осуществления промотор представляет собой гибридный промотор β-актина курицы (CBA).
В некоторых вариантах осуществления ингибирующая нуклеиновая кислота, которая целенаправленно воздействует на экспрессию миоцилина (MYOC) у млекопитающего, представляет собой средство для RNAi. В некоторых вариантах осуществления средство для RNAi в отношении MYOC (например, shRNA), которое целенаправленно воздействует на экспрессию MYOC по настоящему изобретению, целенаправленно воздействует на MYOC человека. В некоторых вариантах осуществления средство для RNAi представляет собой малую ингибирующую РНК (siRNA), микроРНК (miRNA) или малую шпилечную РНК (shRNA). В некоторых вариантах осуществления средство для RNAi в отношении MYOC представляет собой shRNA. В некоторых вариантах осуществления средство для RNAi (например, shRNA) целенаправленно воздействует на аминокислотную последовательность MYOC, изложенную под SEQ ID NO: 6. В некоторых вариантах осуществления средство для RNAi (например, shRNA) содержит последовательность петли под SEQ ID NO: 7. В некоторых вариантах осуществления средство для RNAi в отношении MYOC (например, shRNA) функционально связано с промотором. В некоторых вариантах осуществления промотор способен обеспечивать экспрессию средства для RNAi в отношении MYOC (например, shRNA) в глазу млекопитающего. В дополнительных вариантах осуществления промотор способен обеспечивать экспрессию средства для RNAi в отношении MYOC (например, shRNA) в клетках трабекулярной сети. В некоторых вариантах осуществления промотор представляет собой гибридный промотор β-актина курицы (CBA). В некоторых вариантах осуществления промотор представляет собой промотор РНК-полимеразы III. В некоторых вариантах осуществления экспрессия средства для RNAi в отношении MYOC (например, shRNA) снижает или ингибирует экспрессию MYOC в глазу млекопитающего. В некоторых вариантах осуществления экспрессия средства для RNAi в отношении MYOC (например, shRNA) снижает или ингибирует экспрессию MYOC в клетках трабекулярной сети млекопитающего. В некоторых вариантах осуществления MYOC представляет собой MYOC дикого типа. В некоторых вариантах осуществления MYOC представляет собой мутантный MYOC. В некоторых вариантах осуществления MYOC представляет собой MYOC дикого типа и мутантный MYOC. В дополнительных вариантах осуществления мутантный MYOC содержит аминокислотные замены, соответствующие аминокислотным заменам E323K, K398R, Q368X, G364V, P370L, D380A, K423E, Y437H и I477S в MYOC человека. В некоторых вариантах осуществления мутантный MYOC содержит аминокислотные замены, соответствующие аминокислотным заменам P370L и/или Y437H в MYOC человека. В некоторых вариантах осуществления мутация миоцилина связана с первичной открытоугольной глаукомой (POAC). В некоторых вариантах осуществления мутация миоцилина связана с ювенильной формой первичной открытоугольной глаукомы (JOAC).
В некоторых вариантах осуществления аспектов и вариантов осуществления, описанных выше, вирусная частица AAV содержит AAV1, AAV2, AAV3, AAV4, AAV5, AAV6 (например, капсид AAV6 дикого типа или капсид варианта AAV6, такого как ShH10, как описано в публикации заявки на патент США 2012/0164106), AAV7, AAV8, AAVrh8, AAVrh8R, AAV9 (например, капсид AAV9 дикого типа или капсид модифицированного AAV9, как описано в публикации заявки на патент США 2013/0323226), AAV10, AAVrh10, AAV11, AAV12, мутантного капсида, содержащего тирозин, мутантного капсида с гепарин-связывающим мотивом, капсида AAV2R471A, капсида AAVAAV2/2-7m8, капсида AAV DJ (например, капсид AAV-DJ/8, капсид AAV-DJ/9 или любой другой из капсидов, описанных в публикации заявки на патент США 2012/0066783), капсида AAV2 N587A, капсида AAV2 E548A, капсида AAV2 N708A, капсида AAV V708K, капсида козьего AAV, химерного капсида AAV1/AAV2, капсида бычьего AAV, капсида мышиного AAV, капсида rAAV2/HBoV1, капсида AAV, описанных в патенте США № 8283151 или в Международной публикации № WO/2003/042397. В некоторых вариантах осуществления вирусная частица AAV содержит капсид AAV, содержащий аминокислотную замену в одном или нескольких положениях R484, R487, K527, K532, R585 или R588, нумерация которых приведена согласно VP1 AAV2. В дополнительных вариантах осуществления частица AAV содержит капсидные белки серотипа AAV из клад A-F. В некоторых вариантах осуществления вирусная частица rAAV содержит капсид AAV серотипа 2. В дополнительных вариантах осуществления капсид AAV серотипа 2 содержит капсидный белок AAV2, содержащий аминокислотную замену R471A, нумерация которой приведена согласно VP1 AAV2. В некоторых вариантах осуществления вектор содержит инвертированные концевые повторы (ITR) серотипов AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAVrh8, AAVrh8R, AAV9, AAV10, AAVrh10, AAV11, AAV12, AAV2R471A, AAV DJ, козьего AAV, бычьего AAV или мышиного AAV. В некоторых вариантах осуществления вектор содержит ITR AAV серотипа 2. В некоторых вариантах осуществления вирусная частица AAV содержит один или несколько ITR и капсид, полученные из одного и того же серотипа AAV. В других вариантах осуществления вирусная частица AAV содержит один или несколько ITR, полученных из серотипа AAV, отличного от такового для капсида вирусных частиц rAAV. В некоторых вариантах осуществления вирусная частица rAAV содержит капсид AAV2, и при этом вектор содержит ITR AAV2. В дополнительных вариантах осуществления капсид AAV2 содержит капсидный белок AAV2, содержащий аминокислотную замену R471A, нумерация которой приведена согласно VP1 AAV2.
В настоящем изобретении предусматривают фармацевтические композиции, содержащие любые рекомбинантные частицы AAV, описанные в данном документе. В настоящем изобретении также предусматривают фармацевтические композиции, которые являются подходящими для любого из способов, описанных в данном документе. В настоящем изобретении предусматривают применения фармацевтической композиции и рекомбинантных частиц AAV, описанных в данном документе, в получении лекарственного препарата для лечения миоцилиновой (MYOC) глаукомы у млекопитающего. В некоторых вариантах осуществления млекопитающее является человеком. В некоторых вариантах осуществления миоцилиновая (MYOC) глаукома представляет собой первичную открытоугольную глаукому (POAC). В некоторых вариантах осуществления миоцилиновая (MYOC) глаукома представляет собой ювенильную форму первичной открытоугольной глаукомы (JOAC).
В некоторых аспектах настоящего изобретения предусматривают наборы для лечения миоцилиновой (MYOC) глаукомы у млекопитающего, где набор содержит вирусную частицу rAAV, содержащую вектор, который кодирует RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант; вирусную частицу rAAV, содержащую вектор на основе AAV, где вектор на основе AAV содержит нуклеиновую кислоту, кодирующую ингибирующую нуклеиновую кислоту (например, средство для RNAi в отношении MYOC, в том числе shRNA), которая целенаправленно воздействует на экспрессию миоцилина (MYOC) у млекопитающего; и/или вирусную частицу rAAV, содержащую вектор на основе AAV, где вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант и кодирующую средство для RNAi в отношении MYOC (например, shRNA), которое целенаправленно воздействует на экспрессию MYOC у млекопитающего. В некоторых вариантах осуществления набор дополнительно содержит инструкции для применения при лечении миоцилиновой (MYOC) глаукомы. В некоторых вариантах осуществления набор дополнительно содержит буферы и/или фармацевтически приемлемые наполнители.
В некоторых вариантах осуществления наборы по настоящему изобретению содержат нуклеиновую кислоту, кодирующую средство для RNAi в отношении MYOC (например, shRNA), которое целенаправленно воздействует на экспрессию MYOC у млекопитающего. В некоторых вариантах осуществления средство для RNAi в отношении MYOC целенаправленно воздействует на экспрессию MYOC человека. В некоторых вариантах осуществления средство для RNAi в отношении MYOC целенаправленно воздействует на аминокислотную последовательность MYOC, изложенную под SEQ ID NO: 6. В некоторых вариантах осуществления средство для RNAi представляет собой малую ингибирующую РНК (siRNA), микроРНК (miRNA) или малую шпилечную РНК (shRNA). В некоторых вариантах осуществления средство для RNAi представляет собой shRNA. В некоторых вариантах осуществления shRNA для MYOC содержит последовательность петли под SEQ ID NO: 7. В некоторых вариантах осуществления наборы по настоящему изобретению содержат вектор на основе AAV, где вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO1 или его функциональный вариант, и RSPO1 или его функциональный вариант представляют собой RSPO1 человека. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO1 или его функциональный вариант, и RSPO1 или его функциональный вариант содержат аминокислотную последовательность под SEQ ID NO: 8, 11 и/или 12. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO1 или его функциональный вариант, и RSPO1 или его функциональный вариант содержат аминокислотную последовательность, которая характеризуется 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с аминокислотной последовательностью под SEQ ID NO: 8, 11 и/или 12. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO2 или его функциональный вариант, и RSPO2 или его функциональный вариант представляют собой RSPO2 человека. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO2 или его функциональный вариант, и RSPO2 или его функциональный вариант содержат аминокислотную последовательность под SEQ ID NO: 9, 13 и/или 14. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO2 или его функциональный вариант, и RSPO2 или его функциональный вариант содержат аминокислотную последовательность, которая характеризуется 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с аминокислотной последовательностью под SEQ ID NO: 9, 13 и/или 14. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO3 или его функциональный вариант, и RSPO3 или его функциональный вариант представляют собой RSPO3 человека. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO3 или его функциональный вариант, и RSPO3 или его функциональный вариант содержат аминокислотную последовательность под SEQ ID NO: 1 и/или 15-17. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO3 или его функциональный вариант, и RSPO3 или его функциональный вариант содержат аминокислотную последовательность, которая характеризуется 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с аминокислотной последовательностью под SEQ ID NO: 1 и/или 15-17. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO4 или его функциональный вариант, и RSPO4 или его функциональный вариант представляют собой RSPO4 человека. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO4 или его функциональный вариант, и RSPO4 или его функциональный вариант содержат аминокислотную последовательность под SEQ ID NO: 10, 18 и/или 19. В некоторых вариантах осуществления вектор на основе AAV содержит нуклеиновую кислоту, кодирующую RSPO4 или его функциональный вариант, и RSPO4 или его функциональный вариант содержат аминокислотную последовательность, которая характеризуется 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с аминокислотной последовательностью под SEQ ID NO: 10, 18 и/или 19. В некоторых вариантах осуществления RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант функционально связаны с промотором. В некоторых вариантах осуществления промотор способен обеспечивать экспрессию RSPO1, RSPO2, RSPO3, RSPO4 или их функционального варианта в глазу млекопитающего. В некоторых вариантах осуществления промотор способен обеспечивать экспрессию RSPO1, RSPO2, RSPO3, RSPO4 или их функционального варианта в клетках трабекулярной сети. В некоторых вариантах осуществления промотор представляет собой гибридный промотор β-актина курицы (CBA). В некоторых вариантах осуществления средство для RNAi в отношении MYOC функционально связано с промотором. В некоторых вариантах осуществления промотор способен обеспечивать экспрессию средства для RNAi в отношении MYOC в глазу млекопитающего. В некоторых вариантах осуществления промотор способен обеспечивать экспрессию средства для RNAi в отношении MYOC в клетках трабекулярной сети. В некоторых вариантах осуществления промотор представляет собой гибридный промотор β-актина курицы (CBA). В некоторых вариантах осуществления промотор представляет собой промотор РНК-полимеразы III. В некоторых вариантах осуществления экспрессия средства для RNAi в отношении MYOC снижает или ингибирует экспрессию MYOC в глазу млекопитающего. В некоторых вариантах осуществления экспрессия средства для RNAi в отношении MYOC снижает или ингибирует экспрессию MYOC в клетках трабекулярной сети млекопитающего.
В некоторых вариантах осуществления частицы AAV, описанные в данном документе, можно применять в комбинации с одним или несколькими дополнительными средствами, которые повышают активность R-спондина (например, RSPO1, RSPO2, RSPO3 и/или RSPO4).
В некоторых вариантах осуществления наборы по настоящему изобретению содержат вирусную частицу AAV, содержащую вектор и AAV1, AAV2, AAV3, AAV4, AAV5, AAV6 (например, капсид AAV6 дикого типа или капсид варианта AAV6, такого как ShH10, как описано в публикации заявки на патент США 2012/0164106), AAV7, AAV8, AAVrh8, AAVrh8R, AAV9 (например, капсид AAV9 дикого типа или капсид модифицированного AAV9, как описано в публикации заявки на патент США 2013/0323226), AAV10, AAVrh10, AAV11, AAV12, мутантного капсида, содержащего тирозин, мутантного капсида с гепарин-связывающим мотивом, капсида AAV2R471A, капсида AAVAAV2/2-7m8, капсида AAV DJ (например, капсид AAV-DJ/8, капсид AAV-DJ/9 или любой другой из капсидов, описанных в публикации заявки на патент США 2012/0066783), капсида AAV2 N587A, капсида AAV2 E548A, капсида AAV2 N708A, капсида AAV V708K, капсида козьего AAV, химерного капсида AAV1/AAV2, капсида бычьего AAV, капсида мышиного AAV, капсида rAAV2/HBoV1, капсида AAV, описанных в патенте США № 8283151 или в Международной публикации № WO/2003/042397. В некоторых вариантах осуществления вирусная частица AAV содержит капсид AAV, содержащий аминокислотную замену в одном или нескольких положениях R484, R487, K527, K532, R585 или R588, нумерация которых приведена согласно VP1 AAV2. В дополнительных вариантах осуществления частица AAV содержит капсидные белки серотипа AAV из клад A-F. В некоторых вариантах осуществления вирусная частица rAAV содержит капсид AAV серотипа 2. В некоторых вариантах осуществления капсид AAV серотипа 2 содержит капсидный белок AAV2, содержащий аминокислотную замену R471A, нумерация которой приведена согласно VP1 AAV2. В некоторых вариантах осуществления вектор содержит инвертированные концевые повторы (ITR) серотипов AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAVrh8, AAVrh8R, AAV9, AAV10, AAVrh10, AAV11, AAV12, AAV2R471A, AAV DJ, козьего AAV, бычьего AAV или мышиного AAV. В некоторых вариантах осуществления вектор содержит ITR AAV серотипа 2. В некоторых вариантах осуществления вирусная частица AAV содержит один или несколько ITR и капсид, полученные из одного и того же серотипа AAV. В некоторых вариантах осуществления вирусная частица AAV содержит один или несколько ITR, полученных из серотипа AAV, отличного от такового для капсида вирусных частиц rAAV. В некоторых вариантах осуществления вирусная частица rAAV содержит капсид AAV2, и вектор содержит ITR AAV2. В некоторых вариантах осуществления капсид AAV2 содержит капсидный белок AAV2, содержащий аминокислотную замену R471A, нумерация которой приведена согласно VP1 AAV2.
В некоторых вариантах осуществления вышеуказанных наборов частицу AAV из набора применяют в комбинации с одним или несколькими дополнительными средствами, которые повышают активность R-спондина (например, RSPO1, RSPO2, RSPO3 и/или RSPO4). В некоторых вариантах осуществления наборы по настоящему изобретению содержат частицу AAV, как описано в данном документе, и одно или несколько дополнительных средств, которые повышают активность R-спондина (например, RSPO1, RSPO2, RSPO3 и/или RSPO4).
В настоящем изобретении предусматривают наборы, подходящие для применения в любом из способов, описанных в данном документе. В настоящем изобретении предусматривают наборы, содержащие любые рекомбинантные частицы AAV, описанные в данном документе. В некоторых аспектах наборы, описанные в данном документе, дополнительно содержат инструкции для применения при лечении миоцилиновой (MYOC) глаукомы. В некоторых аспектах наборы, описанные в данном документе, дополнительно содержат буферы и/или фармацевтически приемлемые наполнители.
В некоторых аспектах настоящего изобретения предусматривают способы доставки нуклеиновой кислоты (например, нуклеиновой кислоты, кодирующей терапевтический трансген) в трабекулярную сеть глаза млекопитающего, включающие введение частицы AAV серотипа 2 (AAV2), содержащей вектор на основе rAAV, в глаз млекопитающего, где вектор на основе rAAV содержит нуклеиновую кислоту, и где частица AAV2 содержит капсидный белок AAV2, содержащий аминокислотную замену R471A, нумерация которой приведена согласно VP1 AAV2. В некоторых аспектах настоящего изобретения предусматривают способы лечения глазного нарушения у млекопитающего, включающие введение частицы AAV2, содержащей вектор на основе rAAV, в глаз млекопитающего, где вектор на основе rAAV содержит нуклеиновую кислоту, кодирующую терапевтический трансген, и где частица AAV2 содержит капсидный белок AAV2, содержащий аминокислотную замену R471A, нумерация которой приведена согласно VP1 AAV2. В некоторых вариантах осуществления частицу rAAV вводят интравитреально и/или интракамерально. В некоторых вариантах осуществления частицей rAAV трансдуцируют клетки трабекулярной сети глаза. В некоторых вариантах осуществления терапевтический трансген экспрессируется в трабекулярной сети глаза. В некоторых вариантах осуществления терапевтический трансген кодирует терапевтический полипептид или терапевтическую нуклеиновую кислоту. В некоторых вариантах осуществления глазное нарушение связано с трабекулярной сетью глаза. В некоторых вариантах осуществления глазное нарушение представляет собой миоцилиновую (MYOC) глаукому. В некоторых вариантах осуществления млекопитающее является человеком.
В некоторых аспектах настоящего изобретения предусматривают рекомбинантную частицу AAV2 для доставки нуклеиновой кислоты (например, нуклеиновой кислоты, кодирующей терапевтический трансген) в трабекулярную сеть глаза млекопитающего, где частица AAV2 содержит вектор на основе rAAV, при этом вектор на основе rAAV содержит нуклеиновую кислоту, и где частица AAV2 содержит капсидный белок AAV2, содержащий аминокислотную замену R471A, нумерация которой приведена согласно VP1 AAV2. В некоторых аспектах настоящего изобретения предусматривают рекомбинантную частицу AAV2 для лечения глазного нарушения у млекопитающего, при этом частица AAV2 содержит вектор на основе rAAV, где вектор на основе rAAV содержит нуклеиновую кислоту, кодирующую терапевтический трансген, и при этом частица AAV2 содержит капсидный белок AAV2, содержащий аминокислотную замену R471A, нумерация которой приведена согласно VP1 AAV2. В некоторых вариантах осуществления частицей rAAV трансдуцируют клетки трабекулярной сети глаза. В некоторых вариантах осуществления терапевтический трансген экспрессируется в трабекулярной сети глаза. В некоторых вариантах осуществления терапевтический трансген кодирует терапевтический полипептид или терапевтическую нуклеиновую кислоту. В некоторых вариантах осуществления глазное нарушение связано с трабекулярной сетью глаза. В некоторых вариантах осуществления глазное нарушение представляет собой миоцилиновую (MYOC) глаукому. В некоторых вариантах осуществления млекопитающее является человеком.
В некоторых аспектах настоящего изобретения предусматривают применения рекомбинантной частицы AAV2 для доставки нуклеиновой кислоты (например, нуклеиновой кислоты, кодирующей терапевтический трансген) в трабекулярную сеть глаза млекопитающего, где частица AAV2 содержит вектор на основе rAAV, при этом вектор на основе rAAV содержит нуклеиновую кислоту, и где частица AAV2 содержит капсидный белок AAV2, содержащий аминокислотную замену R471A, нумерация которой приведена согласно VP1 AAV2. В некоторых аспектах настоящего изобретения предусматривают применение рекомбинантной частицы AAV2 для лечения глазного нарушения у млекопитающего, при этом частица AAV2 содержит вектор на основе rAAV, где вектор на основе rAAV содержит нуклеиновую кислоту, кодирующую терапевтический трансген, и при этом частица AAV2 содержит капсидный белок AAV2, содержащий аминокислотную замену R471A, нумерация которой приведена согласно VP1 AAV2. В некоторых вариантах осуществления частицу rAAV вводят интравитреально и/или интракамерально. В некоторых вариантах осуществления частицей rAAV трансдуцируют клетки трабекулярной сети глаза. В некоторых вариантах осуществления терапевтический трансген экспрессируется в трабекулярной сети глаза. В некоторых вариантах осуществления терапевтический трансген кодирует терапевтический полипептид или терапевтическую нуклеиновую кислоту. В некоторых вариантах осуществления глазное нарушение связано с трабекулярной сетью глаза. В некоторых вариантах осуществления глазное нарушение представляет собой миоцилиновую (MYOC) глаукому. В некоторых вариантах осуществления млекопитающее является человеком.
В некоторых аспектах настоящего изобретения предусматривают наборы для доставки нуклеиновой кислоты (например, нуклеиновой кислоты, кодирующей терапевтический трансген) в трабекулярную сеть глаза млекопитающего, которые содержат частицу rAAV2, содержащую вектор на основе rAAV, где вектор на основе rAAV содержит нуклеиновую кислоту, и при этом частица AAV2 содержит капсидный белок AAV2, содержащий аминокислотную замену R471A, нумерация которой приведена согласно VP1 AAV2. В некоторых аспектах настоящего изобретения предусматривают наборы для лечения глазного нарушения у млекопитающего, которые содержат частицу rAAV2, содержащую вектор на основе rAAV, где вектор на основе rAAV содержит нуклеиновую кислоту, кодирующую терапевтический трансген, и при этом частица AAV2 содержит капсидный белок AAV2, содержащий аминокислотную замену R471A, нумерация которой приведена согласно VP1 AAV2. В некоторых вариантах осуществления частицу rAAV вводят интравитреально и/или интракамерально. В некоторых вариантах осуществления частицей rAAV трансдуцируют клетки трабекулярной сети глаза. В некоторых вариантах осуществления терапевтический трансген экспрессируется в трабекулярной сети глаза. В некоторых вариантах осуществления терапевтический трансген кодирует терапевтический полипептид или терапевтическую нуклеиновую кислоту. В некоторых вариантах осуществления глазное нарушение связано с трабекулярной сетью глаза. В некоторых вариантах осуществления глазное нарушение представляет собой миоцилиновую (MYOC) глаукому. В некоторых вариантах осуществления млекопитающее является человеком.
Все литературные источники, цитируемые в данном документе, в том числе патентные заявки и публикации, включены посредством ссылки во всей своей полноте.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
На фиг. 1 продемонстрировано, что мутанты MYOC P370L и Y437H не секретируются и блокируют секрецию MYOC дикого типа ("wtMYOC"). Среду для культивирования клеток или клеточные лизаты из 293 клеток, трансфицированных конструкциями, экспрессирующими wtMYOC и/или мутанты MYOC (как отмечено), исследовали с помощью вестерн-блоттинга с применением антитела к MYOC человека.
На фиг. 2 показано, что мутант P370L MYOC не секретируется и блокирует секрецию MYOC дикого типа ("wtMYOC") и в клетках 293T, и в клетках, трансформированных T-антигеном SV40, в трабекулярной сети ("hTM-T"). Среду для культивирования клеток или клеточные лизаты из клеток 293T или клеток hTM-T, трансфицированных конструкциями, экспрессирующими wtMYOC и/или MYOC P370L (как отмечено), исследовали с помощью вестерн-блоттинга с применением антитела к MYOC человека.
На фиг. 3 отображен эффект экспрессии wtMYOC, MYOC P370L или Y437H на передачу сигнала Wnt. Для каждого эксперимента "нет mWnt3a" обозначает столбик слева, а "w mWnt3a - 400 нг/мл" обозначает столбик справа.
На фиг. 4 показано, что экспрессия RSPO3 способствует восстановлению передачи сигнала Wnt в результате совместной экспрессии с MYOC P370L или Y437H. Для каждого эксперимента "нет mWnt3a" обозначает столбик слева, а "mWnt3a - 400 нг/мл" обозначает столбик справа.
На фиг. 5 показано, что экспрессия RSPO3 способствует восстановлению передачи сигнала Wnt в клетках hTM-T в результате совместной экспрессии с MYOC P370L. Для каждого эксперимента "нет mWnt3a" обозначает столбик слева, а "400 нг/мл hWnt3a" обозначает столбик справа.
На фиг. 6 показан эффект shRNA для MYOC на экспрессию MYOC в клетках 293T. Среду для культивирования клеток или клеточные лизаты из клеток 293T исследовали с помощью вестерн-блоттинга с применением антитела к MYOC человека. Клетки трансфицировали плазмидами, экспрессирующими wtMYOC (дорожка 1); wtMYOC и shRNA для MYOC #79 (2); wtMYOC и shRNA для MYOC #93 (3); wtMYOC и рандомизированный контроль с shRNA (4); или EGFP (5). Полосы 55/57 кДа представляют гликозилированные (57 кДа) и негликозилированные (55 кДа) формы полноразмерного белка MYOC. Полоса 22 кДа представляет N-конец продукта расщепления кальпаина II.
На фиг. 7 показан эффект shRNA для MYOC на экспрессию MYOC в клетках hTM-T. Среду для культивирования клеток или клеточные лизаты из клеток hTM-T исследовали с помощью вестерн-блоттинга с применением антитела к MYOC человека. Клетки трансфицировали плазмидами, экспрессирующими wtMYOC (дорожка 1); MYOC P370L (2); wtMYOC и MYOC P370L (3); wtMYOC и MYOC P370L и shRNA для Grp94 #1 (4); wtMYOC,и MYOC P370L, и shRNA для Grp94 #2 (5); wtMYOC, и MYOC P370L, и shRNA для MYOC #53 (6); wtMYOC, и MYOC P370L, и shRNA для MYOC pGIPZ #79 (7); wtMYOC и MYOC P370L и shRNA для MYOC pGIPZ #93 (8); wtMYOC, и MYOC P370L, и рандомизированный контроль с shRNA (9) или EGFP (10).
На фиг. 8 показано, что экспрессия RSPO3 и сайленсинг MYOC синергически способствуют восстановлению передачи сигнала Wnt в результате совместной экспрессии с MYOC P370L. Клетки 293T совместно трансфицировали с помощью репортерной конструкции TOP-Flash и wtMYOC ("MYOC"), плюс MYOC P370L, shRNA для Grp94, shRNA для MYOC pGIPZ #79(первая) и #93 (вторая) и/или RSPO3-плазмидами, как отмечено. Передача сигнала Wnt усиливалась после добавления рекомбинантной мышиной Wnt3a (400 нг/мл) и была измерена с помощью анализа TOP-Flash. Люциферазную активность (значение+SD, n=1-3 повторности планшетов) измеряли после трансфекции и нормализовали по контрольной трансфекции постоянно экспрессируемого уровня люциферазы Renilla. Для каждого эксперимента "не добавляли mWnt" обозначает столбик слева, а "добавляли 400 нг/мл Wnt3a" обозначает столбик справа.
На фиг. 9 показано, что сайленсинг MYOC способствует восстановлению передачи сигнала Wnt в результате совместной экспрессии с MYOC P370L или Y437H. Клетки 293T совместно трансфицировали с помощью репортерной конструкции TOP-Flash и wtMYOC ("MYOC"), плюс MYOC P370L, MYOC Y437H, shRNA для MYOC и/или рандомизированной контрольной shRNA ("pGIPZ-нуль"), как отмечено. Передача сигнала Wnt усиливалась после добавления рекомбинантной мышиной Wnt3a (400 нг/мл) и была измерена с помощью анализа TOP-Flash. Люциферазную активность (значение+SD, n=1-3 повторности планшетов) измеряли после трансфекции и нормализовали по контрольной трансфекции постоянно экспрессируемого уровня люциферазы Renilla. Для каждого эксперимента "не добавляли mWnt" обозначает столбик слева, а "добавляли 400 нг/мл Wnt3a" обозначает столбик справа.
