RU2393988C1 - Устройство для плазмохимической конверсии углеводородного газа - Google Patents
Устройство для плазмохимической конверсии углеводородного газа Download PDFInfo
- Publication number
- RU2393988C1 RU2393988C1 RU2009112928/15A RU2009112928A RU2393988C1 RU 2393988 C1 RU2393988 C1 RU 2393988C1 RU 2009112928/15 A RU2009112928/15 A RU 2009112928/15A RU 2009112928 A RU2009112928 A RU 2009112928A RU 2393988 C1 RU2393988 C1 RU 2393988C1
- Authority
- RU
- Russia
- Prior art keywords
- microwave
- inner conductor
- reactor
- gas
- waveguide
- Prior art date
Links
- 239000000126 substance Substances 0.000 title claims abstract description 28
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 22
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 22
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 20
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 17
- 239000007789 gas Substances 0.000 claims abstract description 44
- 239000004020 conductor Substances 0.000 claims abstract description 34
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 30
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000001257 hydrogen Substances 0.000 claims abstract description 22
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 22
- 230000005672 electromagnetic field Effects 0.000 claims abstract description 17
- 238000005192 partition Methods 0.000 claims abstract description 8
- 230000000977 initiatory effect Effects 0.000 claims description 11
- 230000007704 transition Effects 0.000 claims description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 17
- 239000003999 initiator Substances 0.000 abstract description 16
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 40
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 17
- 239000003054 catalyst Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000003345 natural gas Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 239000003779 heat-resistant material Substances 0.000 description 2
- 239000002071 nanotube Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- JVFDADFMKQKAHW-UHFFFAOYSA-N C.[N] Chemical compound C.[N] JVFDADFMKQKAHW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Landscapes
- Hydrogen, Water And Hydrids (AREA)
Abstract
Изобретение относится к области химии и может быть использовано для получения чистых продуктов - углерода и водорода. Устройство для плазмохимической конверсии содержит проточный реактор 1 с раздельными входом углеводородного газа и выходом углерода и водорода, заполненный веществом - инициатором 2, снабженный концентратором сверхвысокочастотного электромагнитного поля и помещенный в сверхвысокочастотный волновод 3 прямоугольного сечения перпендикулярно его широким стенкам, который связан с источником энергии сверхвысокочастотного электромагнитного поля 10. Сверхвысокочастотный волновод выполнен S-образным, в его выходном конце размещен подвижный короткозамыкающий поршень 4. Концентратор сверхвысокочастотного электромагнитного поля выполнен в виде волноводно-коаксиального перехода 5 с полым внутренним проводником 6, в котором аксиально размещен высоковольтный электрод 7, соединенный с источником высокого напряжения и образующий с внутренним проводником электрический газовый разрядник. Высоковольтный электрод 6 выполнен в виде трубки, заглушенной на выходном конце, и снабжен системой диаметрально противоположных отверстий 17. В полом внутреннем проводнике 7 выполнена система радиальных отверстий 16. Системы отверстий 16 и 17 изолированы друг от друга газонепроницаемой диэлектрической перегородкой 8, расположенной в поперечном сечении внутреннего проводника 6. Изобретение позволяет повысить эффективность работы реактора и увеличить срок службы реактора. 1 ил.
Description
Изобретение относится к технике переработки углеводородного газа и производства чистых продуктов - углерода и водорода.
Одной из важнейших проблем рационального использования углеводородного сырья является утилизация природных газов и попутных газов нефтедобычи. Здесь возможны многие варианты и среди них - превращение газовой фракции в жидкость, использование в качестве источника для производства электроэнергии. Существенной представляется проблема переработки природного газа в такие ценные продукты как углерод и водород, потребность в которых достаточно высока. Что касается углерода, то перспективность его получения и использования подтверждается большим интересом к нанотехнологиям, где ему отводится едва ли не главная роль. Здесь следует отметить уникальность углеродных модификаций - фуллеренов и нанотрубок, открывающую широкие возможности их применения в фармакологии (противовирусные и противораковые препараты), материаловедении (композитные материалы для автомобильной, авиационной и космической промышленности), электроники (наноэлектронные и интегральные схемы), в военном деле (бронежилеты) и т.п.
Не менее значима и проблема получения водорода, необходимость в котором для нужд энергетики трудно переоценить. В этой связи только природные газы рассматриваются в качестве основного сырья для получения водорода.
