+

KR20200123776A - Fiber manufacturing method and carbon fiber manufacturing method - Google Patents

Fiber manufacturing method and carbon fiber manufacturing method Download PDF

Info

Publication number
KR20200123776A
KR20200123776A KR1020207019124A KR20207019124A KR20200123776A KR 20200123776 A KR20200123776 A KR 20200123776A KR 1020207019124 A KR1020207019124 A KR 1020207019124A KR 20207019124 A KR20207019124 A KR 20207019124A KR 20200123776 A KR20200123776 A KR 20200123776A
Authority
KR
South Korea
Prior art keywords
fiber
spinneret
solvent
producing
coagulation bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
KR1020207019124A
Other languages
Korean (ko)
Inventor
다쿠야 나가사카
게이이치 이시오
나오유키 후루카와
Original Assignee
도레이 카부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도레이 카부시키가이샤 filed Critical 도레이 카부시키가이샤
Publication of KR20200123776A publication Critical patent/KR20200123776A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/38Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Inorganic Fibers (AREA)

Abstract

섬유형성성 중합체가 용매에 용해되어 이루어지는 방사(紡絲)원액을 방사구금(1)으로부터 토출하고, 일단 공기 중에서 주행시킨 후, 응고욕(3)액 중으로 인도하고 응고시키는 섬유의 제조 방법에 있어서, 방사구금(1)의 토출면으로부터 수직 아래 방향으로 응고욕(3)액면과의 사이에 형성되는 기상부(氣相部)의 단위시간당의 풍량(風量)(Af)이 기상부 용적(Vh) 중의 단위시간당의 방사원액 중의 용매량(As)에 대하여 0.0008m3≤Af/(As/Vh)≤0.0015m3의 관계식을 만족시키고, 기상부에서의 구금 외주부 4점에서의 절대습도의 1시간 평균값이 각각 20g/m3 이하인 섬유의 제조 방법. 건습식(乾濕式) 방사에 있어서, 방사구금에서의 결로의 발생을 억제하여, 후속하는 공정에서의 롤러 권취(winding on rollers), 연신 공정에서의 보풀, 실 끊김에 의한 품위 저하를 개선하여, 전체적으로 큰 폭으로 생산성과 품위를 높일 수 있는 섬유의 제조 방법을 제공한다.In a method for producing a fiber in which a spinning dope obtained by dissolving a fiber-forming polymer in a solvent is discharged from a spinneret (1), once run in air, and then guided into a coagulation bath (3) and solidified. , The air volume (Af) per unit time of the gas phase part formed between the coagulation bath (3) liquid surface in a vertical downward direction from the discharge surface of the spinneret (1) is the gas phase volume (Vh) ) With respect to the amount of solvent (As) in the spinning dope per unit time, satisfying the relational expression of 0.0008m 3 ≤Af/(As/Vh) ≤0.0015m 3 , and 1 of the absolute humidity at 4 points in the outer periphery of the detention in the meteorological unit A method for producing fibers having a time average value of 20 g/m 3 or less, respectively. In dry and wet spinning, by suppressing the occurrence of condensation in the spinneret, reducing the quality due to winding on rollers in the subsequent process, fluff in the drawing process, and thread breakage As a whole, it provides a fiber manufacturing method that can greatly increase productivity and quality.

Description

섬유의 제조 방법 및 탄소 섬유의 제조 방법Fiber manufacturing method and carbon fiber manufacturing method

본 발명은, 건습식(乾濕式) 방사(紡絲) 방법으로 섬유를 얻을 때, 방사구금 표면에 결로 또는 물방울을 발생시키지 않고, 사조(絲條)의 주행성을 현저하게 안정시켜 섬유를 얻을 수 있는 섬유의 제조 방법에 관한 것이다.In the present invention, when fibers are obtained by a dry-wet spinning method, condensation or water droplets are not generated on the surface of the spinneret, and the running property of the yarn is remarkably stabilized to obtain a fiber. It relates to a method of manufacturing a possible fiber.

폴리아크릴로니트릴 등의 용융하기 어려운 섬유형성성 중합체를 방사하여 섬유를 얻기 위해서는, 습식 방사법이나 건습식 방사법이 채용되고 있다. 이들 중 건습식 방사법은, 섬유형성성 중합체가 용매에 용해하여 이루어지는 방사원액을 방사구금으로부터 토출하고, 일단 기체 중에서 주행시킨 후, 즉시 응고욕액(凝固浴液) 중으로 인도하여 응고시키는 방법이지만, 습식 방사법에 비교하면 욕액 저항이 없는 기체 중에 있어서 드래프트가 완화되므로 고속, 혹은, 고드래프트에서의 방사가 가능하여, 의류용이나 산업용의 섬유 제조에 이용되고 있다. 또한, 건습식 방사법에 의하면 섬유를 보다 치밀화할 수 있으므로, 최근에는 고강도·고탄성율 탄소 섬유의 전구체 섬유의 제조에 활용되어, 건습식 방사법으로 고속도 방사나 방사구금의 다홀화를 행하여, 생산성을 높이고 있다.In order to obtain fibers by spinning a fiber-forming polymer that is difficult to melt, such as polyacrylonitrile, a wet spinning method or a dry wet spinning method is employed. Among these, the dry-wet spinning method is a method in which a spinning dope obtained by dissolving a fiber-forming polymer in a solvent is discharged from a spinneret, once run in a gas, and immediately delivered to a coagulation bath to solidify. Compared to the spinning method, since the draft is relaxed in a gas without bath liquid resistance, spinning at high speed or high draft is possible, and thus, it is used for textile production for clothing or industrial use. In addition, since the dry-wet spinning method can make the fiber more dense, it has recently been utilized in the production of a precursor fiber of high-strength and high modulus carbon fiber, and the dry-wet spinning method is used to perform high-speed spinning or multi-hole spinneret to increase productivity. have.

이와 같은 건습식 방사법은, 응고욕의 밖에 설치한 방사구금으로부터, 방사원액을 압출하므로, 구금면과 응고욕 사이에 기상부가 존재하고, 고속도 방사 또는 1개의 방사구금에서의 구멍수를 증대시키는, 소위 다홀화를 행하면, 기상부에서 방사원액을 구성하는 용매의 증기가 증가하고, 이 증기가 기상부에 체류하여, 방사구금면에 결로가 발생하기 쉬워진다. 결로한 액적(液適)은, 방사구금의 토출공(吐出孔)을 막아 섬유의 밀착이나 섬도(纖度) 불균일, 단사(單絲) 끊김, 그리고 액적이 응고액면과 접촉함으로써 구금 침지가 되어, 후 공정에서의 롤러 권취, 연신(延伸) 공정에서의 보풀, 실 끊김을 초래하여, 조업성, 품위를 현저하게 저하시킨다. 전술한 문제는, 특히 생산성을 높이기 위한 고속도 방사 또는 방사구금의 다홀화를 행함으로써 현저하게 되고 있다.Such a dry-wet spinning method extrudes the spinning dope from the spinneret installed outside the coagulation bath, so that a gas phase part exists between the spinneret surface and the coagulation bath, and high-speed spinning or increasing the number of holes in one spinneret, When performing so-called polyholeization, the vapor of the solvent constituting the spinning dope increases in the gas phase part, and this vapor stays in the gas phase part, and condensation tends to occur on the spinneret face. The condensed droplets block the ejection holes of the spinneret and become imprisoned due to adhesion of fibers, non-uniformity in fineness, single yarn breakage, and droplets coming into contact with the coagulation surface. It causes fluff and thread breakage in the roller winding and drawing process in the subsequent process, and the operability and quality are remarkably reduced. The above-described problem is particularly remarkable by performing high-speed spinning or multi-hole formation of a spinneret to increase productivity.

이러한 문제를 개선하는 것을 목적으로 하여, 건습식 방사에서의 방사구금면과, 응고욕의 기상부에서 일방향으로부터 기체를 유통시켜 결로를 방지하는 방법이 제안되어 있다(특허문헌 1).For the purpose of improving this problem, a method of preventing condensation by circulating gas from one direction in a spinneret in dry-wet spinning and a vapor phase part of a coagulation bath has been proposed (Patent Document 1).