На фиг. 10 показана трансдукция клеток трабекулярной сети in vitro (левые панели) и in vivo (правые панели) посредством вирусных частиц AAV2 дикого типа (верхние панели) и частиц AAV2, содержащих аминокислотную замену R471A в капсидном белке.
На фиг. 11 показана диаграмма доменов семейства белков RSPO человека, отображающая фуриноподобные домены, богатые Cys, домен тромбоспондина типа 1 и C-концевой положительно заряженный домен, как отмечено (фигура взята из Kim, K.A. et al. (2008) Mol. Biol. Cell. 19:2588-2596).
На фиг. 12 показана диаграмма доменов семейства генов RSPO человека, отображающая белковые домены, перечисленные на фиг. 11. Отображена нумерация аминокислотных последовательностей, и усеченные мутанты исследованы для каждого представителя семейства, как отмечено (фигура взята из Kim, K.A. et al. (2006) Cell Cycle 5:23-26).
На фиг. 13A показана последовательность полноразмерного RSPO3 человека (SEQ ID NO: 1) с сигнальной последовательностью, отмечены домены FU1, FU2 и TSP1.
На фиг. 13B показана последовательность активного фрагмента RSPO3 человека (SEQ ID NO: 16) с сигнальной последовательностью, отмечены домены FU1 и FU2. Используемый фрагмент, характеризующийся отсутствием сигнального пептида, соответствуют аминокислотам 22-146 последовательности под SEQ ID NO: 16 и составляет 15 кДа, включая метку His.
На фиг. 13C отображена структура домена полноразмерного hRSPO3 с сигнальным пептидом, отмечены домены FU1, FU2, TSP1 и BR. Предполагаемые функции для каждого домена перечислены ниже.
На фиг. 13D показан вестерн-блоттинг полноразмерного hRSPO3 и фрагмента hRSPO3.
На фиг. 14 отображены исследуемые фрагменты hRSPO3. Отмечены структура домена полноразмерного hRSPO3 с сигнальным пептидом, домены FU1, FU2, TSP1 и BR, а также ниже указаны предполагаемые функции для каждого домена.
На фиг. 15 показано, что экспрессия полноразмерных фрагментов RSPO3 и RSPO3 способствует восстановлению передачи сигнала Wnt в результате совместной экспрессии с MYOC Y437H.
На фиг. 16 показано, что экспрессия представителей семейства RSPO может индуцировать передачу сигнала Wnt в результате совместной экспрессии с MYOC Y437H даже без добавления Wnt3a.
ПОДРОБНОЕ ОПИСАНИЕ
В настоящем изобретении предусматривают способы лечения миоцилиновой (MYOC) глаукомы у млекопитающего, включающие введение в глаз млекопитающего вирусной частицы рекомбинантного аденоассоциированного вируса (rAAV). В некоторых вариантах осуществления передача сигнала wnt в глазу млекопитающего усиливается, например посредством экспрессии R-спондина 1 (RSPO1), R-спондина 2 (RSPO2), R-спондина 3 (RSPO3), и/или R-спондина 4 (RSPO4). В некоторых вариантах осуществления экспрессия миоцилина (MYOC) (например, мутантного миоцилина) ингибируется, например посредством применения средства для RNAi, целенаправленно воздействующего на экспрессию MYOC. В некоторых аспектах частица AAV содержит вектор, кодирующий RSPO1, RSPO2, RSPO3, и/или RSPO4, и/или их функциональный вариант. В других аспектах частица rAAV содержит вектор, кодирующий средство для RNAi в отношении MYOC (например, shRNA), которое целенаправленно воздействует на экспрессию миоцилина (MYOC) у млекопитающего. В других аспектах настоящего изобретения предусматривают способы лечения миоцилиновой (MYOC) глаукомы у млекопитающего, включающие введение в глаз млекопитающего смеси частиц rAAV, содержащих вектор, кодирующий RSPO1, RSPO2, RSPO3, и/или RSPO4, и/или их функциональный вариант, и частиц rAAV, содержащих вектор, кодирующий средство для RNAi в отношении MYOC (например, shRNA), которое целенаправленно воздействует на экспрессию миоцилина у млекопитающего. В других аспектах настоящего изобретения предусматривают способы лечения миоцилиновой (MYOC) глаукомы у млекопитающего, включающие введение в глаз млекопитающего частицы rAAV, содержащей вектор, кодирующий RSPO1, RSPO2, RSPO3, и/или RSPO4, и/или их функциональный вариант и кодирующий средство для RNAi в отношении MYOC (например, shRNA), которое целенаправленно воздействует на экспрессию миоцилина (shRNA для MYOC) у млекопитающего. В настоящем изобретении также предусматривают композиции и наборы для лечения миоцилиновой (MYOC) глаукомы с применением векторов на основе rAAV, кодирующих RSPO1, RSPO2, RSPO3, и/или RSPO4, и/или их функциональный вариант, и/или средство для RNAi в отношении MYOC (например, shRNA). В настоящем изобретении также предусматривают рекомбинантные частицы AAV, композиции и наборы.
В некоторых аспектах настоящего изобретения предусматривают способы нацеливания AAV2 для трансдуцирования клеток трабекулярной сети. В некоторых аспектах в настоящем изобретении предусматривают частицы rAAV2, содержащие мутацию R471A, нумерация которой приведена согласно VP1 AAV2. В некоторых вариантах осуществления настоящего изобретения предусматривают способы и композиции для лечения глазных заболеваний, связанных с трабекулярной сетью (например, миоцилиновой (MYOC) глаукомы), с применением вирусных частиц AAV2, содержащих мутированный капсидный белок (например, с аминокислотной заменой R471A).
I. Общие методики
Методики и процедуры, описанные или упоминаемые в данном документе, как правило, широко распространены и обычно используются специалистами в данной области техники с применением традиционной методологии, как, например, широко используемые методики, описанные в Molecular Cloning: A Laboratory Manual (Sambrook et al., 4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2012); Current Protocols in Molecular Biology (F.M. Ausubel, et al. eds., 2003); серии Methods in Enzymology (Academic Press, Inc.); PCR 2: A Practical Approach (M.J. MacPherson, B.D. Hames и G.R. Taylor eds., 1995); Antibodies, A Laboratory Manual (Harlow и Lane, eds., 1988); Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications (R.I. Freshney, 6th ed., J. Wiley and Sons, 2010); Oligonucleotide Synthesis (M.J. Gait, ed., 1984); Methods in Molecular Biology, Humana Press; Cell Biology: A Laboratory Notebook (J.E. Cellis, ed., Academic Press, 1998); Introduction to Cell and Tissue Culture (J.P. Mather и P.E. Roberts, Plenum Press, 1998); Cell and Tissue Culture: Laboratory Procedures (A. Doyle, J.B. Griffiths, и D.G. Newell, eds., J. Wiley and Sons, 1993-8); Handbook of Experimental Immunology (D.M. Weir и C.C. Blackwell, eds., 1996); Gene Transfer Vectors for Mammalian Cells (J.M. Miller и M.P. Calos, eds., 1987); PCR: The Polymerase Chain Reaction, (Mullis et al., eds., 1994); Current Protocols in Immunology (J.E. Coligan et al., eds., 1991); Short Protocols in Molecular Biology (Ausubel et al., eds., J. Wiley and Sons, 2002); Immunobiology (C.A. Janeway et al., 2004); Antibodies (P. Finch, 1997); Antibodies: A Practical Approach (D. Catty., ed., IRL Press, 1988-1989); Monoclonal Antibodies: A Practical Approach (P. Shepherd и C. Dean, eds., Oxford University Press, 2000); Using Antibodies: A Laboratory Manual (E. Harlow и D. Lane, Cold Spring Harbor Laboratory Press, 1999); The Antibodies (M. Zanetti и J. D. Capra, eds., Harwood Academic Publishers, 1995); и Cancer: Principles and Practice of Oncology (V.T. DeVita et al., eds., J.B. Lippincott Company, 2011).
II. Определения
"Вектор", как используется в данном документе, относится к рекомбинантной плазмиде или вирусу, содержащим нуклеиновую кислоту, которую необходимо доставить в клетку-хозяина in vitro либо in vivo.
Выражение "полинуклеотид" или "нуклеиновая кислота", используемое в данном документе, относится к полимерной форме нуклеотидов, будь то рибонуклеотиды или дезоксирибонуклеотиды, любой длины. Таким образом, данное выражение включает, без ограничения, одно-, двух- или многоцепочечные ДНК или РНК, геномную ДНК, кДНК, гибриды ДНК-РНК или полимер, содержащий пуриновые и пиримидиновые основания или другие природные, химически или биохимически модифицированные, неприродные или дериватизированные нуклеотидные основания. Остов нуклеиновой кислоты может содержать сахара и фосфатные группы (которые обычно могут обнаруживаться в РНК или ДНК) или модифицированные либо замещенные сахарные или фосфатные группы. В качестве альтернативы, остов нуклеиновой кислоты может включать в себя полимер из синтетических субъединиц, таких как фосфорамидаты, и, таким образом, может представлять собой олигодезоксинуклеозидный фосфорамидат (P-NH2) или смешанный фосфорамидатно-фосфодиэфирный олигомер. Кроме того, двухцепочечную нуклеиновую кислоту можно получить из одноцепочечного полинуклеотидного продукта химического синтеза посредством либо синтеза комплементарной цепи и отжига цепей в соответствующих условиях, либо посредством синтеза комплементарной цепи de novo с использованием ДНК-полимеразы с соответствующим праймером.
Выражения "полипептид" и "белок" используются взаимозаменяемо для обозначения полимера из аминокислотных остатков и не ограничены минимальной длиной. Такие полимеры из аминокислотных остатков могут содержать природные или неприродные аминокислотные остатки и включают, без ограничения, пептиды, олигопептиды, димеры, тримеры и мультимеры из аминокислотных остатков. Данным определением охватываются как полноразмерные белки, так и их фрагменты. Выражения включают также постэкспрессионные модификации полипептида, например, гликозилирование, сиалирование, ацетилирование, фосфорилирование и т. п. Кроме того, для целей настоящего изобретения "полипептид" относится к белку, который характеризуется модификациями, такими как делеции, добавления и замены (обычно консервативные по своей природе), в нативной последовательности при условии, что белок сохраняет желаемую активность. Данные модификации могут быть преднамеренными, как, например, посредством сайт-направленного мутагенеза, или могут быть случайными, как, например, посредством мутаций у хозяев, которые вырабатывают белки, или ошибок, обусловленных ПЦР-амплификацией.
"Рекомбинантный вирусный вектор" относится к рекомбинантному полинуклеотидному вектору, содержащему одну или несколько гетерологичных последовательностей (т. е. последовательность нуклеиновой кислоты невирусного происхождения). В случае рекомбинантных векторов на основе AAV рекомбинантную нуклеиновую кислоту фланкируют с помощью по меньшей мере одного, предпочтительно двух, последовательностей инвертированных концевых повторов (ITR).
"Рекомбинантный вектор на основе AAV (вектор на основе rAAV)" относится к полинуклеотидному вектору, содержащему одну или несколько гетерологичных последовательностей (т. e. последовательность нуклеиновой кислоты, не происходящую из AAV), которые являются фланкированными по меньшей мере одной, предпочтительно двумя, последовательностями инвертированных концевых повторов (ITR). Такие векторы на основе rAAV могут реплицироваться и упаковываться в инфекционные вирусные частицы в случае их присутствия в клетке-хозяине, которая была инфицирована подходящим вирусом-помощником (или которая экспрессирует подходящие хелперные функциональные элементы) и которая экспрессирует продукты генов rep и cap AAV (т. e. белки Rep и Cap AAV). Если вектор на основе rAAV встроен в более крупный полинуклеотид (например, в хромосому или в другой вектор, такой как плазмида, применяемая для клонирования или трансфекции), то вектор на основе rAAV можно обозначить как "провектор", который может быть "спасен"посредством репликации и инкапсидирования в присутствии упаковывающих функциональных элементов и подходящих хелперных функциональных элементов AAV. Вектор на основе rAAV может находиться в любой из множества форм, в том числе, без ограничения, в форме плазмид, линейных искусственных хромосом, образующих комплексы с липидами, инкапсулированными в липосомах, и наиболее предпочтительно инкапсулированными в вирусной частице, в частности частице AAV. Вектор на основе rAAV может быть упакован в капсид вируса AAV для получения "частицы рекомбинантного аденоассоциированного вируса (частицы rAAV)". Вспомогательные функции AAV (т. е., функции, которые способствуют репликации и упаковке AAV в клетке-хозяине) могут быть обеспечены любой из множества форм, в том числе, без ограничения, вирусом-помощником или генами вируса-помощника, которые способствуют репликации и упаковке AAV. Другие хелперные функциональные элементы AAV известны в области техники.
"Вирус rAAV" или "вирусная частица rAAV" относится к вирусной частице, состоящей из по меньшей мере одного капсидного белка AAV и инкапсидированного генома вектора на основе rAAV.
"Гетерологичный" означает полученный из объекта, генотипически отличающегося от остальной части объекта, с которым его сравнивают или в который его вводят или встраивают. Например, нуклеиновая кислота, введенная посредством методик генетической инженерии в другой тип клетки, является гетерологичной нуклеиновой кислотой (и при экспрессии может кодировать гетерологичный полипептид). Аналогично, клеточная последовательность (например, ген или его часть), встроенная в вирусный вектор, является гетерологичной нуклеотидной последовательностью по отношению к вектору.
Выражение "трансген" относится к нуклеиновой кислоте, вводимой в клетку и способной к транскрипции в РНК и необязательно к трансляции и/или экспрессии в соответствующих условиях. В некоторых аспектах он придает желаемое свойство клетке, в которую он был введен, или иным образом приводит к желаемому терапевтическому или диагностическому эффекту. В другом аспекте он может транскрибироваться в молекулу, которая опосредует РНК-интерференцию, такую как siRNA.
Выражения "геномные частицы (gp)", "геномные эквиваленты" или "копии генома", применяемые в отношении вирусного титра, относятся к числу вирионов, содержащих геном ДНК рекомбинантного AAV, вне зависимости от инфекционности или функциональности. Число геномных частиц в конкретном векторном препарате можно определять с помощью процедур, таких как описанные в примерах в данном документе или, например, в Clark et al. (1999) Hum. Gene Ther., 10:1031-1039; Veldwijk et al. (2002) Mol. Ther., 6:272-278.
Выражения "инфекционная единица (iu)", "инфекционная частица" или "единица репликации", применяемые в отношении вирусного титра, относятся к числу инфекционных и репликационно компетентных частиц вектора на основе рекомбинантного AAV, измеряемому с помощью анализа инфекционных центров, также известного как анализ центров репликации, описанного, например, в McLaughlin et al. (1988) J. Virol., 62:1963-1973.
Выражение "трансдуцирующая единица (tu)", используемое в отношении вирусного титра, относится к числу инфекционных частиц вектора на основе рекомбинантного AAV, которое приводит к получению функционального трансгенного продукта, измеряемому в функциональных анализах, таких как описанные в примерах в данном документе, или, например, в Xiao et al. (1997) Exp. Neurobiol., 144:113-124; или в Fisher et al. (1996) J. Virol., 70:520-532 (анализ LFU).
"Инвертированный концевой повтор" или последовательность "ITR" является выражением, широко распространенным в данной области техники, и относится к относительно коротким последовательностям, встречающимся на концах вирусных геномов, которые имеют противоположную ориентацию.
Последовательность "инвертированного концевого повтора (ITR) AAV", выражение, широко распространенное в данной области техники, представляет собой последовательность примерно из 145 нуклеотидов, которая присутствует на обоих концах нативного одноцепочечного генома AAV. Крайние 125 нуклеотидов ITR могут присутствовать в любой из двух альтернативных ориентаций, обуславливая гетерогенность между различными геномами AAV и между двумя концами одного генома AAV. Крайние 125 нуклеотидов также содержат несколько более коротких областей самокомплементарности (обозначенных как A-, A'-, B-, B'-, C-, C'- и D-области), обеспечивающих образование внутрицепочечных пар оснований в пределах данной части ITR.
"Последовательность концевого разрешения" или "trs" представляет собой последовательность в D-области ITR AAV, которая отщепляется белками rep AAV в ходе репликации вирусной ДНК. Мутантная последовательность концевого разрешения является невосприимчивой к отщеплению белками rep AAV.
"Вирус-помощник" для AAV относится к вирусу, который способствует репликации и упаковке AAV (который является дефектным парвовирусом) в клетке-хозяине. Было идентифицировано множество таких вирусов-помощников, в том числе аденовирусы, герпесвирусы и поксвирусы, такие как вирус осповакцины. Аденовирусы охватывают множество различных подгрупп, однако наиболее широко применяется аденовирус 5 типа подгруппы C (Ad5). Многочисленные аденовирусы, происходящие от человека, отличных от человека млекопитающих и птиц, известны и доступны из депозитариев, таких как ATCC. Вирусы семейства герпесвирусов, которые также доступны из депозитариев, таких как ATCC, включают, например, вирусы простого герпеса (HSV), вирусы Эпштейна-Барр (EBV), цитомегаловирусы (CMV) и вирусы псевдобешенства (PRV).
"Процентная (%) идентичность последовательностей" в отношении эталонной полипептидной последовательности или последовательности нуклеиновой кислоты определена как процентная доля аминокислотных остатков или нуклеотидов в последовательности-кандидате, которые идентичны аминокислотным остаткам или нуклеотидам в эталонной полипептидной последовательности или последовательности нуклеиновой кислоты после выравнивания последовательностей и введения гэпов, при необходимости, для достижения максимальной процентной идентичности последовательностей и без учета каких-либо консервативных замен как части идентичности последовательностей. Выравнивание для целей определения процентной идентичности аминокислотных последовательностей или последовательностей нуклеиновых кислот может быть достигнуто различными способами, которые находятся в пределах компетенции специалиста в данной области, например, с помощью общедоступных компьютерных программ, например, описанных в Current Protocols in Molecular Biology (Ausubel et al., eds., 1987), Supp. 30, section 7.7.18, Table 7.7.1, и в том числе программного обеспечения BLAST, BLAST-2, ALIGN или Megalign (DNASTAR). Предпочтительной программой выравнивания является ALIGN Plus (Scientific and Educational Software, Пенсильвания). Специалисты в данной области могут определять соответствующие параметры для оценки выравнивания, в том числе любые алгоритмы, необходимые для достижения максимального выравнивания по полной длине сравниваемых последовательностей. Для целей данного документа % идентичность аминокислотной последовательности к данной аминокислотной последовательности В, с ней или по отношению к ней для данной аминокислотной последовательности А (которую можно в качестве альтернативы назвать данной аминокислотной последовательностью A, которая характеризуется или обладает определенной % идентичностью аминокислотной последовательности к данной аминокислотной последовательности В, с ней или по отношению к ней) рассчитывается следующим образом: 100 умножить на частное X/Y, где X представляет собой число аминокислотных остатков, учитываемых в качестве идентичных совпадений программой для выравнивания последовательностей в таком программном выравнивании A и B, и где Y представляет собой общее число аминокислотных остатков в B. Следует принимать во внимание, что если длина аминокислотной последовательности A не равна длине аминокислотной последовательности B, то % идентичность аминокислотной последовательности A к B не будет равна % идентичности аминокислотной последовательности B к A. Для целей данного документа % идентичность последовательности нуклеиновой кислоты к данной последовательности нуклеиновой кислоты D, с ней или по отношению к ней для данной последовательности нуклеиновой кислоты C (которую можно в качестве альтернативы назвать данной последовательностью нуклеиновой кислоты C, которая характеризуется или обладает определенной % идентичностью последовательности нуклеиновой кислоты к данной последовательности нуклеиновой кислоты D, с ней или по отношению к ней) рассчитывается следующим образом: 100 умножить на частное W/Z, где W представляет собой число нуклеотидов, учитываемых в качестве идентичных совпадений программой для выравнивания последовательностей в таком программном выравнивании C и D, и где Z представляет собой общее число нуклеотидов в D. Следует принимать во внимание, что если длина последовательности нуклеиновой кислоты C не равна длине последовательности нуклеиновой кислоты D, то % последовательности нуклеиновой кислоты C к D не будет равна % идентичности последовательности нуклеиновой кислоты D к C.
"Выделенная" молекула (например, нуклеиновая кислота или белок) или клетка означает, что она была идентифицирована и отделена и/или извлечена из компонента своего естественного окружения.
"Эффективное количество" представляет собой количество, достаточное для достижения благоприятных или желаемых результатов, в том числе клинических результатов (например, уменьшения интенсивности симптомов, достижения клинических конечных точек и т. п.). Эффективное количество можно вводить за одно или несколько введений. Применительно к болезненному состоянию эффективным количеством является количество, достаточное для уменьшения интенсивности, стабилизации или задержки развития заболевания. Например, эффективное количество частицы rAAV экспрессирует желаемое количество гетерологичной нуклеиновой кислоты, такой как терапевтический полипептид или терапевтическая нуклеиновая кислота.
"Индивидуум" или "субъект" является млекопитающим. Млекопитающие включают, без ограничения, одомашненных животных (например, коров, овец, кошек, собак и лошадей), приматов (например, людей и отличных от человека приматов, таких как обезьяны), кроликов и грызунов (например, мышей и крыс). В некоторых вариантах осуществления индивидуум или субъект является человеком.
Как используется в данном документе, "лечение" представляет собой подход для получения благоприятных или желаемых клинических результатов. Для целей настоящего изобретения благоприятные или требуемые клинические результаты включают, без ограничения, смягчение симптомов, снижение степени заболевания, стабилизированное (например не ухудшающееся) состояние заболевания, предотвращение распространения (например метастазирования) заболевания, задержку или замедление прогрессирования заболевания, ослабление или временное облегчение состояния заболевания и ремиссию (частичную или полную), выявляемую или невыявляемую. "Лечение" может означать также продление выживаемости по сравнению с ожидаемой выживаемостью в случае неполучения лечения.
Термин "трабекулярная сеть", используемый в данном документе, относится к губчатой ткани, расположенной вблизи роговицы и радужки, которая обеспечивает фильтрацию водянистой влаги из глаза в кровь. Губчатая ткань, расположенная вблизи роговицы и радужки, которая обеспечивает фильтрацию водянистой влаги из глаза в кровь. Трабекулярная сеть содержит выстланные эндотелием пространства (межтрабекулярные пространства), через которые происходит отток водянистой влаги в Шлеммов канал. Она обычно разделена на две части: корнеосклеральную сеть, которая контактирует с роговицей и склерой и открывается в Шлеммов канал, и увеальную сеть, которая обращена к передней камере.
Выражение "центральная зона сетчатки", используемое в данном документе, относится к наружной части желтого пятна, и/или к внутренней части желтого пятна, и/или к центральной ямке. Выражение "типы клеток центральной зоны сетчатки", используемое в данном документе, относится к типам клеток центральной зоны сетчатки, таким как, например, RPE и фоторецепторные клетки.
Выражение "желтое пятно" относится к области центральной зоны сетчатки у приматов, которая содержит фоторецепторные клетки, в частности, палочки и колбочки, в более высокой относительной концентрации по сравнению с периферической зоной сетчатки. Выражение "наружная часть желтого пятна", используемое в данном документе, также может упоминаться как "периферическая часть желтого пятна". Выражение "внутренняя часть желтого пятна", используемое в данном документе, также может упоминаться как "центральная часть желтого пятна".
Выражение "центральная ямка" относится к небольшой области в центральной зоне сетчатки приматов, диаметр которой примерно равен или составляет менее 0,5 мм, которая содержит фоторецепторные клетки, в частности, колбочки, в более высокой относительной концентрации по сравнению с периферической зоной сетчатки и желтым пятном.
Выражение "субретинальное пространство", используемое в данном документе, относится к местоположению в сетчатке между фоторецепторными клетками и клетками пигментного эпителия сетчатки. Субретинальное пространство может являться предполагаемым пространством, как, например, до какой-либо субретинальной инъекции жидкости. Субретинальное пространство может также содержать жидкость, введенную путем инъекции в предполагаемое пространство. В этом случае жидкость находится "в контакте с субретинальным пространством". Клетки, которые находятся "в контакте с субретинальным пространством", включают клетки, которые ограничивают субретинальное пространство, такие как RPE и фоторецепторные клетки.
Выражение "пузырек", используемое в данном документе, относится к жидкому пространству в пределах субретинального пространства глаза. Пузырек по настоящему изобретению можно создать посредством однократной инъекции жидкости в одно пространство, посредством нескольких инъекций одной или нескольких жидкостей в одно и то же пространство или посредством нескольких инъекций в несколько пространств, которые при перемещении создают общее жидкое пространство, применимое для достижения терапевтического эффекта на желаемой части субретинального пространства.
"Промотор β-актина курицы (CBA)" относится к полинуклеотидной последовательности, полученной из гена β-актина курицы (например, гена бета-актина Gallus gallus, представленного геном с ID 396526 в GenBank Entrez). Как используется в данном документе, "промотор β-актина курицы" может относиться к промотору, содержащему ранний энхансерный элемент цитомегаловируса (CMV), промотор и первый экзон и интрон гена β-актина курицы и акцепторный сайт сплайсинга гена бета-глобина кролика, такому как последовательности, описанные в Miyazaki, J., et al. (1989) Gene 79(2):269-77. Используемое в данном документе выражение "промотор CAG" может использоваться взаимозаменяемо. Используемое в данном документе выражение "ранний энхансер CMV/промотор бета-актина курицы (CAG)" может использоваться взаимозаменяемо.
"Миоцилин (MYOC)" относится к белку (или гену, кодирующему указанный белок), вовлеченному в функцию цитоскелета, адгезию клеток, передачу сигналов в клетках и миграцию клеток, также известный как глюкокортикоид-индуцибельный ответ трабекулярной сети, GPOA, TIGR, GLC1A, JOAG и JOAG1. Миоцилин экспрессируется как секретируемый белок во многих различных типах клеток. В глазу, как полагают, миоцилин секретируется в водянистую влагу трабекулярной сетью, тканью, которая является критической в регуляции внутриглазного давления (IOP). Как описано выше, мутации миоцилина предположительно составляют подмножество случаев первичной открытоугольной глаукомы, в частности ювенильной формы данного расстройства.
Как используется в данном документе, "миоцилин" может относиться к полноразмерному предшественнику, а также к любым процессированным формам белка (например, зрелому белку, секретируемому из клетки). Примеры белков миоцилина могут включать без ограничения миоцилин человека, мыши, собаки и кошки, например, эталонные последовательности из NCBI NP_000252, NP_034995, NP_001041495 и NP_001265779. Примеры генов миоцилина могут включать без ограничения гены миоцилина человека, мыши, собаки и кошки, например, ген в GenBank Entrez с идентификационным номером 4653 (MYOC, a.k.a. GPOA, JOAG, TIGR, GLC1A и JOAG1), ген в GenBank Entrez с идентификационным номером 17926 (Myoc, a.k.a. TIGR, GLC1A и AI957332), ген в GenBank Entrez с идентификационным номером 490344 и ген в GenBank Entrez с идентификационным номером 101087632.