Таким образом, актуальность разработки средств получения чистого углерода и водорода, повышение эффективности процессов не вызывает сомнений. Это подтверждается и повышенным интересом к данной проблеме ряда ведущих стран мирового сообщества.
Известно устройство, реализующее способ получения углерода и водорода из углеводородного газа [патент РФ №2064889], в котором для сокращения непроизводительного расхода тепла рабочую смесь перемешивают вращением реактора при воздействии ультразвука, ВЧ, СВЧ или оптического излучения. Устройство содержит прозрачный для оптического, ВЧ и СВЧ-излучений реактор с катализатором, нагреватель, вибратор для перемешивания катализатора, волноводы и световоды для подвода упомянутых видов энергии в реактор.
Недостатки известного устройства - низкая производительность, техническая сложность вывода чистого углерода, который адсорбируется на поверхности катализатора.
Известно устройство, реализующее способ эндотермических каталитических гетерофазных реакций, к которым относится и реакция диссоциации молекул углеводорода [СВЧ каталитический реактор для эндотермических гетерофазных реакций. Патент РФ №2116826]. Новизна устройства состоит в том, что реактор выполнен в форме СВЧ-резонатора, а рабочая смесь открыта для проникновения электромагнитного поля. Это позволяет осуществлять дополнительный нагрев рабочей смеси сырья и катализатора диссипацией энергии СВЧ электромагнитного поля на резистивных потерях материала. Устройство обладает недостатками, свойственными пиролизной диссоциации: низкая производительность, закоксовывание и, следовательно, малый срок службы катализатора.
Известно устройство для получения углерода и водорода из углеводородного газа (метана) [А.И.Бабарицкий и др. Импульсно-периодический СВЧ-разряд как катализатор химической реакции. ЖТФ. - 2000, - т.70, - вып.11. - С.36-41], которое реализует процесс термической диссоциации метана на углерод и водород:
CH4→2H2+С
при воздействии плазмы импульсно-периодического СВЧ-разряда на предварительно нагретый газ. Устройство содержит источник для нагрева газа, СВЧ-генератор (магнетрон), ферритовый циркулятор, разрядную камеру, волноводы для подвода СВЧ-энергии в разрядную камеру.
Недостаток известного устройства - необходимость дополнительного внешнего источника тепла для предварительного нагрева исходного углеводородного газа, т.е. неизбежные потери тепла и конструктивное усложнение устройства, а также относительно низкий выход углерода.
Известно устройство для получения углерода и водорода из углеводородного газа (метан) [патент РФ №2317943, опубл. 2008], в котором предварительный нагрев и последующее разложение углеводородного газа с выделением и сепарацией углерода и водорода в плазме электрического разряда, возбужденного в СВЧ электромагнитном поле, осуществляют совмещенным действием энергии СВЧ электромагнитного поля в присутствии вещества - инициатора. По совокупности технических признаков данный аналог выбран в качестве прототипа предлагаемого изобретения. Устройство содержит проточный трубчатый реактор с раздельными входом углеводородного газа и выходом углерода и водорода, выполненный из радиопрозрачного, термостойкого материала, например кварцевого стекла, заполненный гранулированной массой вещества - инициатора, установленный поперек линейного волновода прямоугольного сечения через середину его широких стенок (в частности в наклонной позиции), входной конец волновода через вентиль - развязку соединен с источником энергии сверхвысокочастотного электромагнитного поля, а к выходному концу волновода подключен измеритель мощности. Гранулированное вещество - инициатор размещено в полости реактора в ассоциированном (уплотненном) состоянии, обеспечивающем незатрудненное сквозное протекание газа. Непосредственно к веществу - инициатору со стороны выхода углерода и водорода в реакторе примыкает концентратор СВЧ электромагнитного поля.
