PL3167096T3 - TWO-STAGE METHOD OF APPLICATION - Google Patents
TWO-STAGE METHOD OF APPLICATIONInfo
- Publication number
- PL3167096T3 PL3167096T3 PL15741256T PL15741256T PL3167096T3 PL 3167096 T3 PL3167096 T3 PL 3167096T3 PL 15741256 T PL15741256 T PL 15741256T PL 15741256 T PL15741256 T PL 15741256T PL 3167096 T3 PL3167096 T3 PL 3167096T3
- Authority
- PL
- Poland
- Prior art keywords
- application
- stage method
- stage
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0694—Halides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/12—Organic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5806—Thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5846—Reactive treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5893—Mixing of deposited material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/409—Oxides of the type ABO3 with A representing alkali, alkaline earth metal or lead and B representing a refractory metal, nickel, scandium or a lanthanide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45553—Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45557—Pulsed pressure or control pressure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2004—Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
- H01G9/2009—Solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2027—Light-sensitive devices comprising an oxide semiconductor electrode
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/16—Material structures, e.g. crystalline structures, film structures or crystal plane orientations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/50—Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/633—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
- H10K2102/102—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
- H10K30/151—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/624—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- Thermal Sciences (AREA)
- Electromagnetism (AREA)
- Photovoltaic Devices (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB1412201.4A GB201412201D0 (en) | 2014-07-09 | 2014-07-09 | Two-step deposition process |
PCT/GB2015/051993 WO2016005758A1 (en) | 2014-07-09 | 2015-07-09 | Two-step deposition process |
EP15741256.0A EP3167096B1 (en) | 2014-07-09 | 2015-07-09 | Two-step deposition process |
Publications (1)
Publication Number | Publication Date |
---|---|
PL3167096T3 true PL3167096T3 (en) | 2022-02-21 |
Family
ID=51410859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PL15741256T PL3167096T3 (en) | 2014-07-09 | 2015-07-09 | TWO-STAGE METHOD OF APPLICATION |
Country Status (8)
Country | Link |
---|---|
US (1) | US10580585B2 (en) |
EP (2) | EP3978645A1 (en) |
KR (2) | KR102360104B1 (en) |
CN (1) | CN107075657B (en) |
ES (1) | ES2897728T3 (en) |
GB (1) | GB201412201D0 (en) |
PL (1) | PL3167096T3 (en) |
WO (1) | WO2016005758A1 (en) |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9778561B2 (en) | 2014-01-31 | 2017-10-03 | Lam Research Corporation | Vacuum-integrated hardmask processes and apparatus |
GB201412201D0 (en) * | 2014-07-09 | 2014-08-20 | Isis Innovation | Two-step deposition process |
US20160222039A1 (en) * | 2015-01-29 | 2016-08-04 | Nanyang Technological University | Spintronic materials and spintronic devices including the spintronic materials |
TWI693732B (en) * | 2015-01-29 | 2020-05-11 | 日商積水化學工業股份有限公司 | Solar battery and method for manufacturing solar battery |
