RU2679368C1 - Эжекторный холодильный контур - Google Patents
Эжекторный холодильный контур Download PDFInfo
- Publication number
- RU2679368C1 RU2679368C1 RU2017139793A RU2017139793A RU2679368C1 RU 2679368 C1 RU2679368 C1 RU 2679368C1 RU 2017139793 A RU2017139793 A RU 2017139793A RU 2017139793 A RU2017139793 A RU 2017139793A RU 2679368 C1 RU2679368 C1 RU 2679368C1
- Authority
- RU
- Russia
- Prior art keywords
- ejector
- outlet
- refrigerant
- low
- fluidly connected
- Prior art date
Links
- 238000005057 refrigeration Methods 0.000 title claims abstract description 73
- 239000003507 refrigerant Substances 0.000 claims abstract description 99
- 239000007788 liquid Substances 0.000 claims abstract description 73
- 239000012530 fluid Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims description 21
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 3
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 238000005086 pumping Methods 0.000 claims description 2
- 230000004913 activation Effects 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000007246 mechanism Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000005484 gravity Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/08—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using ejectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2341/00—Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
- F25B2341/001—Ejectors not being used as compression device
- F25B2341/0012—Ejectors with the cooled primary flow at high pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2341/00—Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
- F25B2341/001—Ejectors not being used as compression device
- F25B2341/0015—Ejectors not being used as compression device using two or more ejectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2501—Bypass valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1933—Suction pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/195—Pressures of the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/197—Pressures of the evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21151—Temperatures of a compressor or the drive means therefor at the suction side of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2116—Temperatures of a condenser
- F25B2700/21163—Temperatures of a condenser of the refrigerant at the outlet of the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2117—Temperatures of an evaporator
- F25B2700/21175—Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Jet Pumps And Other Pumps (AREA)
- Air Conditioning Control Device (AREA)
- Sampling And Sample Adjustment (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Earth Drilling (AREA)
Abstract
Изобретение относится к холодильной технике. Эжекторный холодильный контур (1) содержит эжекторный контур (3) высокого давления. Теплоотводящий теплообменник/газоохладитель (4) имеет входную сторону (4а) и выходную сторону (4b). Эжектор (6) содержит первичный входной порт (6а) высокого давления, вторичный входной порт (6b) низкого давления и выходной порт (6с). Первичный входной порт (6а) высокого давления соединен по текучей среде с выходной стороной (4b) теплоотводящего теплообменника/газоохладителя (4). Приемник (8) имеет выпускное отверстие (8с) для жидкости, впускное (8а) и выпускное (8b) отверстия для газа, соединенные по текучей среде с выходным портом (6с) эжектора (6). Компрессор (2а, 2b, 2с) имеет входную сторону (21а, 21b, 21с) и выходную сторону (22а, 22b, 22с), причем входная сторона (21а, 21b, 21с) соединена по текучей среде с выпускным отверстием (8b) для газа приемника (8). Выходная сторона (22а, 22b, 22с) компрессора (2а, 2b, 2с) соединена по текучей среде с входной стороной (4а) теплоотводящего теплообменника/газоохладителя (4). Канал холодильного испарителя (5) содержит в направлении потока циркулирующего хладагента насос (7) для жидкости, имеющий входную сторону (7а), соединенную по текучей среде с выпускным отверстием (8с) для жидкости приемника (8), и выходную сторону (7b). Устройство (10) расширения хладагента имеет входную сторону (10а), соединенную по текучей среде с выходной стороной (7b) насоса (7) для жидкости, и выходную сторону (10b). Холодильный испаритель (12) соединен по текучей среде между выходной стороной (10b) устройства (10) расширения хладагента и вторичным входным портом (6b) низкого давления эжектора (6). Насос (7) для жидкости расположен снаружи приемника (8), и/или насос (7) для жидкости снабжен обводной линией (11), содержащей переключаемый перепускной клапан (15), позволяющий хладагенту избирательно обходить насос (7) для жидкости при открытии переключаемого перепускного клапана (15). Эжекторный холодильный контур также содержит низкотемпературный канал (9), содержащий в направлении потока хладагента: низкотемпературное устройство (14) расширения; низкотемпературный испаритель (16) и низкотемпературный компрессор (18а, 18b). Низкотемпературный канал (9) соединен между выпускным отверстием (8с) для жидкости приемника (8) и входной стороной (21а, 21b, 21с) указанного компрессора (2а, 2b, 2с) или между выходной стороной (7b) насоса (7) для жидкости и входной стороной (21а, 21b, 21с) указанного компрессора (2а, 2b, 2с). 2 н. и 11 з.п. ф-лы, 3 ил.
Description
ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к эжекторному холодильному контуру, в частности, эжекторному холодильному контуру, дополнительно содержащему насос для жидкости, и способу управления указанным эжекторным холодильным контуром.
УРОВЕНЬ ТЕХНИКИ
В холодильном контуре эжектор может также использоваться в качестве устройства расширения, дополнительно обеспечивающего эжекторный насос для сжатия хладагента от уровня низкого давления до уровня среднего давления с использованием энергии, которая становится доступной при расширении хладагента от уровня высокого давления до уровня среднего давления.
Желательно повысить эффективность эжекторного холодильного контура, в частности, когда разница давления между входом высокого давления и выходом эжектора является низкой.
В типовом варианте реализации изобретения эжекторный холодильный контур содержит эжекторный контур высокого давления, содержащий в направлении потока циркулирующего хладагента: теплоотводящий теплообменник/газоохладитель, имеющий входную сторону и выходную сторону; по меньшей мере один эжектор, содержащий первичный входной порт высокого давления, вторичный входной порт низкого давления и выходной порт среднего давления; причем первичный входной порт высокого давления соединен по текучей среде с выходной стороной теплоотводящего теплообменника/газоохладителя; приемник, имеющий выпускное отверстие для жидкости, впускное и выпускное отверстия для газа, соединенные по текучей среде с выходным портом по меньшей мере одного эжектора; по меньшей мере один компрессор, имеющий входную сторону и выходную сторону, причем входная сторона по меньшей мере одного компрессора соединена по текучей среде с выпускным отверстием для газа приемника и выходной стороной по меньшей мере одного компрессора, соединенной по текучей среде с входной стороной теплоотводящего теплообменника/газоохладителя. Эжекторный холодильный контур дополнительно содержит контур холодильного испарителя, содержащий в направлении потока циркулирующего хладагента: насос для жидкости, имеющий входную сторону, соединенную по текучей среде с выпускным отверстием для жидкости приемника, и выходную сторону; по меньшей мере одно устройство расширения хладагента, имеющее входную сторону, соединенную по текучей среде с выпускным отверстием насоса для жидкости, и выходную сторону; и по меньшей мере, один холодильный испаритель, соединенный по текучей среде между выходной стороной по меньшей мере одного устройства расширения хладагента и вторичным входным портом низкого давления по меньшей мере одного эжектора. Согласно типовому варианту реализации изобретения насос для жидкости расположен снаружи приемника, и/или насос для жидкости снабжен обводной линией, содержащей переключаемый перепускной клапан, позволяющий хладагенту обходить насос для жидкости при открытии переключаемого перепускного клапана.