또한, 2,000홀을 초과하는 다홀 구금에 있어서도, 방사구금의 토출면과 응고욕 사이에 형성되는 기상부의 기체를 토출면을 협지하는 2방향으로부터 교호적(交互的)으로 흡인함으로써 용매 증기의 체류를 막는 방법에 대하여 검토되고 있다(특허문헌 2).In addition, even in multi-hole detentions exceeding 2,000 holes, the gaseous phase gas formed between the discharge surface of the spinneret and the coagulation bath is alternately sucked from the two directions between the discharge surfaces to prevent the retention of solvent vapor. A method of blocking is being studied (Patent Document 2).

또한, 구금 주변의 온습도(溫濕度) 습도를 컨트롤하는 것으로 구금면 결로 억제를 하기 위하여, 응고실 내를 에워싸서 온습도를 조정한 공기를 순환시키는 방법에 대해서도 검토되고 있다(특허문헌 3).In addition, in order to suppress condensation on the confinement surface by controlling the temperature and humidity around the confinement, a method of circulating air with adjusted temperature and humidity surrounding the coagulation chamber is also being studied (Patent Document 3).

일본공개특허 평5-044104호 공보Japanese Laid-Open Patent No. Hei 5-044104 일본공개특허 2007-239170호 공보Japanese Laid-Open Patent No. 2007-239170 일본공개특허 2010-236139호 공보Japanese Patent Laid-Open Publication No. 2010-236139

방사구금에 있어서 사용하는 구멍수가, 예를 들면, 300홀 정도로 적을 경우에는, 특허문헌 1에서 제안된 기술이라도, 효율적으로 결로를 억제할 수 있는 경우가 있지만, 2,000홀 이상의 수로, 구멍 밀도를 높게 하고, 또한 건습식 방사에서의 방사구금 토출면으로부터 수직 아래 방향으로 응고욕액 액면과의 사이의 기상부 높이가 20mm 미만과 같은 기상부에 용매의 증기가 체류하기 쉬운 조건에 있어서는, 특허문헌 1에서 제안되는 기술을 적용해도 기류의 편류가 발생하여, 증기가 체류하는 경우가 있어 결로를 해소할 수 없는 문제점이 있었다.If the number of holes used in the spinneret is small, for example, about 300 holes, even with the technique proposed in Patent Document 1, condensation can be effectively suppressed, but with a number of 2,000 holes or more, the hole density is increased. In addition, in a condition in which vapor of the solvent tends to stay in the gaseous phase in which the height of the gaseous phase between the coagulation bath liquid level is less than 20 mm in a vertical downward direction from the spinneret discharge surface in dry and wet spinning, according to Patent Document 1 Even if the proposed technology is applied, there is a problem that the condensation cannot be eliminated because the airflow may drift and steam may stay.

또한, 특허문헌 2에 대하여, 구멍 밀도가 높은 경우에는 기상부의 흡인이 충분하지 않고 용매의 증기가 응집하는 것, 배기하고 있지 않은 면에 대하여 응집이 진행되어 결로가 발생하는 문제점이 있었다.In addition, with respect to Patent Document 2, when the pore density is high, there is a problem in that the suction of the gaseous phase is insufficient and the vapor of the solvent is agglomerated, and condensation proceeds on the surface that is not exhausted.

특허문헌 3에 대해서는, 구금 외층부의 토출공에는 컨트롤된 공기가 도입되지만 구금 내부까지 컨트롤한 공기가 도달하지 않아 결로의 억제에는 효과가 불충분했다. 또한 응고실 내 전체를 에워싸서 온습도 컨트롤을 실시하기 위하여, 설비의 증대 및 설비비가 증대되므로 실질적으로 실시가 곤란했다.In Patent Document 3, controlled air was introduced into the discharge hole of the outer layer of the crest, but the controlled air did not reach the inside of the crest, and the effect was insufficient for suppressing condensation. In addition, in order to perform temperature-humidity control by surrounding the entire coagulation chamber, it was practically difficult to implement it because of the increase in equipment and equipment cost.

본 발명의 목적은, 예를 들면, 2,000홀 이상의 구멍 밀도가 높고, 또한 건습식 방사에서의 방사구금 토출면으로부터 수직 아래 방향으로 응고욕액 액면과의 사이에 형성되는 기상부 높이가 20mm 미만의 조건에 있어서도, 방사구금에서의 결로의 발생을 억제하여, 후속하는 공정에서의 롤러 권취, 연신 공정에서의 보풀, 실 끊김에 의한 품위 저하를 개선하여, 전체적으로 큰 폭으로 생산성과 품위를 높일 수 있는 섬유의 제조 방법을 제공하는 것에 있다.An object of the present invention is, for example, a condition in which a hole density of 2,000 holes or more is high, and a height of a gaseous part formed between the coagulation bath liquid level in a vertical downward direction from the spinneret discharge surface in dry and wet spinning is less than 20 mm In addition, fiber that suppresses the occurrence of condensation in the spinneret, improves the deterioration of quality due to roller winding in the subsequent process, fluff in the drawing process, and thread breakage, thereby greatly enhancing productivity and quality overall. It is to provide a manufacturing method of.

상기 과제를 해결하기 위하여, 본 발명의 섬유 제조 방법은, 하기 구성을 가진다. 즉,In order to solve the said subject, the fiber manufacturing method of this invention has the following structure. In other words,

섬유형성성 중합체가 용매에 용해되어 이루어지는 방사원액을 방사구금으로부터 토출하고, 일단 공기 중에서 주행시킨 후, 응고욕액 중에 인도하여 응고시키는 섬유의 제조 방법에 있어서, 방사구금의 토출면으로부터 수직 아래 방향으로 응고욕액면과의 사이에 형성되는 기상부의 단위시간당의 풍량(Af)이 기상부 용적(Vh) 중의 단위시간당의 방사원액 중의 용매량(As)에 대하여 0.0008m3≤Af/(As/Vh)≤0.0015m3의 관계식을 만족시키고, 기상부에서의 구금 외주부 4점에서의 절대습도의 1시간 평균값이 각각 20g/m3 이하인 섬유의 제조 방법이다.In a method for producing a fiber in which a spinning dope obtained by dissolving a fiber-forming polymer in a solvent is discharged from a spinneret, once run in air, and then guided in a coagulation bath to solidify, in a vertical downward direction from the discharge surface of the spinneret. The amount of air (Af) per unit time of the gaseous part formed between the surface of the coagulation bath liquid is 0.0008m 3 ≤Af/(As/Vh) with respect to the amount of solvent (As) in the spinning dope per unit time in the volume of the gaseous part (Vh) This is a method for producing fibers in which the relational expression of ≤0.0015m 3 is satisfied, and the average value of the absolute humidity at four points in the outer periphery of the detention in the meteorological unit is 20 g/m 3 or less, respectively.

또한, 본 발명의 탄소 섬유 제조 방법은, 하기 구성을 가진다. 즉,Moreover, the carbon fiber manufacturing method of this invention has the following structure. In other words,

상기한 섬유의 제조 방법으로 섬유를 제조한 후, 200∼300 ℃의 산화성 분위기 중에서 내염화(耐炎化) 처리하고, 이어서, 1,000℃ 이상의 불활성 분위기 중에서 가열하는 탄소 섬유의 제조 방법이다.This is a method for producing a carbon fiber in which fibers are produced by the above-described fiber production method, then treated with flame resistance in an oxidizing atmosphere at 200 to 300°C, and then heated in an inert atmosphere at 1,000°C or higher.

본 발명의 섬유 제조 방법은, 기상부에서의 구금 외주부 4점의 풍속의 상대 표준편차가 40% 이하인 것이 바람직하다.In the fiber manufacturing method of the present invention, it is preferable that the relative standard deviation of the wind speed at the four points of the outer periphery of the imprisonment in the gaseous part is 40% or less.

본 발명의 섬유 제조 방법은, 방사구금의 구멍수가 2,000 이상, 50,000 이하인 것이 바람직하다.In the fiber manufacturing method of the present invention, the number of holes in the spinneret is preferably 2,000 or more and 50,000 or less.