Устройство - прототип работает следующим образом. На вход реактора подается углеводородный газ (метан) после предварительной продувки реактора азотом; на вход волновода - энергия от сверхвысокочастотного источника (магнетрона), работающего в непрерывном режиме. В стационарном режиме работы устройства в объеме реактора, преимущественно прилегающем к его выходу, визуально наблюдается свечение плазменного факела. При наличии сверхвысокочастотной энергии (в отсутствии в реакторе углеводородного газа) - в тепловой зоне реактора происходит разогрев частиц вещества - инициатора под действием наведенных вихревых токов и диссипации энергии на резистивных потерях. Одновременно между соседними частицами вещества - инициатора возможны электрические микроразряды, а также автоэлектронная эмиссия, переходящая с повышением температуры в термоэлектронную. Указанные процессы интенсифицируются в зоне повышенной напряженности сверхвысокочастотного электромагнитного поля, названной концентратором сверхвысокочастотного электромагнитного поля. При увеличении напряженности электрического поля совокупность лавинно развивающихся процессов приводит к псевдокоронному разряду и, как следствие, к генерации плазмы атмосферного давления. Действие такой плазмы на углеводородный газ по внешним признакам (разложение молекул) сходно с действием катализатора в химических реакциях и получил название плазмо-каталитических реакций. Таким образом, в начале процесса в тепловой зоне реактора происходит разогрев газа и образование непредельных углеводородов (этилен, ацетилен), а также активных частиц (радикалов, ионов, возбужденных молекул). Конвертированные и оставшиеся газы, углеводородные продукты выносятся плазмой в зону концентратора СВЧ электромагнитного поля, где и происходит окончательное разложение непредельных углеводородов на углерод и водород.
Недостаток устройства - прототипа: ограниченный срок службы реактора и связанная с этим недостаточно высокая эффективность устройства в целом. Как видно из описания устройства - прототипа и его работы СВЧ-разряд горит на границе вещества-инициатора - стенка волновода, т.е. в зоне повышенной напряженности поля. В ходе плазмохимической реакции происходит напыление углерода на внутреннюю поверхность реактора у его выхода в зоне СВЧ-разряда, что приводит к сильному разогреву реактора за счет поглощения СВЧ-энергии слоем углерода и проплавлению реактора. Из-за этого срок службы реактора ограничен.
Технический результат предлагаемого изобретения - повышение эффективности за счет увеличения реакционного объема, стабильности СВЧ-разряда, увеличения срока службы реактора и увеличения продолжительности непрерывной работы.
Указанный технический результат достигается тем, что в устройстве для плазмохимической конверсии углеводородного газа, содержащем, как и прототип, проточный реактор с раздельными входом углеводородного газа и выходом углерода и водорода, заполненный веществом - инициатором, снабженный концентратором сверхвысокочастотного электромагнитного поля и помещенный в сверхвысокочастотный волновод прямоугольного сечения перпендикулярно его широким стенкам, который связан с источником энергии сверхвысокочастотного электромагнитного поля, в отличие от прототипа, сверхвысокочастотный волновод выполнен S-образным, в его выходном конце размещен подвижный короткозамыкающий поршень, а концентратор сверхвысокочастотного электромагнитного поля выполнен в виде волноводно-коаксиального перехода (ВКП) с полым внутренним проводником, в котором аксиально размещен высоковольтный электрод, соединенный с источником высокого напряжения и образующий с внутренним проводником электрический газовый разрядник, при этом высоковольтный электрод выполнен в виде трубки, заглушенной на выходном конце, и снабжен системой диаметрально противоположных отверстий, в полом внутреннем проводнике также выполнена система радиальных отверстий и системы отверстий изолированы друг от друга газонепроницаемой диэлектрической перегородкой, расположенной в поперечном сечении внутреннего проводника.
По сравнению с линейным волноводом прямоугольного сечения прототипа, предложенное S-образное исполнение волновода, прямоугольного сечения повышает эффективность устройства и выход углерода и водорода по нескольким факторам. Во-первых, за счет двухкратного, в данном примере, прохождения электромагнитной волны через вещество - инициатор, расположенное в реакторе, более эффективно используется энергия магнетрона, поскольку не вся энергия поглощается в веществе - инициаторе при первом прохождении. Во-вторых, такое исполнение волновода увеличивает область взаимодействия СВЧ-излучения с веществом - инициатором, т.е. увеличивается реакционный объем. Благодаря этому увеличивается объем реактора облучаемый СВЧ-излучением и, соответственно, повышается выход углерода и водорода.
В результате данного исполнения концентратора СВЧ электромагнитного поля выход реактора и область СВЧ-разряда оказываются пространственно разнесенными. Это предотвращает перегрев реактора, увеличивая тем самым срок его жизни и повышая эффективность устройства.
Эффективность и выход чистых углерода и водорода дополнительно подняты за счет выполнения высоковольтного электрода разрядника с системой диаметрально противоположных отверстий, а также внутреннего проводника с системой радиальных отверстий и изолирования систем отверстий друг от друга газонепроницаемой перегородкой.