"R-спондин 1 (RSPO1)" является представителем семейства R-спондинов, участвующим в модуляции передачи сигнала Wnt. Термин "RSPO1" может относиться к белку RSPO1 или гену, кодирующему белок RSPO1. Представители суперсемейства белков, содержащих повтор тромбоспондина типа 1 (TSR-1), R-спондины, включают в себя сигнальный пептид, домен TSR-1 и два фуриноподобных повтора. Хотя точный механизм неясен, предполагают, что полипептиды семейства R-спондинов активируют передачу сигнала Wnt. Дополнительное описание взаимосвязей между R-спондинами и передачей сигнала Wnt см., например, Kim, K.A. et al. (2006) Cell Cycle 5:23-26; Kim, K.A. et al. (2008) Mol. Biol. Cell. 19:2588-2596; Jin, Y.R. и Yoon, J.K. (2012) Int. J. Biochem. Cell Biol. 44:2278-2287; и de Lau, W.B., et al. (2012) Genome Biol. 13(3):242.
Как используется в данном документе, "RSPO1" может относиться к полноразмерному предшественнику, а также к любым процессированным формам белка (например, зрелому белку, секретируемому из клетки). Примеры белков RSPO1 могут включать без ограничения RSPO1 человека, мыши, собаки и кошки, например, эталонные последовательности NCBI NP_001229837, NP_619624, XP_00562890 и XP_003989918. Примеры генов RSPO1 могут включать без ограничения гены RSPO1 человека, мыши, собаки и кошки, например, ген в GenBank Entrez с идентификационным номером 284654 (RSPO1, a.k.a. RSPO и CRISTIN3), ген в GenBank Entrez с идентификационным номером 192199 (Rspo1, a.k.a. Rspondin и R-spondin), ген в GenBank Entrez с идентификационным номером 608179 и ген в GenBank Entrez с идентификационным номером 101091033. В некоторых вариантах осуществления RSPO1 представляет собой функциональный вариант RSPO1. В некоторых вариантах осуществления функциональный вариант RSPO1 может предусматривать одну или несколько аминокислотных замен, вставок и/или делеций (например, усечений), но при этом сохраняет частичную или полную активность в отношении одной или нескольких активностей полноразмерного RSPO1 (например, активность в отношении передачи сигнала Wnt, исследования которой описаны и/или проиллюстрированы в данном документе). В некоторых вариантах осуществления функциональный вариант RSPO1 представляет собой усеченный RSPO1. Примеры усеченных полипептидов RSPO1 включают без ограничения SEQ ID NO: 11 и 12 или процессированные формы SEQ ID NO: 11 и 12, характеризующиеся отсутствием сигнального пептида.
"R-спондин 2 (RSPO2)" является представителем семейства R-спондинов, участвующим в модуляции передачи сигнала Wnt. Термин "RSPO2" может относиться к белку RSPO2 или гену, кодирующему белок RSPO2. Представители суперсемейства белков, содержащих повтор тромбоспондина типа 1 (TSR-1), R-спондины, включают в себя сигнальный пептид, домен TSR-1 и два фуриноподобных повтора. Хотя точный механизм неясен, предполагают, что полипептиды семейства R-спондинов активируют передачу сигнала Wnt. Дополнительное описание взаимосвязей между R-спондинами и передачей сигнала Wnt, см., например, Kim, K.A. et al. (2006) Cell Cycle 5:23-26; Kim, K.A. et al. (2008) Mol. Biol. Cell. 19:2588-2596; Jin, Y.R. и Yoon, J.K. (2012) Int. J. Biochem. Cell Biol. 44:2278-2287; и de Lau, W.B., et al. (2012) Genome Biol. 13(3):242.
Как используется в данном документе, "RSPO2" может относиться к полноразмерному предшественнику, а также к любым процессированным формам белка (например, зрелому белку, секретируемому из клетки). Примеры белков RSPO2 могут включать без ограничения RSPO2 человека, мыши, собаки и кошки, например, эталонные последовательности NCBI NP_848660, NP_766403, XP_005627927 и XP_004000104. Примеры генов RSPO2 могут включать без ограничения гены RSPO2 человека, мыши, собаки и кошки, например, ген в GenBank Entrez с идентификационным номером ID 340419 (RSPO2, a.k.a. CRISTIN2), ген в GenBank Entrez с идентификационным номером 239405 (Rspo2, a.k.a. ftls, AA673245, D430027K22 и 2610028F08Rik), ген в GenBank Entrez с идентификационным номером 482004 и ген в GenBank Entrez с идентификационным номером 101087380. В некоторых вариантах осуществления RSPO2 представляет собой функциональный вариант RSPO2. В некоторых вариантах осуществления функциональный вариант RSPO2 может предусматривать одну или несколько аминокислотных замен, вставок и/или делеций (например, усечений), но при этом сохраняет частичную или полную активность в отношении одной или нескольких активностей полноразмерного RSPO2 (например, активность в отношении передачи сигнала Wnt, исследования которой описаны и/или проиллюстрированы в данном документе). В некоторых вариантах осуществления функциональный вариант RSPO2 представляет собой усеченный RSPO2. Примеры усеченных полипептидов RSPO2 включают без ограничения SEQ ID NO: 13 и 14 или процессированные формы SEQ ID NO: 13 и 14, характеризующиеся отсутствием сигнального пептида.
"R-спондин 3 (RSPO3)" является представителем семейства R-спондинов, участвующим в модуляции передачи сигнала Wnt. Термин "RSPO3" может относиться к белку RSPO3 или гену, кодирующему белок RSPO3. Представители суперсемейства белков, содержащих повтор тромбоспондина типа 1 (TSR-1), R-спондины, включают в себя сигнальный пептид, домен TSR-1 и два фуриноподобных повтора. Хотя точный механизм неясен, предполагают, что RSPO3 активирует передачу сигнала Wnt, и потеря функции RSPO3 у мышей и Xenopus приводит к фенотипам с потерей функции Wnt (Kazanskaya, O., et al. (2008) Development 135:3655-64). Дополнительное описание взаимосвязей между R-спондинами и передачей сигнала Wnt, см., например, de Lau, W.B., et al. (2012) Genome Biol. 13(3):242.
Как используется в данном документе, "RSPO3" может относиться к полноразмерному предшественнику, а также к любым процессированным формам белка (например, зрелому белку, секретируемому из клетки). Примеры белков RSPO3 могут включать без ограничения RSPO3 человека, мыши, собаки и кошки, например, эталонные последовательности NCBI NP_116173, NP_082627, XP_005615677 и XP_003986583. Примеры генов RSPO3 могут включать без ограничения гены RSPO3 человека, мыши, собаки и кошки, например, ген в GenBank Entrez с идентификационным номером 84870 (RSPO3, a.k.a. PWTSR, THSD2 и CRISTIN1), ген в GenBank Entrez с идентификационным номером 72780 (Rspo3, a.k.a. Thsd2, Cristin1, AW742308 и 2810459H04Rik), ген в GenBank Entrez с идентификационным номером 476287 и ген в GenBank Entrez с идентификационным номером 101085635. В некоторых вариантах осуществления RSPO3 представляет собой функциональный вариант RSPO3. В некоторых вариантах осуществления функциональный вариант RSPO3 может предусматривать одну или несколько аминокислотных замен, вставок и/или делеций (например, усечений), но при этом сохраняет частичную или полную активность в отношении одной или нескольких активностей полноразмерного RSPO3 (например, активность в отношении передачи сигнала Wnt, исследования которой описаны и/или проиллюстрированы в данном документе). В некоторых вариантах осуществления функциональный вариант RSPO3 представляет собой усеченный RSPO3. Примеры усеченных полипептидов RSPO3 включают без ограничения SEQ ID NO: 15-17 или процессированные формы SEQ ID NO: 15-17, характеризующиеся отсутствием сигнального пептида.
"R-спондин 4 (RSPO4)" является представителем семейства R-спондинов, участвующим в модуляции передачи сигнала Wnt. Термин "RSPO4" может относиться к белку RSPO4 или гену, кодирующему белок RSPO4. Представители суперсемейства белков, содержащих повтор тромбоспондина типа 1 (TSR-1), R-спондины, включают в себя сигнальный пептид, домен TSR-1 и два фуриноподобных повтора. Хотя точный механизм неясен, предполагают, что полипептиды семейства R-спондинов активируют передачу сигнала Wnt. Дополнительное описание взаимосвязей между R-спондинами и передачей сигнала Wnt, см., например, Kim, K.A. et al. (2006) Cell Cycle 5:23-26; Kim, K.A. et al. (2008) Mol. Biol. Cell. 19:2588-2596; Jin, Y.R. и Yoon, J.K. (2012) Int. J. Biochem. Cell Biol. 44:2278-2287; и de Lau, W.B., et al. (2012) Genome Biol. 13(3):242.
Как используется в данном документе, "RSPO4" может относиться к полноразмерному предшественнику, а также к любым процессированным формам белка (например, зрелому белку, секретируемому из клетки). Примеры белков RSPO4 могут включать без ограничения RSPO4 человека, мыши, собаки и кошки, например, эталонные последовательности NCBI NP_001025042, NP_001035779, XP_542937 и XP_011279253. Примеры генов RSPO4 могут включать без ограничения гены RSPO4 человека, мыши, собаки и кошки, например, ген в GenBank Entrez с идентификационным номером 343637 (RSPO4, a.k.a. CRISTIN4 и C20orf182), ген в GenBank Entrez с идентификационным номером 228770 (Rspo4, a.k.a. A730099F22 и A930029K19Rik), ген в GenBank Entrez с идентификационным номером 485813 и ген в GenBank Entrez с идентификационным номером ID 101091527. В некоторых вариантах осуществления RSPO4 представляет собой функциональный вариант RSPO4. В некоторых вариантах осуществления функциональный вариант RSPO4 может предусматривать одну или несколько аминокислотных замен, вставок и/или делеций (например, усечений), но при этом сохраняет частичную или полную активность в отношении одной или нескольких активностей полноразмерного RSPO4 (например, активность в отношении передачи сигнала Wnt, исследования которой описаны и/или проиллюстрированы в данном документе). В некоторых вариантах осуществления функциональный вариант RSPO4 представляет собой усеченный RSPO4. Примеры усеченных полипептидов RSPO4 включают без ограничения SEQ ID NO: 18 и 19 или процессированные формы SEQ ID NO: 18 и 19, характеризующиеся отсутствием сигнального пептида.
Используемый в данном документе термин "РНК-интерференция (RNAi)" обозначает биологический процесс, при котором молекулы РНК ингибируют генную экспрессию, как правило, вызывая разрушение конкретных молекул мРНК. Примеры средств для RNAi включают малую ингибирующую РНК (siRNA), микроРНК (miRNA), малую шпилечную РНК (shRNA).
Используемый в данном документе термин "малая шпилечная РНК" или "короткая шпилечная РНК" (shRNA) обозначает молекулу РНК, которая делает крутой поворот в виде шпильки, что может быть использовано для подавления экспрессии гена-мишени, например, путем РНК-интерференции.
"Передача сигнала Wnt" относится к группе связанных клеточных сигнальных путей, которые регулируются посредством взаимосвязи между белком Wnt и семейством рецепторов Frizzled (Fz) (для изучения см., например, Logan, C.Y., и Nusse, R. (2004) Annu. Rev. Cell Dev. Biol. 20:781-810). Эти пути вовлечены в широкий спектр процессов развития и патогенных процессов. Как используется в данном документе, если не указано иное, термин "передача сигнала Wnt" может относиться к части или ко всему каноническому сигнальному пути Wnt, пути Wnt/планарной клеточной полярности (PCP) и/или Wnt/кальциевому пути. Например, в случае канонического пути Wnt связывание Wnt с рецепторным комплексом Frizzled/LRP приводит к модуляции активности Dishevelled (Dsh), Axin, супрессорного белка аденоматозного полипоза толстой кишки (APC) и гликогенсинтазы (GSK-3), в конечном счете приводя к ингибированию разрушения бета-катенина. Бета-катенин становится способным проникать в ядро и регулировать генную транскрипцию, например, в сочетании с транскрипционными факторами, такими как лимфоидный энхансер-связывающий фактор 1/Т-клеточно-специфический транскрипционный фактор (LEF/TCF). В некоторых вариантах осуществления активность бета-катенина может быть оценена в виде регистрируемой передачи сигнала Wnt (например, с помощью анализа TOP-Flash, такого, как описано в Molenaar, M., et al. (1996) Cell 86(3):391-9).
Ссылка на "приблизительное" значение или параметр в данном документе включает (и описывает) варианты осуществления, которые направлены на это значение или параметр как таковые. Например, описание, относящееся к "приблизительно X", включает описание "X".
Используемые в данном документе формы единственного числа включают ссылки на множественное число, если не указано иное.
Понятно, что аспекты и варианты осуществления настоящего изобретения, описанные в данном документе, включают "содержащие", "состоящие из" и/или "состоящие по сути из" аспекты и варианты осуществления.
III. Способы лечения
В настоящем изобретении предусматривают способы генной терапии миоцилиновой (MYOC) глаукомы, где частицы rAAV, содержащие терапевтические векторы, доставляют в глаз млекопитающего. В некоторых вариантах осуществления миоцилиновая (MYOC) глаукома представляет собой первичную открытоугольную глаукому (POAC). В некоторых вариантах осуществления миоцилиновая (MYOC) глаукома представляет собой ювенильную форму первичной открытоугольной глаукомы (JOAC). В некоторых вариантах осуществления млекопитающее представляет собой человека (например, человека с POAC или человека с JOAC). В некоторых вариантах осуществления млекопитающее с миоцилиновой (MYOC) глаукомой характеризуется мутированным MYOC. В некоторых вариантах осуществления мутированный MYOC содержит одну или несколько аминокислотных замен, соответствующих E323K, K398R, Q368X, G364V, P370L, D380A, K423E, Y437H и I477S в MYOC человека. В некоторых вариантах осуществления мутированный ген MYOC содержит одну или несколько аминокислотных замен, соответствующих аминокислотным заменам P370L и/или Y437H в MYOC человека. В некоторых вариантах осуществления настоящего изобретения предусматривают способы лечения миоцилиновой (MYOC) глаукомы у человека, включающие введение в глаз человека эффективного количества частиц rAAV, содержащих вектор, кодирующий RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант и/или средство для RNAi в отношении MYOC (например, shRNA). В некоторых вариантах осуществления способы по настоящему изобретению применяют для облегчения симптома миоцилиновой (MYOC) глаукомы у млекопитающего, например, для снижения внутриглазного давления, снижения накопления MYOC в трабекулярной сети, снижения глазной гипертензии или усиления оттока водянистой влаги из трабекулярной сети.
В некоторых аспектах настоящего изобретения предусматривают способы усиления передачи сигнала Wnt в клетках трабекулярной сети млекопитающего, имеющего глазное нарушение, которые включают введение в глаз млекопитающего частицы рекомбинантного аденоассоциированного вируса (rAAV), содержащей вектор, кодирующий RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант. В некоторых вариантах осуществления настоящего изобретения предусматривают способы усиления передачи сигнала Wnt в клетках трабекулярной сети млекопитающего, имеющего глазное нарушение, которые включают введение в глаз млекопитающего частицы рекомбинантного аденоассоциированного вируса (rAAV), содержащей вектор, кодирующий средство для RNAi в отношении MYOC, которое целенаправленно воздействует на экспрессию миоцилина (MYOC) у млекопитающего. В некоторых вариантах осуществления передача сигнала Wnt усиливается с применением одной или нескольких вирусных частиц, экспрессирующих RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, и/или средства для RNAi MYOC; например, RSPO1, RSPO2, RSPO3, RSPO4 или их функционального варианта, и средство для RNAi в отношении MYOC может экспрессироваться с векторов на основе rAAV с различными рекомбинантными вирусными геномами или с одним и тем же вирусным геномом rAAV.
Терапевтические векторы
В настоящем изобретении предусматривают способы генной терапии миоцилиновой (MYOC) глаукомы, где частицы rAAV, содержащие терапевтические векторы, доставляют в глаз млекопитающего; например, терапевтический вектор может кодировать терапевтическую нуклеиновую кислоту и/или терапевтический полипептид. Терапевтический вектор на основе AAV, который кодирует терапевтическую нуклеиновую кислоту и/или терапевтический полипептид, можно получить с помощью способов, известных из уровня техники, с применением стандартных способов синтеза и рекомбинации. В некоторых вариантах осуществления терапевтический полипептид представляет собой полипептид, который стимулирует передачу сигнала Wnt. В некоторых вариантах осуществления терапевтический полипептид стимулирует передачу сигнала Wnt в присутствии мутантного MYOC. В некоторых вариантах осуществления терапевтический полипептид стимулирует передачу сигнала Wnt в присутствии мутантного MYOC человека. В некоторых вариантах осуществления терапевтический полипептид стимулирует передачу сигнала Wnt в присутствии мутантного MYOC человека, связанного с глаукомой. В некоторых вариантах осуществления мутантный MYOC содержит аминокислотную замену P370L и/или Y437H. В некоторых вариантах осуществления мутированный MYOC содержит одну или несколько аминокислотных замен, соответствующих E323K, K398R, Q368X, G364V, P370L, D380A, K423E, Y437H и I477S в MYOC человека.
В некоторых вариантах осуществления в настоящем изобретении предусматривают векторы на основе rAAV для лечения миоцилиновой (MYOC) глаукомы, где векторы на основе rAAV кодируют R-спондиновый полипептид (RSPO) (например, RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант). В некоторых вариантах осуществления полипептид RSPO1 представляет собой RSPO1 человека. В некоторых вариантах осуществления RSPO1 содержит аминокислотную последовательность под SEQ ID NO: 8 или ее функциональный вариант. Примером функционального варианта RSPO1 является RSPO1 с одной или несколькими аминокислотными заменами, добавлениями и/или делециями в аминокислотной последовательности под SEQ ID NO: 8. В некоторых вариантах осуществления вариант RSPO1 предусматривает одну, две, три, четыре, пять, шесть, семь, восемь, девять, десять или более чем 10 замен, добавлений и/или делеций в аминокислотной последовательности под SEQ ID NO: 8 с сохранением способности стимулировать передачу сигнала Wnt (например, в присутствии мутантного MYOC). В некоторых вариантах осуществления вариант RSPO1 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO: 8. В некоторых вариантах осуществления RSPO1 представляет собой усеченный RSPO1. В некоторых вариантах осуществления усеченный RSPO1 может включать в себя один или несколько фуриноподобных доменов, богатых Cys (например, FU1 и/или FU2), но при этом характеризоваться отсутствием одного или нескольких из следующего: сигнального пептида, домена тромбоспондина типа 1 (например, TSR-1 или TSP1) и/или C-концевого положительно заряженного домена (например, в том числе двойного NLS и/или домена BR; для ссылки см. фиг. 11-13C). В определенных вариантах осуществления усеченный RSPO1 может содержать SEQ ID NO: 11 и/или 12 или процессированные формы SEQ ID NO: 11 и/или 12, характеризующиеся отсутствием сигнального пептида. В определенных вариантах осуществления усеченный RSPO1 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO: 11 и/или 12. В некоторых вариантах осуществления полипептид RSPO2 представляет собой RSPO2 человека. В некоторых вариантах осуществления RSPO2 содержит аминокислотную последовательность под SEQ ID NO: 9 или ее функциональный вариант. Примером функционального варианта RSPO2 является RSPO2 с одной или несколькими аминокислотными заменами, добавлениями и/или делециями в аминокислотной последовательности под SEQ ID NO: 9. В некоторых вариантах осуществления вариант RSPO2 предусматривает одну, две, три, четыре, пять, шесть, семь, восемь, девять, десять или более чем 10 замен, добавлений и/или делеций в аминокислотной последовательности под SEQ ID NO: 9 с сохранением способности стимулировать передачу сигнала Wnt (например, в присутствии мутантного MYOC). В некоторых вариантах осуществления вариант RSPO2 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO:9. В некоторых вариантах осуществления RSPO2 представляет собой усеченный RSPO2. В некоторых вариантах осуществления усеченный RSPO2 может включать в себя один или несколько фуриноподобных доменов, богатых Cys (например, FU1 и/или FU2), но при этом характеризоваться отсутствием одного или нескольких из следующего: сигнального пептида, домена тромбоспондина типа 1 (например, TSR-1 или TSP1) и/или C-концевого положительно заряженного домена (например, в том числе двойного NLS и/или домена BR; для ссылки см. фиг. 11-13C). В определенных вариантах осуществления усеченный RSPO2 может содержать SEQ ID NO: 13 и/или 14 или процессированные формы SEQ ID NO: 13 и/или 14, характеризующиеся отсутствием сигнального пептида. В определенных вариантах осуществления усеченный RSPO2 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO: 13 и/или 14. В некоторых вариантах осуществления полипептид RSPO3 представляет собой RSPO3 человека. В некоторых вариантах осуществления RSPO3 содержит аминокислотную последовательность под SEQ ID NO: 1 или ее функциональный вариант. Примером функционального варианта RSPO3 является RSPO3 с одной или несколькими аминокислотными заменами, добавлениями и/или делециями в аминокислотной последовательности под SEQ ID NO: 1. В некоторых вариантах осуществления вариант RSPO3 предусматривает одну, две, три, четыре, пять, шесть, семь, восемь, девять, десять или более чем 10 замен, добавлений и/или делеций в аминокислотной последовательности под SEQ ID NO: 1 с сохранением способности стимулировать передачу сигнала Wnt (например, в присутствии мутантного MYOC). В некоторых вариантах осуществления вариант RSPO3 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO: 1. В некоторых вариантах осуществления RSPO3 представляет собой усеченный RSPO3. В некоторых вариантах осуществления усеченный RSPO3 может включать в себя один или несколько фуриноподобных доменов, богатых Cys (например, FU1 и/или FU2), но при этом характеризоваться отсутствием одного или нескольких из следующего: сигнального пептида, домена тромбоспондина типа 1 (например, TSR-1 или TSP1) и/или C-концевого положительно заряженного домена (например, в том числе двойного NLS и/или домена BR; для ссылки см. фиг. 11-13C). В определенных вариантах осуществления усеченный RSPO3 может содержать SEQ ID NO: 15, 16 и/или 17 или процессированные формы SEQ ID NO: 15, 16 и/или 17, характеризующиеся отсутствием сигнального пептида. В определенных вариантах осуществления усеченный RSPO3 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO: 15, 16 и/или 17. В некоторых вариантах осуществления полипептид RSPO4 представляет собой RSPO4 человека. В некоторых вариантах осуществления RSPO4 содержит аминокислотную последовательность под SEQ ID NO: 9 или ее функциональный вариант. Примером функционального варианта RSPO2 является RSPO2 с одной или несколькими аминокислотными заменами, добавлениями и/или делециями в аминокислотной последовательности под SEQ ID NO: 10. В некоторых вариантах осуществления вариант RSPO4 предусматривает одну, две, три, четыре, пять, шесть, семь, восемь, девять, десять или более чем 10 замен, добавлений и/или делеций в аминокислотной последовательности под SEQ ID NO: 10 с сохранением способности стимулировать передачу сигнала Wnt (например, в присутствии мутантного MYOC). В некоторых вариантах осуществления вариант RSPO4 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO: 10. В некоторых вариантах осуществления RSPO4 представляет собой усеченный RSPO4. В некоторых вариантах осуществления усеченный RSPO4 может включать в себя один или несколько фуриноподобных доменов, богатых Cys (например, FU1 и/или FU2), но при этом характеризоваться отсутствием одного или нескольких из следующего: сигнального пептида, домена тромбоспондина типа 1 (например, TSR-1 или TSP1) и/или C-концевого положительно заряженного домена (например, в том числе двойного NLS и/или домена BR; для ссылки см. фиг. 11-13C). В определенных вариантах осуществления усеченный RSPO4 может содержать SEQ ID NO: 18 и/или 19 или процессированные формы SEQ ID NO: 18 и 19, характеризующиеся отсутствием сигнального пептида. В определенных вариантах осуществления усеченный RSPO4 характеризуется более чем приблизительно 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичностью с SEQ ID NO: 18 и/или 19.
В некоторых вариантах осуществления вектор на основе rAAV содержит нуклеиновую кислоту, кодирующую RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, функционально связанный с промотором. В некоторых вариантах осуществления промотор способен обеспечивать экспрессию RSPO1, RSPO2, RSPO3, RSPO4 или их функционального варианта в глазу млекопитающего. В некоторых вариантах осуществления промотор способен обеспечивать экспрессию RSPO1, RSPO2, RSPO3, RSPO4 или их функционального варианта в клетках трабекулярной сети. В некоторых вариантах осуществления промотор представляет собой гибридный промотор β-актина курицы (CBA).
В настоящем изобретении предусматривают способы генной терапии миоцилиновой (MYOC) глаукомы, где частицы rAAV, содержащие терапевтические векторы, доставляют в глаз млекопитающего; например, терапевтический вектор может кодировать терапевтическую нуклеиновую кислоту и/или терапевтический полипептид. Терапевтический вектор на основе AAV, который кодирует терапевтическую нуклеиновую кислоту и/или терапевтический полипептид, можно получить с помощью способов, известных из уровня техники, с применением стандартных способов синтеза и рекомбинации. В некоторых вариантах осуществления терапевтическая нуклеиновая кислота кодирует РНК, которая целенаправленно воздействует на экспрессию MYOC. В некоторых вариантах осуществления гетерологичная нуклеиновая кислота кодирует РНК, которая снижает или ингибирует экспрессию MYOC. В некоторых вариантах осуществления гетерологичная нуклеиновая кислота кодирует РНК, которая снижает или ингибирует экспрессию мутантного MYOC. В некоторых вариантах осуществления гетерологичная нуклеиновая кислота кодирует РНК, которая снижает или ингибирует экспрессию мутантного MYOC человека. В некоторых вариантах осуществления мутантный MYOC человека содержит аминокислотную замену P370L и/или Y437. Неограничивающие примеры нуклеиновой кислоты включают средство для RNAi, малую ингибирующую РНК (siRNA), микроРНК (miRNA), малую шпилечную РНК (shRNA) и/или рибозимы (такие как рибозимы типа "головки молотка" и рибозимы, содержащие шпильки). В некоторых вариантах осуществления гетерологичная нуклеиновая кислота, кодирующая РНК, которая снижает или ингибирует экспрессию MYOC, представляет собой shRNA, которая снижает или ингибирует экспрессию MYOC (например, мутантного MYOC и MYOC дикого типа).
В некоторых аспектах настоящего изобретения предусматривают способы генной терапии миоцилиновой (MYOC) глаукомы, при этом частицы rAAV, содержащие терапевтические векторы, доставляют в глаз млекопитающего, где векторы содержат нуклеиновую кислоту, которая кодирует один или несколько терапевтических полипептидов. Частицы rAAV, содержащие терапевтические векторы, могут быть получены с применением способов, известных из уровня техники, с применением стандартных способов синтеза и рекомбинации. В некоторых вариантах осуществления вектор кодирует терапевтический полипептид. В некоторых вариантах осуществления терапевтический полипептид целенаправленно воздействует на передачу сигнала Wnt. В некоторых вариантах осуществления терапевтический полипептид стимулирует передачу сигнала Wnt.