본 발명의 섬유 제조 방법은, 섬유형성성 중합체가 아크릴로니트릴계 중합체인 것이 바람직하다.In the fiber production method of the present invention, it is preferable that the fiber-forming polymer is an acrylonitrile polymer.

본 발명에 의하면, 예를 들면, 2,000홀 이상의 구멍 밀도가 높고, 또한 방사구금과 응고욕액의 거리가 20mm 미만의 건습식 방사의 조건에 있어서도, 방사구금에서의 결로의 발생을 억제하여, 후속하는 공정에서의 롤러 권취, 연신 공정에서의 보풀, 실 끊김에 의한 품위 저하를 개선할 수 있고, 전체적으로 큰 폭으로 생산성과 품위를 높일 수 있다. 특히, 탄소 섬유용 아크릴로니트릴계 전구체 섬유를 제조하기에 바람직하다.According to the present invention, for example, even under conditions of dry and wet spinning in which the hole density of 2,000 holes or more is high, and the distance between the spinneret and the coagulation bath liquid is less than 20 mm, the occurrence of condensation in the spinneret is suppressed, and subsequent It is possible to improve the deterioration of quality due to roller winding in the process, fluff in the stretching process, and thread breakage, and overall productivity and quality can be greatly improved. In particular, it is preferable for producing an acrylonitrile-based precursor fiber for carbon fiber.

도 1은 본 발명에 있어서 급기(給氣) 노즐 또는 배기 노즐을 설치한 경우의 방사 영역의 개략 상면도와 정면도의 일례이다.1 is a schematic top view and an example of a front view of a radiation area in the case where an air supply nozzle or an exhaust nozzle is provided in the present invention.

이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 방법은, 의류용 아크릴로니트릴 섬유, 탄소 섬유 제조용 아크릴로니트릴계 섬유, 방향족 폴리아미드 섬유 등을 제조할 때 사용할 수 있지만, 특히 탄소 섬유 제조용 아크릴로니트릴계 섬유를 제조할 때, 그 효과가 가장 현저하게 인정된다.The method of the present invention can be used when producing acrylonitrile fiber for clothing, acrylonitrile fiber for carbon fiber, aromatic polyamide fiber, etc., but in particular, when producing acrylonitrile fiber for carbon fiber The effect is recognized most remarkably.

본 발명에 있어서는, 섬유형성성 중합체가 용매에 용해하여 이루어지는 방사원액을 사용한다. 섬유형성성 중합체로서는, 아크릴로니트릴계 중합체나 방향족 폴리아미드 등을 사용할 수 있다. 중합체를 얻기 위한 중합법에 대해서는, 용액 중합, 유화(乳化) 현탁 중합, 괴상(塊狀) 중합 등이 사용되고, 배치법이라도 되고 연속법이라도 된다.In the present invention, a spinning dope obtained by dissolving a fiber-forming polymer in a solvent is used. As the fiber-forming polymer, an acrylonitrile polymer, an aromatic polyamide, or the like can be used. As for the polymerization method for obtaining the polymer, solution polymerization, emulsion suspension polymerization, bulk polymerization, or the like is used, and may be a batch method or a continuous method.

중합체가 용해하고 있는 용매로서는, 아크릴로니트릴계 중합체의 경우, 디메틸술폭시드(DMSO), 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc), 염화아연 수용액(ZnCl2aq), 티오시안산 나트륨 수용액(NaSCNaq) 등을 사용할 수 있지만, 생산성의 면, 건습식 방사법에 있어서, 중합체의 응고 속도가 빠른 DMSO, DMF 혹은 DMAc가 바람직하고, 응고 속도가 특히 빠른 DMSO가 특히 바람직하다.As a solvent in which the polymer is dissolved, in the case of an acrylonitrile polymer, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), zinc chloride aqueous solution (ZnCl 2 aq), sodium thiocyanate Although an aqueous solution (NaSCNaq) or the like can be used, in terms of productivity, in the dry-wet spinning method, DMSO, DMF or DMAc having a high coagulation rate of the polymer is preferred, and DMSO having a particularly fast coagulation rate is particularly preferred.

이러한 방사원액을, 응고욕 위에 기상부를 통하여 설치한 방사구금의 토출면으로부터 토출하고, 응고욕에서 응고시켜 섬유를 형성한다.The spinning dope is discharged from the discharge surface of a spinneret installed on the coagulation bath through the gas phase, and solidified in the coagulation bath to form fibers.

방사원액의 온도, 응고욕의 온도에 대해서는, 방사구금 토출면으로부터 수직 아래 방향으로 응고욕액면과의 사이에 형성되는 기상부의 분위기 온도와 이슬점의 차(분위기 온도-이슬점)가 가능한 크게 나타나는 조건이 바람직하다.Regarding the temperature of the spinning dope and the temperature of the coagulation bath, the condition in which the difference between the atmospheric temperature and the dew point of the gas phase formed between the coagulation bath liquid surface in a vertical downward direction from the discharge surface of the spinneret (atmosphere temperature-dew point) appears as large as possible. desirable.

방사원액의 온도로서는, 온도가 낮은 편이 용매의 증발량은 적기 때문에 바람직하고, 방사원액에 사용되는 용매의 응고점 이상이면 되고, 응고점 이상, 응고점+20℃ 이하, 또한 응고점+5℃ 이상, 응고점+15℃ 이하인 것이 바람직하다. 방사원액의 온도가 이 바람직한 범위 내이면, 방사원액 점도가 적절하게 유지되어 가방성(可紡性) 양호하며 조업성이 우수하다. 응고욕으로서는, 통상, 방사원액에 사용한 용매와 동일한 용매의 수용액이 사용되지만, 특히 유기용매계에서 결로가 발생하기 쉽기 때문에, DMSO, DMF, DMAc의 수용액을 응고욕으로서 사용한 경우에, 특히 본 발명의 효과가 현저하게 나타난다. 응고욕의 온도의 상한은, 바람직하게는 20℃ 이하, 보다 바람직하게는 10℃ 이하, 더욱 바람직하게는 7℃ 이하이다. 응고욕의 온도의 상한이 이 바람직한 범위 내이면, 결로 발생을 효과적으로 억제할 수 있다. 응고욕의 온도의 하한은, 바람직하게는 0℃ 이상, 보다 바람직하게는 1℃ 이상이다. 응고욕의 온도의 하한이 이 바람직한 범위 내이면, 가방성이 양호하며 조업성이 우수하다.As the temperature of the spinning dope, the lower the temperature is, the smaller the evaporation amount of the solvent is, so it is preferable that it is not less than the solidification point of the solvent used in the spinning dope. It is preferable that it is below °C. When the temperature of the spinning dope is within this preferred range, the viscosity of the spinning dope is appropriately maintained, the bag property is good, and the operation property is excellent. As the coagulation bath, usually an aqueous solution of the same solvent as the solvent used for the spinning dope is used, but in particular, since condensation is liable to occur in an organic solvent system, when an aqueous solution of DMSO, DMF, or DMAc is used as the coagulation bath, the present invention The effect of is remarkable. The upper limit of the temperature of the coagulation bath is preferably 20°C or less, more preferably 10°C or less, and even more preferably 7°C or less. When the upper limit of the temperature of the coagulation bath is within this preferred range, the occurrence of condensation can be effectively suppressed. The lower limit of the temperature of the coagulation bath is preferably 0°C or higher, and more preferably 1°C or higher. When the lower limit of the temperature of the coagulation bath is within this preferred range, the bag property is good and the operation property is excellent.