Поскольку эффективность эжектора зависит от величины падения давления, эффективность уменьшается при малой разнице между высоким и низким давлением в эжекторном контуре высокого давления. В этом случае эффективность эжекторного холодильного контура может быть повышена за счет увеличения давления внутри контура холодильного испарителя с помощью дополнительного насоса для жидкости. Размещение указанного насоса для жидкости снаружи приемника обеспечивает, при необходимости, легкий доступ для замены и/или технического обслуживания.
Типовые варианты реализации изобретения также включают способ управления эжекторным холодильным контуром, содержащим: эжекторный контур высокого давления, содержащий в направлении потока циркулирующего хладагента: теплоотводящий теплообменник/газоохладитель, имеющий входную сторону и выходную сторону; по меньшей мере один эжектор, содержащий первичный входной порт высокого давления, вторичный входной порт низкого давления и выходной порт среднего давления; при этом первичный входной порт высокого давления соединен по текучей среде с выходной стороной теплоотводящего теплообменника/газоохладителя; приемник, имеющий выпускное отверстие для жидкости, впускное и выпускное отверстия для газа, соединенные по текучей среде с выходным портом по меньшей мере одного эжектора; по меньшей мере один компрессор, имеющий входную сторону и выходную сторону, причем входная сторона по меньшей мере одного компрессора соединена по текучей среде с выпускным отверстием для газа приемника, а выходная сторона по меньшей мере одного компрессора соединена по текучей среде с входной стороной теплоотводящего теплообменника/газоохладителя; и контур холодильного испарителя, содержащий в направлении потока циркулирующего хладагента: насос для жидкости, имеющий входную сторону, соединенную по текучей среде с выпускным отверстием для жидкости приемника, и выходную сторону; по меньшей мере одно устройство расширения хладагента, имеющее входную сторону, соединенную по текучей среде с выходной стороной насоса для жидкости, и выходную сторону; и по меньшей мере один холодильный испаритель, соединенный по текучей среде между выходной стороной по меньшей мере одного устройства расширения хладагента и вторичным входным портом низкого давления по меньшей мере одного эжектора, причем способ включает в себя работу насоса для жидкости для перекачивания жидкого хладагента через контур холодильного испарителя и/или открытие переключаемого перепускного клапана для обхода насоса для жидкости по обводной линии, содержащей переключаемый перепускной клапан.
Открытие перепускного клапана для обеспечения возможности обхода жидким хладагентом неработающего насоса для жидкости уменьшает или даже предотвращает падение давления, вызванное неработающим насосом для жидкости и способное снизить эффективность работы эжекторного холодильного контура.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
Далее типовой вариант реализации изобретения будет описан со ссылкой на прилагаемые графические материалы.
На Фиг. 1 приведен схематический вид эжекторного холодильного контура в соответствии с типовым вариантом реализации изобретения.
На Фиг. 2 приведен схематический вид эжекторного холодильного контура в соответствии с другим типовым вариантом реализации изобретения.
На Фиг. 3 приведен схематический вид в разрезе управляемого эжектора, который может использоваться в типовых вариантах реализации изобретения, проиллюстрированных на Фиг. 1 и 2.
ПОДРОБНОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
На Фиг. 1 приведен схематический вид эжекторного холодильного контура 1 согласно типовому варианту реализации изобретения, содержащего эжекторный контур высокого давления 3, канал холодильного испарителя 5 и низкотемпературный канал 9, соответственно, по которым происходит циркуляция хладагента, как указано стрелками F1, F2 и F3.
Эжекторный контур высокого давления 3 содержит компрессорный блок 2, содержащий множество компрессоров 2а, 2b, 2с, подключенных параллельно.
Боковые выходы 22а, 22b, 22с высокого давления указанных компрессоров 2а, 2b, 2с соединены по текучей среде с выпускным коллектором, собирающим хладагент из компрессоров 2а, 2b, 2с и подающим его через впускную линию теплоотводящего теплообменника/газоохладителя к входной стороне 4а теплоотводящего теплообменника/газоохладителя 4. Отводящий тепло теплообменник/газохладитель 4 выполнен с возможностью передавать тепло от хладагента в окружающую среду, снижая температуру хладагента. В типовом варианте реализации изобретения, проиллюстрированном на Фиг. 1, теплоотводящий теплообменник/газоохладитель 4 содержит два вентилятора 38, выполненные с возможностью продувки воздуха через теплоотводящий теплообменник/газоохладитель 4 для улучшения передачи тепла от хладагента окружающей среде. Конечно наличие вентиляторов 38 являются необязательным, а их количество может быть скорректировано с учетом реальных потребностей.
Охлажденный хладагент, выходящий из теплоотводящего теплообменника/газоохладителя 4 на его выходной стороне 4b, подается через впускную линию 31 высокого давления и необязательный сервисный клапан 20 в первичный входной порт высокого давления 6а эжектора, выполненный с возможностью расширения хладагента до уровня пониженного (среднего) давления.
Расширенный хладагент выходит из эжектора 6 через соответствующий выходной порт 6с эжектора и подается посредством выходной линии 35 эжектора на вход 8а приемника 8. В приемнике 8 хладагент разделяется под действием силы тяжести на жидкую часть, собирающуюся на дне приемника 8, часть газовой фазы, собирающуюся в верхней части приемника 8.
Часть газовой фазы хладагента выходит из приемника 8 через выход приемника для газа 8b, расположенный в верхней части приемника 8. Указанная часть газовой фазы подается через выпускную линию для газа приемника 40 во входные стороны 21а, 22b, 22с компрессоров 2а, 2b, 2с, что завершает цикл хладагента эжекторного контура высокого давления 3.
Хладагент из части жидкой фазы хладагента, собирающегося на дне приемника 8, выходит из приемника 8 через выпускное отверстие 8с для жидкости, предусмотренное на дне приемника 8, и подается через выпускную линию приемника 36 для жидкости на входную сторону 7а насоса для жидкости 7, выполненного с возможностью повышения давления жидкого хладагента, подаваемого из приемника 8. Насос для жидкости 7 расположен снаружи приемника 8, и это обеспечивает, при необходимости, легкий доступ для замены и/или технического обслуживания. Насос для жидкости 7 предпочтительно расположен ниже приемника 8, чтобы использовать силу тяжести для подачи жидкого хладагента из приемника 8 во входную сторону 7а насоса для жидкости 7.
Обходная линия 11, содержащая переключаемый перепускной клапан 15, соединяет входную сторону 7а насоса для жидкости 7 с его выходной стороной 7b, позволяя жидкому хладагенту обходить насос для жидкости 7 при открытии перепускного клапана 15, когда насос для жидкости 7 не работает.
