RU2472764C1 - Способ получения углеводородов топливного ряда из возобновляемого сырья - Google Patents
Способ получения углеводородов топливного ряда из возобновляемого сырья Download PDFInfo
- Publication number
- RU2472764C1 RU2472764C1 RU2011148050/04A RU2011148050A RU2472764C1 RU 2472764 C1 RU2472764 C1 RU 2472764C1 RU 2011148050/04 A RU2011148050/04 A RU 2011148050/04A RU 2011148050 A RU2011148050 A RU 2011148050A RU 2472764 C1 RU2472764 C1 RU 2472764C1
- Authority
- RU
- Russia
- Prior art keywords
- catalyst
- palladium
- hydrocarbons
- temperature
- saturated
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 16
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 16
- 239000000446 fuel Substances 0.000 title description 6
- 239000003054 catalyst Substances 0.000 claims abstract description 43
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000001257 hydrogen Substances 0.000 claims abstract description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 14
- 239000002283 diesel fuel Substances 0.000 claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 230000006324 decarbonylation Effects 0.000 claims abstract description 9
- 238000006606 decarbonylation reaction Methods 0.000 claims abstract description 9
- 238000006114 decarboxylation reaction Methods 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 6
- 239000002638 heterogeneous catalyst Substances 0.000 claims abstract description 3
- 239000002344 surface layer Substances 0.000 claims abstract description 3
- 239000002253 acid Substances 0.000 claims description 13
- 150000007513 acids Chemical class 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 7
- 150000001735 carboxylic acids Chemical class 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims 1
- 235000014113 dietary fatty acids Nutrition 0.000 abstract description 9
- 239000000194 fatty acid Substances 0.000 abstract description 9
- 229930195729 fatty acid Natural products 0.000 abstract description 9
- 150000004665 fatty acids Chemical class 0.000 abstract description 9
- 230000035515 penetration Effects 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 4
- 238000006392 deoxygenation reaction Methods 0.000 abstract description 4
- 229930195734 saturated hydrocarbon Natural products 0.000 abstract description 4
- 150000004653 carbonic acids Chemical class 0.000 abstract 1
- 239000002360 explosive Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000008187 granular material Substances 0.000 description 9
- 239000010410 layer Substances 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- 235000019198 oils Nutrition 0.000 description 8
- 239000000047 product Substances 0.000 description 7
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 6
- 229960002446 octanoic acid Drugs 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 101150003085 Pdcl gene Proteins 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000003925 fat Substances 0.000 description 5
- 235000019197 fats Nutrition 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 238000006317 isomerization reaction Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 229910052751 metal Chemical class 0.000 description 4
- 239000002184 metal Chemical class 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 235000021355 Stearic acid Nutrition 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- 235000014593 oils and fats Nutrition 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000012075 bio-oil Substances 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- IIYFAKIEWZDVMP-UHFFFAOYSA-N tridecane Chemical compound CCCCCCCCCCCCC IIYFAKIEWZDVMP-UHFFFAOYSA-N 0.000 description 2
- MJYQFWSXKFLTAY-OVEQLNGDSA-N (2r,3r)-2,3-bis[(4-hydroxy-3-methoxyphenyl)methyl]butane-1,4-diol;(2r,3r,4s,5s,6r)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O.C1=C(O)C(OC)=CC(C[C@@H](CO)[C@H](CO)CC=2C=C(OC)C(O)=CC=2)=C1 MJYQFWSXKFLTAY-OVEQLNGDSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 235000019687 Lamb Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003225 biodiesel Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 235000004426 flaxseed Nutrition 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010813 internal standard method Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Изобретение относится к способу селективного получения углеводородов, пригодных для использования в качестве дизельного топлива, заключающийся в декарбонилировании/декарбоксилировании смеси карбоновых кислот С8-С24 (насыщенных и ненасыщенных) в растворителе в атмосфере водорода в присутствии гетерогенного катализатора, представляющего собой палладий на оксиде алюминия при температуре 200-400°С и давлении 0,1-5 МПа. Способ характеризуется тем, что используют гранулированный катализатор, в котором палладий распределен в поверхностном слое носителя с глубиной проникновения 0,1-0,6 мм при содержании палладия в катализаторе 0,25-5 мас.%. Настоящее изобретение предоставляет эффективный промышленный каталитический способ селективного получения углеводородов из возобновляемых источников с использованием высокоэффективных катализаторов деоксигенации жирных кислот до насыщенных углеводородов, пригодных для использования в качестве компонентов дизельного топлива. 1 з.п. ф-лы, 8 пр., 1 табл.