В некоторых аспектах настоящего изобретения предусматривают способы генной терапии миоцилиновой (MYOC) глаукомы, при этом частицы rAAV, содержащие терапевтические векторы, доставляют в глаз млекопитающего, где векторы содержат нуклеиновую кислоту, которая кодирует один или несколько терапевтических полипептидов и одну или несколько терапевтических нуклеиновых кислот. Частицы rAAV, содержащие терапевтические векторы, могут быть получены с применением способов, известных из уровня техники, с применением стандартных способов синтеза и рекомбинации. В некоторых вариантах осуществления терапевтический полипептид целенаправленно воздействует на передачу сигнала Wnt, и терапевтическая нуклеиновая кислота целенаправленно воздействует на экспрессию MYOC. В некоторых вариантах осуществления терапевтический полипептид стимулирует передачу сигнала Wnt. В некоторых вариантах осуществления гетерологичная нуклеиновая кислота кодирует РНК, которая снижает или ингибирует экспрессию MYOC. В некоторых вариантах осуществления гетерологичная нуклеиновая кислота кодирует РНК, которая снижает или ингибирует экспрессию мутантного MYOC. В некоторых вариантах осуществления гетерологичная нуклеиновая кислота кодирует РНК, которая снижает или ингибирует экспрессию мутантного MYOC человека. В некоторых вариантах осуществления мутантный MYOC человека содержит аминокислотную замену P370L и/или Y437. Неограничивающие примеры терапевтической нуклеиновой кислоты включают средство для RNAi, siRNA, miRNA, shRNA и/или рибозимы.
В некоторых аспектах настоящего изобретения предусматривают способы генной терапии миоцилиновой (MYOC) глаукомы у млекопитающего, при этом частицы rAAV, содержащие векторы, кодирующие один или несколько терапевтических полипептидов, вводят млекопитающему, и частицы rAAV, содержащие векторы, кодирующие одну или несколько терапевтических нуклеиновых кислот, вводят млекопитающему. В некоторых вариантах осуществления терапевтический полипептид целенаправленно воздействует на передачу сигнала Wnt, и терапевтическая нуклеиновая кислота целенаправленно воздействует на экспрессию MYOC. В некоторых вариантах осуществления терапевтический полипептид стимулирует передачу сигнала Wnt. В некоторых вариантах осуществления гетерологичная нуклеиновая кислота кодирует РНК, которая снижает или ингибирует экспрессию MYOC. В некоторых вариантах осуществления гетерологичная нуклеиновая кислота кодирует РНК, которая снижает или ингибирует экспрессию мутантного MYOC. В некоторых вариантах осуществления гетерологичная нуклеиновая кислота кодирует РНК, которая снижает или ингибирует экспрессию мутантного MYOC человека. В некоторых вариантах осуществления мутантный MYOC человека содержит аминокислотную замену P370L и/или Y437. Неограничивающие примеры терапевтической нуклеиновой кислоты включают средство для RNAi, siRNA, miRNA, shRNA и/или рибозимы. Частицы rAAV, содержащие векторы, кодирующие один или несколько терапевтических полипептидов, и частицы rAAV, содержащие векторы, кодирующие одну или несколько терапевтических нуклеиновых кислот, можно вводить млекопитающему одновременно или последовательно. В некоторых вариантах осуществления частицы rAAV, содержащие векторы, кодирующие один или несколько терапевтических полипептидов, вводят после того, как ввели частицы rAAV, содержащие векторы, кодирующие одну или несколько терапевтических нуклеиновых кислот. В некоторых вариантах осуществления частицы rAAV, содержащие векторы, кодирующие один или несколько терапевтических полипептидов, вводят до того, как ввели частицы rAAV, содержащие векторы, кодирующие одну или несколько терапевтических нуклеиновых кислот.
Нуклеиновые кислоты по настоящему изобретению могут кодировать полипептиды, которые представляют собой внутриклеточные белки, заякоренные в клеточной мембране, остающиеся внутри клетки или секретируемые клеткой, трансдуцированной векторами по настоящему изобретению. В случае полипептидов, секретируемых клеткой, которая получает вектор, полипептид предпочтительно является растворимым (т. е. не прикрепленным к клетке). Например, растворимые полипептиды лишены трансмембранной области и секретируются из клетки. Методики идентификации и удаления последовательностей нуклеиновых кислот, кодирующих трансмембранные домены, известны из уровня техники.
Векторы, которые можно вводить согласно настоящему изобретению, также включают векторы, содержащие нуклеиновую кислоту, которая кодирует РНК (например, shRNA, средство для RNAi, рибозимы, miRNA, siRNA, антисмысловую РНК), которая при транскрипции с нуклеиновых кислот вектора может обеспечивать лечение миоцилиновой (MYOC) глаукомы путем препятствования трансляции или транскрипции аномального или избыточного белка, связанного с болезненным состоянием по настоящему изобретению, например, белка MYOC. В некоторых примерах нуклеиновые кислоты по настоящему изобретению могут кодировать РНК, которая обеспечивает лечение заболевания путем высокоспецифического устранения или снижения уровня мРНК, кодирующей аномальные и/или избыточные белки. Последовательности терапевтических РНК включают малую шпилечную РНК (shRNA), средство для RNAi, малую ингибирующую РНК (siRNA), микроРНК (miRNA) и/или рибозимы (такие как рибозимы типа "головки молотка" и рибозимы, содержащие шпильки), которые могут обеспечивать лечение заболеваний путем высокоспецифического устранения или снижения уровня мРНК, кодирующей аномальные и/или избыточные белки, такие как белки, встречающиеся при различных формах наследственной дегенерации сетчатки. Примеры последовательностей терапевтических РНК и нуклеиновых кислот, кодирующих эти последовательности, которые можно применять в настоящем изобретении, включают описанные, например, в патенте США № 6225291, раскрытие которого включено в данный документ посредством ссылки во всей своей полноте.
В некоторых вариантах осуществления настоящего изобретения последовательность терапевтической РНК представляет собой последовательность средства для RNAi (например, shRNA), целенаправленно воздействующую на экспрессию MYOC. В некоторых вариантах осуществления последовательность средства для RNAi (например, shRNA), целенаправленно воздействующая на экспрессию MYOC, представляет собой последовательность средства для RNAi (например, shRNA), которая снижает или ингибирует экспрессию MYOC. В некоторых вариантах осуществления средство для RNAi (например, shRNA) снижает или ингибирует экспрессию MYOC человека. В некоторых вариантах осуществления средство для RNAi (например, shRNA) снижает или ингибирует экспрессию MYOC, содержащего аминокислотную последовательность под SEQ ID NO: 3. В некоторых вариантах осуществления средство для RNAi в отношении MYOC (например, shRNA) целенаправленно воздействует на аминокислотную последовательность QAMSVIH (SEQ ID NO: 6) MYOC. В некоторых вариантах осуществления частицы rAAV кодируют вектор, содержащий более чем одно средство для RNAi (например, shRNA), которое целенаправленно воздействует на экспрессию MYOC (например, снижает или ингибирует). В некоторых вариантах осуществления последовательность петли средства для RNAi в отношении MYOC (например, shRNA) содержит последовательность нуклеиновой кислоты AATAGTGAAGCCACAGATGTATT (SEQ ID NO: 7). В некоторых вариантах осуществления частицы rAAV кодируют вектор, содержащий одно, два, три, четыре, пять или более средств для RNAi (например, shRNA), которые целенаправленно воздействуют на экспрессию MYOC (например, снижают или ингибируют).
В некоторых вариантах осуществления вектор на основе rAAV содержит нуклеиновую кислоту, кодирующую средство для RNAi в отношении MYOC (например, shRNA), функционально связанное с промотором. В некоторых вариантах осуществления промотор способен обеспечивать экспрессию средства для RNAi в отношении MYOC (например, shRNA) в глазу млекопитающего. В некоторых вариантах осуществления промотор способен обеспечивать экспрессию средства для RNAi в отношении MYOC (например, shRNA) в клетках трабекулярной сети. В некоторых вариантах осуществления промотор представляет собой гибридный промотор β-актина курицы (CBA). В некоторых вариантах осуществления промотор представляет собой промотор РНК-полимеразы III.
В некоторых вариантах осуществления вектор на основе rAAV содержит нуклеиновую кислоту, кодирующую любой RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, как описано в данном документе, и нуклеиновую кислоту, кодирующую любое средство для RNAi в отношении MYOC (например, shRNA), как описано в данном документе. В некоторых вариантах осуществления нуклеиновая кислота, кодирующая RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, и нуклеиновая кислота, кодирующая средство для RNAi в отношении MYOC (например, shRNA), находятся в разных геномах rAAV. В некоторых вариантах осуществления нуклеиновая кислота, кодирующая RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, и нуклеиновая кислота, кодирующая средство для RNAi в отношении MYOC (например, shRNA), находятся в одном и том же геноме rAAV. В некоторых вариантах осуществления нуклеиновая кислота, кодирующая RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, и нуклеиновая кислота, кодирующая средство для RNAi в отношении MYOC (например, shRNA), функционально связаны с одним и тем же промотором. В некоторых вариантах осуществления нуклеиновая кислота, кодирующая RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, и нуклеиновая кислота, кодирующая средство для RNAi в отношении MYOC (например, shRNA), функционально связаны с разными промоторами. В некоторых вариантах осуществления нуклеиновая кислота кодирующая RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, расположена в направлении 5'-конца от нуклеиновой кислоты, кодирующей средство для RNAi в отношении MYOC (например, shRNA). В некоторых вариантах осуществления нуклеиновая кислота кодирующая RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, расположена в направлении 3'-конца от нуклеиновой кислоты, кодирующей средство для RNAi в отношении MYOC (например, shRNA). В некоторых вариантах осуществления нуклеиновая кислота, кодирующая RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, и нуклеиновая кислота, кодирующая средство для RNAi в отношении MYOC (например, shRNA), функционально связаны с одним и тем же промотором, при этом нуклеиновая кислота включает в себя сайт внутренней посадки рибосомы (IRES) между RSPO1, RSPO2, RSPO3, RSPO4 или их функциональным вариантом и нуклеиновыми кислотами средства для RNAi в отношении MYOC (например, shRNA).
Композиции на основе rAAV
В некоторых аспектах настоящее изобретение предусматривает композиции, содержащие любые частицы rAAV, описанные в данном документе. Как правило, композиции для применения в способах и системах по настоящему изобретению содержат эффективное количество частиц rAAV, содержащих векторы на основе rAAV, кодирующие полипептид и/или РНК, предпочтительно в фармацевтически приемлемом наполнителе. Как хорошо известно из уровня техники, фармацевтически приемлемые наполнители представляют собой относительно инертные вещества, облегчающие введение фармакологически эффективного вещества, и могут поставляться в виде жидких растворов или суспензий, в виде эмульсий или в виде твердых форм, подходящих для растворения или суспендирования в жидкости перед применением. Например, наполнитель может придавать форму или консистенцию или выступать в качестве разбавителя. Подходящие наполнители включают, без ограничения, стабилизаторы, смачивающие и эмульгирующие средства, соли для изменения осмолярности, инкапсулирующие средства, буферные вещества для поддержания pH и буферы. Такие наполнители включают любое фармацевтическое средство, подходящее для прямой доставки в глаз, которое можно вводить без излишней токсичности. Фармацевтически приемлемые наполнители включают, без ограничения, сорбит, любое из различных соединений TWEEN и жидкости, такие как вода, физиологический раствор, глицерин и этанол. В них могут быть включены фармацевтически приемлемые соли, например, соли минеральных кислот, такие как гидрохлориды, гидробромиды, фосфаты, сульфаты и т. п.; и соли органических кислот, такие как ацетаты, пропионаты, малонаты, бензоаты и т. п. Всестороннее обсуждение фармацевтически приемлемых наполнителей доступно в REMINGTON'S PHARMACEUTICAL SCIENCES (Mack Pub. Co., N.J. 1991).
Как правило, эти композиции составляют для введения путем глазной инъекции (например, интравитреальной, интракамеральной, субретинальной). Соответственно, эти композиции предпочтительно необходимо объединять с фармацевтически приемлемыми основами, такими как физиологический раствор, сбалансированный солевой раствор Рингера (pH 7,4) и т. п. Хотя это и не требуется, композиции необязательно могут поставляться в виде стандартной лекарственной формы, подходящей для введения точного количества.
В некоторых вариантах осуществления в настоящем изобретении предусматривают фармацевтические составы с rAAV для лечения миоцилиновой (MYOC) глаукомы. В некоторых вариантах осуществления состав содержит частицы rAAV, содержащие вектор на основе rAAV, кодирующий полипептиды RSPO1, RSPO2, RSPO3 и/или RSPO4 или их функциональный вариант. В некоторых вариантах осуществления состав содержит частицы rAAV, содержащие вектор на основе rAAV, кодирующий средство для RNAi в отношении MYOC (например, shRNA). В некоторых вариантах осуществления состав содержит частицы rAAV, содержащие вектор на основе rAAV, кодирующий полипептиды RSPO1, RSPO2, RSPO3 и/или RSPO4 или их функциональный вариант и средство для RNAi в отношении MYOC (например, shRNA). В некоторых вариантах осуществления состав содержит частицы rAAV, содержащие вектор на основе rAAV, кодирующий полипептиды RSPO1, RSPO2, RSPO3 и/или RSPO4 или их функциональный вариант, и частицы rAAV, содержащие вектор на основе rAAV, кодирующий средство для RNAi в отношении MYOC (например, shRNA).
Способы глазной доставки rAAV
В некоторых аспектах настоящего изобретения предусматривают способы лечения миоцилиновой (MYOC) глаукомы у млекопитающего, включающие введение частиц rAAV в глаз млекопитающего. В некоторых вариантах осуществления частицы rAAV содержат вектор на основе rAAV, кодирующий полипептиды RSPO1, RSPO2, RSPO3 и/или RSPO4 или их функциональный вариант, и/или вектор на основе rAAV, кодирующий средство для RNAi в отношении MYOC (например, shRNA). В некоторых вариантах осуществления частицы rAAV доставляют в глаз с помощью интравитреальной и/или интракамеральной инъекции. Способы введения частиц rAAV в глаз известны из уровня техники.
В некоторых вариантах осуществления частицы rAAV, содержащие векторы на основе rAAV, кодирующие RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант и/или средство для MYOC RNAi (например, shRNA), доставляют в глаз млекопитающего, где RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант и/или средство для RNAi в отношении MYOC (например, shRNA) экспрессируются в трабекулярной сети глаза. В некоторых вариантах осуществления частицы rAAV, содержащие векторы на основе rAAV, кодирующие RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, доставляют в глаз млекопитающего, где происходит трансдукция других частей глаза (например, ганглионарных клеток сетчатки). Применение частиц rAAV, содержащих капсид AAV2, который содержит аминокислотную замену R471A, может облегчать трансдукцию клеток трабекулярной сети.
Благодаря безопасной и эффективной трансдукции клеток глаза (например, клеток трабекулярной сети) с помощью вектора, содержащего терапевтический полипептид или последовательность нуклеиновой кислоты, способы по настоящему изобретению можно применять для лечения индивидуума, например, человека с миоцилиновой (MYOC) глаукомой, при этом трансдуцированные клетки продуцируют терапевтический полипептид или последовательность РНК в количестве, достаточном для лечения миоцилиновой (MYOC) глаукомы (например, POAC или JOAC). В некоторых вариантах осуществления трансдукцию клеток глаза улучшают посредством применения частиц rAAV2, содержащих аминокислотную замену R471A в капсидных белках AAV, нумерация которой приведена согласно VP1 AAV2. В некоторых вариантах осуществления частицы rAAV демонстрируют повышение трансдукции в клетках трабекулярной сети, например, трансдукция наблюдалась более чем у приблизительно 10%, 25%, 50%, 75%, 100% или любого количества в этих пределах клеток трабекулярной сети.
Эффективное количество rAAV (в некоторых вариантах осуществления в форме частиц) вводят в зависимости от целей лечения. Например, если при низкой процентной доле трансдукции можно достичь желаемого терапевтического эффекта, то целью лечения, как правило, является соответствие этому уровню трансдукции или его превышение. В некоторых случаях этого уровня трансдукции можно достичь путем трансдукции лишь приблизительно 1-5% клеток-мишеней (например, клеток трабекулярной сети), в некоторых вариантах осуществления по меньшей мере приблизительно 20% клеток желаемого типа ткани, в некоторых вариантах осуществления по меньшей мере приблизительно 50%, в некоторых вариантах осуществления по меньшей мере приблизительно 80%, в некоторых вариантах осуществления по меньшей мере приблизительно 95%, в некоторых вариантах осуществления по меньшей мере приблизительно 99% клеток желаемого типа ткани. В качестве руководства, число частиц, вводимых в расчете на одну инъекцию, как правило, составляет от приблизительно 1×106 до приблизительно 1×1014 частиц, от приблизительно 1×107 до 1×1013 частиц, от приблизительно 1×109 до 1×1012 частиц или приблизительно 1×109 частиц, приблизительно 1×1010 частиц или приблизительно 1×1011 частиц. Композицию на основе rAAV можно вводить путем одной или нескольких глазных инъекций, производимых в ходе одной и той же процедуры или разделенных несколькими днями, неделями, месяцами или годами. В некоторых вариантах осуществления для лечения человека можно применять несколько векторов.
Способы идентификации клеток глаза, трансдуцированных вирусными частицами AAV, известны из уровня техники; например, можно применять иммуногистохимический анализ или маркер, такой как усиленный зеленый флуоресцентный белок, для выявления трансдукции вирусными частицами, например вирусными частицами, содержащими капсид rAAV с одной или несколькими аминокислотными заменами.
В некоторых вариантах осуществления настоящего изобретения, способы включают интравитреальное и/или интракамеральное введение эффективного количества вирусных частиц AAV млекопитающему для лечения индивидуума с миоцилиновой (MYOC) глаукомой, например, человека с POAC или JOAC. В некоторых вариантах осуществления композицию вводят путем инъекции в одно или несколько местоположений в глазу для обеспечения экспрессии гетерологичной нуклеиновой кислоты в клетках глаза (например, клетках трабекулярной сети). В некоторых вариантах осуществления композицию вводят путем инъекции в любое из одного, двух, трех, четырех, пяти, шести, семи, восьми, девяти, десяти или более десяти местоположений в глазу.
В некоторых вариантах осуществления вирусные частицы rAAV, содержащие капсид rAAV, инъецируют в более чем одно местоположение одновременно или последовательно. В некоторых вариантах осуществления многократные инъекции вирусных частиц rAAV проводят с интервалом не более чем один час, два часа, три часа, четыре часа, пять часов, шесть часов, девять часов, двенадцать часов или 24 часа.
Способы субретинальной доставки
Способы субретинальной доставки известны из уровня техники. Например, см. WO 2009/105690, включенную в данный документ посредством ссылки. Вкратце, общий способ доставки частиц rAAV (например, частиц rAAV2) в субретинальную область желтого пятна и центральной ямки можно проиллюстрировать следующим кратким обзором. Этот пример направлен лишь на иллюстрацию определенных признаков способа и никаким образом не подразумевается как ограничивающий.
Как правило, вектор на основе rAAV можно доставлять в форме композиции, вводимой путем внутриглазной инъекции (субретинально), при непосредственном наблюдении с помощью операционного микроскопа. В некоторых вариантах осуществления вектор инкапсидирован в частице rAAV, где частица rAAV содержит капсид rAAV, содержащий капсидные белки rAAV, содержащие одну или несколько аминокислотных замен в одном или нескольких положениях, в которых происходит взаимодействие с гепарансульфатсодержащим протеогликаном (например, уменьшающих, или ингибирующих, или устраняющих связывание с HSPG), и вектор на основе rAAV, содержащий гетерологичную нуклеиновую кислоту и по меньшей мере один инвертированный концевой повтор AAV. Данная процедура может включать удаление стекловидного тела с последующей инъекцией суспензии вектора на основе rAAV в субретинальное пространство при помощи тонкой канюли через один или несколько небольших разрезов сетчатки.
Вкратце, инфузионную канюлю можно закреплять швом на месте для поддержания нормального объема глазного яблока путем инфузии (например, физиологического раствора) на протяжении всей операции. Удаление стекловидного тела проводят при помощи канюли с подходящим размером канала (например, 20-27 калибра), где объем удаляемого гелеобразного стекловидного тела замещают путем инфузии физиологического раствора или другого изотонического раствора из инфузионной канюли. Преимущественно проводят удаление стекловидного тела, поскольку (1) удаление его коркового слоя (задней гиалоидной мембраны) облегчает проникновение канюли в сетчатку; (2) его удаление и замещение жидкостью (например, физиологическим раствором) создает пространство для обеспечения внутриглазной инъекции вектора, и (3) его контролируемое удаление снижает вероятность разрывов сетчатки и незапланированного отслоения сетчатки.
В некоторых вариантах осуществления композицию на основе rAAV вводят путем прямой инъекции в субретинальное пространство за пределами центральной зоны сетчатки при использовании канюли с подходящим размером канала (например, 27-45 калибра), создавая таким образом пузырек в субретинальном пространстве. В других вариантах осуществления субретинальной инъекции композиции на основе rAAV предшествует субретинальная инъекция небольшого объема (например, от приблизительно 0,1 до приблизительно 0,5 мл) подходящей жидкости (такой как физиологический раствор или раствор Рингера) в субретинальное пространство за пределами центральной зоны сетчатки. Посредством этой первоначальной инъекции в субретинальное пространство в субретинальном пространстве формируется первоначальный пузырек жидкости, что вызывает локальное отслоение сетчатки в местоположении первоначального пузырька. Этот первоначальный пузырек жидкости может облегчать целенаправленную доставку композиции на основе rAAV в субретинальное пространство (посредством определения плоскости инъекции перед доставкой rAAV) и обеспечивать сведение к минимуму возможности введения rAAV в сосудистую оболочку глаза и вероятности инъекции или обратного тока rAAV в полость стекловидного тела. В некоторых вариантах осуществления в этот первоначальный пузырек жидкости можно дополнительно вводить с жидкостями, содержащими одну или несколько композиций на основе rAAV и/или одно или несколько дополнительных терапевтических средств, посредством введения этих жидкостей непосредственно в первоначальный пузырек жидкости при помощи тех же самых или дополнительных узких канюль.
Внутриглазное введение композиций на основе rAAV и/или первоначального небольшого объема жидкости можно проводить при помощи узкой канюли (например, 27-45 калибра), прикрепленной к шприцу. В некоторых вариантах осуществления поршень этого шприца может управляться механическим устройством, как, например, путем нажатия на ножную педаль. Благодаря проведению склеротомии узкую канюлю продвигают через полость стекловидного тела в участок сетчатки, предварительно определенный для каждого субъекта в соответствии с зоной сетчатки, подлежащей целенаправленному воздействию (но за пределами центральной зоны сетчатки). При непосредственной визуализации суспензию вектора вводят путем механической инъекции под нейросенсорную часть сетчатки, что вызывает локальное отслоение сетчатки с самозатягивающимся нерасширяющимся разрезом сетчатки. Как отмечено выше, композицию на основе rAAV можно вводить путем прямой инъекции в субретинальное пространство, создавая пузырек за пределами центральной зоны сетчатки, либо вектор можно вводить путем инъекции в первоначальный пузырек за пределами центральной зоны сетчатки, вызывая его расширение (и расширение зоны отслоения сетчатки). В некоторых вариантах осуществления за инъекцией композиции на основе rAAV следует инъекция другой жидкости в пузырек.
Не желая ограничиваться какой-либо теорией, полагают, что скорость и местоположение субретинальной(субретинальных) инъекции(инъекций) могут обуславливать возникновение локальных сил сдвига, которые могут повреждать желтое пятно, центральную ямку и/или нижележащие клетки RPE. Субретинальные инъекции можно проводить при скорости, при которой силы сдвига сводятся к минимуму или исключаются. В некоторых вариантах осуществления композицию на основе rAAV вводят путем инъекции в течение приблизительно 15-17 минут. В некоторых вариантах осуществления вектор вводят путем инъекции в течение приблизительно 17-20 минут. В некоторых вариантах осуществления композицию на основе rAAV вводят путем инъекции в течение приблизительно 20-22 минут. В некоторых вариантах осуществления композицию на основе rAAV вводят путем инъекции при скорости от приблизительно 35 до приблизительно 65 мкл/мин. В некоторых вариантах осуществления композицию на основе rAAV вводят путем инъекции при скорости приблизительно 35 мкл/мин. В некоторых вариантах осуществления композицию на основе rAAV вводят путем инъекции при скорости приблизительно 40 мкл/мин. В некоторых вариантах осуществления композицию на основе rAAV вводят путем инъекции при скорости приблизительно 45 мкл/мин. В некоторых вариантах осуществления композицию на основе rAAV вводят путем инъекции при скорости приблизительно 50 мкл/мин. В некоторых вариантах осуществления композицию на основе rAAV вводят путем инъекции при скорости приблизительно 55 мкл/мин. В некоторых вариантах осуществления композицию на основе rAAV вводят путем инъекции при скорости приблизительно 60 мкл/мин. В некоторых вариантах осуществления композицию на основе rAAV вводят путем инъекции при скорости приблизительно 65 мкл/мин. Специалисту в данной области будет понятно, что скорость и продолжительность инъекции в пузырек может определяться, например, объемом композиции на основе rAAV или размером пузырька, необходимым для создания достаточного отслоения сетчатки для получения доступа к клеткам центральной зоны сетчатки, размером канюли, применяемой для доставки композиции на основе rAAV, и возможностью безопасного сохранения положения канюли по настоящему изобретению.
В некоторых вариантах осуществления настоящего изобретения объем композиции, вводимой путем инъекции в субретинальное пространство сетчатки, превышает приблизительно любое количество из 1 мкл, 2 мкл, 3 мкл, 4 мкл, 5 мкл, 6 мкл, 7 мкл, 8 мкл, 9 мкл, 10 мкл, 15 мкл, 20 мкл, 25 мкл, 50 мкл, 75 мкл, 100 мкл, 200 мкл, 300 мкл, 400 мкл, 500 мкл, 600 мкл, 700 мкл, 800 мкл, 900 мкл или 1 мл или любое количество между ними.
Можно создать один или несколько (например, 2, 3 или более) пузырьков. Как правило, общий объем пузырька или пузырьков, создаваемых с помощью способов и систем по настоящему изобретению, не может превышать объем жидкости в глазу, например, приблизительно 4 мл у типичного субъекта-человека. Общий объем каждого отдельного пузырька предпочтительно составляет по меньшей мере приблизительно 0,3 мл или более предпочтительно по меньшей мере приблизительно 0,5 мл для обеспечения отслоения сетчатки достаточного размера для обнажения типов клеток центральной зоны сетчатки и создания пузырька с достаточной способностью к оседанию для оптимальных действий. Специалисту в данной области будет понятно, что при создании пузырька согласно способам и системам по настоящему изобретению необходимо поддерживать соответствующее внутриглазное давление во избежание повреждения структур глаза. Размер каждого отдельного пузырька может составлять, например, от приблизительно 0,5 до приблизительно 1,2 мл, от приблизительно 0,8 до приблизительно 1,2 мл, от приблизительно 0,9 до приблизительно 1,2 мл, от приблизительно 0,9 до приблизительно 1,0 мл, от приблизительно 1,0 до приблизительно 2,0 мл, от приблизительно 1,0 до приблизительно 3,0 мл. Таким образом, в одном примере для инъекции в общей сложности 3 мл суспензии композиции на основе rAAV можно сформировать 3 пузырька приблизительно по 1 мл каждый. Общий объем всех пузырьков в комбинации может составлять, например, от приблизительно 0,5 до приблизительно 3,0 мл, от приблизительно 0,8 до приблизительно 3,0 мл, от приблизительно 0,9 до приблизительно 3,0 мл, от приблизительно 1,0 до приблизительно 3,0 мл, от приблизительно 0,5 до приблизительно 1,5 мл, от приблизительно 0,5 до приблизительно 1,2 мл, от приблизительно 0,9 до приблизительно 3,0 мл, от приблизительно 0,9 до приблизительно 2,0 мл, от приблизительно 0,9 до приблизительно 1,0 мл.