Выходная сторона 7b насоса для жидкости 7 соединена по текучей среде с входной стороной 10а устройства расширения хладагента 10 («среднетемпературного устройства расширения»).
После расширения в устройстве расширения хладагента 10 хладагент выходит из устройства расширения хладагента 10 через его выходную сторону 10b и поступает в холодильный испаритель 12 («среднетемпературный испаритель»), выполненный с возможностью работы при средних температурах охлаждения, в частности, в температурном диапазоне от -10°С до +5°С, для обеспечения охлаждения при средней температуре.
После выхода из холодильного испарителя 12 через его выпускное отверстие 12b хладагент поступает через входную линию 33 низкого давления во вторичный входной порт низкого давления 6b эжектора 6. В процессе работы хладагент, выходящий из холодильного испарителя 12, всасывается через вторичный входной порт низкого давления 6b в эжектор 6 посредством потока высокого давления, поступающего через соответствующий первичный входной порт высокого давления 6. Функции эжектора 6, будут описаны более подробно ниже со ссылкой на Фиг. 3.
В эксплуатационных условиях, при которых перепад давления между первичным входным портом высокого давления 6а эжектора 6 и его выходным портом 6с не достаточно велик, чтобы обеспечить всасывание хладагента через устройство расширения хладагента 10 и холодильный испаритель 12, что является достаточным для эффективной работы эжекторного холодильного контура 1, возможно использование насоса для жидкости 7 при закрытом перепускном клапане 15. За счет работы насоса для жидкости 7 повышается давление жидкого хладагента, подаваемого в устройство расширения хладагента 10 и холодильный испаритель 12. Работа насоса для жидкости 7 также увеличивает массовый поток хладагента через устройство расширения хладагента 10 и холодильный испаритель 12. В результате повышается холодопроизводительность эжекторного холодильного контура 1.
С другой стороны, в иных эксплуатационных условиях, при которых перепад давления между первичным входным портом высокого давления 6а эжектора 6 и его выходным портом 6с достаточно велик, чтобы обеспечить всасывание хладагента через устройство расширения хладагента 10 и холодильный испаритель 12, необходимое для эффективной работы эжекторного холодильного контура 1, работа насоса для жидкости 7 прекращается, поскольку в этом больше нет необходимости. Если имеется обходная линия 11 с перепускным клапаном 15, перепускной клапан 15 можно открыть, чтобы позволить жидкому хладагенту обходить неработающий насос для жидкости 7 для предотвращения или, по меньшей мере, снижения падения давления, вызываемого неработающим насосом для жидкости 7.
Необязательно, входная сторона 14а низкотемпературного устройства расширения 14 соединена по текучей среде с выходной линией для жидкости 36 приемника выше по потоку от насоса для жидкости 7, что позволяет части жидкого хладагента, выходящего из приемника 8, расшириться в низкотемпературном устройстве расширения 14. Затем расширенный хладагент входит в необязательный низкотемпературный испаритель 16, в частности, выполненный с возможностью работы при низких температурах, в частности, при температурах в диапазоне от -40°С до -25°С, для обеспечения низкотемпературного охлаждения. После выхода из низкотемпературного испарителя 16 хладагент доставляется на входную сторону низкотемпературного компрессорного блока 18, содержащего один или большее количество (в варианте реализации, проиллюстрированном на Фиг. 1, - два) низкотемпературных компрессоров 18а, 18b.
В процессе работы низкотемпературный компрессорный блок 18 сжимает хладагент, подаваемый низкотемпературным испарителем 16, до среднего давления, т.е., по существу, такого же давления, как и давление хладагента, подаваемого из выпускного отверстия для газа 8b приемника 8. Сжатый хладагент подается вместе с хладагентом, подаваемым из выпускного отверстия для газа 8b приемника 8 к входным сторонам 21а, 21b, 21с компрессоров 2а, 2b, 2с.
Эжектор 6 может быть управляемым эжектором 6, позволяющим управлять потоком хладагента через первичный входной порт высокого давления 6а, как будет описано более подробно ниже со ссылкой на Фиг. 3.
В альтернативном варианте или дополнительно может быть предусмотрено множество управляемых или неуправляемых эжекторов 6, соединенных параллельно, позволяющее регулировать производительность эжектора в соответствии с фактическими потребностями путем избирательного задействования подходящего набора эжекторов 6.
Датчики 30, 32, 34, выполненные с возможностью измерения давления и/или температуры хладагента, соответственно, предусмотрены на входной линии 31 высокого давления, соединенной по текучей среде с первичным входным портом высокого давления 6а эжектора 6, входной линией низкого давления 33, соединенной по текучей среде с вторичным входным портом низкого давления 6b и выходной линией 35, соединенной по текучей среде с выходными портами 6с эжектора 6. Блок управления 28 выполнен с возможностью управления работой эжекторного холодильного контура 1, в частности, работой компрессоров 2а, 2b, 2b, 18а, 18b, эжектора 6, если он является управляемым, насоса для жидкости 7 и/или перепускного клапана 15 на основе значений давления и/или температуры, определяемых датчиками 30, 32, 34, и фактической потребности в охлаждении.
На Фиг. 2 приведен схематический вид эжекторного холодильного контура 1 в соответствии с альтернативным типовым вариантом реализации изобретения. Конфигурация эжекторного холодильного контура 1 в основном аналогична конфигурации первого варианта реализации изобретения, показанного на Фиг. 1; следовательно, идентичные элементы имеют одинаковые обозначения и в дальнейшем не рассматриваются подробно.
В отличие от первого варианта осуществления входная сторона 14а низкотемпературного устройства расширения 14 соединена по текучей среде не с входной стороной 7а, а с выходной стороной 7b насоса для жидкости 7. Такая конфигурация позволяет увеличить давление жидкого хладагента, протекающего через низкотемпературное устройство расширения 14, а также через низкотемпературный испаритель 14.
В другом варианте осуществления, не показанном на графических материалах, могут быть предусмотрены отдельные насосы для жидкости 7 и обводные линии 11 для канала холодильного испарителя 5 и низкотемпературного канала 9, соответственно. Такая конфигурация позволяет регулировать давление жидкого хладагента, протекающего через канал холодильного испарителя 5, независимо от давления хладагента, протекающего через низкотемпературный канал 9.
На Фиг. 3 приведен схематический вид в разрезе типового варианта реализации управляемого эжектора 6, который может использоваться в качестве эжектора 6 в эжекторном холодильном контуре 1, показанном на Фиг. 1.