Description
Настоящее изобретение относится к нефтехимии, в частности касается промышленного способа селективного получения насыщенных углеводородов, пригодных для дизельного топлива, декарбонилированием/декарбоксилированием жирных насыщенных и ненасыщенных кислот в присутствии катализатора.
Получение моторных топлив, в том числе и дизельного из возобновляемых источников сырья, служит дополнительным источником этих топлив. Такими источниками являются различные масла, жиры и отходы пищевой промышленности (жарочные масла), состоящие в основном из триглицеридов карбоновых кислот.
Дизельные топлива, получаемые в результате переработки масел, называют "биодизель 1 поколения", по определению которое предложено в руководстве Original Equipment Manufacturer, представляют собой моноэтиловые эфиры жирных кислот с длинной цепью С8-С26. Обычно моноэфиры этих кислот получают из масел и жиров реакцией переэтерификации с низшими спиртами в присутствии катализатора. Тем не менее, низкая калорийность и морозостойкость полученных топлив ограничивает область их применения. Наличие в топливах кислорода эфиров по данным Schmidt K. Gerpen J.V.: SAE paper 961086-приводит к нежелательному выбросу NOx в сравнении с обычным дизельным топливом.
Для получения углеводородов, пригодных для использования в качестве дизельного топлива и лишенных вышеназванных недостатков, можно использовать соответствующие жирные кислоты, которые обычно получают гидролизом масел и жиров (Б.Н.Тютюнников, Г.Л.Юхновский, А.Л.Маркман "Технология переработки жиров", Пищепромиздат, Москва, 1950; Б.Н.Тютюнников "Химия жиров". Пищевая промышленность, Москва, 1966). Одновременно с получением кислот образуется глицерин, который является товарным продуктом и сырьем для различных синтезов.
Полученные таким образом кислоты подвергают декарбонилированию/декарбоксилированию в присутствии катализаторов, при этом, как правило, получают углеводороды, содержащие на один атом углерода меньше, чем подвергнутая декарбонилированию/декарбоксилированию кислота.
В патентах RU 2397199 С2 /WO/2006/075057/приведены два варианта способа селективного получения углеводородов пригодных для дизельного топлива, один из которых характеризуется тем, что в данном способе есть стадия, где проводится реакция декарбонилирования/декарбоксилирования. Реакция осуществляется введением сырья, полученного из возобновляемых источников и содержащего C8-C24 жирные кислоты, сложные эфиры C8-C24 жирных кислот, триглицериды C8-C24 жирных кислот или соли металлов C8-C24 жирных кислот, а также их сочетание, в присутствии растворителей или без них, в контакт с катализатором, содержащим от 0,5 до 20% одного или нескольких металлов группы VIII периодической системы, например платины, палладия, иридия, рутения и родия или от 2 до 55% никеля на носителе. Катализатор до реакции обрабатывают водородом при температуре 100-500°С. Взаимодействие сырья с катализатором проводят при температуре 200-400°С и давлении от 0,1 до 15 МПа и получают углеводороды для дизельного топлива, которые могут быть подвергнуты изомеризации.
Представленные результаты указывают на низкую эффективность (конверсия, селективность) предложенных катализаторов и высокое содержание активного компонента (Pd) в них.
Задачей настоящего изобретения является создание эффективного промышленного каталитического способа селективного получения углеводородов из возобновляемых источников с использованием высокоэффективных катализаторов деоксигенации жирных кислот до насыщенных углеводородов, пригодных для использования в качестве компонентов дизельного топлива.