В целях безопасной и эффективной трансдукции в целевых зонах сетчатки (например, в центральной зоне сетчатки) за пределами границ исходного местоположения пузырька пузырек можно подвергнуть действиям по перемещению пузырька в целевую зону для трансдукции. Действия с пузырьком могут происходить благодаря способности пузырька к оседанию, создаваемой объемом пузырька, посредством перемещения глаза, содержащего пузырек, перемещения головы человека с глазом или глазами, содержащими один или несколько пузырьков, и/или путем обмена жидкость-воздух. Это особенно относится к центральной зоне сетчатки, поскольку эта зона обычно является устойчивой к отслоению в результате субретинальной инъекции. В некоторых вариантах осуществления для перемещения пузырька используют обмен жидкость-воздух; жидкость из инфузионной канюли временно замещают воздухом, например, воздухом, выдуваемым на поверхность сетчатки. Поскольку объем воздуха вытесняет жидкость полости стекловидного тела с поверхности сетчатки, жидкость из полости стекловидного тела может вытекать из канюли. Временное отсутствие давления жидкости полости стекловидного тела вызывает движение и перемещение пузырька под действием силы тяжести в нижнюю часть глаза. С пузырьком с субретинально введенной композицией на основе rAAV производят действия для охвата прилегающих зон (например, желтого пятна и/или центральной ямки) посредством соответствующего размещения глазного яблока. В некоторых случаях масса пузырька является достаточной, чтобы вызвать его перемещение под действием силы тяжести даже без применения обмена жидкость-воздух. Движение пузырька в желаемое местоположение можно дополнительно облегчить путем изменения положения головы субъекта для того, чтобы позволить пузырьку переместиться под действием силы тяжести в желаемое местоположение в глазу. По достижении желаемой конфигурации пузырька жидкость возвращают в полость стекловидного тела. Жидкость представляет собой подходящую жидкость, например, свежеприготовленный физиологический раствор. Как правило, субретинально введенную композицию на основе rAAV можно оставить in situ без ретинопексии разреза сетчатки и без внутриглазной тампонады, и сетчатка самопроизвольно повторно прикрепляется в течение приблизительно 48 часов.
Благодаря безопасной и эффективной трансдукции клеток глаза (например, клеток трабекулярной сети) с помощью вектора, содержащего терапевтический полипептид или последовательность РНК, способы по настоящему изобретению можно применять для лечения индивидуума, например, человека с миоцилиновой (MYOC) глаукомой, при этом трансдуцированные клетки продуцируют терапевтический полипептид или последовательность РНК в количестве, достаточном для лечения миоцилиновой (MYOC) глаукомы.
Эффективное количество rAAV (в некоторых вариантах осуществления в форме частиц) вводят в зависимости от целей лечения. Например, если при низкой процентной доле трансдукции можно достичь желаемого терапевтического эффекта, то целью лечения, как правило, является соответствие этому уровню трансдукции или его превышение. В некоторых случаях этого уровня трансдукции можно достичь путем трансдукции лишь приблизительно 1-5% клеток-мишеней, в некоторых вариантах осуществления по меньшей мере приблизительно 20% клеток желаемого типа ткани, в некоторых вариантах осуществления по меньшей мере приблизительно 50%, в некоторых вариантах осуществления по меньшей мере приблизительно 80%, в некоторых вариантах осуществления по меньшей мере приблизительно 95%, в некоторых вариантах осуществления по меньшей мере приблизительно 99% клеток желаемого типа ткани. Как обсуждается выше, замена одной или нескольких аминокислот капсида rAAV, которые взаимодействуют с HSPG, улучшает трансдукцию, опосредованную rAAV. В качестве руководства, число частиц, вводимых в расчете на одну инъекцию, как правило, составляет от приблизительно 1×106 до приблизительно 1×1014 частиц, от приблизительно 1×107 до 1×1013 частиц, от приблизительно 1×109 до 1×1012 частиц или приблизительно 1×1011 частиц. Композицию на основе rAAV можно вводить путем одной или нескольких субретинальных инъекций, производимых в ходе одной и той же процедуры или разделенных несколькими днями, неделями, месяцами или годами. В некоторых вариантах осуществления для лечения человека можно применять несколько векторов.
В некоторых вариантах осуществления введение в глаз эффективного количества вирусных частиц rAAV приводит к трансдукции более чем приблизительно 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75% или 100% или любого количества клеток глаза в этих промежутках. В некоторых вариантах осуществления от приблизительно 5% до приблизительно 100%, от приблизительно 10% до приблизительно 50%, от приблизительно 10% до приблизительно 30%, от приблизительно 25% до приблизительно 75%, от приблизительно 25% до приблизительно 50% или от приблизительно 30% до приблизительно 50% клеток глаза являются трансдуцированными. Способы идентификации клеток глаза, трансдуцированных вирусными частицами AAV, содержащими капсид rAAV, известны из уровня техники; например, можно применять иммуногистохимический анализ или маркер, такой как усиленный зеленый флуоресцентный белок, для выявления трансдукции вирусными частицами.
В некоторых вариантах осуществления введение в трабекулярную сеть эффективного количества вирусных частиц rAAV приводит к трансдукции более чем приблизительно 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75% или 100% или любого количества клеток трабекулярной сети в этих промежутках. В некоторых вариантах осуществления от приблизительно 5% до приблизительно 100%, от приблизительно 10% до приблизительно 50%, от приблизительно 10% до приблизительно 30%, от приблизительно 25% до приблизительно 75%, от приблизительно 25% до приблизительно 50% или от приблизительно 30% до приблизительно 50% клеток трабекулярной сети являются трансдуцированными. Способы идентификации клеток трабекулярной сети, трансдуцированных вирусными частицами AAV, содержащими капсид rAAV, известны из уровня техники; например, можно применять иммуногистохимический анализ или маркер, такой как усиленный зеленый флуоресцентный белок, для выявления трансдукции вирусными частицами.
В некоторых вариантах осуществления настоящего изобретения способы включают введение в глаз млекопитающего эффективного количества вирусных частиц AAV для лечения индивидуума с миоцилиновой (MYOC) глаукомой, например, человека с миоцилиновой (MYOC) глаукомой. В некоторых вариантах осуществления композицию вводят путем инъекции в одно или несколько местоположений в глазу для обеспечения экспрессии гетерологичной нуклеиновой кислоты в клетках глаза. В некоторых вариантах осуществления композицию вводят путем инъекции в любое из одного, двух, трех, четырех, пяти, шести, семи, восьми, девяти, десяти или более десяти местоположений в глазу.
В некоторых вариантах осуществления настоящего изобретения способы включают введение в трабекулярную сеть млекопитающего эффективного количества вирусных частиц AAV для лечения индивидуума с миоцилиновой (MYOC) глаукомой, например, человека с миоцилиновой (MYOC) глаукомой. В некоторых вариантах осуществления композицию вводят путем инъекции в одно или несколько местоположений в трабекулярной сети для обеспечения экспрессии гетерологичной нуклеиновой кислоты в клетках трабекулярной сети. В некоторых вариантах осуществления композицию вводят путем инъекции в любое из одного, двух, трех, четырех, пяти, шести, семи, восьми, девяти, десяти или более десяти местоположений в трабекулярной сети.
В некоторых вариантах осуществления вирусные частицы rAAV инъецируют в более чем одно местоположение одновременно или последовательно. В некоторых вариантах осуществления многократные инъекции вирусных частиц rAAV проводят с интервалом не более чем в один час, два часа, три часа, четыре часа, пять часов, шесть часов, девять часов, двенадцать часов или 24 часа.
Способы интравитреальной инъекции
Общий способ интравитреальной инъекции можно проиллюстрировать следующим кратким обзором. Этот пример направлен лишь на иллюстрацию определенных признаков способа и никаким образом не подразумевается как ограничивающий. Процедуры интравитреальной инъекции известны из уровня техники (см., например, Peyman, G.A., et al. (2009) Retina 29(7):875-912 и Fagan, X.J. и Al-Qureshi, S. (2013) Clin. Experiment. Ophthalmol. 41(5):500-7).
Вкратце, субъекта можно подготовить к процедуре интравитреальной инъекции путем расширения зрачков, стерилизации глаза и введения анестетика. Для расширения зрачков можно применять любое подходящее мидриатическое средство, известное в данной области техники. Перед лечением можно подтвердить надлежащее расширение зрачков. Стерилизацию можно осуществлять путем применения стерилизующей обработки глаза, например, йодидсодержащего раствора, такого как повидон-йод (BETADINE®). Аналогичный раствор также можно применять для очистки века, ресниц и любых других соседних тканей (например, кожи). Можно применять любой подходящий анестетик, такой как лидокаин или пропаракаин, в любой подходящей концентрации. Анестетик можно вводить с помощью любого способа, известного из уровня техники, в том числе, без ограничения, в составе капель, гелей или желе местного действия и путем субконъюнктивального применения анестетика.
Перед инъекцией можно применять стерилизованный векорасширитель для удаления ресниц от зоны. Место инъекции можно отметить шприцем. Место инъекции можно выбрать в зависимости от хрусталика пациента. Например, место инъекции может находиться на расстоянии 3-3,5 мм от лимба роговицы у пациентов с псевдофакичным или афакичным глазом и на расстоянии 3,5-4 мм от лимба роговицы у пациентов с факичным глазом. Пациент может смотреть в сторону, противоположную месту инъекции.
Во время инъекции игла может быть вставлена перпендикулярно склере и направлена в центр глаза. Игла может быть вставлена таким образом, чтобы кончик заканчивался в стекловидном теле, а не в субретинальном пространстве. Можно применять любой подходящий объем для инъекции, известный из уровня техники. После инъекции глаз можно обработать стерилизующим средством, таким как антибиотик. Глаз также можно промыть для удаления избытка стерилизующего средства.
Способы интракамеральной инъекции
Способы интракамеральной инъекции известны из уровня техники. Неограничивающий пример интракамерального введения представлен в Buie, et al., (2010) IOVS 51(1):236-248.
Эффективность доставки rAAV путем интравитреальной или интракамеральной инъекции можно контролировать по нескольким критериям, описанным в данном документе. Например, после лечения субъекта с применением способов по настоящему изобретению у субъекта можно оценивать, например, улучшение, и/или стабилизацию, и/или задержку прогрессирования одного или нескольких признаков или симптомов болезненного состояния по одному или нескольким клиническим параметрам, включающим описанные в данном документе. Примеры таких тестов известны из уровня техники и включают объективные, а также субъективные (например, сообщаемые субъектами) показатели. Например, для измерения эффективности лечения в отношении зрительной функции субъекта можно оценивать одно или несколько из следующего: субъективное качество зрения или улучшенная функция центрального зрения субъекта (например, по улучшению способности субъекта к свободному чтению и узнаванию лиц), визуальная подвижность субъекта (например, по уменьшению времени, необходимого для прохождения лабиринта), острота зрения (например, по улучшению количественного показателя субъекта по LogMAR), показатели микропериметрии (например, по улучшению количественного показателя субъекта в dB), показатели периметрии глаза, адаптированного к темноте (например, по улучшению количественного показателя субъекта в dB), показатели тонкого матричного картирования (например, по улучшению количественного показателя субъекта в dB), показатели периметрии по Гольдману (например, по уменьшению размера зоны скотомы (т. е. зон слепоты) и улучшению способности к различению более мелких целей), показатели чувствительности к мельканиям (например, по улучшению в герцах), аутофлуоресценции и электрофизиологических показателей (например, по улучшению ERG). В некоторых вариантах осуществления зрительную функцию измеряют по визуальной подвижности субъекта. В некоторых вариантах осуществления зрительную функцию измеряют по остроте зрения субъекта. В некоторых вариантах осуществления зрительную функцию измеряют с помощью микропериметрии. В некоторых вариантах осуществления зрительную функцию измеряют с помощью периметрии глаза, адаптированного к темноте. В некоторых вариантах осуществления зрительную функцию измеряют с помощью ERG. В некоторых вариантах осуществления зрительную функцию измеряют по субъективному качеству зрения субъекта.
Для любых способов или композиций, описанных в данном документе, для оценки эффективности лечения, описанного в данном документе, или для диагностики пациентов, которые могут получить улучшения при использовании описанного в данном документе лечения, можно использовать диагностическое исследование в отношении миоцилиновой (MYOC) глаукомы. В области техники известно множество исследований для диагностики или контроля миоцилиновой (MYOC) глаукомы. Например, для обследования зрительного нерва, который может быть поврежден миоцилиновой (MYOC) глаукомой, можно применять офтальмоскопию, лазерную поляриметрию, глазную когерентную томографию и/или сканирующую лазерную томографию. Внутриглазное давление можно измерить с помощью тонометрии. Пахиметр можно применять для измерения толщины центральной роговицы (например, тонкая центральная толщина роговицы может служить прогнозом для миоцилиновой (MYOC) глаукомы). Для оценки поля зрения можно применять исследование поля зрения.
Как описано выше, миоцилиновые мутации вовлечены в развитие первичной открытоугольной миоцилиновой (MYOC) глаукомы (POAG). Таким образом, для оценки эффективности лечения, описанного в данном документе, или для диагностики пациентов, которые могут получить улучшения при использовании описанного в данном документе лечения, можно использовать диагностическое исследование в отношении POAG. Любое диагностическое исследование для диагностики POAG, известное в области техники, можно применять, например, для различения POAG от другой формы миоцилиновой (MYOC) глаукомы (такой как закрытоугольная глаукома). Например, для оценки, которая помогает диагностировать POAG, можно применять гониоскопию.
Эффективность лечения миоцилиновой (MYOC) глаукомы можно исследовать на животной модели. Животные модели для миоцилиновой (MYOC) глаукомы известны из области техники. Например, было продемонстрировано, что у мышей, экспрессирующих MYOC Y437H человека или MYOC Y423H мыши, развиваются симптомы миоцилиновой (MYOC) глаукомы, подобные POAG (см. Zode et al. (2011) J. Clin. Invest. 121(9):3542-53 и Senatorov, V., et al. (2006) J. Neurosci. 26(46):11903-14). Кроме того, мыши с отсутствием альфа-субъединицы рецептора оксида азота, растворимой гуанилатциклазы, являются еще одной моделью POAG (Buys, E.S., et al. (2013) PLoS ONE 8(3):e60156). Также были разработаны крысиные модели; крысы, экспрессирующие TGF-бета человека, доставленный посредством переноса гена с помощью аденовируса, показывают повышенное IOP (Shepard, A.R., et al. (2010) Invest. Ophthalmol. 51(4):2067-76). Дополнительное описание других животных моделей для различных аспектов POAG, включая модели на примате, собаке и данио, можно найти в Bouhenni, R.A., et al. (2012) J. Biomed. Biotechnol. 2012:692609).
При некоторых глазных нарушениях имеет место феномен "клетки-няни", при котором улучшение функции одного типа клеток приводит к улучшению функции другого. Например, трансдукция RPE центральной зоны сетчатки, опосредованная rAAV по настоящему изобретению, может в таком случае улучшать функцию палочек, и, в свою очередь, улучшение функции палочек приводит к улучшению функции колбочек. Соответственно, лечение в отношении одного типа клеток может приводить к улучшению функции другого. При миоцилиновой (MYOC) глаукоме снижение IOP посредством трансдукции TM будет уменьшать дегенерацию структуры и функции ганглионарных клеток.
Выбор конкретного вектора и композиции на основе rAAV зависит от ряда различных факторов, включающих, без ограничения, индивидуальный анамнез человека и характерные особенности состояния и индивидуума, подвергаемых лечению. Оценка таких характерных особенностей и разработка соответствующего режима терапии в конечном счете является ответственностью лечащего врача.
Композиции по настоящему изобретению (например, вирусные частицы AAV, кодирующие RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант и/или средство для RNAi в отношении MYOC (например, shRNA)) можно использовать отдельно или в комбинации с одним или несколькими дополнительными терапевтическими средствами для лечения глазных нарушений. Интервал между последовательными введениями может измеряться в сроках по меньшей мере (или, в качестве альтернативы, менее чем) минут, часов или дней.
В некоторых вариантах осуществления в трабекулярную сеть можно вводить одно или несколько дополнительных терапевтических средств. Неограничивающие примеры дополнительного терапевтического средства включают простогландины, такие как ксалатан, лумиган, траватан Z и рескула; бета-блокаторы, в том числе тимоптик XE, исталол и бетоптик S; альфа-адренергические агонисты, в том числе иопидин, альфаган и альфаган-P; ингибиторы карбоангидразы, в том числе трусопт и азопт, диамокс, нептазан и даранид; парасимпатомиметики, в том числе пилокарпин, карбахол, эхотиофат и демекарий; эпинефрины, в том числе пропин; или комбинированное лечение, включающее косопт, комбиган и дуотрав.
IV. Экспрессионные конструкции
В настоящем изобретении предусматривают способы доставки гетерологичной нуклеиновой кислоты в глаз путем субретинальной доставки вектора на основе rAAV, содержащего гетерологичную нуклеиновую кислоту, и где вектор на основе rAAV инкапсидирован в капсид rAAV, содержащий одну или несколько аминокислотных замен, которые взаимодействуют с HSPG. В некоторых вариантах осуществления гетерологичная нуклеиновая кислота (например, трансген) функционально связана с промотором. Иллюстративные промоторы включают, без ограничения, промотор гена немедленного раннего ответа цитомегаловируса (CMV), LTR RSV, LTR MoMLV, промотор фосфоглицераткиназы-1 (PGK), промотор вируса обезьян 40 (SV40) и промотор CK6, промотор транстиретина (TTR), промотор TK, тетрациклин-чувствительный промотор (TRE), промотор HBV, промотор hAAT, LSP-промотор, химерные печень-специфические промоторы (LSP), промотор E2F, промотор теломеразы (hTERT); энхансер цитомегаловируса/промотор бета-актина курицы/промотор β-глобина кролика (промотор CAG; Niwa et al., Gene, 1991, 108(2):193-9) и промотор фактора элонгации 1-альфа (EF1-альфа) (Kim et al., Gene, 1990, 91(2):217-23 и Guo et al., Gene Ther., 1996, 3(9):802-10). В некоторых вариантах осуществления промотор включает в себя промотор β-глюкуронидазы человека или энхансер цитомегаловируса, соединенный с промотором β-актина курицы (CBA). Промотор может представлять собой конститутивный, индуцируемый или репрессируемый промотор. В некоторых вариантах осуществления промотор способен обеспечивать экспрессию гетерологичной нуклеиновой кислоты в клетке глаза. В некоторых вариантах осуществления промотор способен обеспечивать экспрессию гетерологичной нуклеиновой кислоты в фоторецепторных клетках или RPE. В вариантах осуществления промотор представляет собой промотор родопсинкиназы (RK); например, промотор RK человека. В некоторых вариантах осуществления промотор представляет собой промотор опсина; например, промотор опсина человека или промотор опсина мыши. В некоторых вариантах осуществления промотор представляет собой промотор РНК-полимеразы III. В некоторых вариантах осуществления настоящего изобретения предусматривают способы лечения миоцилиновой (MYOC) глаукомы у млекопитающего (например, человека) посредством введения в глаз млекопитающего частицы rAAV, содержащей вектор на основе rAAV, кодирующий полипептиды RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, под контролем промотора CBA. В некоторых вариантах осуществления настоящего изобретения предусматривают способы лечения миоцилиновой (MYOC) глаукомы у млекопитающего (например, человека) посредством введения в глаз млекопитающего частицы rAAV, содержащей вектор на основе rAAV, кодирующий средство для RNAi (например, shRNA), которое целенаправленно воздействует (например, снижает или ингибирует) на MYOC (например, MYOC человека), под контролем промотора CBA. В некоторых вариантах осуществления настоящего изобретения предусматривают способы лечения миоцилиновой (MYOC) глаукомы у млекопитающего (например, человека) посредством введения в глаз млекопитающего частицы rAAV, содержащей вектор на основе rAAV, кодирующий полипептиды RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, под контролем промотора CBA и частицы rAAV, содержащей вектор на основе rAAV, кодирующий средство для RNAi (например, shRNA), которое целенаправленно воздействует (например, снижает или ингибирует) на MYOC (например, MYOC человека), под контролем промотора CBA. В некоторых вариантах осуществления настоящего изобретения предусматривают способы лечения миоцилиновой (MYOC) глаукомы у млекопитающего (например, человека) посредством введения в глаз млекопитающего частицы rAAV, содержащей вектор на основе rAAV, кодирующий полипептиды RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, под контролем промотора CBA и средство для RNAi (например, shRNA), которое целенаправленно воздействует (например, снижает или ингибирует) на MYOC (например, MYOC человека), под контролем промотора CBA.
Настоящее изобретение рассматривает применение рекомбинантного вирусного генома для введения одной или нескольких последовательностей нуклеиновых кислот, кодирующих терапевтический полипептид и/или нуклеиновую кислоту, для упаковки в вирусную частицу rAAV. Рекомбинантный вирусный геном может содержать любой элемент для осуществления экспрессии терапевтических полипептида и/или нуклеиновой кислоты, например, промотор, ITR, элемент связывания рибосомы, терминатор, энхансер, селективный маркер, интрон, сигнал поли-А и/или точку начала репликации.
В некоторых аспектах в настоящем изобретении представлены вирусные частицы, содержащие рекомбинантный самокомплементарный геном. Вирусные частицы AAV с самокомплементарными геномами и способы применения самокомплементарных геномов AAV описаны в патентах США №№ 6596535; 7125717; 7765583; 7785888; 7790154; 7846729; 8093054; и 8361457; и Wang Z., et al., (2003) Gene Ther 10:2105-2111, каждый из которых включен в данный документ посредством ссылки в полном объеме. rAAV, содержащий самовзаимодополняющий геном, будет быстро образовывать двухцепочечную молекулу ДНК благодаря своим частично комплементарным последовательностям (например, комплементарным кодирующим и некодирующим цепям трансгена). В некоторых вариантах осуществления первая гетерологичная последовательность нуклеиновой кислоты и вторая гетерологичная последовательность нуклеиновой кислоты соединены с помощью мутированного ITR (например, правого ITR). В некоторых вариантах осуществления ITR содержит полинуклеотидную последовательность 5'-CACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCACGCCCGGGCTTTGCCCGGGCG - 3' (SEQ ID NO: 20). Мутированный ITR характеризуется делецией D-области, содержащей последовательность концевого разрешения. В результате, при репликации вирусного генома AAV белки rep не отщепляют вирусный геном на мутированном ITR, и как таковой, рекомбинантный вирусный геном, содержащий следующее в порядке от 5' к 3', будет упакован в вирусный капсид: ITR AAV, первая гетерологичная полинуклеотидная последовательность, в том числе регуляторные последовательности, мутированный ITR AAV, второй гетерологичный полинуклеотид в обратной ориентации по отношению к первому гетерологичному полинуклеотиду и третий ITR AAV.
VI. Вирусные частицы и способы получения вирусных частиц
Вирусные частицы rAAV
В настоящем изобретении предусматривают способы применения частиц rAAV для лечения миоцилиновой (MYOC) глаукомы и предусматривают композиции, содержащие частицы rAAV. В некоторых вариантах осуществления вирусная частица представляет собой рекомбинантную частицу AAV, содержащую нуклеиновую кислоту, содержащую последовательность, которая кодирует полипептиды RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант и/или средство для RNAi в отношении MYOC (например, shRNA), описанные в данном документе, фланкированные одним или двумя ITR. Нуклеиновая кислота инкапсидирована в частице AAV. Частица AAV также содержит капсидные белки. В некоторых вариантах осуществления нуклеиновая кислота содержит представляющую интерес кодирующую последовательность (последовательности) (например, нуклеиновую кислоту, кодирующую полипептиды RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант и/или средство для RNAi в отношении MYOC (например, shRNA)), функционально связанные компоненты в направлении транскрипции, контролирующие последовательности, в том числе последовательности инициации и терминации, с образованием, таким образом, кассеты экспрессии. Кассета экспрессии фланкирована на 5'- и 3'-конце по меньшей мере одной функциональной последовательностью ITR AAV. Под "функциональными последовательностями ITR AAV" подразумевается, что последовательности ITR функционируют в качестве предполагаемых для спасения, репликации и упаковки вириона AAV. См. Davidson et al., PNAS, 2000, 97(7)3428-32; Passini et al., J. Virol., 2003, 77(12):7034-40; и Pechan et al., Gene Ther., 2009, 16:10-16, все из которых включены в данный документ во всей своей полноте посредством ссылки. Для практического использования некоторых аспектов настоящего изобретения рекомбинантные векторы содержат по меньшей мере все из последовательностей AAV, необходимых для капсидирования, и физические структуры для инфицирования rAAV. ITR AAV для использования в векторах по настоящему изобретению не требуют наличия нуклеотидной последовательности дикого типа (например, как описано у Kotin, Hum. Gene Ther., 1994, 5:793-801) и могут быть изменены посредством вставки, делеции или замены нуклеотидов, или ITR AAV могут происходить из любого из нескольких серотипов AAV. В настоящее время известно более 40 серотипов AAV, и продолжают идентифицироваться новые серотипы и варианты существующих серотипов. См. Gao et al., PNAS, 2002, 99(18): 11854-6; Gao et al., PNAS, 2003, 100(10):6081-6; и Bossis et al., J. Virol., 2003, 77(12):6799-810. Использование любого серотипа AAV рассматривается в пределах объема настоящего изобретения. В некоторых вариантах осуществления вектор на основе rAAV представляет собой вектор, полученный из серотипа AAV, включая без ограничения AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAVrh8, AAVrh8R, AAV9, AAV10, AAVrh10, AAV11, AAV12, AAV2R471A, AAV DJ, козий AAV, бычий AAV или мышиный AAV или т. п. В некоторых вариантах осуществления нуклеиновая кислота в AAV содержит ITR из AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAVrh8, AAVrh8R, AAV9, AAV10, AAVrh10, AAV11, AAV12, AAV2R471A, AAV DJ, AAV козы, бычьего AAV или инвертированные концевые повторы (ITR) серотипа мышиного AAV или т. п. В некоторых вариантах осуществления нуклеиновая кислота в AAV дополнительно кодирует полипептиды RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант; средство для RNAi в отношении MYOC (например, shRNA); или полипептиды RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, и MYOC, как описано в данном документе. Например, нуклеиновая кислота в AAV может содержать по меньшей мере один ITR любого серотипа AAV, рассмотренного в данном документе, и может дополнительно кодировать нуклеиновую кислоту, кодирующую средство для RNAi в отношении MYOC (например, shRNA), целенаправленно воздействующее на SEQ ID NO:6 и содержащее последовательность петли под SEQ ID NO: 7 и/или одно или несколько из следующего: RSPO1, содержащий SEQ ID NO: 8, 11 и/или 12; RSPO2, содержащий SEQ ID NO: 9, 13 и/или 14; RSPO3, содержащий SEQ ID NO: 1, 15, 16 и/или 17; и RSPO4, содержащий SEQ ID NO: 10, 18 и/или 19. В некоторых вариантах осуществления нуклеиновая кислота кодирует RSPO1, который по меньшей мере приблизительно на 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичен SEQ ID NO: 8, 11 или 12; RSPO2, который по меньшей мере приблизительно на 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичен SEQ ID NO: 9, 13 или 14; RSPO3, который по меньшей мере приблизительно на 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичен SEQ ID NO: 1 или 15-17; или RSPO4, который по меньшей мере приблизительно на 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичен SEQ ID NO: 10, 18 или 19.