Эжектор 6 образован рабочим соплом 100, установленным в наружном элементе 102. Первичный входной порт высокого давления 6а образует вход рабочего сопла 100. Выпускное отверстие наружного элемента 102 обеспечивает выходной порт 6с эжектора 6. Первичный поток хладагента 103 поступает в первичный входной порт высокого давления 6а, а затем переходит в сходящуюся секцию 104 рабочего сопла 100. Затем он проходит через горловину 106 и расходящуюся секцию расширения 108 к выходу 110 рабочего сопла 100. Рабочее сопло 100 ускоряет поток 103 и уменьшает его давление. Вторичный входной порт низкого давления 6b образует вход наружного элемента 102. Уменьшение давления, вызванное первичным потоком рабочего сопла, вытягивает вторичный поток 112 в наружный элемент 102. Наружный элемент 102 содержит смеситель, имеющий сходящуюся секцию 114 и удлиненную горловину или секцию смешивания 116. Наружный элемент 102 также имеет расходящуюся секцию или диффузор 118 ниже по потоку от удлиненной горловины или секции смешивания 116. Выход 110 рабочего сопла расположен в сходящейся секции 114. Когда поток 103 выходит из выхода 110, он начинает смешиваться с потоком 112 с последующим смешиванием, происходящим в секции смешивания 116, обеспечивающей зону смешивания. Таким образом, соответствующие первичный и вторичный каналы потока, проходят, соответственно, от первичного входного порта высокого давления 6а и вторичного входного порта низкого давления 6b к выходному порту 6с, соединяясь на выходе.
В процессе работы первичный поток 103 может быть сверхкритическим при входе в эжектор 6 и подкритическим после выхода из рабочего сопла 100. Вторичный поток 112 может быть газообразным или представлять собой смесь газа, содержащую меньшее количество жидкости, после входа во вторичный входной порт низкого давления 6b. Полученный объединенный поток 120 представляет собой смесь жидкости/пара, замедляется и восстанавливает давление в диффузоре 118, оставаясь смесью.
Эжектор 6, используемый в типовых вариантах реализации изобретения, может быть управляемым эжектором 6. В этом случае управляемость обеспечивается игольчатым клапаном 130, содержащим иглу 132 и приводной механизм 134. Приводной механизм 134 выполнен с возможностью смещения наконечника 136 иглы 132 в горловину 106 рабочего сопла 100 и из нее, чтобы модулировать поток через рабочее сопло 100 и, в свою очередь, через эжектор 6 в целом. Иллюстративные приводные механизмы 134 являются электрическими, например, соленоидами или т.п. Приводной механизм 134 может быть соединен с блоком управления 28 и управляется им. Блок управления 28 может быть соединен с приводным механизмом 134 и другими управляемыми компонентами системы с использованием проводных или беспроводных средств. Блок управления 28 может содержать один или большее количество: процессоров; запоминающих устройств (например, для хранения программы для выполнения процессором с целью реализации способов работы и для хранения данных, используемых или генерируемых программой (программами)); и аппаратных интерфейсных устройств (например, портов) для взаимодействия с устройствами ввода/вывода и управляемыми компонентами системы.
Другие варианты реализации изобретения
Ниже приведен ряд дополнительных признаков. Эти признаки могут быть реализованы в конкретных вариантах реализации изобретения, отдельно или в сочетании с любым из других признаков.
В варианте реализации изобретения насос для жидкости расположен ниже приемника. Установка насоса для жидкости под приемником позволяет использовать силу тяжести для подачи жидкого хладагента из приемника во входную сторону насоса для жидкости.
В одном варианте реализации изобретения эжекторный холодильный контур содержит множество эжекторов, соединенных параллельно. Эжекторы могут иметь разную или одинаковую производительность. Наличие множества эжекторов, соединенных параллельно, позволяет регулировать производительность эжекторного холодильного контура, задействуя соответствующий набор из множества эжекторов. Указанный набор может содержать один эжектор или множество эжекторов.
По меньшей мере один из эжекторов может быть управляемым регулируемым эжектором, позволяющим еще лучше регулировать производительность эжекторного холодильного контура.
В варианте реализации изобретения по меньшей мере один датчик, выполненный с возможностью измерения давления и/или температуры хладагента, предусмотрен по меньшей мере в одной из: входной линии высокого давления, соединенной по текучей среде с первичным входным портом высокого давления; входной линии низкого давления, соединенной по текучей среде с вторичным входным портом низкого давления; и выходной линии, соединенной по текучей среде с выходным портом эжектора, соответственно. Такой датчик позволяет оптимизировать работу эжекторного холодильного контура на основе измеренных значений давления и/или температуры.
В одном варианте реализации изобретения эжекторный холодильный контур дополнительно содержит блок управления, выполненный с возможностью управления по меньшей мере одним компрессором, насосом для жидкости и/или по меньшей мере одним эжектором, если он является регулируемым, на основе значений давления и/или температуры, измеренных по меньшей мере одним датчиком давления и/или температуры, для максимально эффективного управления эжекторным холодильным контуром.
В одном варианте реализации изобретения по меньшей мере один сервисный клапан предусмотрен выше по потоку от первичного входного порта высокого давления эжектора, позволяя перекрыть поток хладагента в первичный входной порт высокого давления в случае, если эжектор должен пройти техническое обслуживание, или его следует заменить.
В одном варианте реализации изобретения эжекторный холодильный контур дополнительно содержит по меньшей мере один низкотемпературный канал, соединенный между выпускным отверстием для жидкости приемника и входной стороной по меньшей мере одного компрессора и содержащий в направлении потока хладагента: по меньшей мере одно низкотемпературное устройство расширения; по меньшей мере один низкотемпературный испаритель; и по меньшей мере один низкотемпературный компрессор для обеспечения более низких температур, в частности, низких температур в дополнение к средним значениям температуры.
В альтернативном варианте реализации изобретения по меньшей мере один низкотемпературный канал, содержащий в направлении потока хладагента: по меньшей мере одно низкотемпературное устройство расширения, по меньшей мере один низкотемпературный испаритель и по меньшей мере один низкотемпературный компрессор, соединен между выходной стороной насоса для жидкости/перепускного клапана и входной стороной по меньшей мере одного компрессора. Такая конфигурация позволяет насосу для жидкости также повышать давление хладагента, протекающего через низкотемпературный канал.
В дополнительном варианте реализации изобретения предусмотрены отдельные насосы для жидкости и (необязательно) обходные линии для канала холодильного испарителя и низкотемпературного канала, соответственно, что позволяет регулировать давление жидкого хладагента, протекающего через канал холодильного испарителя, и давление хладагента, протекающего через низкотемпературный канал, независимо друг от друга.
В одном варианте реализации изобретения способ управления эжекторным холодильным контуром включает работу по меньшей мере одного низкотемпературного канала для обеспечения низких температур, в частности низких температур в низкотемпературном испарителе.
В одном варианте реализации изобретения способ управления эжекторным холодильным контуром включает управление по меньшей мере одним компрессором, насосом для жидкости и/или переключаемым перепускным клапаном на основе выходных значений по меньшей мере одного из датчиков давления и/или температуры для максимально эффективного использования эжекторного холодильного контура.