Поставленная задача решается тем, что декарбонилирование/декарбоксилирование смеси карбоновых кислот C8-C24 проводят в растворителе в атмосфере водорода в присутствии гетерогенного катализатора, представляющего собой палладий на оксиде алюминия, при 200-400°С и давлении 0,1-5 МПа, причем используют гранулированный катализатор, в котором палладий распределен в поверхностном слое носителя с глубиной проникновения 0,1-0,6 мм при содержании палладия в катализаторе 0,25-5%.
Задача может быть также решена тем, что объемная скорость подачи кислот 0,2-1,1 час-1.
При использовании катализатора с глубиной проникновения Pd в гранулу менее 0,1 мм происходит отслаивание с гранулы катализатора слоя, содержащего активный компонент. При толщине слоя более 0,6 мм возникают диффузионные торможения (проникновение молекул стеариновой кислоты внутрь гранул катализатора затруднено), и выход продуктов снижается.
Приведенные условия реакции декарбонилирования/декарбоксилирования кислот и используемый катализатор "корочкового типа" с поверхностным распределением палладия по грануле (глубина 0,1-0,6 мм) носителя являются определяющими для процесса.
При содержании Pd в катализаторе <0,25% значительно снижается его активность, при содержании Pd>5% снижается удельная эффективность активного компонента, что приводит к удорожанию процесса.
При работе с объемной скоростью менее 0,2 час-1 снижается эффективность процесса. Увеличение объемной скорости выше 1,1 час-1 приводит к заметному уменьшению выхода целевых продуктов.
Продукт, полученный по предложенному способу, может быть подвергнут изомеризации с целью снижения температуры его замерзания, что, в свою очередь, облегчит его использование в качестве дизельного топлива. Изомеризацию проводят при давлении 2-15 МПа, лучше 3-10 МПа и температуре 200-500°С, предпочтительно проводить 280-400°С в присутствии известных катализаторов изомеризации, отвечающих современному уровню техники (Ю.М.Жоров "Изомеризация углеводородов", Москва, Химия, 1983).
Сырьем являются продукты переработки возобновляемых источников, таких как жиры и масла, полученные из растений и/или животных и/или рыб и/или отходов пищевой промышленности, которые известны как биомасла.
Предпочтительное сырье состоит из C8-C24 жирных кислот, полученных путем гидролиза биомасел. В качестве сырья для получения кислот используют подходящие фракции рапсового, льняного, подсолнечного, кукурузного, кокосового, таллового и др. масел, бараньего и свиного жиров, а также фракции масляных и жировых отходов пищевой промышленности.
Может быть использован любой растворитель, содержащий углеводороды, например парафины изопарафины нафтены с диапазоном температур кипения 150-300°С, предпочтительно парафиновые углеводороды С10-C16 или их смеси. В качестве растворителя можно использовать рецикловые потоки технологических процессов, в том числе полученные в процессе данного метода.
Данную реакцию можно проводить в непрерывном периодическом и полупериодическом режимах и в ректорах различного типа.
Изобретение иллюстрируется нижеприведенными примерами.
Пример 1
4,16 г γ-оксида алюминия увлажнили водой для предотвращения растрескивания носителя при пропитке водным раствором и поместили в пластмассовый сосуд. Смесь 0,0175 г PdCl2 и 0,12 г NaCl растворяли при нагревании в 3 мл дистиллированной воды до полного растворения хлорида палладия (0,5-1,0 часа). В раствор добавили 3 мл воды, полученный раствор прилили к увлажненному Al2O3, содержимое сосуда медленно перемешивали 1 час. После полного поглощения Pd носителем катализатор отфильтровали, промыли на фильтре водой, сушили до удаления влаги при 120°С. В высушенном катализаторе, содержащем 0,25% Pd, толщина слоя Pd составила 0,1 мм.