На чертеже схематически представлена конструкция устройства.
Предлагаемое устройство содержит реактор 1, выполненный из трубчатого радиопрозрачного термостойкого материала, например кварцевого стекла, заполненного гранулированной массой вещества - инициатора 2, например железными опилками. Реактор 1 установлен поперек S-образного волновода 3 прямоугольного сечения, через середину его широких стенок (в частности, перпендикулярно стенкам в максимуме напряженности электрического поля волны Н10 в волноводе прямоугольного сечения). В выходном конце волновода 3 установлен подвижный короткозамыкающий поршень 4. Гранулированное вещество - инициатор 2 размещено в полости реактора 1 в ассоциированном (уплотненном) состоянии, обеспечивающем незатрудненное сквозное протекание газа. К выходному концу реактора примыкает концентратор СВЧ электромагнитной энергии, выполненный в виде волноводно-коаксиального перехода (ВКП) 5, с полым внутренним проводником 6, в котором аксиально размещен высоковольтный электрод 7, образующий с проводником 6 электрический газовый разрядник. В разряднике внутренний проводник 6 ВКП выполняет функцию анода, а высоковольтный электрод 7 является катодом. Для разделения газовых потоков метана (CH4) и азота (N2) служит диэлектрическая перегородка 8 одновременно фиксирующая высоковольтный электрод внутри проводника 6. Такое выполнение разрядника обеспечивает повышение эффективности устройства за счет направленного разделения газовых потоков (метана и азота), способствующего повышению устойчивости СВЧ-разряда. Вход волновода через циркулятор 9 соединен с источником энергии сверхвысокочастотного электромагнитного поля (магнетроном) 10. Кварцевая пластина 11, выполненная с отверстиями для прохода метана, служит изолятором и креплением высоковольтного электрода 7 в полости ВКП 5. Для предотвращения попадания вещества - инициатора из реактора 1 в разрядник между ними размещена мелкая металлическая сетка 12. Соединенный с высоковольтным электродом 7 высоковольтный ввод 13 служит для подключения источника высокого напряжения (не показан). Волновод 3 оснащен запредельным круглым волноводом 14, который предотвращает излучение СВЧ-энергии из волновода 3 наружу. Внешний проводник 15 ВКП вместе с внутренним проводником 6 образуют коаксиал ВКП. В полом высоковольтном электроде 7 коаксиала ВКП выполнена система диаметрально противоположных отверстий 16, в полом внутреннем проводнике 6 выполнена система радиальных отверстий 17. Обе системы отверстий 16, 17 отделены друг от друга газонепроницаемой диэлектрической перегородкой 8.
Предлагаемое устройство работает следующим образом.
На начальном этапе реактор 1 продувается азотом с целью вытеснения из его объема кислорода. Затем в волновод 3 подается СВЧ-энергия от магнетрона 10. При наличии СВЧ-энергии в реакторе 1 происходит разогрев частиц вещества - инициатора 2 под действием наведенных вихревых токов и диссипации энергии на резистивных потерях, до температур 400-700°С. Одновременно между соседними частицами вещества - инициатора 2 возможны электрические микроразряды, а также автоэлектронная эмиссия, переходящая по мере повышения температуры частиц в термоэлектронную.
На втором этапе работы на высоковольтный электрод 7 электрического газового разрядника подается импульс от источника высокого напряжения (не показан). Под действием приложенного напряжения в пространстве между высоковольтным электродом 7 и внутренним проводником 6 волноводно-коаксиального перехода 5 в их торцевой части загорается тлеющий разряд. Потоком азота из отверстий 16 в высоковольтном электроде 7 плазма разряда выносится в область ниже торца внутреннего проводника 6. Концентрация этой плазмы оказывается достаточной для инициирования и поддержания в дальнейшем СВЧ-разряда. Часть СВЧ-энергии, не поглотившейся при прохождении через вещество - инициатор 2, поступает по S-образному волноводу 3 в зону электрического газового разрядника. При достаточном уровне напряженности электрической составляющей электромагнитного поля пробивается газ и в области торца внутреннего проводника 6 ВКП возникает СВЧ-разряд. Здесь режим согласования волновода с коаксиалом ВКП достигается с помощью подвижного короткозамыкающего поршня 4. Созданный ранее тлеющий разряд облегчает зажигание СВЧ-разряда, что снимает проблемы, связанные с эрозией и разогревом внутреннего проводника 6, которые имели место в отсутствии инициирующего тлеющего разряда. В этом случае для зажигания и поддержания СВЧ-разряда требовался бы более высокий уровень СВЧ-мощности.