В одном варианте реализации изобретения способ управления эжекторным холодильным контуром включает управление управляемым эжектором, в частности, на основе выходных значений по меньшей мере одного из датчиков давления и/или температуры для максимально эффективного использования эжекторного холодильного контура.
В одном варианте реализации изобретения способ управления эжекторным холодильным контуром включает избирательное задействование одного или большего количества из по меньшей мере двух эжекторов, соединенных параллельно, в частности, на основе выходных значений по меньшей мере одного из датчиков давления и/или температуры для максимально эффективного использования эжекторного холодильного контура.
В варианте реализации изобретения способ управления эжекторным холодильным контуром включает использование диоксида углерода в качестве хладагента, циркулирующего в эжекторном холодильном контуре.
Несмотря на то, что изобретение было описано со ссылкой на типовые варианты реализации изобретения, специалисту в данной области техники будет понятно, что можно выполнить различные изменения и провести эквивалентные замены элементов настоящего изобретения, не отступая от объема изобретения. В частности, могут быть внесены изменения для адаптации конкретной ситуации или материала к идеям изобретения без отхода от его существенного объема. Следовательно, предполагается, что изобретение не ограничено конкретными раскрытыми вариантами реализации, а включает в себя все варианты реализации, входящие в объем прилагаемой формулы изобретения.
ЧИСЛОВЫЕ ОБОЗНАЧЕНИЯ
1 - эжекторный холодильный контур
2 - компрессорная установка
2а, 2b, 2с - компрессоры
3 - эжекторный контур высокого давления
4 - теплоотводящий теплообменник/газоохладитель
4а - входная сторона теплоотводящего теплообменника/газоохладителя
4b - выходная сторона теплоотводящего теплообменника/газоохладителя
5 - канал холодильного испарителя
6 - первый управляемый эжектор
6а - первичный входной порт высокого давления первого управляемого эжектора
6b - вторичный входной порт низкого давления первого управляемого эжектора
6с - выходной порт первого управляемого эжектора
7 - насос для жидкости
7а - входная сторона насоса для жидкости
7b - выходная сторона насоса для жидкости
8 - приемник
8а - вход приемника
8b - выпускное отверстие для газа приемника
8с - выпускное отверстие для жидкости приемника
9 - низкотемпературный канал
10 - устройство расширения хладагента
10а - входная сторона устройства расширения хладагента
10b - выходная сторона устройства расширения хладагента
11 - обходная линия
12 - холодильный испаритель
12b - выпускное отверстие холодильного испарителя
14 - низкотемпературное устройство расширения
14а - входная сторона низкотемпературного устройства расширения
15 - перепускной клапан
16 - низкотемпературный испаритель
18 - низкотемпературная компрессорная установка
18а, 18b - низкотемпературные компрессоры
20 - сервисный клапан
21а, 21b, 21с - входная сторона компрессоров
22а, 22b, 22с - выходная сторона компрессоров
28 - блок управления
30 - датчик давления и/или температуры
31 - входная линия высокого давления
32 - датчик давления и/или температуры
33 - входная линия низкого давления
34 - датчик давления и/или температуры
35 - выходная линия эжектора
36 - линия выпускного отверстия для жидкости приемника
38 - вентилятор теплоотводящего теплообменника/газоохладителя
40 - линия выпускного отверстия для газа приемника
100 - рабочее сопло
102 - наружный элемент
103 - первичный поток хладагента
104 - сходящаяся секция рабочего сопла
106 - горловина
108 - расходящаяся секция расширения
110 - выход рабочего сопла
112 - вторичный поток
114 - сходящаяся секция смесителя
116 - горловина или секция смешивания
118 - диффузор
120 - комбинированный поток
130 - игольчатый клапан
132 - игла
134 - приводной механизм
Claims (47)
1. Эжекторный холодильный контур (1), содержащий:
эжекторный контур (3) высокого давления, содержащий в направлении потока циркулирующего хладагента:
теплоотводящий теплообменник/газоохладитель (4), имеющий входную сторону (4а) и выходную сторону (4b),
по меньшей мере один эжектор (6), содержащий первичный входной порт (6а) высокого давления, вторичный входной порт (6b) низкого давления и выходной порт (6с), причем первичный входной порт (6а) высокого давления соединен по текучей среде с выходной стороной (4b) теплоотводящего теплообменника/газоохладителя (4);
приемник (8), имеющий выпускное отверстие (8с) для жидкости, впускное (8а) и выпускное (8b) отверстия для газа, соединенные по текучей среде с выходным портом (6с) по меньшей мере одного эжектора (6);
по меньшей мере один компрессор (2а, 2b, 2с), имеющий входную сторону (21а, 21b, 21с) и выходную сторону (22а, 22b, 22с), причем входная сторона (21а, 21b, 21с) по меньшей мере одного компрессора (2а, 2b, 2с) соединена по текучей среде с выпускным отверстием (8b) для газа приемника (8), а выходная сторона (22а, 22b, 22с) по меньшей мере одного компрессора (2а, 2b, 2с) соединена по текучей среде с входной стороной (4а) теплоотводящего теплообменника/газоохладителя (4);
канал (5) холодильного испарителя, содержащий в направлении потока циркулирующего хладагента:
насос (7) для жидкости, имеющий входную сторону (7а), соединенную по текучей среде с выпускным отверстием (8с) для жидкости приемника (8), и выходную сторону (7b);
по меньшей мере одно устройство (10) расширения хладагента, имеющее входную сторону (10а), соединенную по текучей среде с выходной стороной (7b) насоса (7) для жидкости, и выходную сторону (10b); и
по меньшей мере один холодильный испаритель (12), соединенный по текучей среде между выходной стороной (10b) по меньшей мере одного устройства (10) расширения хладагента и вторичным входным портом (6b) низкого давления по меньшей мере одного эжектора (6);
причем насос (7) для жидкости расположен снаружи приемника (8), и/или насос (7) для жидкости снабжен обводной линией (11), содержащей переключаемый перепускной клапан (15), позволяющий хладагенту избирательно обходить насос (7) для жидкости при открытии переключаемого перепускного клапана (15), а
эжекторный холодильный контур также содержит по меньшей мере один низкотемпературный канал (9), содержащий в направлении потока хладагента:
по меньшей мере одно низкотемпературное устройство (14) расширения;
по меньшей мере один низкотемпературный испаритель (16); и
по меньшей мере один низкотемпературный компрессор (18а, 18b),
причем низкотемпературный канал (9) соединен между выпускным отверстием (8с) для жидкости приемника (8) и входной стороной (21а, 21b, 21с) указанного по меньшей мере одного компрессора (2а, 2b, 2с) или между выходной стороной (7b) насоса (7) для жидкости и входной стороной (21а, 21b, 21с) указанного по меньшей мере одного компрессора (2а, 2b, 2с).
2. Эжекторный холодильный контур (1) по п. 1, содержащий множество эжекторов (6), соединенных параллельно.