В автоклав с мешалкой фирмы Autoclave Engineers, емкостью 50 см3, изготовленный из коррозионно-стойкого материала "Хастеллой", загружали 1 г катализатора. Катализатор восстанавливали до металла в токе водорода (4-6 л/час) при давлении 10 атм в течение 3 часов при температуре 200°С и слабом перемешивании (400-500 об./мин).
Автоклав после восстановления катализатора охлаждали до комнатной температуры, стравливали водород и, не вскрывая автоклава, в него вводили 12 г додекана в качестве растворителя без контакта с воздухом для предотвращения окисления восстановленного Pd в катализаторе кислородом воздуха. Затем открывали автоклав, добавляли 4 г стеариновой кислоты, полученной предварительным гидролизом масел и жиров, например кукурузного масла, вновь закрывали автоклав и проводили деоксигенацию (декарбонилирование/декарбоксилирование) в атмосфере водорода при давлении 1,6 МПа при температуре 350°С и интенсивном перемешивании (900-1100 об/мин) в течение 3 часов.
После окончания процесса автоклав быстро охлаждали водой до комнатной температуры, проводили анализ продуктов. Для определения количества непрореагировавшей стеариновой кислоты продукты реакции оттитровывали спиртовым раствором щелочи в соответствии с ГОСТ 5476-80. Содержание насыщенных и ненасыщенных углеводородов в продукте после предварительного метилирования определяли методом ГЖХ с использованием газового хроматографа Кристалл 2000М с ПИД и кварцевой капиллярной колонкой HP-ultra-2. При определении количества образовавшихся углеводородов пользовались методом внутреннего стандарта (тридекан).
Выход парафинов приведен в таблице.
Примеры 2-4
Процесс проводят аналогично примеру 1, но при получении катализатора изменяют толщину слоя Pd в грануле носителя от 0,06 до 0,6 мм и используют различные прекурсоры. Все катализаторы содержат 0,25% Pd. Результаты приведены в таблице.
Пример 5 (сравнительный)
Процесс проводят в условиях, близких к прототипу, используя катализатор, содержащий 0,25% Pd со сплошным распределением последнего по грануле. Результаты приведены в таблице.
Таблица | |||
№ п/п | Толщина слоя Pd, мм | Прекурсор | Выход парафинов, мол. % |
1 | 0,1 | Na2[PdCl4] | 70,95 |
2 | 0,06 | Pd(OAc)2 | 67.3 |
3 | 0,4 | Na2[PdCl4]+HCl | 58.64 |
4 | 0.6 | Na2[PdCl4]+HCl | 59.85 |
5 | Сплошн. | H2[PdCl4] | 64,2 |
Результаты испытаний катализаторов приведены в таблице, из которой следует, что особенно предпочтительным является катализатор с глубиной проникновения металлического палладия в гранулу носителя 0,1 мм.
Пример 6
Непрерывное декарбонилирование/декарбоксилирование каприловой кислоты, полученной из кокосового масла, проводили в проточной установке со стационарным слоем катализатора 0,5% Pd/Al2O3 (глубина проникновения Pd в гранулу 0,6 мм) объемом 6 см3, помещенным между слоями кварцевой насадки. Катализатор до проведения реакции восстанавливали водородом в течение 3 часов при температуре 200°С. Раствор ~22,0% каприловой кислоты в декане при температуре 350°С, давлении 2,2 МПа, объемной скорости подачи сырья в расчете на чистую каприловую кислоту - 0.6 час-1 и мольном отношении водород/каприловая кислота 7,0 пропускали через слой катализатора. В этих условиях конверсия каприловой кислоты составляет ~100%, а селективность на гептан и октан также ~100%.
Пример 7
Катализатор, потерявший активность, подвергается регенерации. Для этого в реактор подавали воздух со скоростью 4 л/час, постепенно поднимая температуру. При достижении температуры ~300°С за счет выделения тепла при выжиге кокса наблюдалось превышение температуры в реакторе над температурой печки примерно на 50°С. После достижения температуры ~550°С отжиг катализатора проводили в течение 3 часов. Затем катализатор восстанавливали в токе водорода ( ~4 л/час) при температуре 200°С в течение 3 часов. Испытания катализатора после регенерации и восстановления в условиях предыдущего примера показали, что конверсия каприловой кислоты составляет ~100% при селективности на сумму гептана и октана 100%, т.е. катализатор полностью восстанавил свою активность.