В дополнительных вариантах осуществления частица rAAV содержит капсидные белки AAV1, AAV2, AAV3, AAV4, AAV5, AAV6 (например, капсид AAV6 дикого типа или капсид варианта AAV6, такой как ShH10, как описано в публикации заявки на патент США 2012/0164106), AAV7, AAV8, AAVrh8, AAVrh8R, AAV9 (например, капсид AAV9 дикого типа или капсид модифицированного AAV9, как описано в публикации заявки на патент США 2013/0323226), AAV10, AAVrh10, AAV11, AAV12, мутантного капсида, содержащего тирозин, мутантного капсида с гепарин-связывающим мотивом, капсида AAV2R471A, капсида AAVAAV2/2-7m8, капсида AAV DJ (например, капсид AAV-DJ/8, капсид AAV-DJ/9 или любой другой из капсидов, описанных в публикации заявки на патент США 2012/0066783), капсида AAV2 N587A, капсида AAV2 E548A, капсида AAV2 N708A, капсида AAV V708K, капсида козьего AAV, химерного капсида AAV1/AAV2, капсида бычьего AAV, капсида мышиного AAV, капсида rAAV2/HBoV1, капсида AAV, описанных в патенте США № 8283151 или в Международной публикации № WO/2003/042397. В некоторых вариантах осуществления вирусная частица AAV содержит капсид AAV, содержащий аминокислотную замену в одном или нескольких положениях R484, R487, K527, K532, R585 или R588, нумерация которых приведена согласно VP1 AAV2. В дополнительных вариантах осуществления частица AAV содержит капсидные белки серотипа AAV из клад A-F. В некоторых вариантах осуществления мутантный капсидный белок сохраняет способность образовывать капсид AAV. В некоторых вариантах осуществления частицы rAAV содержат капсидный белок, который обеспечивает трансдукцию в трабекулярной сети. В некоторых вариантах осуществления частицы rAAV содержат мутантный капсидный белок, который обеспечивает трансдукцию в трабекулярной сети. В некоторых вариантах осуществления частица rAAV содержит капсидные белки AAV2, где капсидный белок содержит аминокислотную замену R471A, нумерация которой приведена согласно VP1 AAV2 (Lochrie et al., J Virol (2006) 80(2):821-834). В некоторых вариантах осуществления в настоящем изобретении предусматривают частицы rAAV, содержащие вектор, кодирующий полипептиды RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант; капсид AAV2, содержащий аминокислотную замену R471A, нумерация которой приведена согласно VP1 AAV2; и/или вектор, кодирующий средство для RNAi в отношении MYOC (например, shRNA).
В некоторых вариантах осуществления в настоящем изобретении предусматривают композиции и способы для лечения миоцилиновой (MYOC) глаукомы у млекопитающего, где вирусную частицу rAAV2, содержащую вектор на основе rAAV, кодирующий полипептиды RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, доставляют в глаз млекопитающего, где различные части глаза могут подвергаться трансдукции (например, сетчатка), и вирусную частицу rAAV2 R471A, содержащую вектор на основе rAAV, кодирующий средство для RNAi в отношении MYOC, доставляют в глаз млекопитающего, где клетки трабекулярной сети являются трансдуцированными. В некоторых вариантах осуществления в настоящем изобретении предусматривают композиции и способы для лечения миоцилиновой (MYOC) глаукомы у млекопитающего, где вирусную частицу rAAV2 R471A, содержащую вектор на основе rAAV, кодирующий полипептиды RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, и вирусную частицу rAAV2 R471A, содержащую вектор на основе rAAV, кодирующий средство для RNAi в отношении MYOC, доставляют в глаз млекопитающего, где клетки трабекулярной сети являются трансдуцированными. В некоторых вариантах осуществления в настоящем изобретении предусматривают композиции и способы для лечения миоцилиновой (MYOC) глаукомы у млекопитающего, где вирусную частицу rAAV2 R471A, содержащую вектор на основе rAAV, кодирующий полипептиды RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант и кодирующий средство для RNAi в отношении MYOC, доставляют в глаз млекопитающего, где клетки трабекулярной сети являются трансдуцированными.
В некоторых аспектах в настоящем изобретении предусматривают композиции и способы доставки трансгена (например, терапевтического трансгена в трабекулярную сеть глаза). В некоторых вариантах осуществления в композициях и способах применяют частицу rAAV2, содержащую мутантный капсид, где капсид содержит аминокислотную замену R471A, нумерация которой приведена согласно VP1 AAV2. Такие композиции и способы могут быть использованы при лечении глазного заболевания; например, глазного заболевания, связанного с трабекулярной сетью, такого как миоцилиновая (MYOC) глаукома.
Для оптимизации трансдукции определенных клеток-мишеней или для нацеливания специфических типов клеток в пределах определенной ткани-мишени (например,больной ткани) используются различные серотипы AAV. Частица rAAV может содержать вирусные белки и вирусные нуклеиновые кислоты из того же серотипа или смешанного серотипа.
Самокомплементарные вирусные геномы AAV
В некоторых аспектах в настоящем изобретении представлены вирусные частицы, содержащие рекомбинантный самокомплементарный геном. Вирусные частицы AAV с самокомплементарными геномами и способы применения самокомплементарных геномов AAV описаны в патентах США №№ 6596535; 7125717; 7765583; 7785888; 7790154; 7846729; 8093054; и 8361457; и Wang Z., et al., (2003) Gene Ther 10:2105-2111, каждый из которых включен в данный документ посредством ссылки в полном объеме. rAAV, содержащий самовзаимодополняющий геном, будет быстро образовывать двухцепочечную молекулу ДНК благодаря своим частично комплементарным последовательностям (например, комплементарным кодирующим и некодирующим цепям трансгена). В некоторых вариантах осуществления настоящее изобретение предусматривает вирусную частицу AAV, содержащую геном AAV, где геном rAAV содержит первую гетерологичную полинуклеотидную последовательность (например, кодирующую цепь miR-708 и/или родопсина) и вторую гетерологичную полинуклеотидную последовательность (например, антисмысловую цепь miR-708 и/или некодирующую или антисмысловую цепь родопсина), где первая гетерологичная полинуклеотидная последовательность может образовывать внутрицепочечные пары оснований со второй полинуклеотидной последовательностью вдоль большей части или всей ее длины. В некоторых вариантах осуществления первая гетерологичная полинуклеотидная последовательность и вторая гетерологичная полинуклеотидная последовательность связаны с помощью последовательности, которая облегчает внутрицепочечное спаривание оснований, например, шпилечной структуры ДНК. Шпилечные структуры известны в данной области техники, например в молекулах siRNA. В некоторых вариантах осуществления первая гетерологичная полинуклеотидная последовательность и вторая гетерологичная полинуклеотидная последовательность связаны с помощью мутированного ITR (например, правого ITR). В некоторых вариантах осуществления ITR содержит полинуклеотидную последовательность 5'-CACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCACGCCCGGGCTTTGCCCGGGCG - 3' (SEQ ID NO: 20). Мутированный ITR характеризуется делецией D-области, содержащей последовательность концевого разрешения. В результате, при репликации вирусного генома AAV белки rep не отщепляют вирусный геном на мутированном ITR, и как таковой, рекомбинантный вирусный геном, содержащий следующее в порядке от 5' к 3', будет упакован в вирусный капсид: ITR AAV, первая гетерологичная полинуклеотидная последовательность, в том числе регуляторные последовательности, мутированный ITR AAV, второй гетерологичный полинуклеотид в обратной ориентации по отношению к первому гетерологичному полинуклеотиду и третий ITR AAV. В некоторых вариантах осуществления в настоящем изобретении предусматривают вирусные частицы AAV, содержащие рекомбинантный вирусный геном, который содержит функциональный ITR AAV2, первую полинуклеотидную последовательность, кодирующую полипептиды RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант и/или средство для RNAi в отношении MYOC (например, shRNA), мутированный ITR AAV2, характеризующийся делецией в D-области и лишенный функциональной концевой разрешающей последовательности, вторую полинуклеотидную последовательность, содержащую последовательность, комплементарную последовательности, кодирующей полипептиды RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант и/или средство для RNAi в отношении MYOC (например, shRNA) из первой полинуклеотидной последовательности, а также функциональный ITR AAV2.
Получение частиц AAV
Частицы rAAV можно получить с помощью способов, известных в данной области техники. См., например, патенты США №№ 6566118; 6989264 и 6995006. При практическом использовании настоящего изобретения клетки-хозяева для продукции частиц rAAV включают в себя клетки млекопитающих, клетки насекомых, растительные клетки, микроорганизмы и дрожжи. Клетки-хозяева также могут быть упаковывающими клетками, в которых гены rep и cap AAV стабильно сохраняются в клетке-хозяине или клетках-продуцентах, в которых стабильно сохраняется геном вектора AAV. Иллюстративные упаковывающие клетки и клетки-продуценты получают из клеток 293, A549 или HeLa. Векторы AAV очищают и помещают в составы с помощью стандартных методик, известных в данной области.
В некоторых аспектах предусмотрен способ получения любой частицы rAAV, раскрываемой в данном документе, включающий: (a) культивирование клетки-хозяина в условиях, при которых получают частицы rAAV, где клетка-хозяин содержит (i) один или несколько генов AAV, обеспечивающих упаковку, где каждый указанный ген AAV, обеспечивающий упаковку, кодирует белок AAV, участвующий в репликации и/или инкапсидировании; (ii) провектор на основе rAAV, содержащий нуклеиновую кислоту, кодирующую терапевтические полипептид и/или нуклеиновую кислоту, как описано в данном документе, фланкированный по меньшей мере одним ITR AAV, и (iii) хелперный функциональный элемент AAV; и (b) извлечение частиц rAAV, образуемых в клетке-хозяине.
В дополнительном варианте осуществления частицы rAAV очищаются. Выражение "очищенный", применяемое в данном документе, включает получение частиц rAAV, лишенных по меньшей мере некоторых из других компонентов, которые могут также присутствовать, если частицы rAAV встречаются в природе или изначально получены из них. Таким образом, например, выделенные частицы rAAV можно получать с помощью методики очистки для обогащения ими исходной смеси, такой как лизат культуры или надосадочная жидкость производственной культуры. Обогащение можно измерять с помощью множества способов, таких как, например, по доле устойчивых к ДНКазе частиц (DRP) или геномных копий (gc), присутствующих в растворе, или по инфекционности, либо его можно измерить по отношению ко второму, потенциально мешающему веществу, присутствующему в исходной смеси, такому как контаминанты, в том числе контаминанты производственной культуры или внутрипроизводственные контаминанты, в том числе хелперный вирус, компоненты среды и т. п.
В данном документе также предусматриваются фармацевтические композиции, содержащие частицу rAAV, содержащую гетерологичную нуклеиновую кислоту, кодирующую терапевтический полипептид и/или терапевтическую нуклеиновую кислоту, где частица rAAV содержит капсид rAAV, содержащий одну или несколько замен аминокислот, которые взаимодействуют с HSPG, и фармацевтически приемлемый носитель. Фармацевтические композиции могут подходить для любого способа введения, описанного в данном документе; например, для субретинального введения.
В некоторых вариантах осуществления фармацевтические композиции, содержащие rAAV, описанный в данном документе, и фармацевтически приемлемый носитель, пригодны для введения человеку. Такие носители хорошо известны из уровня техники (см., например, Remington's Pharmaceutical Sciences, 15th Edition, pp. 1035-1038 и 1570-1580). В некоторых вариантах осуществления фармацевтические композиции, содержащие rAAV, описанный в данном документе, и фармацевтически приемлемый носитель, пригодны для глазной инъекции. Такими фармацевтически приемлемыми носителями могут быть стерильные жидкости, такие как вода и масло, в том числе стерильные жидкости нефтяного, животного, растительного или синтетического происхождения, такие как арахисовое масло, соевое масло, минеральное масло и т. п. В качестве жидких носителей, в частности для инъекционных растворов, могут использоваться также физиологические растворы и водные растворы декстрозы, полиэтиленгликоля (PEG) и глицерина. Фармацевтическая композиция может дополнительно содержать дополнительные компоненты, например, консерванты, буферы, вещества, регулирующие тоничность, антиоксиданты и стабилизаторы, неионные увлажняющие и осветляющие средства, загустители и т. п. Фармацевтические композиции, описанные в данном документе, могут быть упакованы в единичные дозированные формы или множественные дозированные формы. Как правило, композиции составляют в виде стерильного или практически изотонического раствора.
VII. Системы и наборы
Композиции на основе rAAV, описанные в данном документе, могут содержаться в системе, предназначенной для применения в одном из способов по настоящему изобретению, описанных в данном документе. В некоторых вариантах осуществления в настоящем изобретении предусматривают систему доставки вектора в глаз индивидуума, содержащую: a) композицию, содержащую эффективное количество частиц rAAV, где вектор содержит гетерологичную нуклеиновую кислоту, кодирующую терапевтический полипептид и/или терапевтическую РНК, и по меньшей мере один концевой повтор AAV; и b) устройство для доставки rAAV в глаз. В некоторых вариантах осуществления частицы rAAV содержат вектор на основе rAAV, кодирующий полипептиды RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант. В некоторых вариантах осуществления частицы rAAV содержат вектор на основе rAAV, кодирующий одно или несколько средств для RNAi в отношении MYOC (например, shRNA), которые целенаправленно воздействуют (например, снижают или ингибируют) на экспрессию MYOC. В некоторых вариантах осуществления частицы rAAV содержат вектор на основе rAAV, кодирующий полипептиды RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант и одно или несколько средств для RNAi в отношении MYOC (например, shRNA), которые целенаправленно воздействуют (например, снижают или ингибируют) на экспрессию MYOC. В некоторых вариантах осуществления набор или система содержит частицы rAAV, содержащие вектор на основе rAAV, кодирующий полипептиды RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант, и частицы rAAV, содержащие вектор на основе rAAV, кодирующий одно или несколько средств для RNAi в отношении MYOC (например, shRNA), которые целенаправленно воздействуют (например, снижают или ингибируют) на экспрессию MYOC.
Как правило, система содержит узкую канюлю, где канюля имеет калибр от 27 до 45, один или несколько шприцев (например, 1, 2, 3, 4 или более) и одну или несколько жидкостей (например, 1, 2, 3, 4 или более), подходящих для применения в способах по настоящему изобретению.
Узкая канюля подходит для субретинальной инъекции суспензии вектора и/или других жидкостей, подлежащих введению путем инъекции в субретинальное пространство. В некоторых вариантах осуществления канюля имеет калибр от 27 до 45. В некоторых вариантах осуществления узкая канюля имеет калибр 35-41. В некоторых вариантах осуществления узкая канюля имеет калибр 40 или 41. В некоторых вариантах осуществления узкая канюля имеет калибр 41. Канюля может представлять собой любой подходящий тип канюли, например, канюлю de-Juan® или канюлю Eagle®.
Шприц может представлять собой любой подходящий шприц, при условии, что его можно соединить с канюлей для доставки жидкости. В некоторых вариантах осуществления шприц представляет собой шприц системы Accurus®. В некоторых вариантах осуществления система имеет один шприц. В некоторых вариантах осуществления система имеет два шприца. В некоторых вариантах осуществления система имеет три шприца. В некоторых вариантах осуществления система имеет четыре или более шприцев.
Система может дополнительно содержать автоматический инъекционный насос, который можно активировать, например, ножной педалью.
Жидкости, подходящие для применения в способах по настоящему изобретению, включают жидкости, описанные в данном документе, например, одну или несколько жидкостей, каждая из которых содержит эффективное количество одного или нескольких векторов, описанных в данном документе, одну или несколько жидкостей для создания первоначального пузырька (например, физиологический раствор или другую подходящую жидкость) и одну или несколько жидкостей, содержащих одно или несколько терапевтических средств.
Жидкости, подходящие для применения в способах по настоящему изобретению, включают жидкости, описанные в данном документе, например, одну или несколько жидкостей, каждая из которых содержит эффективное количество одного или нескольких векторов, описанных в данном документе, одну или несколько жидкостей для создания первоначального пузырька (например, физиологический раствор или другую подходящую жидкость) и одну или несколько жидкостей, содержащих одно или несколько терапевтических средств.
В некоторых вариантах осуществления объем жидкости, содержащей эффективное количество вектора, составляет более чем приблизительно 0,8 мл. В некоторых вариантах осуществления объем жидкости, содержащей эффективное количество вектора, составляет по меньшей мере приблизительно 0,9 мл. В некоторых вариантах осуществления объем жидкости, содержащей эффективное количество вектора, составляет по меньшей мере приблизительно 1,0 мл. В некоторых вариантах осуществления объем жидкости, содержащей эффективное количество вектора, составляет по меньшей мере приблизительно 1,5 мл. В некоторых вариантах осуществления объем жидкости, содержащей эффективное количество вектора, составляет по меньшей мере приблизительно 2,0 мл. В некоторых вариантах осуществления объем жидкости, содержащей эффективное количество вектора, составляет более чем от приблизительно 0,8 до приблизительно 3,0 мл. В некоторых вариантах осуществления объем жидкости, содержащей эффективное количество вектора, составляет более чем от приблизительно 0,8 до приблизительно 2,5 мл. В некоторых вариантах осуществления объем жидкости, содержащей эффективное количество вектора, составляет более чем от приблизительно 0,8 до приблизительно 2,0 мл. В некоторых вариантах осуществления объем жидкости, содержащей эффективное количество вектора, составляет более чем от приблизительно 0,8 до приблизительно 1,5 мл. В некоторых вариантах осуществления объем жидкости, содержащей эффективное количество вектора, составляет более чем от приблизительно 0,8 до приблизительно 1,0 мл. В некоторых вариантах осуществления объем жидкости, содержащей эффективное количество вектора, составляет от приблизительно 0,9 до приблизительно 3,0 мл. В некоторых вариантах осуществления объем жидкости, содержащей эффективное количество вектора, составляет от приблизительно 0,9 до приблизительно 2,5 мл. В некоторых вариантах осуществления объем жидкости, содержащей эффективное количество вектора, составляет от приблизительно 0,9 до приблизительно 2,0 мл. В некоторых вариантах осуществления объем жидкости, содержащей эффективное количество вектора, составляет от приблизительно 0,9 до приблизительно 1,5 мл. В некоторых вариантах осуществления объем жидкости, содержащей эффективное количество вектора, составляет от приблизительно 0,9 до приблизительно 1,0 мл. В некоторых вариантах осуществления объем жидкости, содержащей эффективное количество вектора, составляет от приблизительно 1,0 до приблизительно 3,0 мл. В некоторых вариантах осуществления объем жидкости, содержащей эффективное количество вектора, составляет от приблизительно 1,0 до приблизительно 2,0 мл.
Жидкость для создания первоначального пузырька может иметь объем, например, от приблизительно 0,1 до приблизительно 0,5 мл. В некоторых вариантах осуществления общий объем всех жидкостей в системе составляет от приблизительно 0,5 до приблизительно 3,0 мл.
В некоторых вариантах осуществления система содержит одну жидкость (например, жидкость, содержащую эффективное количество вектора). В некоторых вариантах осуществления система содержит 2 жидкости. В некоторых вариантах осуществления система содержит 3 жидкости. В некоторых вариантах осуществления система содержит 4 или более жидкостей.
Системы по настоящему изобретению могут быть дополнительно упакованы в наборы, где наборы могут дополнительно содержать инструкции по применению. В некоторых вариантах осуществления наборы дополнительно содержат устройство для субретинальной доставки композиций на основе частиц rAAV. В некоторых вариантах осуществления инструкции по применению включают инструкции в соответствии с одним из способов, описанных в данном документе. В некоторых вариантах осуществления инструкции для применения включают инструкции для интравитреальной и/или интракамеральной доставки частиц rAAV, содержащих вектор, кодирующий полипептиды RSPO1, RSPO2, RSPO3, RSPO4 или их функциональный вариант и/или средство для RNAi в отношении MYOC (например, shRNA).
ПРИМЕРЫ
Настоящее изобретение будет более понятным со ссылкой на следующие примеры. Тем не менее, их не следует истолковывать как ограничивающие объем настоящего изобретения. Понятно, что описанные в данном документе примеры и варианты осуществления имеют место только в качестве иллюстрации, и что различные модификации или изменения с их учетом будут предложены специалистам в данной области техники и должны быть включены в сущность и содержание данной заявки, а также объем прилагаемой формулы изобретения.
Пример 1. Глаукоматозные мутации MYOC (например, P370L и Y437H) блокируют секрецию MYOC
Для того, чтобы понять, каким образом мутанты MYOC влияют на функцию глаза, в частности клеток, таких как клетки трабекулярной сети, которые могут обуславливать IOP, необходимы новые сведения о патогенезе миоцилиновой (MYOC) глаукомы. Понимание функции MYOC может также помочь выявить потенциальные терапевтические стратегии для лечения миоцилиновой (MYOC) глаукомы. Результаты, описанные в данном документе, демонстрируют, что мутанты MYOC уменьшают экспрессию MYOC дикого типа и блокируют передачу сигнала Wnt. Кроме того, эти результаты свидетельствуют о том, что экспрессия R-спондина 3 (RSPO3) и/или сайленсинг MYOC могут восстановить передачу сигнала Wnt, блокированную экспрессией мутантного MYOC.
Способы
Плазмидные векторы
Для плазмид MYOC и RSPO3 кДНК MYOC предоставлялись из Clone DB- Sanofi Oncology. кДНК RSPO3 предоставлялись из Clone DB- Sanofi Oncology.
Для конструкции pCBA2-в-P370L MYOC для введения желаемой замены одного основания использовали набор QUIKCHANGE® II (Agilent, Санта-Клара) в соответствии с рекомендациями производителя и праймеры 5'- ACCACGGACAGTTCCTGTATTCTTGGGGTGG -3' (SEQ ID NO:21) и 5'- CCACCCCAAGAATACAGGAACTGTCCGTGGT-3' (SEQ ID NO:22).
Для конструкции pCBA2-в-MYOC Y437H для введения желаемой замены одного основания использовали набор QUIKCHANGE® Lightning (Agilent, Санта-Клара) в соответствии с рекомендациями производителя и праймеры 5'-TCTGTGGCACCTTGCACACCGTCAGCAGC-3' (SEQ ID NO: 23) и 5'-GCTGCTGACGGTGTGCAAGGTGCCACAGA-3' (SEQ ID NO: 24).
Плазмиды Grp94 shRNA получали от OriGene Technologies, Inc. (№ по кат. TR312309). Плазмиды pGIPZ-MYOC (Dharmacon GE Life Sciences) предоставлялись из Clone DB- Sanofi Oncology. Коллекция GIPZ shRNA, основанных на microRNA (Stegmeier, et al. (2005) Proc. Natl. Acad. Sci. USA. 102:13212-7). Строение GIPZ shRNA основано на нативном первичном транскрипте miR-30 для обеспечения процессинга эндогенным RNAi-путем и приводит к обеспечению сайленсинга генов с минимальной клеточной токсичностью. Плазмида pGIPZ-нуль, конститутивный вектор shRNAmir, который экспрессирует нулевую shRNAmir, не воздействующую целенаправленно, предоставлялись из Clone DB- Sanofi Oncology.
Культура клеток и рекомбинантные белки
Клетки HEK293 (Microbix Biosystems Inc.) культивировали в DMEM, 10% FCS и 5% CO2. Клеточную линию HEK293T (293T) получали из ATCC и культивировали в DMEM, 10% FCS и 5% CO2.
Иммортализация первичных клеток трабекулярной сети человека (hTM)
Большой Т-антиген SV40 (SV40 TAg) применяли для иммортализации посредством трансдукции вектором AAV2-SV40 с T-антигеном. Клетки hTM пассажа 7 (ScienCell Research Laboratories, Карлсбад, Калифорния), поддерживаемые на полной питательной среде для фибробластов (ScienCell), высевали на планшеты для культивирования клеток размером 10 см и трансдуцировали посредством 1×105 DRP либо AAV2-SV40-Tag (отмеченные как "hTM-T"), либо AAV2-EGFP (отрицательный контроль, отмеченные как "hTM-ENT") в течение 24 часов. Сразу после слияния клеток их пассировали на планшеты размером 2×15 см (P8). Клетки повторно пассировали приблизительно каждые 3-4 дня. В ходе пассажа 10 отбирали аликвоту для определения количества клеток. Общее количество клеток из клеток hTM-T составляло 5, 2×106, по сравнению с общим количеством клеток из клеток hTM-ENT, которое составляло 2,5×105.
Для определения присутствия T-антигена SV40 проводили вестерн-блоттинг. Вкратце, суспензию клеток по 500 мкл центрифугировали и полученный осадок клеток лизировали в 100 мкл буфера RIPA, содержащего коктейль ингибиторов протеаз. 5 мкл клеточных лизатов анализировали посредством SDS-PAGE с последующим иммуноблоттингом с использованием системы быстрой передачи iBlot (Life Technologies). Блот блокировали с использованием небелкового блокатора TBS (Thermo Fisher Scientific, Уолтем, Массачусетс) и инкубировали с моноклональным антителом к T-антигену SV40 (GeneTex, Ирвайн, Калифорния). Затем блот инкубировали с антителом к иммуноглобулину мыши, меченым HRP (R & D Systems, Миннеаполис, Миннесота). Иммунореактивные полосы визуализировали с использованием хемилюминесцентного субстрата Supersignal West Femto (Thermo Fisher). Выраженную полосу 80 кДа, соответствующую Т-антигену SV40, детектировали из hTM-T, но не из клеток hTM-ENT, что свидетельствует о присутствии и экспрессии Т-антигена SV40. Лизат из клеток 293Т служил в качестве положительного контроля, который также содержал полосу Т-антигена SV40 80 кДа. Клетки hTM-T размножали и клеточные банки замораживали в среде для замораживания клеток (Life Technologies, Гранд-Айленд, Нью-Йорк) в пассаже 12 (10 флаконов с плотностью 1×106 клеток), а затем в пассаже 18 (46 флаконов с плотностью 106 клеток).
Определение характеристик hTM-T
Сравнение клеток hTM-T и первичных клеток hTM показало заметное различие в морфологии клеток, времени удвоения популяции и эффективности плазмидной трансфекции. Первичные клетки hTM оказывались более крупными и фибробластоподобными с длинным веретенообразным телом, тогда как иммортализованные клетки hTM-T были меньше, кубической формы и относительно однородного размера. Клеточная линия hTM-T демонстрировала повышенную скорость роста с удвоением популяции, происходящим примерно в 3-4 раза быстрее, чем у первичных клеток. Кроме того, клетки hTM-T продолжали пролиферировать после 20 клеточных пассажей, тогда как первичные клетки hTM демонстрировали снижение скорости роста после 10-го пассажа и последующее прекращение роста после 12-го пассажа. Эффективность трансфекции определяли с использованием EGFP-плазмиды и липофектамина на обоих типах клеток при сходной плотности клеток. Вкратце, субконфлюентные клетки hTM-T или hTM трансфицировали EGFP-плазмидой с использованием Lipofectamine 2000 (Life Technologies) в соответствии с протоколом производителя. Хотя клетки hTM-T характеризовались бόльшим количеством клеток на мм2 поверхности клеточной культуры, была очевидна бόльшая процентная доля клеток EGFP+hTM-T (~ 50%) по сравнению с первичными клетками hTM (~ 5%).
Вестерн-блоттинг
Клетки 293T или hTM-T трансфицировали плазмидами, экспрессирующими wtMYOC, мутанты MYOC P370L и Y437H, RSPO3 и/или shRNA, с применением Lipofectamine 2000 (Life Technologies). Вкратце, клетки лизировали в 50-100 мкл буфера RIPA, содержащего коктейль ингибиторов протеаз. 10-13 мкл клеточных лизатов анализировали посредством SDS-PAGE с последующим иммуноблоттингом с использованием системы быстрой передачи iBlot (Life Technologies). Блот блокировали с использованием трис-буферного солевого раствора, 0,05% Твин 20 (TBST). 0,2% I-Block (блокирующий реагент на основе казеина, Life Technologies) и инкубировали с мышиным антителом к MYOC человека. Затем блот инкубировали с антителом к иммуноглобулину мыши, меченым HRP (R & D Systems, Миннеаполис, Миннесота). Иммунореактивные полосы визуализировали с использованием хемилюминесцентного субстрата ECL (Thermo Fisher) и визуализировали на пленке BioMax XAR (Carestream Health), разработанной с помощью Kodak X-Omat 2000 Processor.