3. Эжекторный холодильный контур (1) по п. 2, отличающийся тем, что эжекторный холодильный контур (1) содержит по меньшей мере два эжектора (6) с различной производительностью.
4. Эжекторный холодильный контур (1) по любому из пп. 1-3, содержащий по меньшей мере один управляемый регулируемый эжектор (6).
5. Эжекторный холодильный контур (1) по любому из пп. 1-4, отличающийся тем, что датчик (30, 32, 34) давления и/или температуры предусмотрен по меньшей мере в одной из: входной линии (31) высокого давления, соединенной по текучей среде с первичным входным портом (6а) высокого давления; входной линии (33) низкого давления, соединенной по текучей среде со вторичным входным портом (6b) низкого давления; и выходной линии (35) эжектора, соединенной по текучей среде с выходным портом (6с) по меньшей мере одного эжектора (6), соответственно.
6. Эжекторный холодильный контур (1) по п. 5, дополнительно содержащий блок (28) управления, выполненный с возможностью управления по меньшей мере одним компрессором (2а, 2b, 2с), насосом (7) для жидкости и/или регулируемым эжектором (6), при наличии, на основе значений давления и/или температуры, измеренных по меньшей мере одним датчиком (30, 32, 34) давления и/или температуры.
7. Эжекторный холодильный контур (1) по любому из пп. 1-6, выполненный с возможностью использования диоксида углерода в качестве хладагента.
8. Способ эксплуатации эжекторного холодильного контура (1), содержащего:
эжекторный контур высокого (3) давления, содержащий в направлении потока циркулирующего хладагента:
теплоотводящий теплообменник/газоохладитель (4), имеющий входную сторону (4а) и выходную сторону (4b);
по меньшей мере один эжектор (6), содержащий первичный входной порт высокого давления, вторичный входной порт (6b) низкого давления и выходной порт (6с), причем первичный входной порт (6а) высокого давления соединен по текучей среде с выходной стороной (4b) теплоотводящего теплообменника/газоохладителя (4);
приемник (8), имеющий выпускное отверстие (8с) для жидкости, впускное (8а) и выпускное (8b) отверстия для газа, соединенные по текучей среде с выходным портом (6с) по меньшей мере одного эжектора (6);
по меньшей мере один компрессор (2а, 2b, 2с), имеющий входную сторону (21а, 21b, 21с) и выходную сторону (22а, 22b, 22с), причем входная сторона (21а, 21b, 21с) по меньшей мере одного компрессора (2а, 2b, 2с) соединена по текучей среде с выпускным отверстием (8b) для газа приемника (8), а выходная сторона (22а, 22b, 22с) по меньшей мере одного компрессора (2а, 2b, 2с) соединена по текучей среде с входной стороной (4а) теплоотводящего теплообменника/газоохладителя (4); и
канал (5) холодильного испарителя, содержащий в направлении потока циркулирующего хладагента:
насос (7) для жидкости, расположенный снаружи приемника (8) и имеющий входную сторону (7а), соединенную по текучей среде с выпускным отверстием (8с) для жидкости приемника (8), и выходную сторону (7b);
по меньшей мере одно устройство (10) расширения хладагента, имеющее входную сторону (10а), соединенную по текучей среде с выходной стороной (7b) насоса (7) для жидкости, и выходную сторону (10b); и
по меньшей мере один холодильный испаритель (12), соединенный по текучей среде между выходной стороной (10b) по меньшей мере одного устройства (10) расширения хладагента и вторичным входным портом (6b) низкого давления по меньшей мере одного эжектора (6);
причем способ включает работу насоса (7) для жидкости для перекачивания жидкого хладагента через контур холодильного испарителя и/или открытие переключаемого перепускного клапана (15) для обхода насоса (7) для жидкости по обводной линии (11), содержащей переключаемый перепускной клапан (15),
причем эжекторный холодильный контур (1) также содержит по меньшей мере один низкотемпературный канал (9), соединенный между выходной стороной (7b) насоса (7) для жидкости и входной стороной (21а, 21b, 21с) указанного по меньшей мере одного компрессора (2а, 2b, 2с), и содержит в направлении потока хладагента:
по меньшей мере одно низкотемпературное устройство (14) расширения;
по меньшей мере один низкотемпературный испаритель (16); и
по меньшей мере один низкотемпературный компрессор (18а, 18b);
а способ включает использование указанного по меньшей мере одного низкотемпературного канала (9) для обеспечения низких температур в низкотемпературном испарителе.
9. Способ по п. 8, отличающийся тем, что датчик (30, 32, 34) давления и/или температуры предусмотрен по меньшей мере в одной из: входной линии (31) высокого давления, соединенной по текучей среде с первичным входным портом (6а) высокого давления, входной линии (33) низкого давления, соединенной по текучей среде со вторичным входным портом (6b) низкого давления, и выходной линии (35) эжектора, соединенной по текучей среде с выходным портом (6с) по меньшей мере одного эжектора (6), соответственно, и способ включает управление по меньшей мере одним компрессором (2а, 2b, 2с), насосом (7) для жидкости и/или переключаемым перепускным клапаном (15) на основе выходного сигнала по меньшей мере одного датчика (30, 32, 34) давления и/или температуры.
10. Способ по п. 9, отличающийся тем, что эжектор (6) представляет собой управляемый регулируемый эжектор (6), а способ включает управление эжектором (6), в частности, на основе выходного сигнала по меньшей мере одного датчика (30, 32, 34) давления и/или температуры.
11. Способ по любому из пп. 8-10, отличающийся тем, что эжекторный холодильный контур (1) содержит по меньшей мере два эжектора (6), соединенных параллельно, и способ включает избирательное задействование одного или большего количества из этих эжекторов (6).
12. Способ по любому из пп. 8-11, отличающийся тем, что эжекторный холодильный контур (1) дополнительно содержит по меньшей мере один низкотемпературный канал (9), соединенный между выпускным отверстием (8с) для жидкости приемника (8) и входной стороной (21а, 21b, 21с) по меньшей мере одного компрессора (2а, 2b, 2с), и содержит в направлении потока хладагента:
по меньшей мере одно низкотемпературное устройство (14) расширения;
по меньшей мере один низкотемпературный испаритель (16); и
по меньшей мере один низкотемпературный компрессор (18а, 18b);
и способ включает использование по меньшей мере одного низкотемпературного канала (9) для обеспечения низких температур в низкотемпературном испарителе.