На третьем этапе в реактор 1 подается природный газ (метан СН4) и отключается подача азота в реактор 1. Проходя нагретое вещество - инициатор 2 метан нагревается, что приводит к образованию непредельных углеводородов (этилен, ацетилен), а также активных частиц (радикалов ионов, возбужденных молекул), способствующих разложению углеводородов в цепных реакциях. Конвертированные и оставшиеся газ, углеводородные продукты выносятся в зону концентратора сверхвысокочастотного электромагнитного поля, где одновременно горят СВЧ газовый разряд и инициирующий его тлеющий разряд. Здесь в плазме газового СВЧ-разряда происходит окончательное разложение непредельных углеводородов на углерод и водород, которые выносятся интенсивным газовым потоком из зоны плазмохимической реакции. Для предлагаемого устройства, как и для прототипа, предположительно участие вещества - инициатора 2 в качестве катализатора химической реакции, в результате которой при указанных выше температурах на его поверхности образуется кристаллический углерод (нанотрубки). За счет плазмы микроразрядов, возбуждаемых между отдельными частицами вещества - инициатора СВЧ электромагнитным полем кристаллический углерод сбивается с поверхности частиц катализатора и уносится из реактора газовым потоком. Это позволяет увеличить «срок жизни» вещества - инициатора и повысить эффективность конверсии природного газа.
В ходе экспериментальной проверки условий поджига и поддержания вспомогательного (тлеющего) и СВЧ-разряда было установлено, что оба типа разрядов устойчиво горят в атмосфере азота. При переходе на смесь азот-метан и на чистый метан ситуация резко меняется. Дело в том, что в процессе горения вспомогательного разряда в метане возможны так называемые, завершенные искровые пробои в межэлектродной системе разрядника. За счет высокой температуры искрового канала на электроде 7 происходит образование аморфного углерода и его последующее осаждение в месте привязки разряда на катоде, что ведет к уменьшению межэлектродного промежутка в этой области. Последующий пробой разрядного промежутка и возникновение искрового канала происходит по короткому пути в том же месте. Таким образом, со временем происходит прорастание углеродного нароста (мостика) от катода к аноду. При перемыкании электродов вспомогательный разряд гаснет и, соответственно, гаснет основной разряд.
Данная проблема решена за счет предлагаемой конструкции разрядника с раздельной подачей азота и метана. В соответствии с чертежом в зону вспомогательного разряда азот подается по высоковольтному электроду 7, выполненному трубчатым. За счет того, что метан между внутренним проводником 6 и высоковольтным электродом 7 ниже перегородки 8 отсутствует, вспомогательный разряд зажигается в среде азота и горит стабильно. При этом отсутствует перемыкание межэлектродного промежутка электрического газового разрядника углеродным мостиком. Метан в область СВЧ-разряда поступает из реактора 1 через отверстия в кварцевой пластине 11, затем через радиальные отверстия 17 во внутреннем проводнике 6. Отверстия 17 во внутреннем проводнике 6 могут быть выполнены под углом ≤45° к оси системы для формирования потока метана, направленного преимущественно в область СВЧ-разряда.
Благодаря предложенной конструкции разрядника вспомогательный разряд зажигается и горит в атмосфере азота. Его столб газом выдувается за торец внутреннего проводника 6 и инициирует СВЧ-разряд уже в зоне с преобладанием концентрации метана. Данное исполнение газового разрядника обеспечивает стабильность СВЧ-разряда, увеличивает продолжительность непрерывной работы и, соответственно, эффективность устройства.
В конкретном примере реализации предложенного устройства (см. чертеж) для плазмохимической конверсии углеводородного газа реактор 1 представляет собой толстостенную кварцевую трубу внутренним диаметром D=47 мм и длиной =110÷160 мм, заполненную веществом - инициатором (катализатором) 2, в частности железом (Fe) в виде гранул размером (0,1÷2,0) мм. Для предотвращения паразитного излучения из волновода через реактор 1 в свободное пространство ввод реактора в S-образный волновод 3 осуществлен через запредельный круглый волновод 14. S-образный волновод 3 выполнен в виде трубы (нержавеющая сталь) прямоугольного сечения размером 90×45 мм, причем труба выполнена с двумя продольными пергородками, являющимися общими стенками для каждого из двух смежных отрезков волновода. Вход волновода 3 через циркулятор 9 соединен с магнетроном 10. В выходном конце волновода 3 установлен подвижный короткозамыкающий поршень 4. Циркулятор 9 предназначен для защиты магнетрона 10 от отраженной волны, мощность которой рассеивается в нагрузке циркулятора 9. Вместо циркулятора 9 может быть использован, например, вентиль типа ВФВВ2-13А на непрерывную мощность 3 кВт или вентиль ферритовый типа ВФВВ2-39, рассчитанный на использование при уровне непрерывной мощности 5 кВт (производство НПО «Феррит», г.С-Петербург).