Анализ репортерного гена люциферазы
Клетки 293T или hTM-T высевали в 96-луночные планшеты Costar с белыми или черными стенками с плотностью 2×104 клеток/лунку. Трансфекции проводили через 1-2 дня после посева клеток, используя реагент для трансфекции Fugene HD (Promega, Мэдисон, Висконсин) в соответствии с протоколом производителя.
Вкратце, репортерную плазмиду Topflash (Millipore, Биллерика, Массачусетс), содержащую регулируемый Tcf/lef ген-репортер люциферазы светлячка и управляемый промотором цитомегаловируса (CMV) ген люциферазы Renilla в всоотношении 40:1 смешивали 1:1 с целевыми плазмидами. Добавляли 8 мкл реагента Fugene HD и образцы немедленно перемешивали вортексом, затем инкубировали в течение 15 минут при комнатной температуре. Комплексы плазмидной ДНК добавляли к клеткам и инкубировали при 37°С в течение 24 часов. Образцы либо не стимулировали, либо стимулировали при помощи 400 нг/мл рекомбинантного человеческого или мышиного белка wnt3a (R&D Systems) и инкубировали в течение еще 20-24 часов. Передачу сигнала Wnt измеряли с использованием системы анализа Dual Luciferase (Promega) в соответствии с протоколом производителя. Значения поглощения измеряли на люминометре микропланшетов Centro XS3 960 (Berthold Technologies, Ок-Ридж, Теннесси) и сообщали как относительные световые единицы (RLU). Для контроля эффективности трансфекции RLU люциферазы светляков нормализовали относительно RLU люциферазы Renilla. Все образцы выполняли в трех лунках.
Результаты
MYOC дикого типа (wtMYOC) секретируется из культивируемых клеток, но практически не секретируется MYOC из клеток, экспрессирующих пять различных мутантных форм MYOC, и сообщалось, что совместная трансфекция культивируемых клеток с нормальным и мутантным MYOC подавляет секрецию wtMYOC (Jacobson et al. (2001) Hum. Mol. Genet. 10(2):117-25). Для того, чтобы исследовать влияние экспрессии мутантного MYOC на секрецию MYOC, клетки 293 трансфицировали плазмидами, экспрессирующими MYOC дикого типа, мутантный MYOC P370L или мутантный MYOC Y437H.
Как показано на фиг. 1, клетки 293, экспрессирующие MYOC дикого типа, проявляли детектируемую экспрессию белка MYOC в обоих клеточных лизатах (см. нижний блот, отмеченный «КЛЕТКИ») и характеризовались секрецией в среду для культивирования клеток (см. верхний блот, отмеченный «СРЕДА»). Однако клетки, трансфицированные плазмидами, экспрессирующими MYOC P370L или Y437H, проявляли внутриклеточную экспрессию, но не характеризовались секрецией в среду для культивирования клеток. Более того, совместная трансфекция клеток 293 плазмидами, экспрессирующими MYOC дикого типа и MYOC либо P370L, либо Y437H, вызывала недостаток секреции MYOC в среду для культивирования клеток. Эти результаты указывают на то, что мутантные P370L и Y437H не могут секретироваться из клеток 293 и также способны блокировать секрецию MYOC дикого типа.
Дальнейшие эксперименты проводили для того, чтобы определить, наблюдаются ли эти результаты в человеческих клетках глаза. Линию клеток трабекулярной сети человека иммортализовали посредством AAV-опосредованной экспрессии большого T-антигена SV40 (клетки hTM-T), как описано выше. Клетки 293T и hTM-T трансфицировали плазмидой, экспрессирующей MYOC дикого типа, плазмидой, экспрессирующей MYOC P370L, или трансфицировали обеими плазмидами. На фиг. 2 показано зондирование с помощью вестерн-блоттинга в отношении присутствия внутриклеточного или секретируемого белка MYOC в данных клетках. Хотя экспрессия и секреция MYOC дикого типа наблюдалась в клетках 293T и клетках hTM-T, для MYOC P370L наблюдалась только экспрессия, но не секреция как в клетках 293T, так и в клетках hTM-T. MYOC P370L также блокировал секрецию MYOC дикого типа как в клетках 293T, так и в клетках hTM-T.
Эти результаты демонстрируют, что глаукоматозные мутанты MYOC (например, P370L и Y437H) способны блокировать секрецию MYOC дикого типа в клетках человека. Кроме того, мутантный MYOC также способен блокировать секрецию MYOC в клетках hTM.
Пример 2. Глаукоматозные мутации MYOC (например, P370L и Y437H) блокируют передачу сигнала Wnt
Предполагают, что MYOC взаимодействует с компонентами сигнальных путей Wnt, такими как рецепторы Wnt семейства Frizzled (Fzd), антагонисты Wnt секретируемого родственного Frizzled белка (sFRP) и Wnt ингибирующий фактор 1 (WIF-1)), которые модулируют организацию актинового цитоскелета, стимулируя образование стрессовых волокон (Kwon et al. (2009) Mol. Cell. Biol. 29:2139-54). Образование стрессовых волокон является критическим для сократимости трабекулярной сети (TM) и регуляции IOP. Однако, как именно MYOC связан с передачей сигнала Wnt и как эта связь влияет на IOP, остается неясным. На основании экспериментов по клеточной биологии была предложена роль миоцилина в качестве белка внеклеточного матрикса (Resch и Fautsch, 2009; Koch et al, 2014). Другие группы продемонстрировали, что миоцилин является медиатором дифференцировки олигодендроцитов и участвует в миелинизации зрительного нерва у мышей (Kwon et al., 2014).
Было высказано предположение, что MYOC может служить в качестве модулятора передачи сигнала Wnt, и что белки Wnt могут компенсировать отсутствие миоцилина, выполняя его функции (Kwon et al. (2009) Mol. Cell. Biol. 29:2139-54). Несколько групп сообщили о сходстве действия миоцилина и белков Wnt, действующих посредством b-катенин-независимого механизма (Kwon и Tomarev (2011) J. Cell. Physiol. 226(12):3392-402). Сообщалось, что ослабление передачи сигнала Wnt в клетках TM глаукомы (GTM) обусловлено более высокими эндогенными уровнями sFRP1 (Wang et al. (2008) J. Clin. Invest. 118:1056-64; Lin и Hankenson (2011) J. Cell. Biochem. 112:3491-501). Другая группа показала, что сигнальный путь Wnt защищает линию клеток сетчатки RGC-5 от повышенного давления (Fragoso et al. (2011) Cell. Mol. Neurobiol. 31(1):163-73).
Из литературы неясно, оказывают ли глаукоматозные мутации MYOC (например, P370L или Y437H) какой-либо эффект на передачу сигнала Wnt в ТМ. В одном из сообщений было указано, что эффект глаукоматозных мутаций MYOC, которые ингибируют секрецию MYOC из ТМ, на передачу сигнала Wnt в ТМ неясно, что измерено с помощью анализа TOP-Flash передачи сигнала Wnt (Mao et al. (2012) Invest. Ophthalmol. Vis. Sci. 53(11):7043-51). Другая группа сообщила, что P370L оказывает стимулирующий эффект на передачу сигнала Wnt в клетках Caco-2, что показано с помощью анализа TOP-Flash передачи сигнала Wnt (Shen et al. (2012) PLoS ONE 7(9):e44902).
В отличие от этого, авторы изобретения обнаружили, что мутации MYOC (например, P370L и Y437H) оказывают ингибирующий эффект на передачу сигнала Wnt в клетках 293 и клетках ТМ, как показано в анализе TOP-Flash передачи сигнала Wnt, в котором отображается активность бета-катенина.
Для оценки эффекта мутантов MYOC P370L и Y437H на передачу сигнала Wnt клетки 293T совместно трансфицировали репортерной конструкцией TOP-Flash и плазмидами wtMYOC («MYOC»), MYOC P370L или MYOC Y437H. Передача сигнала Wnt усиливалась после добавления рекомбинантной мышиной Wnt3a (400 нг/мл) и была измерена с помощью анализа TOP-Flash. Люциферазную активность (значение+SD, n=4) измеряли после трансфекции и нормализовали по контрольной трансфекции постоянно экспрессируемого уровня люциферазы Renilla.
Как показано на фиг. 3, стимуляция клеток 293T рекомбинантной Wnt3 мыши вызывала увеличение репортера TOP-Flash. Экспрессия MYOC дикого типа не мешала передаче сигнала Wnt, как проанализировано при помощи TOP-Flash. Однако совместная экспрессия MYOC дикого типа с MYOC P370L или MYOC Y437H блокировала активацию TOP-Flash в клетках 293T. Эти результаты демонстрируют, что глаукоматозные мутанты MYOC (например, P370L и Y437H) способны ингибировать передачу сигнала Wnt в клетках человека.
Пример 3. Восстановление передачи сигнала Wnt, блокированного глаукоматозными мутациями MYOC (например, P370L и Y437H)
В предыдущем примере продемонстрировано, что глаукоматозные мутанты MYOC P370L и Y437H блокируют передачу сигнала Wnt в клетках человека. Дальнейшие эксперименты были предприняты для изучения потенциальных механизмов, с помощью которых передача сигнала Wnt может быть восстановлена в клетках, экспрессирующих эти мутанты MYOC.
R-спондин 3 (RSPO3) представляет собой белок, кодируемый геном RSPO3, который активирует передачу сигнала Wnt, и было исследовано, способна ли экспрессия RSPO3 восстанавливать передачу сигнала Wnt при ее ингибировании посредством экспрессии мутантного MYOC. Для этих экспериментов, аналогично фиг. 3 выше, клетки 293T совместно трансфицировали репортерной конструкцией TOP-Flash и плазмидами wtMYOC («MYOC»), MYOC P370L, MYOC Y437H и/или RSPO3, как отмечено. Передача сигнала Wnt усиливалась после добавления рекомбинантной мышиной Wnt3a (400 нг/мл) и была измерена с помощью анализа TOP-Flash. Люциферазную активность (значение+SD, n=3) измеряли после трансфекции и нормализовали по контрольной трансфекции постоянно экспрессируемого уровня люциферазы Renilla.
Как показано на фиг. 4, экспрессия RSPO3 вызывала усиление передачи сигнала Wnt, как измерено при помощи TOP-Flash. Важно отметить, что совместная экспрессия RSPO3 и MYOC P370L или MYOC Y437H способна восстанавливать передачу сигнала Wnt по сравнению с ингибированием передачи сигнала Wnt, наблюдаемого при экспрессии только MYOC P370L или только MYOC Y437H. Клетки 293T совместно трансфицировали репортерной конструкцией TOP-Flash и плазмидами wtMYOC («MYOC»), MYOC P370L, MYOC Y437H и/или RSPO3, как отмечено. Передача сигнала Wnt усиливалась после добавления рекомбинантной мышиной Wnt3a (400 нг/мл) и была измерена с помощью анализа TOP-Flash. Люциферазную активность измеряли после трансфекции и нормализовали по контрольной трансфекции постоянно экспрессируемого уровня люциферазы Renilla.
Чтобы исследовать, наблюдается ли подобный эффект в клетках hTM, клетки hTM-T совместно трансфицировали репортерной конструкцией TOP-Flash и плазмидами wtMYOC ("MYOC w.t."), MYOC P370L и/или RSPO3. Активность Wnt измеряли с помощью анализа TOP-Flash, как описано выше (активность люциферазы показана как среднее значение+SD, n=3). На фиг. 5 показано, что экспрессия MYOC P370L вызывала ослабление передачи сигнала Wnt и была способна ослаблять передачу сигнала Wnt в клетках hTM-T с совместной экспрессией MYOC дикого типа. Экспрессия RSPO3 способна увеличивать передачу сигнала Wnt в клетках hTM-T, экспрессирующих только MYOC P370L или MYOC P370L в комбинации с MYOC дикого типа. Результаты, показанные на фиг. 4 и 5 показывают, что экспрессия RSPO3 восстанавливает передачу сигнала Wnt в клетках, экспрессирующих глаукоматозные мутанты MYOC, в таких как клетки 293T и клетки hTM-T.
Удивительно, но было также обнаружено, что ингибирование Wnt посредством экспрессии глаукоматозных мутантов MYOC может быть отменено посредством сайленсинга MYOC (например, с помощью RNAi). Эффект shRNA для MYOC на экспрессию MYOC исследовали в клетках 293T. Как показано на фиг. 6, shRNA для MYOC уменьшала экспрессию белка MYOC в клетках, экспрессирующих MYOC дикого типа, по сравнению с рандомизированной контрольной shRNA. Это снижение наблюдалось как для внутриклеточного, так и для секретируемого MYOC.
На фиг. 7 показан эффект shRNA для MYOC в клетках hTM-T. shRNA для MYOC уменьшала экспрессию белка MYOC в клетках hTM-T с совместной экспрессией MYOC дикого типа и мутантного MYOC P370L. Это снижение наблюдалось как для внутриклеточного, так и для секретируемого MYOC. Напротив, shRNA, целенаправленно воздействующая на Grp94, не оказывала эффект на экспрессию MYOC. Grp94 представляет собой молекулярный шаперон, который участвует в процессинге и транспорте секретируемых белков, и недавно был предложен в качестве терапевтического средства для пациентов, страдающих некоторыми случаями глаукомы MYOC, поскольку считалось, что Grp94 облегчает клиренс мутантов MYOC(Suntharalingam et al., (2012) J. Biol. Chem. 287(48):40661-9). Аналогично, рандомизированные контрольные shRNA не оказывали эффекта на экспрессию MYOC.
Поскольку shRNA для MYOC влияла на экспрессию MYOC, в дальнейшем исследовали ее эффекты на передачу сигнала Wnt. Как показано на фиг. 8, экспрессия MYOC P370L ослабляла передачу сигнала Wnt в клетках 293T. shRNA для Grp94 и рандомизированные контрольные shRNA были не способны восстанавливать передачу сигнала Wnt, ингибированную посредством MYOC P370L. Напротив, shRNA для MYOC усиливала передачу сигнала Wnt в клетках, экспрессирующих MYOC P370L, приблизительно до уровней дикого типа (т. е. уровня передачи сигнала Wnt, наблюдаемого в контрольных клетках, не экспрессирующих MYOC P370L, как измерено с помощью TOP-Flash). Было также установлено, что экспрессия RSPO3 усиливает передачу сигнала Wnt в клетках, экспрессирующих MYOC P370L, и объединение экспрессии RSPO3 со средством для RNAi в отношении MYOC (например, shRNA) привело к синергетическому усилению передачи сигнала Wnt в клетках, экспрессирующих MYOC P370L.
Хотя ингибирование Grp94 было предложено в качестве механизма снижения эффектов мутантов MYOC, эти результаты, описанные в данном документе, показывают, что экспрессия RSPO3 и/или shRNA для MYOC может быть более эффективной для дерепрессии передачи сигнала Wnt в присутствии экспрессии мутанта MYOC.
Также исследовали эффект shRNA для MYOC на передачу сигнала Wnt в клетках, экспрессирующих MYOC Y437H. Как показано на фиг. 9, экспрессия MYOC P370L или MYOC Y437H ослабляла передачу сигнала Wnt в клетках 293T. Однако shRNA для MYOC была способной восстанавливать передачу сигнала Wnt в клетках, экспрессирующих либо MYOC P370L, либо MYOC Y437H. Этот эффект не наблюдался при экспрессии рандомизированной контрольной shRNA.
Таким образом, эти результаты демонстрируют, что передача сигнала Wnt, блокированная мутантами MYOC (например, P370L и Y437H), может быть восстановлена посредством экспрессии R-спондина 3 (RSPO3) и/или ингибирования MYOC (например, с помощью RNAi).
Пример 4. Трансдукция клеток трабекулярной сети с помощью AAV2 R471A
Для определения того, могут ли частицы AAV трансдуцировать клетки трабекулярной сети, векторы AAV2, кодирующие EGFP, упаковывали в частицы AAV2 дикого типа из частиц AAV2, содержащих аминокислотную замену R471A (нумерация которой приведена согласно VP1). Вирусные частицы оценивали in vitro путем обработки клеток hTM (описанных выше) AAV2 EGFP и AAV2 R471A EGFP. Как показано на фиг. 10 (левые панели), AAV2 R471A EGFP показывала более высокий уровень трансдукции клеток TM по сравнению с AAV2 дикого типа. Для оценки трансдукции клеток TM in vivo, AAV2 EGFP и AAV2 R471A EGFP вводили путем инъекции в глаза мышей. Мышей затем умерщвляли и анализировали в отношении экспрессии EGFP. Как показано на фиг. 10 (правые панели), AAV2 R471A EGFP показывала более высокий уровень трансдукции клеток TM in vivo по сравнению с AAV2 дикого типа.
Пример 5. Экспрессия RSPO3 или shRNA для MYOC в животных моделях миоцилиновой (MYOC) глаукомы
Приведенные выше примеры демонстрируют, что глаукоматозные мутации MYOC (например, P370L и Y437H) блокируют передачу сигнала Wnt и что это ингибирование передачи сигнала Wnt можно получить путем экспрессии R-спондина 3 (RSPO3) или с помощью shRNA для MYOC. Не желая быть ограниченными какой-либо теорией, полагают, что мутации MYOC (например, P370L и/или Y437H) могут влиять на передачу сигнала Wnt в TM, модулируя таким образом IOP и обуславливая POAG. В следующих экспериментах тестировали, способна ли экспрессия R-спондина 3 (RSPO3) или shRNA для MYOC, доставленная посредством вектора на основе AAV2, приводить к улучшению симптомов в мышиных моделях данного заболевания.
Мышиную модель POAG использовали для исследования эффективности экспрессии R-спондина 3 (RSPO3) и/или shRNA для MYOC при AАV-опосредованной доставке в глаз при лечении миоцилиновой (MYOC) глаукомы. Например, можно применять мышиную модель, экспрессирующую MYOC Y437H (см. Zode et al. (2011) J. Clin. Invest. 121(9):3542-53). В данной модели, MYOC Y437H человека экспрессируется под контролем промотора CMV у трансгенной мыши. С применением данной системы MYOC Y437H экспрессируется в тканях, связанных с миоцилиновой (MYOC) глаукомой, таких как трабекулярная сеть и склера. Данные мыши проявляют совершенно нормальную морфологию глаза, но начинают демонстрировать симптомы, подобные миоцилиновой (MYOC) глаукоме, после наступления возраста три месяца, такие как IOP и прогрессивная аксональная дегенерация зрительного нерва.
Трансгены, экспрессирующие GFP, мышиный RSPO3, shRNA, целенаправленно воздействующую на MYOC мыши (мишень shRNA для MYOC и последовательность петли из pGIPZ #93; Dharmacon, GE Healthcare), или рандомизированную shRNA клонировали в геном AAV2 под контролем гибридного промотора β-актина курицы (CBA) из плазмиды pCBA(2)-в-BGH, которая также содержала последовательность сигнала полиаденилирования бычьего гормона роста (Xu, R., et al. (2001) Gene Ther. 8:1323-32). Кассету экспрессии затем клонировали в превирусный плазмидный вектор pAAVSP70, содержащий инвертированные концевые повторы (ITR) AAV2 (Ziegler, R.J., et al. (2004) Mol. Ther. 9:231-40). Общий размер полученного в результате генома AAV в плазмиде sp70.BR/sFLT01, включая область, фланкированную ITR, составил 4,6 т.п.о.
Геномы AAV2 упаковывали в капсиды AAV2 с мутацией R471A для обеспечения возможности инфицирования трабекулярной сети или капсиды AAV2 для обеспечения возможности инфицирования ганглионарных клеток сетчатки. Геномы AAV2 упаковывали в AAV2 дикого типа или капсид R471A с применением подхода "выпотрошенного" вектора с применением способа тройной трансфекции (см. e.g., Xiao et al. (1998) J. Virol., 3:2224-32). Вкратце, гены rep и cap замещали терапевтическим геном и его регуляторными элементами, оба находящиеся между 5'- и 3'-инвертированными концевыми повторами (ITR). Доставку генов rep и cap обеспечивали в разных плазмидах, и третья плазмида обеспечивала необходимые аденовирусные хелперные гены. Альтернативно, необходимые аденовирусные хелперные гены обеспечивали путем репликации дефицитного аденовируса и/или аденовирусных хелперных генов, которые стабильно интегрированы в геном клетки-хозяина. Не желая ограничиваться какой-либо конкретной теорией, можно предположить, что вирусные капсиды полностью собраны, и ITR-фланкированный геном вектора затем вставляют в капсид через капсидную пору (Myers & Carter (1980) Virology, 102:71-82). Капсиды, содержащие геном, затем составляют для инъекции.
Трансгенных мышей, экспрессирующих MYOC Y437H человека, выращивают до возраста примерно три месяца и затем рандомно распределяли в группы лечения. Мышей подвергали анестезии и вводили им путем инъекции посредством интравитреальной или интракамеральной инъекции векторы AAV, кодирующие GFP, RSPO3 мыши, shRNA, целенаправленно воздействующую на MYOC мыши, или рандомизированную shRNA. В одной группе лечения для исследования эффектов в ганглионарных клетках сетчатки мышь получала инъекцию векторов на основе AAV2 с капсидом AAV2 дикого типа, экспрессирующих RSPO3, и инъекцию векторов на основе AAV2 с капсидом AAV2 дикого типа, экспрессирующих GFP, в контралатеральный глаз. В одной группе лечения для исследования эффектов в трабекулярной сети мышь получала инъекцию векторов на основе AAV2 с капсидом R471A AAV2, экспрессирующим shRNA, целенаправленно воздействующую на MYOC мыши, и инъекцию векторов AAV2 с капсидом R471A AAV2, экспрессирующим рандомизированную shRNA, в контралатеральный глаз. В одной группе лечения мышь получала инъекцию смеси векторов на основе AAV, экспрессирующих RSPO3 мыши, и векторов на основе AAV, экспрессирующих shRNA, целенаправленно воздействующую на MYOC мыши, в один глаз и инъекцию векторов на основе AAV, экспрессирующих GFP, и/или векторов на основе AAV, экспрессирующих рандомизированную shRNA, в контралатеральный глаз. В одной группе лечения мышь получала инъекцию векторов на основе AAV, экспрессирующих RSPO3 мыши и экспрессирующих shRNA, целенаправленно воздействующую на MYOC мыши, в один глаз и инъекцию векторов на основе AAV, экспрессирующих GFP и экспрессирующих рандомизированную shRNA, в контралатеральный глаз.
Мышей исследовали при равных интервалах с последующей инъекцией для симптомов миоцилиновой (MYOC) глаукомы, сравнивая глаз, получающий экспериментальное лечение, с глазом, получающим контрольное лечение. IOP измеряли с помощью тонометрии (Kim, C.Y., et al. (2007) Eye (Lond.) 21(9):1202-9). Толщину роговицы измеряли с помощью ультразвукового пахиметра (Lively, G.D., et al. (2010) Physiol. Genomics 42(2):281-6). Радужно-роговичный угол оценивали с помощью гониоскопии. Функцию ганглионарных клеток сетчатки измеряли путем анализирования картины структурной электроретинографии ответов на зрительный раздражитель с применением модели электроретинографии (PERG) (Zode et al. (2011) J. Clin. Invest. 121(9):3542-53). Мышей могли умерщвлять и глаза могли вырезать для других фенотипических характеристик. Например, количество и/или морфологию ганглионарных клеток сетчатки оценивали с помощью иммунофлуоресцентной микроскопии и/или просвечивающей электронной микроскопии.
Пример 6. Применение белков семейства RSPO для восстановления передачи сигнала Wnt, блокированной глаукоматозной мутацией MYOC
Как продемонстрировано в примере 3, передача сигнала Wnt, блокированная мутантами MYOC (например, P370L и Y437H) может быть восстановлена экспрессией R-спондина 3 (RSPO3). Для дальнейшего понимания механизмов, лежащих в основе этого восстановления передачи сигнала Wnt, исследовали способность различных представителей и вариантов семейства RSPO восстанавливать передачу сигнала Wnt.
Белки hRSPO1, 2, 3, и 4 семейства RSPO человека обладают схожей структурой домена, которая включает в себя фуриноподобные домены, богатые Cys, домен тромбоспондина типа 1 и C-концевой положительно заряженный домен, как проиллюстрировано на фиг. 11 и 12. Для исследования функциональных доменов, необходимых для восстановления передачи сигнала Wnt, создавали несколько усеченных вариантов RSPO3 человека. Варианты и специфические домены, включенные и исключенные для каждого варианта, показаны на фиг. 11, 12, 13A и 14.
Для тестирования эффектов вариантов RSPO3 на передачу сигнала Wnt клетки 293T совместно трансфицировали репортерной конструкцией TOP-Flash и wtMYOC ("MYOC") или MYOC Y437H, и также трансфицировали плазмидами полной длины или частичными плазмидами с RSPO3, как отмечено на фиг. 15. Передача сигнала Wnt усиливалась после добавления рекомбинантной человеческой Wnt3a (400 нг/мл) и была измерена с помощью анализа TOP-Flash. Люциферазную активность (значение+SD, n=3) измеряли после трансфекции и нормализовали по контрольной трансфекции постоянно экспрессируемого уровня люциферазы Renilla.
Как описано в примере 3, мутантный MYOC Y437H ингибирует передачу сигнала Wnt в клетках 293T, измеренную с помощью анализа TOP-Flash. На фиг. 15 показан эффект различных усеченных вариантов hRSPO3 на передачу сигнала Wnt в данном анализе. Как показано на фиг. 15, все исследуемые формы hRSPO3, как частичные, так и полной длины, обладали активностью восстановления передачи сигнала Wnt, при этом RSPO3 полной длины проявлял более сильную активность, чем многие усеченные формы.
Для исследования эффекта различных представителей семейства RSPO на передачу сигнала Wnt клетки 293T совместно трансфицировали репортерной конструкцией TOP-Flash и wtMYOC ("MYOC") или MYOC Y437H, а также трансфицировали плазмидами полной длины или частичными плазмидами с RSPO1, RSPO2 или RSPO4, как отмечено на фиг. 16 (см. фиг. 12 для описания сеченных форм RSPO1, 2, 3, и 4). Передача сигнала Wnt усиливалась после добавления рекомбинантной мышиной Wnt3a (400 нг/мл) и была измерена с помощью анализа TOP-Flash. Люциферазную активность (значение+SD, n=3) измеряли после трансфекции и нормализовали по контрольной трансфекции постоянно экспрессируемого уровня люциферазы Renilla.
Результаты этих исследований показаны на фиг. 16. Эти результаты указывают, что RSPO1, 2, и 4, полной длины и усеченные, также обладали активностью восстановления передачи сигнала Wnt, при этом RSPO полной длины проявлял более сильную активность, чем усеченные формы. Все представители и формы семейства RSPO и взаимодействовали с Wnt3a.