13. Способ по любому из пп. 8-12, включающий использование диоксида углерода в качестве хладагента.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2015/060579 WO2016180487A1 (en) | 2015-05-13 | 2015-05-13 | Ejector refrigeration circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2679368C1 true RU2679368C1 (ru) | 2019-02-07 |
Family
ID=53059133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017139793A RU2679368C1 (ru) | 2015-05-13 | 2015-05-13 | Эжекторный холодильный контур |
Country Status (8)
Country | Link |
---|---|
US (1) | US10823461B2 (ru) |
EP (1) | EP3295092B1 (ru) |
CN (1) | CN107636402A (ru) |
DK (1) | DK3295092T3 (ru) |
ES (1) | ES2935768T3 (ru) |
PL (1) | PL3295092T3 (ru) |
RU (1) | RU2679368C1 (ru) |
WO (1) | WO2016180487A1 (ru) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2018001656A (es) | 2015-08-14 | 2018-05-22 | Danfoss As | Sistema de compresion de vapor con al menos dos grupos evaporadores. |
WO2017067860A1 (en) * | 2015-10-20 | 2017-04-27 | Danfoss A/S | A method for controlling a vapour compression system in ejector mode for a prolonged time |
CA2997658A1 (en) | 2015-10-20 | 2017-04-27 | Danfoss A/S | A method for controlling a vapour compression system with a variable receiver pressure setpoint |
US10508850B2 (en) | 2015-10-20 | 2019-12-17 | Danfoss A/S | Method for controlling a vapour compression system in a flooded state |
CN118408295A (zh) * | 2016-12-21 | 2024-07-30 | 开利公司 | 喷射器制冷系统及其控制方法 |
US11009266B2 (en) * | 2017-03-02 | 2021-05-18 | Heatcraft Refrigeration Products Llc | Integrated refrigeration and air conditioning system |
DK180146B1 (en) | 2018-10-15 | 2020-06-25 | Danfoss As Intellectual Property | Heat exchanger plate with strenghened diagonal area |
CN111520932B8 (zh) | 2019-02-02 | 2023-07-04 | 开利公司 | 热回收增强制冷系统 |
CN111520928B (zh) * | 2019-02-02 | 2023-10-24 | 开利公司 | 增强热驱动的喷射器循环 |
CN111692771B (zh) * | 2019-03-15 | 2023-12-19 | 开利公司 | 喷射器和制冷系统 |
CN111692703B (zh) * | 2019-03-15 | 2023-04-25 | 开利公司 | 空气调节系统的故障检测方法 |
CN111692770B (zh) * | 2019-03-15 | 2023-12-19 | 开利公司 | 喷射器和制冷系统 |
CN110030756B (zh) * | 2019-03-25 | 2020-09-29 | 山东神舟制冷设备有限公司 | 一种带喷射器的跨临界co2多温区超市冷热联供系统 |
CN111795452B (zh) | 2019-04-08 | 2024-01-05 | 开利公司 | 空气调节系统 |
WO2021113423A1 (en) * | 2019-12-04 | 2021-06-10 | Bechtel Hydrocarbon Technology Solutions, Inc. | Systems and methods for implementing ejector refrigeration cycles with cascaded evaporation stages |
US11732941B1 (en) * | 2020-03-26 | 2023-08-22 | Booz Allen Hamilton Inc. | Thermal management systems |
EP3907443A1 (en) | 2020-05-06 | 2021-11-10 | Carrier Corporation | Ejector refrigeration circuit and method of operating the same |
CN112268376A (zh) * | 2020-09-15 | 2021-01-26 | 珠海格力电器股份有限公司 | 一种氟泵型热管与喷射制冷循环复合系统及其控制方法 |
CA3224419A1 (en) * | 2021-07-06 | 2023-01-12 | Wynand Groenewald | Refrigeration system and method |
EP4490454A1 (en) | 2022-03-08 | 2025-01-15 | Bechtel Energy Technologies & Solutions, Inc. | Systems and methods for regenerative ejector-based cooling cycles |
CN114608215A (zh) * | 2022-05-14 | 2022-06-10 | 中国能源建设集团山西省电力勘测设计院有限公司 | 高能效的跨临界二氧化碳双级压缩冷热联供系统 |
CN114623617A (zh) * | 2022-05-14 | 2022-06-14 | 中国能源建设集团山西省电力勘测设计院有限公司 | 跨临界二氧化碳双级压缩冷热联供系统的制冷循环方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2266483C1 (ru) * | 2004-04-15 | 2005-12-20 | Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ (ТУ)") | Трехцелевой трансформатор тепла |
WO2008002048A1 (en) * | 2006-06-29 | 2008-01-03 | Nam-Pyo Hong | High efficiency refrigeration system for saving energy and control method the same |
JP2010151424A (ja) * | 2008-12-26 | 2010-07-08 | Daikin Ind Ltd | 冷凍装置 |
JP2010243095A (ja) * | 2009-04-08 | 2010-10-28 | Mitsubishi Electric Corp | 冷凍サイクル装置及び気液分離器 |
US20120167601A1 (en) * | 2011-01-04 | 2012-07-05 | Carrier Corporation | Ejector Cycle |
EP2741028A1 (en) * | 2011-08-04 | 2014-06-11 | Mitsubishi Electric Corporation | Refrigeration device |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2295462A (en) | 1939-03-15 | 1942-09-08 | Frank P Forman | Air cooling system |
US3277660A (en) | 1965-12-13 | 1966-10-11 | Kaye & Co Inc Joseph | Multiple-phase ejector refrigeration system |
US3621667A (en) | 1969-03-24 | 1971-11-23 | American Gas Ass The | Cooling apparatus and process |
US3686867A (en) | 1971-03-08 | 1972-08-29 | Francis R Hull | Regenerative ranking cycle power plant |
SU1399611A1 (ru) | 1986-07-14 | 1988-05-30 | Государственный Макеевский Научно-Исследовательский Институт По Безопасности Работ В Горной Промышленности | Способ работы компрессионной холодильной машины |
US4981023A (en) | 1989-07-11 | 1991-01-01 | Innovative Products, Inc. | Air conditioning and heat pump system |
FR2742701B1 (fr) | 1995-12-21 | 1998-02-13 | Valeo Climatisation | Dispositif de chauffage d'appoint pour vehicule utilisant le circuit de climatisation |
US6192692B1 (en) | 1997-02-03 | 2001-02-27 | Richard H. Alsenz | Liquid powered ejector |
RU2142074C1 (ru) | 1998-04-17 | 1999-11-27 | Попов Сергей Анатольевич | Насосно-эжекторная компрессорная установка (варианты) |
JP4639541B2 (ja) | 2001-03-01 | 2011-02-23 | 株式会社デンソー | エジェクタを用いたサイクル |
JP4463466B2 (ja) | 2001-07-06 | 2010-05-19 | 株式会社デンソー | エジェクタサイクル |
JP4032875B2 (ja) | 2001-10-04 | 2008-01-16 | 株式会社デンソー | エジェクタサイクル |