В качестве источника СВЧ-энергии для нагрева вещества - инициатора 2 и поддержания СВЧ газового разряда может быть применен магнетрон типа М-143-1 с выходной мощностью до 1,5 кВт в непрерывном режиме или магнетрон М-144 с выходной регулируемой мощностью до 5 кВт. Второй тип магнетрона разработан и выпускается ЗАО «НПП «Магратеп», г. Фрязино. Оба типа магнетронов работают на частоте 2450±50 МГц.
В конкретном примере реализации предлагаемого изобретения электрод, являющийся внутренним проводником 6 коаксиала волноводно-коаксиального перехода 5 и одновременно внешним проводником газового разрядника, выполнен из нержавеющей трубки ⌀ 16 мм и длиной , определяемой из условия:
где n=1, 2, 3,… целое число, λ0/4 - четверть рабочей длины волны генератора.
При f0=2450 МГц, λ0≈12,24 см. Данное условие выбора длины электрода способствует стабильности СВЧ-разряда, поскольку торец электрода оказывается в пучности напряженности электрического поля. Высоковольтный электрод 7 разрядника выполнен медным для предотвращения его эрозии в атмосфере продуктов разложения природного газа. Своим одним концом высоковольтный электрод 7 закреплен в кварцевой пластине 11, имеющей отверстия для прохода газа и разделяющей объем реактора и разрядный промежуток. На противоположном, заглушенном конце высоковольтного электрода 7 выполнено утолщение цилиндрической формы диаметром ⌀ 7 мм и длиной 25 мм, переходящее в усеченный конус с диаметром меньшего основания ⌀ 5 мм. В цилиндрической части выполнены четыре диаметрально противоположных отверстия 16 диаметром ⌀ 1 мм. Торец внутреннего проводника 6 коаксиала вместе с торцевой частью высоковольтного электрода 7 образует сопло, создающее ускоренный поток плазмы вспомогательного разряда из разрядного промежутка. Импульсы высокого напряжения от источника с амплитудой 15 кВ и частотой 100 Гц подают на электрод 7 через высоковольтный ввод, представляющий собой автомобильную свечу зажигания (не показано). Внешний проводник 15 коаксиала ВКП в своем продолжении является круглым волноводом с внутренним диаметром ⌀ 40 мм, запредельным для волны E01 при длине волны генератора λ0≈12,24 см. Это обеспечивает образование отраженной волны, что дополнительно увеличивает напряженность электрического поля у торца внутреннего проводника 6 и способствует повышению стабильности разряда и эффективности устройства. Через внешний проводник 15 (трубу) конечные продукты реакции поступают в сборники углерода и водорода (не показано).