ПОСЛЕДОВАТЕЛЬНОСТИ
Полипептидная последовательность RSPO3 (сигнальная последовательность подчеркнута)
MHLRLISWLFIILNFMEYIGSQNASRGRRQRRMHPNVSQGCQGGCATCSDYNGCLSCKPRLFFALERIGMKQIGVCLSSCPSGYYGTRYPDINKCTKCKADCDTCFNKNFCTKCKSGFYLHLGKCLDNCPEGLEANNHTMECVSIVHCEVSEWNPWSPCTKKGKTCGFKRGTETRVREIIQHPSAKGNLCPPTNETRKCTVQRKKCQKGERGKKGRERKRKKPNKGESKEAIPDSKSLESSKEIPEQRENKQQQKKRKVQDKQKSVSVSTVH (SEQ ID NO:1)
Полипептидная последовательность RSPO3
ATGCACTTGCGACTGATTTCTTGGCTTTTTATCATTTTGAACTTTATGGA ATACATCGGCAGCCAAAACGCCTCCCGGGGAAGGCGCCAGCGAAGAATGC ATCCTAACGTTAGTCAAGGCTGCCAAGGAGGCTGTGCAACATGCTCAGAT TACAATGGATGTTTGTCATGTAAGCCCAGACTATTTTTTGCTCTGGAAAG AATTGGCATGAAGCAGATTGGAGTATGTCTCTCTTCATGTCCAAGTGGAT ATTATGGAACTCGATATCCAGATATAAATAAGTGTACAAAATGCAAAGCT GACTGTGATACCTGTTTCAACAAAAATTTCTGCACAAAATGTAAAAGTGG ATTTTACTTACACCTTGGAAAGTGCCTTGACAATTGCCCAGAAGGGTTGG AAGCCAACAACCATACTATGGAGTGTGTCAGTATTGTGCACTGTGAGGTC AGTGAATGGAATCCTTGGAGTCCATGCACGAAGAAGGGAAAAACATGTGG CTTCAAAAGAGGGACTGAAACACGGGTCCGAGAAATAATACAGCATCCTT CAGCAAAGGGTAACCTGTGTCCCCCAACAAATGAGACAAGAAAGTGTACA GTGCAAAGGAAGAAGTGTCAGAAGGGAGAACGAGGAAAAAAAGGAAGGGA GAGGAAAAGAAAAAAACCTAATAAAGGAGAAAGTAAAGAAGCAATACCTG ACAGCAAAAGTCTGGAATCCAGCAAAGAAATCCCAGAGCAACGAGAAAAC AAACAGCAGCAGAAGAAGCGAAAAGTCCAAGATAAACAGAAATCGGTATC AGTCAGCACTGTACACTAG (SEQ ID NO:2)
Полипептидная последовательность MYOC
MRFFCARCCSFGPEMPAVQLLLLACLVWDVGARTAQLRKANDQSGRCQYTFSVASPNESSCPEQSQAMSVIHNLQRDSSTQRLDLEATKARLSSLESLLHQLTLDQAARPQETQEGLQRELGTLRRERDQLETQTRELETAYSNLLRDKSVLEEEKKRLRQENENLARRLESSSQEVARLRRGQCPQTRDTARAVPPGSREVSTWNLDTLAFQELKSELTEVPASRILKESPSGYLRSGEGDTGCGELVWVGEPLTLRTAETITGKYGVWMRDPKPTYPYTQETTWRIDTVGTDVRQVFEYDLISQFMQGYPSKVHILPRPLESTGAVVYSGSLYFQGAESRTVIRYELNTETVKAEKEIPGAGYHGQFPYSWGGYTDIDLAVDEAGLWVIYSTDEAKGAIVLSKLNPENLELEQTWETNIRKQSVANAFIICGTLYTVSSYTSADATVNFAYDTGTGISKTLTIPFKNRYKYSSMIDYNPLEKKLFAWDNLNMVTYDIKLSKM (SEQ ID NO:3)
кДНК-последовательность MYOC
ATGAGGTTCTTCTGTGCACGTTGCTGCAGCTTTGGGCCTGAGATGCCAGCTGTCCAGCTGCTGCTTCTGGCCTGCCTGGTGTGGGATGTGGGGGCCAGGACAGCTCAGCTCAGGAAGGCCAATGACCAGAGTGGCCGATGCCAGTATACCTTCAGTGTGGCCAGTCCCAATGAATCCAGCTGCCCAGAGCAGAGCCAGGCCATGTCAGTCATCCATAACTTACAGAGAGACAGCAGCACCCAACGCTTAGACCTGGAGGCCACCAAAGCTCGACTCAGCTCCCTGGAGAGCCTCCTCCACCAATTGACCTTGGACCAGGCTGCCAGGCCCCAGGAGACCCAGGAGGGGCTGCAGAGGGAGCTGGGCACCCTGAGGCGGGAGCGGGACCAGCTGGAAACCCAAACCAGAGAGTTGGAGACTGCCTACAGCAACCTCCTCCGAGACAAGTCAGTTCTGGAGGAAGAGAAGAAGCGACTAAGGCAAGAAAATGAGAATCTGGCCAGGAGGTTGGAAAGCAGCAGCCAGGAGGTAGCAAGGCTGAGAAGGGGCCAGTGTCCCCAGACCCGAGACACTGCTCGGGCTGTGCCACCAGGCTCCAGAGAAGTTTCTACGTGGAATTTGGACACTTTGGCCTTCCAGGAACTGAAGTCCGAGCTAACTGAAGTTCCTGCTTCCCGAATTTTGAAGGAGAGCCCATCTGGCTATCTCAGGAGTGGAGAGGGAGACACCGGATGTGGAGAACTAGTTTGGGTAGGAGAGCCTCTCACGCTGAGAACAGCAGAAACAATTACTGGCAAGTATGGTGTGTGGATGCGAGACCCCAAGCCCACCTACCCCTACACCCAGGAGACCACGTGGAGAATCGACACAGTTGGCACGGATGTCCGCCAGGTTTTTGAGTATGACCTCATCAGCCAGTTTATGCAGGGCTACCCTTCTAAGGTTCACATACTGCCTAGGCCACTGGAAAGCACGGGTGCTGTGGTGTACTCGGGGAGCCTCTATTTCCAGGGCGCTGAGTCCAGAACTGTCATAAGATATGAGCTGAATACCGAGACAGTGAAGGCTGAGAAGGAAATCCCTGGAGCTGGCTACCACGGACAGTTCCCGTATTCTTGGGGTGGCTACACGGACATTGACTTGGCTGTGGATGAAGCAGGCCTCTGGGTCATTTACAGCACCGATGAGGCCAAAGGTGCCATTGTCCTCTCCAAACTGAACCCAGAGAATCTGGAACTCGAACAAACCTGGGAGACAAACATCCGTAAGCAGTCAGTCGCCAATGCCTTCATCATCTGTGGCACCTTGTACACCGTCAGCAGCTACACCTCAGCAGATGCTACCGTCAACTTTGCTTATGACACAGGCACAGGTATCAGCAAGACCCTGACCATCCCATTCAAGAACCGCTATAAGTACAGCAGCATGATTGACTACAACCCCCTGGAGAAGAAGCTCTTTGCCTGGGACAACTTGAACATGGTCACTTATGACATCAAGCTCTCCAAGATGTAG (SEQ ID NO:4)
Целевые последовательности shRNA для MYOC
GGCCATGTCAGTCATCCAT (SEQ ID NO:5)
QAMSVIH (SEQ ID NO:6)
Последовательность петли shRNA
AATAGTGAAGCCACAGATGTATT (SEQ ID NO:7)
Полипептидная последовательность RSPO1 (сигнальная последовательность подчеркнута)
MRLGLCVVALVLSWTHLTISSRGIKGKRQRRISAEGSQACAKGCELCSEVNGCLKCSPKLFILLERNDIRQVGVCLPSCPPGYFDARNPDMNKCIKCKIEHCEACFSHNFCTKCKEGLYLHKGRCYPACPEGSSAANGTMECSSPAQCEMSEWSPWGPCSKKQQLCGFRRGSEERTRRVLHAPVGDHAACSDTKETRRCTVRRVPCPEGQKRRKGGQGRRENANRNLARKESKEAGAGSRRRKGQQQQQQQGTVGPLTSAGPA (SEQ ID NO:8)
Полипептидная последовательность RSPO2 (сигнальная последовательность подчеркнута)
MQFRLFSFALIILNCMDYSHCQGNRWRRSKRASYVSNPICKGCLSCSKDNGCSRCQQKLFFFLRREGMRQYGECLHSCPSGYYGHRAPDMNRCARCRIENCDSCFSKDFCTKCKVGFYLHRGRCFDECPDGFAPLEETMECVEGCEVGHWSEWGTCSRNNRTCGFKWGLETRTRQIVKKPVKDTILCPTIAESRRCKMTMRHCPGGKRTPKAKEKRNKKKKRKLIERAQEQHSVFLATDRANQ (SEQ ID NO:9)
Полипептидная последовательность RSPO4 (сигнальная последовательность подчеркнута)
MRAPLCLLLLVAHAVDMLALNRRKKQVGTGLGGNCTGCIICSEENGCSTCQQRLFLFIRREGIRQYGKCLHDCPPGYFGIRGQEVNRCKKCGATCESCFSQDFCIRCKRQFYLYKGKCLPTCPPGTLAHQNTRECQGECELGPWGGWSPCTHNGKTCGSAWGLESRVREAGRAGHEEAATCQVLSESRKCPIQRPCPGERSPGQKKGRKDRRPRKDRKLDRRLDVRPRQPGLQP (SEQ ID NO:10)
Полипептидная последовательность RSPO1 с усечением 1-135 (сигнальная последовательность подчеркнута)
MRLGLCVVALVLSWTHLTISSRGIKGKRQRRISAEGSQACAKGCELCSEVNGCLKCSPKLFILLERNDIRQVGVCLPSCPPGYFDARNPDMNKCIKCKIEHCEACFSHNFCTKCKEGLYLHKGRCYPACPEGSSA (SEQ ID NO:11)
Полипептидная последовательность RSPO1 с усечением 1-206 (сигнальная последовательность подчеркнута)
MRLGLCVVALVLSWTHLTISSRGIKGKRQRRISAEGSQACAKGCELCSEVNGCLKCSPKLFILLERNDIRQVGVCLPSCPPGYFDARNPDMNKCIKCKIEHCEACFSHNFCTKCKEGLYLHKGRCYPACPEGSSAANGTMECSSPAQCEMSEWSPWGPCSKKQQLCGFRRGSEERTRRVLHAPVGDHAACSDTKETRRCTVRRVPC (SEQ ID NO:12)
Полипептидная последовательность RSPO2 с усечением 1-134 (сигнальная последовательность подчеркнута)
MQFRLFSFALIILNCMDYSHCQGNRWRRSKRASYVSNPICKGCLSCSKDNGCSRCQQKLFFFLRREGMRQYGECLHSCPSGYYGHRAPDMNRCARCRIENCDSCFSKDFCTKCKVGFYLHRGRCFDECPDGFAP (SEQ ID NO:13)
Полипептидная последовательность RSPO2 с усечением 1-203 (сигнальная последовательность подчеркнута)
MQFRLFSFALIILNCMDYSHCQGNRWRRSKRASYVSNPICKGCLSCSKDNGCSRCQQKLFFFLRREGMRQYGECLHSCPSGYYGHRAPDMNRCARCRIENCDSCFSKDFCTKCKVGFYLHRGRCFDECPDGFAPLEETMECVEGCEVGHWSEWGTCSRNNRTCGFKWGLETRTRQIVKKPVKDTILCPTIAESRRCKMTMRHC (SEQ ID NO:14)
Полипептидная последовательность RSPO3 с усечением 1-135 (сигнальная последовательность подчеркнута)
MHLRLISWLFIILNFMEYIGSQNASRGRRQRRMHPNVSQGCQGGCATCSDYNGCLSCKPRLFFALERIGMKQIGVCLSSCPSGYYGTRYPDINKCTKCKADCDTCFNKNFCTKCKSGFYLHLGKCLDNCPEGLEA (SEQ ID NO:15)
Полипептидная последовательность RSPO3 с усечением 1-146 (сигнальная последовательность подчеркнута)
MHLRLISWLFIILNFMEYIGSQNASRGRRQRRMHPNVSQGCQGGCATCSDYNGCLSCKPRLFFALERIGMKQIGVCLSSCPSGYYGTRYPDINKCTKCKADCDTCFNKNFCTKCKSGFYLHLGKCLDNCPEGLEANNHTMECVSIV (SEQ ID NO:16)
Полипептидная последовательность RSPO3 с усечением 1-206 (сигнальная последовательность подчеркнута)
MHLRLISWLFIILNFMEYIGSQNASRGRRQRRMHPNVSQGCQGGCATCSDYNGCLSCKPRLFFALERIGMKQIGVCLSSCPSGYYGTRYPDINKCTKCKADCDTCFNKNFCTKCKSGFYLHLGKCLDNCPEGLEANNHTMECVSIVHCEVSEWNPWSPCTKKGKTCGFKRGTETRVREIIQHPSAKGNLCPPTNETRKCTVQRKKC (SEQ ID NO:17)
Полипептидная последовательность RSPO4 с усечением 1-128 (сигнальная последовательность подчеркнута)
MRAPLCLLLLVAHAVDMLALNRRKKQVGTGLGGNCTGCIICSEENGCSTCQQRLFLFIRREGIRQYGKCLHDCPPGYFGIRGQEVNRCKKCGATCESCFSQDFCIRCKRQFYLYKGKCLPTCPPGTLA (SEQ ID NO:18)
Полипептидная последовательность RSPO4 с усечением 1-195 (сигнальная последовательность подчеркнута)
MRAPLCLLLLVAHAVDMLALNRRKKQVGTGLGGNCTGCIICSEENGCSTCQQRLFLFIRREGIRQYGKCLHDCPPGYFGIRGQEVNRCKKCGATCESCFSQDFCIRCKRQFYLYKGKCLPTCPPGTLAHQNTRECQGECELGPWGGWSPCTHNGKTCGSAWGLESRVREAGRAGHEEAATCQVLSESRKCPIQRP (SEQ ID NO:19)
Мутированная полинуклеотидная последовательность ITR
CACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCACGCCCGGGCTTTGCCCGGGCG (SEQ ID NO:20)
Прямой мутагенезный праймер для MYOC370L (замена подчеркнута)
ACCACGGACAGTTCCTGTATTCTTGGGGTGG (SEQ ID NO:21)
Обратный мутагенезный праймер для MYOC370L (замена подчеркнута)
CCACCCCAAGAATACAGGAACTGTCCGTGGT (SEQ ID NO:22)
Прямой мутагенезный праймер для MYOCY437H (замена подчеркнута)
TCTGTGGCACCTTGCACACCGTCAGCAGC (SEQ ID NO:23)
Обратный мутагенезный праймер для MYOCY437H (замена подчеркнута)
GCTGCTGACGGTGTGCAAGGTGCCACAGA (SEQ ID NO:24)
Claims (18)
1. Способ доставки нуклеиновой кислоты в трабекулярную сеть глаза млекопитающего, включающий введение частицы AAV серотипа 2 (AAV2), содержащей вектор rAAV, в глаз млекопитающего, где вектор rAAV содержит нуклеиновую кислоту, и где частица AAV2 содержит капсидный белок AAV2, содержащий аминокислотную замену R471A, нумерация основана на VP1 AAV2.
2. Способ по п. 1, в котором нуклеиновая кислота кодирует терапевтический трансген.
3. Способ лечения глазного расстройства, связанного с трабекулярной сетью глаза, у млекопитающего, включающий введение частицы AAV2, содержащей вектор rAAV, в глаз млекопитающего, где вектор rAAV содержит нуклеиновую кислоту, кодирующую терапевтический трансген, и где частица AAV2 содержит капсидный белок AAV2, содержащий аминокислотную замену R471A, нумерация основана на VP1 AAV2.
4. Способ по любому из пп. 1-3, в котором частица rAAV трансдуцирует клетки трабекулярной сети глаза.
5. Способ по любому из пп. 2-4, в котором терапевтический трансген экспрессируется в трабекулярной сети глаза.
6. Способ по любому из пп. 1-5, в котором терапевтический трансген кодирует терапевтический полипептид или терапевтическую нуклеиновую кислоту.
7. Способ по любому из пп. 3-6, в котором глазное расстройство представляет собой миоцилиновую (MYOC) глаукому.
8. Способ по любому из пп. 1-7, в котором млекопитающее является человеком.
9. Способ по любому из пп. 1-8, в котором введение частицы AAV является интравитреальным и/или интракамеральным.
10. Набор для доставки нуклеиновой кислоты в трабекулярную сеть глаза млекопитающего, включающий частицу rAAV2, содержащую вектор rAAV, где вектор rAAV включает нуклеиновую кислоту, и где AAV2 частица содержит капсидный белок AAV2, содержащий аминокислотную замену R471A, нумерация основана на VP1 AAV2.
11. Набор по п. 10, в котором нуклеиновая кислота кодирует терапевтический трансген.
12. Набор по п. 10 или 11, в котором частица rAAV трансдуцирует клетки трабекулярной сети глаза.
13. Набор по п. 11 или 12, где терапевтический трансген экспрессируется в трабекулярной сети глаза.
14. Набор по п. 13, причем млекопитающее имеет глазное расстройство, связанное с трабекулярной сеткой глаза.
15. Набор по п. 14, в котором глазное расстройство представляет собой миоцилиновую (MYOC) глаукому.
16. Набор по любому из пп. 10-15, в котором млекопитающее является человеком.
17. Набор по любому из пп. 10-16, дополнительно содержащий инструкции по применению.
18. Набор по любому из пп. 10-17, дополнительно содержащий буферы и/или фармацевтически приемлемые эксципиенты.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462051299P | 2014-09-16 | 2014-09-16 | |
US62/051,299 | 2014-09-16 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017112972A Division RU2718047C2 (ru) | 2014-09-16 | 2015-09-16 | Аденоассоциированные вирусные векторы для лечения миоцилиновой (myoc) глаукомы |
Publications (3)
Publication Number | Publication Date |
---|---|
RU2020111038A RU2020111038A (ru) | 2020-04-29 |
RU2020111038A3 RU2020111038A3 (ru) | 2020-10-15 |
RU2746991C2 true RU2746991C2 (ru) | 2021-04-23 |
Family
ID=58640637
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017112972A RU2718047C2 (ru) | 2014-09-16 | 2015-09-16 | Аденоассоциированные вирусные векторы для лечения миоцилиновой (myoc) глаукомы |
RU2020111038A RU2746991C2 (ru) | 2014-09-16 | 2015-09-16 | Аденоассоциированные вирусные векторы для лечения миоцилиновой (myoc) глаукомы |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017112972A RU2718047C2 (ru) | 2014-09-16 | 2015-09-16 | Аденоассоциированные вирусные векторы для лечения миоцилиновой (myoc) глаукомы |
Country Status (12)
Country | Link |
---|---|
US (1) | US10821193B2 (ru) |
EP (1) | EP3194601B1 (ru) |
JP (2) | JP6673923B2 (ru) |
KR (2) | KR20230172610A (ru) |
CN (2) | CN116585492A (ru) |
AU (2) | AU2015317756B2 (ru) |
BR (1) | BR112017005235B1 (ru) |
IL (1) | IL251178B (ru) |
MX (2) | MX2017003426A (ru) |
RU (2) | RU2718047C2 (ru) |
SG (3) | SG11201702055PA (ru) |
ZA (1) | ZA201701881B (ru) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116585492A (zh) | 2014-09-16 | 2023-08-15 | 建新公司 | 用于治疗肌纤蛋白(myoc)青光眼的腺伴随病毒载体 |
EP3751000B1 (en) * | 2018-02-07 | 2024-11-27 | Nippon Medical School Foundation | Improved adeno-associated virus vector |
US20210030719A1 (en) * | 2018-02-22 | 2021-02-04 | University Of South Florida | Grp94 inhibitors to treat steroid-induced ocular hypertensions and glaucomas |
JP2022522756A (ja) | 2019-02-28 | 2022-04-20 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | 治療薬の送達のためのアデノ随伴ウイルスベクター |
CN113032010B (zh) * | 2021-03-12 | 2022-09-20 | 歌尔科技有限公司 | 命令的传输控制方法、终端及计算机可读存储介质 |
JP2024526234A (ja) * | 2021-06-28 | 2024-07-17 | アルナイラム ファーマシューティカルズ, インコーポレイテッド | Myoc発現をサイレンシングするための組成物および方法 |
EP4447806A2 (en) * | 2021-12-16 | 2024-10-23 | Peter Koulen | A machine learning-based framework using electroretinography for detecting early-stage glaucoma |
CN117343152B (zh) * | 2023-04-18 | 2024-06-04 | 上海本导基因技术有限公司 | 一种用于治疗青光眼疾病的慢病毒样颗粒 |
CN118546217B (zh) * | 2024-07-25 | 2024-10-29 | 广州译码基因科技有限公司 | 靶向小梁网、角膜缘及rpe的aav衣壳蛋白及其应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005079815A2 (en) * | 2004-02-18 | 2005-09-01 | The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin | Methods and reagents for treating autosomal dominant diseases of the eye |
WO2005117938A2 (en) * | 2004-04-13 | 2005-12-15 | Regents Of The University Of Minnesota | Methods of treating ocular conditions |
WO2009046059A1 (en) * | 2007-10-01 | 2009-04-09 | Alcon Research, Ltd. | Self complementary aav-mediated delivery of interfering rna molecules to treat or prevent ocular disorders |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005514917A (ja) | 2001-10-03 | 2005-05-26 | インサイト・ゲノミックス・インコーポレイテッド | 分泌タンパク質 |
WO2008075796A1 (ja) | 2006-12-21 | 2008-06-26 | Kyowa Hakko Kirin Co., Ltd. | 血球回復促進剤 |
GB201106395D0 (en) * | 2011-04-14 | 2011-06-01 | Hubrecht Inst | Compounds |
ES2791499T3 (es) * | 2011-04-22 | 2020-11-04 | Univ California | Viriones de virus adenoasociados con cápside variante y métodos de uso de los mismos |
EP2554662A1 (en) * | 2011-08-05 | 2013-02-06 | M Maria Pia Cosma | Methods of treatment of retinal degeneration diseases |
MX366804B (es) * | 2012-02-11 | 2019-07-25 | Genentech Inc | Translocaciones de la r-espondina y sus metodos de uso. |
EP2847337A4 (en) * | 2012-05-09 | 2016-04-27 | Univ Oregon Health & Science | ADENO ASSOCIATED VIRUS PLASMIDS AND VECTORS |
CN116585492A (zh) | 2014-09-16 | 2023-08-15 | 建新公司 | 用于治疗肌纤蛋白(myoc)青光眼的腺伴随病毒载体 |
-
2015
- 2015-09-16 CN CN202211533202.3A patent/CN116585492A/zh active Pending
- 2015-09-16 KR KR1020237042363A patent/KR20230172610A/ko active Pending
- 2015-09-16 MX MX2017003426A patent/MX2017003426A/es unknown
- 2015-09-16 US US15/511,595 patent/US10821193B2/en active Active
- 2015-09-16 BR BR112017005235-0A patent/BR112017005235B1/pt active IP Right Grant
- 2015-09-16 SG SG11201702055PA patent/SG11201702055PA/en unknown
- 2015-09-16 SG SG10201913430VA patent/SG10201913430VA/en unknown
- 2015-09-16 AU AU2015317756A patent/AU2015317756B2/en active Active
- 2015-09-16 KR KR1020177010012A patent/KR102612871B1/ko active Active
- 2015-09-16 JP JP2017534525A patent/JP6673923B2/ja active Active
- 2015-09-16 CN CN201580061882.5A patent/CN107001436B/zh active Active
- 2015-09-16 RU RU2017112972A patent/RU2718047C2/ru active
- 2015-09-16 SG SG10201902285SA patent/SG10201902285SA/en unknown
- 2015-09-16 EP EP15772133.3A patent/EP3194601B1/en active Active
- 2015-09-16 RU RU2020111038A patent/RU2746991C2/ru active
- 2015-09-16 IL IL251178A patent/IL251178B/en unknown
-
2017
- 2017-03-15 MX MX2023005998A patent/MX2023005998A/es unknown
- 2017-03-16 ZA ZA2017/01881A patent/ZA201701881B/en unknown
-
2020
- 2020-03-04 JP JP2020036344A patent/JP7097398B2/ja active Active
-
2022
- 2022-04-12 AU AU2022202413A patent/AU2022202413A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005079815A2 (en) * | 2004-02-18 | 2005-09-01 | The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin | Methods and reagents for treating autosomal dominant diseases of the eye |
WO2005117938A2 (en) * | 2004-04-13 | 2005-12-15 | Regents Of The University Of Minnesota | Methods of treating ocular conditions |
WO2009046059A1 (en) * | 2007-10-01 | 2009-04-09 | Alcon Research, Ltd. | Self complementary aav-mediated delivery of interfering rna molecules to treat or prevent ocular disorders |
Non-Patent Citations (3)
Title |
---|
KWON HS et al. Myocilin is a modulator of Wnt signaling. Mol Cell Biol., 2009, 29(8), p.2139-54. * |
LOCHRIE MA et al. Mutations on the external surfaces of adeno-associated virus type 2 capsids that affect transduction and neutralization. J Virol., 2006, 80(2), p.821-834. * |
LOCHRIE MA et al. Mutations on the external surfaces of adeno-associated virus type 2 capsids that affect transduction and neutralization. J Virol., 2006, 80(2), p.821-834. KWON HS et al. Myocilin is a modulator of Wnt signaling. Mol Cell Biol., 2009, 29(8), p.2139-54. * |
Also Published As
Publication number | Publication date |
---|---|
BR112017005235A2 (pt) | 2017-12-12 |
MX2017003426A (es) | 2017-07-28 |
JP2020105194A (ja) | 2020-07-09 |
EP3194601B1 (en) | 2021-10-27 |
JP7097398B2 (ja) | 2022-07-07 |
JP6673923B2 (ja) | 2020-03-25 |
US10821193B2 (en) | 2020-11-03 |
ZA201701881B (en) | 2023-09-27 |
RU2718047C2 (ru) | 2020-03-30 |
SG10201902285SA (en) | 2019-04-29 |
RU2020111038A3 (ru) | 2020-10-15 |
KR20170054493A (ko) | 2017-05-17 |
US20170304465A1 (en) | 2017-10-26 |
AU2015317756A1 (en) | 2017-04-13 |
IL251178A0 (en) | 2017-05-29 |
CN107001436B (zh) | 2023-01-06 |
SG11201702055PA (en) | 2017-04-27 |
SG10201913430VA (en) | 2020-03-30 |
RU2017112972A (ru) | 2018-10-17 |
IL251178B (en) | 2022-07-01 |
JP2017529395A (ja) | 2017-10-05 |
RU2020111038A (ru) | 2020-04-29 |
BR112017005235B1 (pt) | 2023-10-31 |
AU2015317756B2 (en) | 2022-01-13 |
AU2022202413A1 (en) | 2022-05-05 |
MX2023005998A (es) | 2023-06-08 |
KR102612871B1 (ko) | 2023-12-13 |
RU2017112972A3 (ru) | 2019-04-16 |
EP3194601A1 (en) | 2017-07-26 |
CN107001436A (zh) | 2017-08-01 |
KR20230172610A (ko) | 2023-12-22 |
CN116585492A (zh) | 2023-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2746991C2 (ru) | Аденоассоциированные вирусные векторы для лечения миоцилиновой (myoc) глаукомы | |
AU2021200242B2 (en) | AAV vectors for retinal and CNS gene therapy | |
US12201698B2 (en) | Gene therapy for retinitis pigmentosa | |
CA2961523A1 (en) | Adeno-associated viral vectors for treating myocilin (myoc) glaucoma | |
EP4012035B1 (en) | Adeno-associated viral vectors for treating myocilin (myoc) glaucoma | |
JP2023517929A (ja) | Nmnat1関連網膜変性に対する遺伝子療法 |