Пример 8
В автоклав загрузили 16,2 г масла, отработанного при жарке в ресторане "Макдональдс", добавили 17,9 г воды. Гидролиз проводили под давлением азота (начальное давление азота 1,0 МПа) за 8 часов при температуре 220-245°С и установившемся давлении около 2,5 МПа, конверсия масла до смеси кислот (олеиновой и стеариновой) составила 96,0%.
В автоклав, содержащий 1 г предварительно восстановленного катализатора 5% Pd/Al2O3 (глубина проникновения Pd в гранулу 0,6 мм и 12 г додекана (растворитель), после выделения из продуктов гидролиза загружено 4 г полученных кислот. Гидрирование непредельных кислот проводили при 100°С в течение 3 часов при начальном давлении водорода 1,2 МПа. При подъеме температуры в области температур 40-70°С наблюдалось падение давления водорода до 0,6 МПа. В реактор добавляли водород до давления 1,2 МПа и продолжали подъем температуры до 100°С, при которой было завершено гидрирование (давление водорода больше не понижалось). Затем температура в реакторе была поднята до 350°С, и в течение 3 часов проведена деоксигенация при давлении в реакторе около 2,2 МПа (начальное давление 1,2 МПа). Конверсия кислот составила 96% при селективности до углеводородов дизельного ряда 99,1%.
Предлагаемый способ позволяет проводить процесс с большим выходом углеводородов, чем в известном способе за счет применения в нем катализатора с поверхностным распределением палладия на носителе. Кроме того, катализатор полностью восстанавливает свою активность после регенерации. В дальнейшем предлагаемый способ может быть освоен в промышленном масштабе для получения углеводородов топливного ряда.
Claims (2)
1. Способ селективного получения углеводородов, пригодных для использования в качестве дизельного топлива, заключающийся в декарбонилировании/декарбоксилировании смеси карбоновых кислот С8-С24 (насыщенных и ненасыщенных) в растворителе в атмосфере водорода в присутствии гетерогенного катализатора, представляющего собой палладий на оксиде алюминия при температуре 200-400°С и давлении 0,1-5 МПа, отличающийся тем, что используют гранулированный катализатор, в котором палладий распределен в поверхностном слое носителя с глубиной проникновения 0,1-0,6 мм при содержании палладия в катализаторе 0,25-5 мас.%.
2. Способ по п.1, отличающийся тем, что объемная скорость подачи кислот 0,2-1,1 ч-1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011148050/04A RU2472764C1 (ru) | 2011-11-28 | 2011-11-28 | Способ получения углеводородов топливного ряда из возобновляемого сырья |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011148050/04A RU2472764C1 (ru) | 2011-11-28 | 2011-11-28 | Способ получения углеводородов топливного ряда из возобновляемого сырья |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2472764C1 true RU2472764C1 (ru) | 2013-01-20 |
Family
ID=48806504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011148050/04A RU2472764C1 (ru) | 2011-11-28 | 2011-11-28 | Способ получения углеводородов топливного ряда из возобновляемого сырья |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2472764C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2652986C1 (ru) * | 2016-12-28 | 2018-05-04 | федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (государственный университет)" | Катализатор и способ получения фракции ароматических и алифатических углеводородов из растительного масла |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100092388A (ko) * | 2009-02-12 | 2010-08-20 | 에스케이에너지 주식회사 | 바이오 디젤 제조용 촉매 및 이를 이용한 바이오 디젤 제조방법 |