Claims (1)
- Устройство для плазмохимической конверсии углеводородного газа, содержащее проточный реактор с раздельными входом углеводородного газа и выходом углерода и водорода, заполненный веществом - инициатором, снабженный концентратором сверхвысокочастотного электромагнитного поля и помещенный в сверхвысокочастотный волновод прямоугольного сечения перпендикулярно его широким стенкам, который связан с источником энергии сверхвысокочастотного электромагнитного поля, отличающееся тем, что сверхвысокочастотный волновод выполнен S-образным, в его выходном конце размещен подвижный короткозамыкающий поршень, а концентратор сверхвысокочастотного электромагнитного поля выполнен в виде волноводно-коаксиального перехода (ВКП) с полым внутренним проводником, в котором аксиально размещен высоковольтный электрод, соединенный с источником высокого напряжения и образующий с внутренним проводником электрический газовый разрядник, при этом высоковольтный электрод выполнен в виде трубки, заглушенной на выходном конце, и снабжен системой диаметрально противоположных отверстий, в полом внутреннем проводнике также выполнена система радиальных отверстий и системы отверстий изолированы друг от друга газонепроницаемой диэлектрической перегородкой, расположенной в поперечном сечении внутреннего проводника.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2009112928/15A RU2393988C1 (ru) | 2009-04-06 | 2009-04-06 | Устройство для плазмохимической конверсии углеводородного газа |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2009112928/15A RU2393988C1 (ru) | 2009-04-06 | 2009-04-06 | Устройство для плазмохимической конверсии углеводородного газа |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2393988C1 true RU2393988C1 (ru) | 2010-07-10 |
Family
ID=42684625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2009112928/15A RU2393988C1 (ru) | 2009-04-06 | 2009-04-06 | Устройство для плазмохимической конверсии углеводородного газа |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2393988C1 (ru) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2463248C2 (ru) * | 2010-12-06 | 2012-10-10 | Государственное образовательное учреждение высшего профессионального образования Томский государственный университет (ТГУ) | Устройство для синтеза углеродных нанотрубок из углеводородного газа |
RU2468544C1 (ru) * | 2011-03-21 | 2012-11-27 | Общество с ограниченной ответственностью "Фиберус" | Устройство для возбуждения и поддержания свч-разрядов в плазмохимических реакторах |
RU2489350C2 (ru) * | 2011-11-16 | 2013-08-10 | Общество с ограниченной ответственностью "Центр перспективных углеродных материалов" | Способ получения углеродных наноматериалов и устройство для его реализации |
RU2522636C1 (ru) * | 2013-02-07 | 2014-07-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" | Свч плазменный конвертор |
RU2533555C2 (ru) * | 2012-09-11 | 2014-11-20 | Аркадий Владимирович Луенков | Способ реализации высокотемпературного топливного элемента с протонной плазмой и внутренним риформингом |
RU2755267C1 (ru) * | 2020-04-28 | 2021-09-14 | Общество с ограниченной ответственностью "Газпром трансгаз Томск" (ООО "Газпром трансгаз Томск") | Устройство для получения метано-водородного топлива из углеводородного газа |
RU2834775C1 (ru) * | 2024-09-06 | 2025-02-14 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" | Плазмохимический реактор |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU151313A1 (ru) * | 1961-09-01 | 1961-11-30 | Г.В. Беневоленска | Способ получени водорода |
US5015349A (en) * | 1988-12-23 | 1991-05-14 | University Of Connecticut | Low power density microwave discharge plasma excitation energy induced chemical reactions |
US5484978A (en) * | 1994-03-11 | 1996-01-16 | Energy Reclamation, Inc. | Destruction of hydrocarbon materials |
RU2064889C1 (ru) * | 1993-02-11 | 1996-08-10 | Институт катализа им.Г.К.Борескова СО РАН | Способ получения водорода и углеродного материала |
WO2001046067A1 (en) * | 1999-12-21 | 2001-06-28 | Bechtel Bwxt Idaho, Llc | Hydrogen and elemental carbon production from natural gas and other hydrocarbons |
FR2827591A1 (fr) * | 2001-07-17 | 2003-01-24 | Cie D Etudes Des Technologies | Procede et dispositif de production d'un gaz riche en hydrogene par pyrolyse thermique d'hydrocarbures |
RU2317943C2 (ru) * | 2005-12-20 | 2008-02-27 | ОАО "Томскгазпром" | Способ получения углерода и водорода из углеводородного газа и устройство для его осуществления |
-
2009
- 2009-04-06 RU RU2009112928/15A patent/RU2393988C1/ru not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU151313A1 (ru) * | 1961-09-01 | 1961-11-30 | Г.В. Беневоленска | Способ получени водорода |