GB201520972D0 (en) | 2015-11-27 | 2016-01-13 | Isis Innovation | Mixed cation perovskite |
CN108475729A (en) * | 2016-02-19 | 2018-08-31 | 积水化学工业株式会社 | Solid maqting type photo-electric conversion element and its manufacturing method |
US10937978B2 (en) * | 2016-02-25 | 2021-03-02 | University Of Louisville Research Foundation, Inc. | Methods for forming a perovskite solar cell |
US10714688B2 (en) * | 2016-02-25 | 2020-07-14 | University Of Louisville Research Foundation, Inc. | Methods for forming a perovskite solar cell |
CN106480422B (en) * | 2016-09-27 | 2018-12-07 | 西安交通大学 | A kind of method preparing polycrystalline perovskite thin film and solar cell device |
EP3575282B1 (en) * | 2017-01-27 | 2024-10-30 | Ene Coat Technologies Co, Ltd. | Complex and method for producing same |
GB201706285D0 (en) * | 2017-04-20 | 2017-06-07 | Univ Oxford Innovation Ltd | Semiconductor device comprising halometallate |
US10796912B2 (en) | 2017-05-16 | 2020-10-06 | Lam Research Corporation | Eliminating yield impact of stochastics in lithography |
KR101941192B1 (en) * | 2017-09-14 | 2019-01-22 | 이화여자대학교 산학협력단 | Organic-inorganic hybrid perovskite-based photodetector |
CN107910249B (en) * | 2017-11-15 | 2019-07-05 | 苏州大学 | Method for fabricating two-dimensional in-plane heterojunctions |
CN108677169B (en) * | 2018-05-17 | 2019-06-25 | 天津理工大学 | A kind of preparation facilities of organic ammonium metal halide film and preparation and characterizing method |
EP3824492A4 (en) * | 2018-07-18 | 2022-04-20 | Massachusetts Institute of Technology | ALTERNATIVE DEPOSIT BY MULTI-SOURCE VAPOR TRANSPORT |
DE102018120580A1 (en) * | 2018-08-23 | 2020-02-27 | Infineon Technologies Ag | DEVICE AND METHOD FOR DEPOSITING A LAYER AT ATMOSPHERIC PRESSURE |
GB2577492B (en) * | 2018-09-24 | 2021-02-10 | Oxford Photovoltaics Ltd | Method of forming a crystalline or polycrystalline layer of an organic-inorganic metal halide perovskite |
CN111162172B (en) * | 2018-11-08 | 2022-05-03 | 杭州纤纳光电科技有限公司 | Perovskite thin film, perovskite solar cell and preparation method thereof |
CN109273612A (en) * | 2018-11-10 | 2019-01-25 | 济南大学 | Continuous vapor phase deposition preparation method of CsPbBr3 perovskite battery |
JP7653908B2 (en) | 2018-11-14 | 2025-03-31 | ラム リサーチ コーポレーション | Methods for making hard masks useful in next generation lithography |
GB201820427D0 (en) | 2018-12-14 | 2019-01-30 | Univ Oxford Innovation Ltd | Device interlayer |
CN113227909A (en) | 2018-12-20 | 2021-08-06 | 朗姆研究公司 | Dry development of resists |
US12152935B2 (en) | 2019-02-11 | 2024-11-26 | Rensselaer Polytechnic Institute | Hybrid fiber for detection of UV light |
US12125711B2 (en) | 2019-03-18 | 2024-10-22 | Lam Research Corporation | Reducing roughness of extreme ultraviolet lithography resists |
CN113874541A (en) * | 2019-04-19 | 2021-12-31 | 亨特钙钛矿技术有限责任公司 | Solvent-free perovskite deposition method |
CN113785381A (en) | 2019-04-30 | 2021-12-10 | 朗姆研究公司 | Atomic Layer Etching and Selective Deposition Processes for Extreme Ultraviolet Lithography Resist Improvement |
GB2583965A (en) | 2019-05-16 | 2020-11-18 | Oxford Photovoltaics Ltd | Photovoltaic device |
TWI837391B (en) | 2019-06-26 | 2024-04-01 | 美商蘭姆研究公司 | Photoresist development with halide chemistries |