JP2006038400A (ja) * | 2004-07-29 | 2006-02-09 | Denso Corp | エジェクタ式ヒートポンプサイクル |
JP4984453B2 (ja) * | 2004-09-22 | 2012-07-25 | 株式会社デンソー | エジェクタ式冷凍サイクル |
ES2459990T3 (es) * | 2004-09-30 | 2014-05-13 | Mayekawa Mfg. Co., Ltd. | Sistema de refrigeración de amoniaco/CO2 |
JP3992046B2 (ja) * | 2005-03-11 | 2007-10-17 | 株式会社デンソー | 冷凍装置 |
JP4259531B2 (ja) | 2005-04-05 | 2009-04-30 | 株式会社デンソー | エジェクタ式冷凍サイクル用ユニット |
DE102005021396A1 (de) | 2005-05-04 | 2006-11-09 | Behr Gmbh & Co. Kg | Vorrichtung zur Luftkonditionierung für ein Kraftfahrzeug |
JP2007163016A (ja) | 2005-12-13 | 2007-06-28 | Denso Corp | エジェクタ式冷凍サイクルおよびエジェクタ式冷凍サイクルの制御方法 |
FR2932875B1 (fr) | 2008-06-19 | 2013-09-13 | Valeo Systemes Thermiques | Installation de chauffage, ventilation et/ou climatisation a stockage de froid |
US20100251759A1 (en) | 2009-04-03 | 2010-10-07 | Occhipinti Gasper C | Liquid pressure cycle having an ejector |
US20100313582A1 (en) | 2009-06-10 | 2010-12-16 | Oh Jongsik | High efficiency r744 refrigeration system and cycle |
CA2671914A1 (en) | 2009-07-13 | 2011-01-13 | Zine Aidoun | A jet pump system for heat and cold management, apparatus, arrangement and methods of use |
US20110289961A1 (en) | 2010-05-29 | 2011-12-01 | Occhipinti Gasper C | Enhanced liquid pressure cycle having an ejector |
US8936202B2 (en) * | 2010-07-30 | 2015-01-20 | Consolidated Edison Company Of New York, Inc. | Hyper-condensate recycler |
ES2930639T3 (es) | 2011-09-30 | 2022-12-20 | Carrier Corp | Sistema de refrigeración de alta eficiencia |
US20130104593A1 (en) | 2011-10-28 | 2013-05-02 | Gasper C. Occhipinti | Mass flow multiplier refrigeration cycle |
JP5482767B2 (ja) * | 2011-11-17 | 2014-05-07 | 株式会社デンソー | エジェクタ式冷凍サイクル |
US9303909B2 (en) | 2012-08-14 | 2016-04-05 | Robert Kolarich | Apparatus for improving refrigeration capacity |
ITPD20130004A1 (it) | 2013-01-15 | 2014-07-16 | Epta Spa | Impianto frigorifero con eiettore |
MX369577B (es) * | 2013-12-17 | 2019-11-13 | Maekawa Seisakusho Kk | Sistema de descongelacion para dispositivo de refrigeracion y unidad de refrigeracion. |
WO2016096051A1 (en) * | 2014-12-19 | 2016-06-23 | Carrier Corporation | Refrigeration and heating system |
-
2015
- 2015-05-13 RU RU2017139793A patent/RU2679368C1/ru active
- 2015-05-13 PL PL15721275.4T patent/PL3295092T3/pl unknown
- 2015-05-13 CN CN201580079956.8A patent/CN107636402A/zh active Pending
- 2015-05-13 WO PCT/EP2015/060579 patent/WO2016180487A1/en active Application Filing
- 2015-05-13 EP EP15721275.4A patent/EP3295092B1/en active Active
- 2015-05-13 ES ES15721275T patent/ES2935768T3/es active Active
- 2015-05-13 DK DK15721275.4T patent/DK3295092T3/da active
- 2015-05-13 US US15/573,668 patent/US10823461B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2266483C1 (ru) * | 2004-04-15 | 2005-12-20 | Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ (ТУ)") | Трехцелевой трансформатор тепла |
WO2008002048A1 (en) * | 2006-06-29 | 2008-01-03 | Nam-Pyo Hong | High efficiency refrigeration system for saving energy and control method the same |
JP2010151424A (ja) * | 2008-12-26 | 2010-07-08 | Daikin Ind Ltd | 冷凍装置 |
JP2010243095A (ja) * | 2009-04-08 | 2010-10-28 | Mitsubishi Electric Corp | 冷凍サイクル装置及び気液分離器 |
US20120167601A1 (en) * | 2011-01-04 | 2012-07-05 | Carrier Corporation | Ejector Cycle |
EP2741028A1 (en) * | 2011-08-04 | 2014-06-11 | Mitsubishi Electric Corporation | Refrigeration device |
Also Published As
Publication number | Publication date |
---|---|
WO2016180487A1 (en) | 2016-11-17 |
US10823461B2 (en) | 2020-11-03 |
CN107636402A (zh) | 2018-01-26 |
ES2935768T3 (es) | 2023-03-09 |
EP3295092B1 (en) | 2022-10-26 |
EP3295092A1 (en) | 2018-03-21 |
US20180066872A1 (en) | 2018-03-08 |
DK3295092T3 (da) | 2023-01-30 |
PL3295092T3 (pl) | 2023-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2679368C1 (ru) | Эжекторный холодильный контур | |
RU2678787C1 (ru) | Эжекторный холодильный контур | |
RU2684692C1 (ru) | Эжекторный холодильный контур | |
ES2792508T3 (es) | Sistema de refrigeración | |
US10544971B2 (en) | Method for controlling a vapour compression system with an ejector | |
RU2706889C1 (ru) | Контур охлаждения | |
US20200363101A1 (en) | Method and apparatus for isothermal cooling | |
WO2018035268A1 (en) | Gas discharge apparatus, refrigerating and air-conditioning unit, and method of discharging non-condensable gas | |
US20160138847A1 (en) | Transcritical carbon dioxide refrigeration system with multiple ejectors | |
US10955172B2 (en) | High-temperature air conditioning device | |
CN108800637A (zh) | 带有稳定级联直接膨胀制冷系统的气候试验箱 | |
US11274851B2 (en) | Air conditioning apparatus | |
EP1589299A2 (en) | Heat pump and compressor discharge pressure controlling apparatus for the same | |
WO2020221635A1 (en) | Refrigerating device | |
KR101509575B1 (ko) | 오일분배장치 및 이를 포함하는 공기 조화기 | |
KR20010108736A (ko) | 측관이 마련된 냉동냉장시스템 | |
KR200273219Y1 (ko) | 냉동탑차용 냉동기 | |
JP2015200243A (ja) | コンプレッサ | |
CN203586613U (zh) | 多联机系统的室外机模块及具有其的多联机系统 | |
US20170356681A1 (en) | Refrigeration and heating system | |
CN108332443B (zh) | 可实现变流量单级压缩循环与复叠式循环的制冷系统 | |
CN202182585U (zh) | 制冷设备用制冷回路及制冷设备 | |
GB2579928A (en) | Heat pump having closed intermediate cooling and method for pumping heat or method for producing the heat pump | |
JP2020071021A (ja) | 冷却装置 | |
CN104296410A (zh) | 一种利用混合制冷剂的极低温制冷系统 |