US5015349A (en) * | 1988-12-23 | 1991-05-14 | University Of Connecticut | Low power density microwave discharge plasma excitation energy induced chemical reactions |
RU2064889C1 (ru) * | 1993-02-11 | 1996-08-10 | Институт катализа им.Г.К.Борескова СО РАН | Способ получения водорода и углеродного материала |
US5484978A (en) * | 1994-03-11 | 1996-01-16 | Energy Reclamation, Inc. | Destruction of hydrocarbon materials |
WO2001046067A1 (en) * | 1999-12-21 | 2001-06-28 | Bechtel Bwxt Idaho, Llc | Hydrogen and elemental carbon production from natural gas and other hydrocarbons |
FR2827591A1 (fr) * | 2001-07-17 | 2003-01-24 | Cie D Etudes Des Technologies | Procede et dispositif de production d'un gaz riche en hydrogene par pyrolyse thermique d'hydrocarbures |
RU2317943C2 (ru) * | 2005-12-20 | 2008-02-27 | ОАО "Томскгазпром" | Способ получения углерода и водорода из углеводородного газа и устройство для его осуществления |
Non-Patent Citations (1)
Title |
---|
W09312030 A1, 24.06.1993. * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2463248C2 (ru) * | 2010-12-06 | 2012-10-10 | Государственное образовательное учреждение высшего профессионального образования Томский государственный университет (ТГУ) | Устройство для синтеза углеродных нанотрубок из углеводородного газа |
RU2468544C1 (ru) * | 2011-03-21 | 2012-11-27 | Общество с ограниченной ответственностью "Фиберус" | Устройство для возбуждения и поддержания свч-разрядов в плазмохимических реакторах |
RU2489350C2 (ru) * | 2011-11-16 | 2013-08-10 | Общество с ограниченной ответственностью "Центр перспективных углеродных материалов" | Способ получения углеродных наноматериалов и устройство для его реализации |
RU2533555C2 (ru) * | 2012-09-11 | 2014-11-20 | Аркадий Владимирович Луенков | Способ реализации высокотемпературного топливного элемента с протонной плазмой и внутренним риформингом |
RU2522636C1 (ru) * | 2013-02-07 | 2014-07-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" | Свч плазменный конвертор |
RU2755267C1 (ru) * | 2020-04-28 | 2021-09-14 | Общество с ограниченной ответственностью "Газпром трансгаз Томск" (ООО "Газпром трансгаз Томск") | Устройство для получения метано-водородного топлива из углеводородного газа |
RU2834775C1 (ru) * | 2024-09-06 | 2025-02-14 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" | Плазмохимический реактор |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2393988C1 (ru) | Устройство для плазмохимической конверсии углеводородного газа | |
Tao et al. | CH4–CO2 reforming by plasma–challenges and opportunities | |
RU2425795C2 (ru) | Установка для получения водорода и углеродных наноматериалов и структур из углеводородного газа, включая попутный нефтяной газ | |
CN104071747B (zh) | 一种等离子体甲烷重整制备合成气的方法 | |
US6245309B1 (en) | Method and devices for producing hydrogen by plasma reformer | |
Petitpas et al. | A comparative study of non-thermal plasma assisted reforming technologies | |
Tendero et al. | Atmospheric pressure plasmas: A review | |
RU2530110C2 (ru) | Плазменный реактор для преобразования газа в жидкое топливо | |
JP2012518263A (ja) | プラズマ反応器 | |
RU2410603C1 (ru) | Устройство плазменного воспламенения пылеугольного топлива | |
Mizeraczyk et al. | Studies of atmospheric-pressure microwave plasmas used for gas processing | |
Lebedev | Microwave discharges in liquid dielectrics | |
KR20040020893A (ko) | 내연엔진 또는 가스터빈 내에서 사용가능한 연료를합성가스로 플라즈마 촉매식 변환하기 위한 방법 및 이를위한 플라즈마 촉매식변환기 | |
WO1999047242A1 (en) | Method and device for cleaning combustion exhaust gas using a plasma | |
KR102180579B1 (ko) | 플라즈마-촉매를 이용한 수소, c2~c4 올레핀 또는 이의 혼합물의 생산방법 | |
Zherlitsyn et al. | Microwave plasma torch for processing hydrocarbon gases | |
RU2522636C1 (ru) | Свч плазменный конвертор | |
RU2414418C2 (ru) | Способ получения водорода и углеродных нанотрубок из углеводородного газа | |
WO2010110694A1 (ru) | Плазменная печь | |
Jiang et al. | Enhanced degradation of benzene in surface/packed-bed hybrid discharge system: Optimization of the reactor structure and electrical parameters | |
KR20040029388A (ko) | 비열 방전 플라스마를 이용한 화학 공정 | |
RU2318722C2 (ru) | Плазменный конвертор газообразного и жидкого углеводородного сырья и топлив в синтез-газ на основе микроволнового разряда | |
Pathak et al. | Tar destruction using non-thermal plasma technology–a critical review | |
RU2422493C1 (ru) | Способ крекинга углеводородов и плазменный реактор для его осуществления | |
RU2390493C1 (ru) | Устройство для получения углерода и водорода из углеводородного газа |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20170407 |