CN110803711A (en) * | 2019-11-18 | 2020-02-18 | 桂林电子科技大学 | Te doped A2SnCl6Perovskite material and preparation method thereof |
CN113025312B (en) * | 2019-12-25 | 2022-11-18 | 致晶科技(北京)有限公司 | Preparation method of heterogeneous perovskite crystal material, preparation method and application thereof |
US11314168B2 (en) | 2020-01-15 | 2022-04-26 | Lam Research Corporation | Underlayer for photoresist adhesion and dose reduction |
CN115485410A (en) | 2020-02-19 | 2022-12-16 | 第一阳光公司 | Method for perovskite device processing by vapor transport deposition |
JP2023516588A (en) | 2020-02-28 | 2023-04-20 | ラム リサーチ コーポレーション | Multilayer hard mask for defect reduction in EUV patterning |
CN111370582B (en) * | 2020-03-25 | 2023-07-25 | 常州大学 | Preparation method of perovskite solar cell on micron-sized large suede |
EP4235757A3 (en) | 2020-07-07 | 2023-12-27 | LAM Research Corporation | Integrated dry processes for patterning radiation photoresist patterning |
CN111925128A (en) * | 2020-08-11 | 2020-11-13 | 郑州大学 | Preparation method of non-solvent-based all-inorganic Pb-based perovskite film |
CN112038490A (en) * | 2020-09-14 | 2020-12-04 | 甘肃泰达春晖新能源科技有限公司 | Method for preparing perovskite solar cell by improved steam assistance |
EP4218061A4 (en) | 2020-09-22 | 2024-11-13 | Caelux Corporation | METHODS AND DEVICES FOR THE INTEGRATED MANUFACTURING OF TANDEM SOLAR MODULES |
CN114583060A (en) * | 2020-12-01 | 2022-06-03 | 杭州纤纳光电科技有限公司 | Production method and equipment for rhythmic deposition of perovskite thin films |
CN113845896B (en) * | 2021-09-10 | 2023-08-04 | 天津理工大学 | Curved organic ammonium metal halide film, preparation method, solar cell and application |
GB202114040D0 (en) | 2021-09-30 | 2021-11-17 | Oxford Photovoltaics Ltd | Perovskite materials and their use in photocoltaic devices |
CN114540771B (en) * | 2022-03-04 | 2022-12-20 | 浙江大学 | Pure inorganic lead halide perovskite absorption layer and preparation method and application thereof |
GB202203452D0 (en) | 2022-03-11 | 2022-04-27 | Oxford Photovoltaics Ltd | Sequential deposition of perovskites |
CN119301295A (en) | 2022-03-11 | 2025-01-10 | 牛津光伏有限公司 | Method for preparing multi-component perovskite |
CN115611524A (en) * | 2022-09-26 | 2023-01-17 | 常州工学院 | Preparation method of sheet-shaped tin-based perovskite thin film structure |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3152859B2 (en) | 1994-09-16 | 2001-04-03 | 株式会社東芝 | Method for manufacturing semiconductor device |
WO2002073679A1 (en) | 2001-03-09 | 2002-09-19 | Nec Corporation | Vapor growth method for metal oxide dielectric film and pzt film |
US6391803B1 (en) | 2001-06-20 | 2002-05-21 | Samsung Electronics Co., Ltd. | Method of forming silicon containing thin films by atomic layer deposition utilizing trisdimethylaminosilane |
US20050045092A1 (en) | 2003-09-03 | 2005-03-03 | Taiwan Semiconductor Manufacturing Co. | Method of multi-element compound deposition by atomic layer deposition for IC barrier layer applications |
US7439338B2 (en) * | 2005-06-28 | 2008-10-21 | Micron Technology, Inc. | Beta-diketiminate ligand sources and metal-containing compounds thereof, and systems and methods including same |
US7858144B2 (en) | 2007-09-26 | 2010-12-28 | Eastman Kodak Company | Process for depositing organic materials |
SG178736A1 (en) * | 2007-10-31 | 2012-03-29 | Advanced Tech Materials | Amorphous ge/te deposition process |