방사구금의 구멍수는, 2,000 이상 50,000 이하가 바람직하고, 4,000 이상 20,000 이하가 보다 바람직하다. 구멍수가 이 바람직한 범위 내이면, 생산성이 양호한 한편, 구금의 질량이 과도하게 커지지 않고 작업성의 확보가 용이하며, 설비비 증대를 방지할 수 있다. 1홀당의 구금 점유 면적(방사구금 면적÷구멍수)은 5mm2 이상 10mm2 이하로 한 것을 사용하는 것이 바람직하다. 1홀당의 구금 점유 면적이 이 바람직한 범위 내이면, 생산성이 양호한 한편, 건습식 방사를 행할 때의 방사구금과 응고욕 사이의 기상부에 충분한 공극(空隙)을 확보할 수 없는 경우라도 결로의 발생을 효과적으로 방지할 수 있다.The number of holes of the spinneret is preferably 2,000 or more and 50,000 or less, and more preferably 4,000 or more and 20,000 or less. If the number of holes is within this preferred range, productivity is good, while the mass of the detention is not excessively large, it is easy to secure workability, and an increase in equipment cost can be prevented. 1 hole per detention occupied area (the number of spinneret holes ÷ area), it is preferable to use the one in a range from 5mm 2 10mm 2. If the area occupied by the detention per hole is within this preferred range, productivity is good, while condensation occurs even when sufficient voids cannot be secured in the gas phase between the spinneret and the coagulation bath during dry-wet spinning. Can be effectively prevented.

본 발명에 있어서, 방사구금의 토출면과 응고욕액면 사이에 형성되는 기상부의 단위시간당의 풍량(Af)이 기상부의 체적(Vh) 중의 단위시간당의 방사원액 중의 용매량(As)에 대하여, 0.0008m3≤Af/(As/Vh)≤0.0015m3의 관계식을 만족시키고, 기상부에서의 구금 외주부 4점에서(측정점 A∼D)의 절대습도의 1시간 평균값이 각각 20g/m3 이하인 것이 중요하다.In the present invention, the air volume (Af) per unit time of the gas phase part formed between the discharge surface of the spinneret and the coagulation bath liquid surface is 0.0008 with respect to the amount of solvent (As) in the spinning dope per unit time in the volume (Vh) of the gas phase part. m 3 ≤Af/(As/Vh)≤0.0015m 3 satisfies the relational expression, and the 1 hour average value of absolute humidity at 4 points (measurement points A to D) at the outer periphery of detention in the meteorological department is 20 g/m 3 or less, respectively. It is important.

이를 위해 예를 들면, 방사구금으로부터 이격된 위치에 제습 공기의 송풍기를 설치하여, 기상부에 일정량의 풍량을 송풍하는 방법이나, 구금 주변에 급기 노즐 또는 배기 노즐을 설치하여 급배기를 동시에 행하거나 경시적(經時的)으로 급배기 방향을 바꾸거나 하는 방법 등이 있다.For this, for example, a method of installing a blower of dehumidified air at a location separated from the spinneret to blow a certain amount of air to the gaseous phase, or installing an air supply nozzle or an exhaust nozzle around the detention center to simultaneously perform supply and exhaust. There are ways to change the direction of supply and exhaust over time.

본 발명의 경우, Af/(As/Vh)가 0.0008m3 이상 0.0015m3 이하로 하는 것이며, 바람직하게는 0.0009m3 이상 0.0014m3 이하, 보다 바람직하게는 0.0010m3 이상 0.0013m3 이하이다. 0.0015m3를 초과하는 경우, 응고욕의 액면이 유동하여 방사성이 불안정하게 되어 효과가 불충분하게 된다. 또한, 구금 외주부 4점에서의 절대습도의 1시간 평균값이 각각 20g/m3 이하, 15g/m3 이하인 것이 바람직하고, 10g/m3 이하인 것이 더욱 바람직하다.In the present case, Af / (As / Vh) is more than 0.0008m 3 intended to 0.0015m to 3 or less, preferably 3 or more 0.0009m 0.0014m 3 or less, and more preferably less than 0.0010m 3 more than 0.0013m 3 . If it exceeds 0.0015 m 3 , the liquid level of the coagulation bath flows, resulting in unstable radioactivity, resulting in insufficient effect. Further, the average value of the absolute humidity at the four outer periphery points of the detention for one hour is preferably 20 g/m 3 or less, 15 g/m 3 or less, and more preferably 10 g/m 3 or less.

구금 외주부 4점의 풍속에 불균일이 없이 소기(掃氣)하는 관점에서, 구금 외주부 4점의 풍속의 상대 표준편차가 바람직하게는 40% 이하, 보다 바람직하게는 20% 이하, 더욱 바람직하게는 10% 이하이다. 구금 외주부 4점의 풍속의 상대 표준편차가 이 바람직한 범위에 있을 때, 원형이나 직사각형 등의 구금 형상에 관계없이 방사구금 토출면의 결로 발생을 억제할 수 있다.From the viewpoint of scavenging without unevenness in the wind speeds of the four outer circumferences of detention, the relative standard deviation of the wind speeds of the four outer circumferences of detention is preferably 40% or less, more preferably 20% or less, and even more preferably 10. % Or less. When the relative standard deviation of the wind speeds of the four outer circumferences of the crest is within this preferred range, the occurrence of condensation on the discharge surface of the spinneret can be suppressed regardless of the crest shape such as a circle or a rectangle.

본 발명에 있어서, 단위시간당의 풍량(Af)은, 측정점인 구금 외주부 4점에서 측정한 풍속 중, 기류의 상류측에 위치하는 1점의 풍속과 기류 상류측으로부터 방사구금을 보았을 때의 단면적으로부터 산출한다. 기상부의 체적(Vh)은, 구금 최외(最外) 토출공으로부터 산출되는 토출 면적과 토출면으로부터 수직 아래 방향으로 응고욕액면 사이에 형성되는 기상부 높이로부터 산출한다. 토출 원액 중의 용매량(As)은, 단위시간당 구금로부터 토출되는 원액 중에 함유되는 용매량이다.In the present invention, the amount of air per unit time (Af) is from the wind speed of one point located on the upstream side of the airflow and the cross-sectional area when the spinneret is viewed from the upstream side of the airflow, among the wind speeds measured at four points of the outer periphery of the crest as a measurement point. Calculate. The volume Vh of the gaseous phase is calculated from the discharge area calculated from the outermost discharge hole of the custody and the height of the gaseous phase formed between the coagulation bath liquid surface vertically downward from the discharge surface. The amount of solvent (As) in the discharged stock solution is the amount of the solvent contained in the stock solution discharged from the detention per unit time.

또한, 본 발명에 있어서, 구금 외주부 4점의 풍속, 절대습도는, 도 1에 나타낸 바와 같이, 구금 형상에 관계없이 구금 외주를 균등하게 4분할한 개소(箇所)의 액면으로부터 구금면까지의 높이의 중간점이면서 구금 최외 토출공으로부터 30mm 이격된 위치에서 측정한다. 여기서, 본 발명에 있어서, 구금 외주부 4점은, 예를 들면, 구금 형상이 원형인 경우에는, 외주원을 균일하게 4분할하는 외주원 상의 임의의 4점을 선택할 수 있고, 구금 형상이 직사각형인 경우에는, 외주를 구성하는 각 선분의 중점(中点) 4개소를 선택할 수 있다. 풍속, 온도, 상대습도는 클리모마스터 MODEL6501(일본카노막스(주))을 사용하여 측정할 수 있다. 절대습도(AH)[g/m3]는 클리모마스터로 측정한 온도(T)[℃], 상대습도(RH)[%]로부터 하기 계산식을 사용하여 산출한다(e: 포화 증기압[hPa])In addition, in the present invention, the wind speed and absolute humidity of the four points of the outer periphery of the detention are, as shown in Fig. 1, the height from the liquid level to the detention surface of a point where the outer periphery of the detention is equally divided into four, regardless of the shape of the detention. Measure at the midpoint of and 30mm away from the outermost discharge hole of the custody. Here, in the present invention, the four points on the outer periphery of the detention are, for example, when the shape of the detention is circular, arbitrary four points on the outer circumference that uniformly divide the outer circumference into four can be selected, and the shape of the detention is rectangular. In this case, four midpoints of each line segment constituting the outer periphery can be selected. Wind speed, temperature, and relative humidity can be measured using Klimo Master MODEL6501 (Kanomax Co., Ltd.). Absolute humidity (AH)[g/m 3 ] is calculated from the temperature (T)[°C] and relative humidity (RH)[%] measured by KlimoMaster using the following calculation formula (e: saturated vapor pressure [hPa] )

e=6.11×10(7.5T/(T+237.3)) e=6.11×10 (7.5T/(T+237.3))

AH=217×e/(T+273.15)×RH/100AH=217×e/(T+273.15)×RH/100

여기서, 구금 외주부 4점에서의 절대습도의 1시간 평균값은, 상기한 바와 같이 풍속, 온도, 상대습도를 5분 간격으로 12회 측정하고, 상기 계산식을 사용하여 절대습도를 산출한 것의 각 측정점의 평균값이다.Here, the 1-hour average value of the absolute humidity at the four outer periphery points of the detention is, as described above, the wind speed, temperature, and relative humidity are measured 12 times at 5-minute intervals, and the absolute humidity is calculated using the above calculation formula. It is an average value.