KR20100102050A (ko) * | 2009-03-10 | 2010-09-20 | 아이에프피 | 니켈 및 몰리브덴에 기초한 촉매를 사용하며, 탈카르복실화 전환이 제한되는, 재생 가능한 공급원으로부터 유래하는 공급물의 수소화탈산소화 방법 |
WO2011007046A2 (en) * | 2009-07-17 | 2011-01-20 | Neste Oil Oyj | Process for the preparation of light fuels |
RU2427564C2 (ru) * | 2006-06-14 | 2011-08-27 | Несте Ойл Ойй | Способ получения базового масла |
-
2011
- 2011-11-28 RU RU2011148050/04A patent/RU2472764C1/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2427564C2 (ru) * | 2006-06-14 | 2011-08-27 | Несте Ойл Ойй | Способ получения базового масла |
KR20100092388A (ko) * | 2009-02-12 | 2010-08-20 | 에스케이에너지 주식회사 | 바이오 디젤 제조용 촉매 및 이를 이용한 바이오 디젤 제조방법 |
KR20100102050A (ko) * | 2009-03-10 | 2010-09-20 | 아이에프피 | 니켈 및 몰리브덴에 기초한 촉매를 사용하며, 탈카르복실화 전환이 제한되는, 재생 가능한 공급원으로부터 유래하는 공급물의 수소화탈산소화 방법 |
WO2011007046A2 (en) * | 2009-07-17 | 2011-01-20 | Neste Oil Oyj | Process for the preparation of light fuels |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2652986C1 (ru) * | 2016-12-28 | 2018-05-04 | федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (государственный университет)" | Катализатор и способ получения фракции ароматических и алифатических углеводородов из растительного масла |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Deoxygenation of palmitic and lauric acids over Pt/ZIF-67 membrane/zeolite 5A bead catalysts | |
EP2177587B1 (en) | Deoxygenation of materials of biological origin | |
EP2809745B1 (en) | Simultaneous production of base oil and fuel components from renewable feedstock | |
CN101583694B (zh) | 由生物源混合物生产烃馏分的方法 | |
US8329970B2 (en) | Deoxygenation of materials of biological origin | |
Laverdura et al. | Selective catalytic hydrogenation of vegetable oils on lindlar catalyst | |
Simakova et al. | Hydrogenation of vegetable oils over Pd on nanocomposite carbon catalysts | |
RU2007130918A (ru) | Способ промышленного получения углеводородов | |
CN104673352B (zh) | 一种以地沟油为原料低氢耗制备长链烷烃的方法 | |
KR20150060699A (ko) | 재생가능한 공급원료를 사용하여 선형 장쇄 알칸을 제조하기 위한 방법 | |
KR20100075841A (ko) | 생물학적 연료를 제조하기 위한 에너지 효율적인 방법 | |
Smirnov et al. | Hydroconversion of sunflower oil to fatty alcohols and hydrocarbons using CuZn and CuZn-HBEA-based catalysts | |
JP5234456B2 (ja) | 油脂の接触分解方法 | |
RU2472764C1 (ru) | Способ получения углеводородов топливного ряда из возобновляемого сырья | |
CN104974789B (zh) | 餐饮废油的预处理方法及利用餐饮废油加氢脱氧制备烷烃的方法 | |
US20160137569A1 (en) | Composition comprising a mixture of at least three different long chain secondary alcohols | |
EP2922935B9 (en) | A method of obtaining paraffinic hydrocarbons from natural fat | |
EP3344731B1 (en) | A method of obtaining liquid biohydrocarbons from oils of natural origin | |
JP6063722B2 (ja) | アルコール及びグリセリンの製造方法 | |
RU2616625C1 (ru) | Способ деоксигенации стеариновой кислоты на кристаллическом и нанесённом фталоцианиновом катализаторе | |
EP3115439B1 (en) | Biodiesel fuel hydrogenation method | |
Jaya et al. | Kinetic studies of heterogeneously catalyzed transesterification of cottonseed oil to biodiesel | |
JP5896510B2 (ja) | 油脂の接触分解方法及びそれに用いる脱炭酸・水素化接触分解触媒 | |
KR102478550B1 (ko) | 바이오매스로부터 고순도 노말파라핀의 제조방법 | |
CN105523933A (zh) | 制备结构稳定性高的长链酯的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20171129 |