US8778745B2 (en) | 2010-06-29 | 2014-07-15 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US20120003833A1 (en) * | 2010-07-01 | 2012-01-05 | Applied Materials, Inc. | Methods for forming tungsten-containing layers |
US8916425B2 (en) | 2010-07-26 | 2014-12-23 | Semiconductor Energy Laboratory Co., Ltd. | Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device |
JP5949252B2 (en) * | 2011-12-02 | 2016-07-06 | 株式会社島津製作所 | Sample preparation apparatus and sample preparation method for MALDI |
KR20140007045A (en) * | 2012-07-05 | 2014-01-16 | 한국화학연구원 | Nanostructured inorganic-organic hybrid solar cell |
KR102118475B1 (en) * | 2012-09-18 | 2020-06-03 | 옥스포드 유니버시티 이노베이션 리미티드 | Optoelectonic device |
CN103682153B (en) * | 2013-11-28 | 2017-02-08 | 中国科学院物理研究所 | Metal-insulating layer-semiconductor back-contact interface structure for perovskite-type organic lead halide thin-film solar cells and preparation method of metal-insulating layer-semiconductor back-contact interface structure |
GB201412201D0 (en) * | 2014-07-09 | 2014-08-20 | Isis Innovation | Two-step deposition process |
-
2014
- 2014-07-09 GB GBGB1412201.4A patent/GB201412201D0/en not_active Ceased
-
2015
- 2015-07-09 PL PL15741256T patent/PL3167096T3/en unknown
- 2015-07-09 EP EP21195771.7A patent/EP3978645A1/en active Pending
- 2015-07-09 CN CN201580037211.5A patent/CN107075657B/en active Active
- 2015-07-09 US US15/323,823 patent/US10580585B2/en active Active
- 2015-07-09 WO PCT/GB2015/051993 patent/WO2016005758A1/en active Application Filing
- 2015-07-09 ES ES15741256T patent/ES2897728T3/en active Active
- 2015-07-09 EP EP15741256.0A patent/EP3167096B1/en active Active
- 2015-07-09 KR KR1020177003590A patent/KR102360104B1/en active Active
- 2015-07-09 KR KR1020227003731A patent/KR102462401B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN107075657B (en) | 2019-07-09 |
EP3167096A1 (en) | 2017-05-17 |
GB201412201D0 (en) | 2014-08-20 |
EP3978645A1 (en) | 2022-04-06 |
KR20170031176A (en) | 2017-03-20 |
KR102360104B1 (en) | 2022-02-08 |
US10580585B2 (en) | 2020-03-03 |
CN107075657A (en) | 2017-08-18 |
ES2897728T3 (en) | 2022-03-02 |
EP3167096B1 (en) | 2021-10-20 |
US20170148579A1 (en) | 2017-05-25 |
KR20220025092A (en) | 2022-03-03 |
WO2016005758A1 (en) | 2016-01-14 |
KR102462401B1 (en) | 2022-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
PL3167096T3 (en) | TWO-STAGE METHOD OF APPLICATION | |
LT3237432T (en) | PRODUCTION OF PROTEIN | |
DK3110442T3 (en) | MODIFIED MENINGOKOK-FHBP POLYPEPTIDER | |
DK3132009T3 (en) | COURSE OF ACTION | |
DK3283210T3 (en) | COURSE OF ACTION | |
DE112015001664A5 (en) | Betätigungsaktuator | |
IL252086A0 (en) | New methods | |
DE112015005041A5 (en) | GARGERÄTEVORRICHTUNG | |
FR3024647B1 (en) | TRANSAT OF PUERICULTURE | |
LT3253772T (en) | METHOD OF DOSMIC PREPARATION | |
DK3285588T3 (en) | COURSE OF ACTION | |
DE112015001633A5 (en) | Betätigungsaktuator | |
PL3350308T3 (en) | APPLICATION OF LYOTAR | |
PL3237368T3 (en) | METHOD OF PURIFYING LACTILE | |
LT3183264T (en) | METHOD OF PEGILATION | |
UA32480S (en) | SET OF LABELS | |
UA32407S (en) | SET OF LABELS | |
UA31293S (en) | SET OF LABELS | |
UA31294S (en) | SET OF LABELS | |
UA31295S (en) | SET OF LABELS | |
UA31296S (en) | SET OF LABELS | |
UA31585S (en) | SET OF LABELS | |
UA31206S (en) | SET OF LABELS | |
UA28942S (en) | SET OF LABELS | |
UA28940S (en) | SET OF LABELS |