또한, 기체를 급기 또는 배기할 때 급기 또는 배기 노즐을 사용하는 경우에는, 그 노즐의 방향은, 도 1에서 나타낸 바와 같이, 노즐 출구가 구금 방향이며 응고욕액면과 평행하게 되도록, 구체적으로는, 노즐의 설치 각도가, 수직 아래 방향(0°로 함)으로부터 구금 방향을 향하여, 바람직하게는 60° 이상 120° 이하, 보다 바람직하게는 80∼100 ° 경사지게 하는 것이 바람직하고, 더욱 바람직하게는 90°로 한다. 도 1에서는, 예로서 노즐의 설치 각도가 90°인 경우를 나타내고 있다. 노즐의 설치 각도(노즐 각도)를 90°로 하면, 용매로부터 발생하는 증기를 효율적으로 소기할 수 있어, 방사구금면으로의 결로 부착을 극히 효과적으로 억제할 수 있다. 노즐의 설치 각도가 이 바람직한 범위 내이면, 급기 노즐의 경우, 기류가 구금면에 부딪혀서 난류(亂流)화하기 어렵고, 체류가 발생하지 않고 결로 생성을 효과적으로 방지할 수 있으며, 배기 노즐의 경우, 용매로부터 발생하는 증기는 구금면과 접촉하면서 흡인되기 쉬움에도 불구하고, 액적의 성장을 효과적으로 방지할 수 있다. 한편, 급기 노즐, 배기 노즐 모두 응고욕액면의 유동이 쉽게 발생하지 않아, 액면이 구금에 접촉하는 구금 침지나 단사간 접착 등 품위·공정 안정성에 악영향을 주는 현상을 효과적으로 억제할 수 있다.In addition, in the case of using an air supply or exhaust nozzle when supplying or exhausting gas, the direction of the nozzle is, as shown in FIG. 1, so that the nozzle outlet is in the direction of the mouth and parallel to the surface of the coagulation bath liquid, specifically, It is preferable that the installation angle of the nozzle is inclined from the vertical downward direction (referred to as 0°) toward the detent direction, preferably 60° or more and 120° or less, more preferably 80 to 100°, and more preferably 90 Let it be °. In FIG. 1, as an example, the case where the installation angle of a nozzle is 90 degrees is shown. When the installation angle (nozzle angle) of the nozzle is set to 90°, vapor generated from the solvent can be efficiently scavenged, and condensation adhesion to the spinneret can be suppressed extremely effectively. If the installation angle of the nozzle is within this preferred range, in the case of the air supply nozzle, it is difficult to make turbulent flow due to the airflow hitting the mouth surface, and the formation of condensation can be effectively prevented without retention, and in the case of the exhaust nozzle, The vapor generated from the solvent can effectively prevent the growth of droplets, although it is easy to be sucked while in contact with the orifice surface. On the other hand, since the flow of the coagulation bath liquid surface does not easily occur in both the air supply nozzle and the exhaust nozzle, it is possible to effectively suppress a phenomenon that adversely affects the quality and process stability, such as detention immersion in which the liquid surface contacts the detention and adhesion between single yarns.

본 발명은, 아크릴로니트릴계 중합체를 사용하여 아크릴로니트릴계 섬유, 특히 탄소 섬유 전구체인 아크릴로니트릴계 섬유를 제조할 때 특히 효과를 나타내지만, 그 경우의 특유한 조건에 대하여, 이하에서 상세하게 설명한다.The present invention exhibits a particularly effect when producing acrylonitrile-based fibers, particularly acrylonitrile-based fibers, which are carbon fiber precursors, using an acrylonitrile-based polymer, but the specific conditions in that case are described in detail below. Explain.

건습식 방사를 행할 때의 방사원액은, 90질량% 이상의 아크릴로니트릴 및 그것과 공중합 가능한 비닐계 단량체로 구성되는 아크릴로니트릴계 중합체가, 용해하여 이루어지는 용액을 사용한다. 아크릴로니트릴계 중합체에서의 아크릴로니트릴의 공중합 비율이 이 바람직한 범위 내이면, 본 발명의 방법에 의해 얻어지는 아크릴로니트릴계 섬유를 소성(燒成)하여 얻어지는 탄소 섬유의 강도가 높고, 우수한 기계적 특성을 가지는 탄소 섬유를 제조하는 것이 용이하게 된다. 또한, 방사원액에서의 중합체의 농도가 이 바람직한 범위 내이면, 용매의 함유량이 적량이며, 건습식 방사에서의 방사구금과 응고욕액 사이의 기상부에서 용매의 증기량이 지나치게 많지 않으므로, 결로가 쉽게 발생하지 않고, 한편, 아크릴로니트릴계 중합체를 중합할 때의 점도 상승이나 겔화를 억제할 수 있고, 건습식 방사를 행할 때, 방사구금의 토출공을 막기 어려우므로, 섬유의 밀착이나 섬도 불균일, 단섬유 끊김을 효과적으로 방지할 수 있고, 또한, 후속하는 공정에서의 롤러 권취, 연신 공정에서의 보풀, 실 끊김을 효과적으로 방지할 수 있고, 조업성이 우수하고, 제품의 품위 저하를 효과적으로 방지할 수 있다.As the spinning dope in dry-wet spinning, a solution obtained by dissolving an acrylonitrile-based polymer composed of 90% by mass or more of acrylonitrile and a vinyl-based monomer copolymerizable therewith is used. When the copolymerization ratio of acrylonitrile in the acrylonitrile polymer is within this preferred range, the carbon fiber obtained by firing the acrylonitrile fiber obtained by the method of the present invention has high strength and excellent mechanical properties. It becomes easy to produce a carbon fiber having In addition, if the concentration of the polymer in the spinning dope is within this preferred range, the content of the solvent is appropriate, and the vapor amount of the solvent in the gas phase part between the spinneret and the coagulation bath liquid in dry-wet spinning is not too large, condensation is easily generated. On the other hand, viscosity increase and gelation when polymerizing an acrylonitrile-based polymer can be suppressed, and when performing dry-wet spinning, it is difficult to block the discharge holes of the spinneret, so the adhesion of fibers and fineness are uneven. Fiber breakage can be effectively prevented, and in addition, roller winding in subsequent processes, fluff in the stretching process, and yarn breakage can be effectively prevented, excellent operability, and deterioration of product quality can be effectively prevented. .

본 발명은, 섬유당의 필라멘트수가, 통상 2,000∼50,000의 범위, 또한 그 단섬유 섬도로서는 통상 0.5dtex∼3dtex의 범위의 것을 얻는 경우에 바람직하게 채용할 수 있다. 응고욕에서 섬유화된 섬유를 직접 연신욕(延伸浴) 중에서 연신해도 되고, 또한 용매를 수세(水洗)하여 제거한 후에 욕중 연신해도 된다.The present invention can be preferably employed in the case where the number of filaments per fiber is usually in the range of 2,000 to 50,000, and the single fiber fineness is usually in the range of 0.5 dtex to 3 dtex. Fibers fiberized in the coagulation bath may be directly stretched in a drawing bath, or may be stretched in a bath after removing the solvent by washing with water.

욕중 연신 후에는, 통상, 오일제를 부여하고, 핫 롤러 등으로 건조한다. 또한, 필요하면 그 후, 스팀 연신 등의 연신을 행하여, 섬유를 얻는다.After stretching in a bath, an oil agent is usually applied and dried with a hot roller or the like. Further, if necessary, then, stretching such as steam stretching is performed to obtain fibers.

이하에서, 섬유형성성 중합체가 아크릴로니트릴계 중합체인 섬유의 제조 방법에 의해 얻어진 섬유로부터 탄소 섬유를 제조하는 방법에 대하여 설명한다.Hereinafter, a method for producing carbon fibers from fibers obtained by the method for producing fibers in which the fiber-forming polymer is an acrylonitrile-based polymer will be described.

상기한 아크릴로니트릴계 섬유의 제조 방법에 의해 제조된 아크릴로니트릴계 섬유를, 200∼300 ℃의 공기 등의 산화성 분위기 중에 있어서 내염화 처리한다. 처리 온도는 저온으로부터 고온을 향하여 복수 단계로 승온하는 것이 내염화 섬유를 얻는 면에서 바람직하고, 또한 보풀의 발생을 수반하지 않는 범위에서 높은 연신비로 섬유를 연신하는 것이 탄소 섬유의 성능을 충분히 발현시키는 면에서 바람직하다. 다음으로, 얻어진 내염화 섬유를 질소 등의 불활성 분위기 중에서 1,000℃ 이상으로 가열함으로써, 탄소 섬유를 제조한다. 그 후, 전해질 수용액 중에서 양극산화를 행함으로써, 탄소 섬유 표면에 관능기를 부여하고 수지와의 접착성을 높이는 것이 가능하게 된다. 또한, 에폭시 수지 등의 사이징제를 부여하여, 내찰과성이 우수한 탄소 섬유를 얻는 것이 바람직하다.The acrylonitrile-based fiber produced by the above-described method for producing an acrylonitrile-based fiber is subjected to a salt resistance treatment in an oxidizing atmosphere such as air at 200 to 300°C. The treatment temperature is preferably raised in multiple steps from a low temperature to a high temperature in terms of obtaining a flame-resistant fiber, and drawing the fiber at a high draw ratio within a range that does not involve the occurrence of fluff is sufficient to fully express the performance of the carbon fiber. It is preferable in terms of Next, the resulting flame-resistant fiber is heated to 1,000° C. or higher in an inert atmosphere such as nitrogen to produce carbon fiber. Thereafter, by performing anodic oxidation in an aqueous electrolyte solution, it becomes possible to impart a functional group to the surface of the carbon fiber and increase the adhesion to the resin. In addition, it is preferable to provide a sizing agent such as an epoxy resin to obtain a carbon fiber excellent in abrasion resistance.

[실시예][Example]

이하, 실시예를 들어, 본 발명을 보다 구체적으로 설명한다. 그리고, 본 실시예에서 사용하는 구금 외주부 4점의 풍속, 절대습도는, 도 1에 나타낸 바와 같이 직사각형 형상의 구금 외주를 균등하게 4분할한 개소의 액면으로부터 구금면까지의 높이의 중간점이면서 구금 최외 토출공으로부터 30mm 이격된 위치에서 측정했다. 풍속, 온도, 상대습도는 클리모마스터 MODEL6501(일본카노막스(주))을 사용하여 측정했다. 절대습도(AH)[g/m3]는 클리모마스터로 측정한 온도(T)[℃], 상대습도(RH)[%]로부터 하기 계산식을 사용하여 산출하였다(e: 포화 증기압[hPa]).Hereinafter, the present invention will be described in more detail by way of examples. In addition, the wind speed and absolute humidity of the four points of the outer periphery of the detention used in this example are the midpoint of the height from the liquid level to the detention surface at the point where the outer periphery of the detention in a rectangular shape is equally divided into four as shown in FIG. It was measured at a position 30 mm apart from the outermost discharge hole. Wind speed, temperature, and relative humidity were measured using Klimo Master MODEL6501 (Kanomax Co., Ltd.). Absolute humidity (AH) [g/m 3 ] was calculated from the temperature (T) [° C.] and relative humidity (RH) [%] measured by the Klimo Master using the following equation (e: saturated vapor pressure [hPa] ).

e=6.11×10(7.5T/(T+237.3)) e=6.11×10 (7.5T/(T+237.3))

AH=217×e/(t+273.15)×RH/100AH=217×e/(t+273.15)×RH/100

여기서, 구금 외주부 4점에서의 절대습도의 1시간 평균값은, 상기한 바와 같이 풍속, 온도, 상대습도를 5분 간격으로 12회 측정하고, 상기 계산식을 사용하여 절대습도를 산출한 것의 각 측정점 각각의 평균값으로 했다.Here, the 1-hour average value of the absolute humidity at the four outer periphery points of the detention is, as described above, for each measurement point of which the wind speed, temperature, and relative humidity are measured 12 times at 5-minute intervals and the absolute humidity is calculated using the above calculation formula. It was set as the average value of.

또한, 단위시간당의 풍량(Af)은 측정점 4점에서 측정한 풍속 중, 기류의 상류측에 위치하는 점 1점의 풍속과 기류 상류측으로부터 방사구금을 보았을 때의 단면적으로부터 산출했다. 기상부의 체적(Vh)은 구금 최외 토출공으로부터 산출되는 토출 면적과 토출면으로부터 수직 아래 방향으로 응고욕액면 사이에 형성되는 기상부 높이로 산출했다. 토출원액 중의 용매량(As)은 단위시간당에 구금로부터 토출되는 원액 중에 함유되는 용매량이다.In addition, the amount of air per unit time (Af) was calculated from the wind speed of one point located on the upstream side of the airflow and the cross-sectional area when the spinneret was viewed from the upstream side of the airflow among the wind speeds measured at 4 measurement points. The volume (Vh) of the gaseous phase was calculated from the discharge area calculated from the outermost discharge hole of the custody and the height of the gaseous phase formed between the coagulation bath liquid surface vertically downward from the discharge surface. The amount of solvent (As) in the discharged stock solution is the amount of solvent contained in the stock solution discharged from the detention per unit time.

구금면 결로의 정도, 아크릴로니트릴계 섬유의 품위, 공정 안정성은 하기와 같이 하여 판정했다.The degree of condensation on the convex surface, the quality of the acrylonitrile fiber, and the process stability were determined as follows.

(구금면 결로의 정도)(The degree of condensation in detention)

1주일 연속하여 방사를 계속했을 때의 방사구금면의, 결로의 크기, 개수를 측정하고, 하기 규준으로 점수 환산했다.The size and number of condensation on the spinneret face when spinning was continued for one week in a row were measured, and the score was converted to the following criteria.

결로의 직경∼2mm 미만: 1점/개Condensation diameter∼less than 2mm: 1 point/piece

결로의 직경 2mm 이상 5mm 미만: 5점/개Condensation diameter 2mm or more and less than 5mm: 5 points/piece

결로의 직경 5mm 이상: 10점/개.Condensation diameter of 5 mm or more: 10 points/piece.

(아크릴로니트릴계 섬유의 품위)(Quality of acrylonitrile fiber)

아크릴로니트릴계 섬유를 권취하는 바로 앞에서 1,000m분의 아크릴로니트릴계 섬유의 보풀 수를 카운트하고, 품위를 5단계로 평가했다. 평가 기준은 하기와 같다.Immediately before winding up the acrylonitrile fiber, the number of fluffs of the acrylonitrile fiber for 1,000 m was counted, and the quality was evaluated in five stages. The evaluation criteria are as follows.

1: (보풀개수/1섬유·1,000m)≤11: (number of fluff/1 fiber·1,000m)≤1

2: 1 <(보풀개수/1섬유·1,000m)≤22: 1 <(number of fluff/1 fiber·1,000m)≤2

3: 2 <(보풀개수/1섬유·1,000m)≤53: 2 <(number of fluff/1 fiber·1,000m)≤5

4: 5 <(보풀개수/1섬유·1,000m) <604: 5 <(number of fluff/1 fiber·1,000m) <60

5: 60≤(보풀개수/1섬유·1,000m).5: 60≤(number of fluff/1 fiber·1,000m).

(아크릴로니트릴계 섬유의 공정 안정성)(Process stability of acrylonitrile fiber)

아크릴로니트릴계 섬유 10t 제조 시의 실 끊김 횟수로부터 5단계로 평가했다. 평가 기준은 하기와 같다.The evaluation was made in five steps from the number of yarn breaks in the production of 10 t of acrylonitrile fibers. The evaluation criteria are as follows.

1: (실 끊김 횟수/아크릴로니트릴계 섬유 10t 제조)≤11: (number of yarn breaks/acrylonitrile fiber 10t production) ≤ 1

2: 1<(실 끊김 횟수/아크릴로니트릴계 섬유 10t 제조)≤22: 1 <(number of yarn breaks/acrylonitrile fiber 10t production) ≤ 2

3: 2<(실 끊김 횟수/아크릴로니트릴계 섬유 10t 제조)≤33: 2 <(number of yarn breaks/acrylonitrile fiber 10t production) ≤ 3

4: 3<(실 끊김 횟수/아크릴로니트릴계 섬유 10t 제조)<54: 3 <(number of yarn breaks/manufactured by 10t of acrylonitrile fiber) <5

5: 5≤(실 끊김 횟수/아크릴로니트릴계 섬유 10t 제조)5: 5 ≤ (number of yarn breaks/acrylonitrile fiber 10t production)

<실시예 1∼4><Examples 1 to 4>

아크릴로니트릴 99질량%, 이타콘산 1질량%로 이루어지는 아크릴로니트릴계 중합체의 DMSO 용액을 용액 중합에 의해 조제했다.A DMSO solution of an acrylonitrile polymer composed of 99% by mass of acrylonitrile and 1% by mass of itaconic acid was prepared by solution polymerization.

얻어진 아크릴로니트릴계 중합체 용액(방사원액)을, 원액토출공 총수 6,000개 가지는 구금를 사용하여, 방사구금의 토출면으로부터 일단 공기 중에 토출하고, 기상부를 통과시킨 후, DMSO 35질량%/물 65질량%로 이루어지는 응고욕액 중에 토출하고, 응고 섬유를 얻었다.The obtained acrylonitrile-based polymer solution (spinning stock solution) was once discharged into the air from the discharge surface of the spinneret using a detent having a total number of 6,000 undiluted discharge holes, passed through the gas phase, and then DMSO 35% by mass/water 65% by mass It was discharged into the coagulation bath liquid consisting of %, and coagulated fiber was obtained.

여기서, 방사 시에, 방사구금의 전방측에, 5mm×200mm의 개구부를 가지는 급기 노즐과 배기 노즐을, 구금를 협지하도록 설치하고, 급기 노즐로부터 제습한 공기를 송풍하고, 배기 노즐에 의해 흡인함으로써 토출면과 응고욕 사이의 기상부에서 발생하는 용매 증기를 소기했다. 그리고, 각 실시예에서, 급배기 노즐의 노즐 각도, Af/(As/Vh)와 각 측정점 4점의 풍속 상대 표준편차를 표 1에 기재된 바와 같이 변경했다. 각 실시예에서의 토출면의 결로 정도, 아크릴로니트릴계 섬유의 품위·공정 안정성을 표 1에 함께 나타내었다.Here, at the time of spinning, an air supply nozzle and an exhaust nozzle having an opening of 5 mm x 200 mm are installed on the front side of the spinneret so as to pinch the mouth, and the dehumidified air is blown from the air supply nozzle, and discharged by suction by the exhaust nozzle. The solvent vapor generated in the gas phase between the cotton and the coagulation bath was evacuated. In addition, in each example, the nozzle angle, Af/(As/Vh) of the supply/exhaust nozzle and the relative standard deviation of the wind speed at each of the four measuring points were changed as shown in Table 1. Table 1 shows the degree of condensation on the discharge side and the quality and process stability of the acrylonitrile fiber in each example.

얻어진 응고 섬유를 이어서어 수세한 후, 욕 연신 공정에서 연신시키면서 오일제를 부여하고, 또한 건조·연신 공정을 거쳐, 단섬유 개수 6,000개의 아크릴로니트릴계 섬유를 안정적으로 제조할 수 있었다.After the obtained coagulated fiber was successively washed with water, an oil agent was applied while stretching in a bath stretching step, and further dried and stretched, an acrylonitrile-based fiber having 6,000 short fibers could be stably produced.

[표 1][Table 1]

Figure pct00001
Figure pct00001

<실시예 5><Example 5>

Af/(As/Vh)를 표 1에 기재된 바와 같이 변경하고, 제습의 정도를 강화한 점 이외에는 실시예 1∼4와 동일하게 행하여 아크릴로니트릴계 전구체 섬유를 얻었다.Af/(As/Vh) was changed as shown in Table 1, except that the degree of dehumidification was enhanced, and the same was carried out as in Examples 1 to 4 to obtain acrylonitrile-based precursor fibers.

<실시예6 ><Example 6>

Af/(As/Vh)를 표 1에 기재된 바와 같이 변경하고, 9,000홀의 구금를 사용한 점 이외에는 실시예 1∼4와 동일하게 행하여 아크릴로니트릴계 전구체 섬유를 얻었다.Af/(As/Vh) was changed as shown in Table 1, and except that a 9,000 hole confinement was used, it carried out in the same manner as in Examples 1 to 4 to obtain an acrylonitrile-based precursor fiber.

<실시예 7><Example 7>

Af/(As/Vh)를 표 1에 기재된 바와 같이 변경하고, 2,000홀의 구금를 사용한 점 이외에는 실시예 1∼4와 동일하게 행하여 아크릴로니트릴계 전구체 섬유를 얻었다.Af/(As/Vh) was changed as shown in Table 1, and an acrylonitrile-based precursor fiber was obtained in the same manner as in Examples 1 to 4 except that a 2,000 hole confinement was used.

<비교예 1><Comparative Example 1>

Af/(As/Vh)를 표 1에 기재된 바와 같이 변경하고, 급배기 노즐을 가동시키지 않은 점 이외에는, 실시예 1∼4와 동일하게 행하여 아크릴로니트릴계 전구체 섬유를 얻었다.Af/(As/Vh) was changed as shown in Table 1, except that the air supply/exhaust nozzle was not operated, and the procedure was carried out in the same manner as in Examples 1 to 4 to obtain an acrylonitrile-based precursor fiber.

<비교예 2><Comparative Example 2>

Af/(As/Vh)를 표 1에 기재된 바와 같이 변경한 점 이외에는, 실시예 1∼4와 동일하게 행하여 아크릴로니트릴계 전구체 섬유를 얻었다.Except for changing Af/(As/Vh) as shown in Table 1, it carried out similarly to Examples 1-4, and obtained the acrylonitrile-type precursor fiber.

<비교예 3><Comparative Example 3>

Af/(As/Vh)를 표 1에 기재된 바와 같이 변경하고, 제습의 정도를 약화시킨 점 이외에는, 실시예 1∼4와 동일하게 행하여 아크릴로니트릴계 전구체 섬유를 얻었다.Except that Af/(As/Vh) was changed as shown in Table 1 and the degree of dehumidification was weakened, it carried out similarly to Examples 1-4, and obtained the acrylonitrile-type precursor fiber.

<비교예 4><Comparative Example 4>

Af/(As/Vh)를 표 1에 기재된 바와 같이 변경하고, 제습의 정도를 더욱 약화시킨 점 이외에는, 실시예 1∼4와 동일하게 행하여 아크릴로니트릴계 전구체 섬유를 얻었다.Except that Af/(As/Vh) was changed as shown in Table 1, and the degree of dehumidification was further weakened, it carried out similarly to Examples 1-4, and obtained the acrylonitrile-type precursor fiber.

<비교예 5><Comparative Example 5>

Af/(As/Vh)를 표 1에 기재된 바와 같이 변경하고 공급 공기는 제습하지 않은 점 이외에는, 실시예 1∼4와 동일하게 행하여 아크릴로니트릴계 전구체 섬유를 얻었다.Except that Af/(As/Vh) was changed as shown in Table 1 and the supply air was not dehumidified, it was carried out in the same manner as in Examples 1 to 4 to obtain an acrylonitrile-based precursor fiber.

각 실시예, 비교예에서의 토출면의 결로 정도, 아크릴로니트릴계 섬유의 품위·공정 안정성을 표 1에 함께 나타내었다.Table 1 shows the degree of condensation on the discharge side and the quality and process stability of acrylonitrile fibers in each of the Examples and Comparative Examples.

표 1에 나타낸 바와 같이, 본 발명에 의해 구금의 토출면에서의 결로가 억제되고 품위·공정 안정성이 개선되어 있는 것을 알 수 있다.As shown in Table 1, it can be seen that the present invention suppresses condensation on the discharge surface of the prison and improves quality and process stability.

[산업상 이용가능성][Industrial availability]

본 발명은, 탄소 섬유 전구체 섬유의 제조에 있어서 구금면의 결로의 발생을 억제하는 것으로 한정되지 않고, 모든 건습식 방사에 있어서 결로 억제에 의한 생산성 향상책으로서 응용할 수 있다.The present invention is not limited to suppressing the occurrence of condensation on the spheroid surface in the production of carbon fiber precursor fibers, and can be applied as a productivity improvement measure by suppressing condensation in all dry and wet spinning.

1: 방사구금
2: 급기 노즐 또는 배기 노즐
3: 응고욕
4: 풍속·기류측정점 A
5: 풍속·기류측정점 B
6: 풍속·기류측정점 C
7: 풍속·기류측정점 D
1: spinneret
2: air supply nozzle or exhaust nozzle
3: coagulation desire
4: Wind speed/airflow measurement point A
5: Wind speed/airflow measurement point B
6: Wind speed/airflow measurement point C
7: Wind speed/airflow measurement point D

Claims (5)

섬유형성성 중합체가 용매에 용해되어 이루어지는 방사(紡絲)원액을 방사구금으로부터 토출하고, 일단 공기 중에서 주행시킨 후, 응고욕액(凝固浴液) 중으로 인도하고 응고시키는 섬유의 제조 방법에 있어서,
방사구금의 토출면으로부터 수직 아래 방향으로 응고욕액면과의 사이에 형성되는 기상부(氣相部)의 단위시간당의 풍량(風量)(Af)이 기상부 용적(Vh) 중의 단위시간당의 방사원액 중의 용매량(As)에 대하여 0.0008m3≤Af/(As/Vh)≤0.0015m3의 관계식을 만족시키고, 기상부에서의 구금 외주부 4점에서의 절대습도의 1시간 평균값이 각각 20g/m3 이하인, 섬유의 제조 방법.
In a method for producing a fiber in which a spinning dope obtained by dissolving a fiber-forming polymer in a solvent is discharged from a spinneret, once run in air, then delivered into a coagulation bath liquid and solidified,
The amount of air per unit time of the gaseous part (Af) formed vertically downward from the discharge surface of the spinneret and the surface of the coagulation bath liquid is the spinning dope per unit time in the volume of the gaseous part (Vh) With respect to the amount of solvent (As) in the solvent, the relational expression of 0.0008m 3 ≤Af/(As/Vh) ≤0.0015m 3 is satisfied, and the average value of the absolute humidity at 4 points in the outer periphery of the detention in the meteorological unit is 20g/m, respectively 3 or less, the manufacturing method of a fiber.
제1항에 있어서,
기상부에서의 구금 외주부 4점의 풍속의 상대 표준편차가 40% 이하인, 섬유의 제조 방법.
The method of claim 1,
A method for producing a fiber, wherein the relative standard deviation of the wind speed at the four points of the outer periphery of the detention in the meteorological department is 40% or less.
제1항 또는 제2항에 있어서,
방사구금의 구멍수가 2,000 이상, 50,000 이하인, 섬유의 제조 방법.
The method according to claim 1 or 2,
The number of holes in the spinneret is 2,000 or more and 50,000 or less.
제1항 내지 제3항 중 어느 한 항에 있어서,
섬유형성성 중합체가 아크릴로니트릴계 중합체인, 섬유의 제조 방법.
The method according to any one of claims 1 to 3,
The method for producing a fiber, wherein the fiber-forming polymer is an acrylonitrile-based polymer.
제4항에 기재된 섬유의 제조 방법으로 섬유를 제조한 후, 200∼300 ℃의 산화성 분위기 중에서 내염화(耐炎化) 처리하고, 이어서 1,000℃ 이상의 불활성 분위기 중에서 가열하는, 탄소 섬유의 제조 방법.A method for producing a carbon fiber, comprising producing a fiber by the method for producing a fiber according to claim 4, followed by a flame resistance treatment in an oxidizing atmosphere of 200 to 300°C, followed by heating in an inert atmosphere of 1,000°C or higher.
KR1020207019124A 2018-02-27 2018-11-02 Fiber manufacturing method and carbon fiber manufacturing method Ceased KR20200123776A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2018-032781 2018-02-27
JP2018032781 2018-02-27
PCT/JP2018/040807 WO2019167344A1 (en) 2018-02-27 2018-11-02 Fiber production method and carbon fiber production method

Publications (1)

Publication Number Publication Date
KR20200123776A true KR20200123776A (en) 2020-10-30

Family

ID=67804927

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207019124A Ceased KR20200123776A (en) 2018-02-27 2018-11-02 Fiber manufacturing method and carbon fiber manufacturing method

Country Status (7)

Country Link
US (1) US20200407885A1 (en)
EP (1) EP3760768B1 (en)
JP (1) JP7234634B2 (en)
KR (1) KR20200123776A (en)
CN (1) CN111684114B (en)
RU (1) RU2020126570A (en)
WO (1) WO2019167344A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023091923A (en) * 2021-12-21 2023-07-03 住友化学株式会社 Method for manufacturing polarizer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544104A (en) 1991-08-01 1993-02-23 Unitika Ltd Method for dry-jet wet spinning
JP2007239170A (en) 2006-02-07 2007-09-20 Toray Ind Inc Method for producing fiber
JP2010236139A (en) 2009-03-31 2010-10-21 Toray Ind Inc Method for producing acrylic fiber

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY115308A (en) * 1993-05-24 2003-05-31 Tencel Ltd Spinning cell
JPH07292520A (en) * 1994-04-15 1995-11-07 Toray Ind Inc Production of acrylic fiber
JP3808643B2 (en) * 1998-11-09 2006-08-16 三菱レイヨン株式会社 Acrylonitrile fiber bundle and method for producing the same
KR100912305B1 (en) * 2001-08-11 2009-08-17 렌찡 악티엔게젤샤프트 Cellulose Molding Method
EP1783251B1 (en) * 2004-06-25 2009-12-30 Toray Industries, Inc. Spinning pack for dry-wet spinning and apparatus and method for producing fiber bundle
JP2007119973A (en) 2005-10-31 2007-05-17 Teijin Techno Products Ltd Dry-wet spinning apparatus and dry-wet spinning method
EP1961847B1 (en) * 2005-12-13 2018-02-07 Toray Industries, Inc. Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber
WO2013137379A1 (en) * 2012-03-14 2013-09-19 三菱レイヨン株式会社 Device for producing hollow porous film and method for producing hollow porous film
JP6295890B2 (en) * 2014-08-27 2018-03-20 三菱ケミカル株式会社 Carbon fiber bundle
EP3604636B1 (en) 2017-03-27 2023-10-04 Toray Industries, Inc. Fiber production method and carbon fiber production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544104A (en) 1991-08-01 1993-02-23 Unitika Ltd Method for dry-jet wet spinning
JP2007239170A (en) 2006-02-07 2007-09-20 Toray Ind Inc Method for producing fiber
JP2010236139A (en) 2009-03-31 2010-10-21 Toray Ind Inc Method for producing acrylic fiber

Also Published As

Publication number Publication date
CN111684114A (en) 2020-09-18
US20200407885A1 (en) 2020-12-31
JPWO2019167344A1 (en) 2020-12-17
EP3760768A4 (en) 2021-11-17
EP3760768B1 (en) 2024-12-11
JP7234634B2 (en) 2023-03-08
RU2020126570A (en) 2022-03-28
EP3760768A1 (en) 2021-01-06
CN111684114B (en) 2022-08-23
WO2019167344A1 (en) 2019-09-06

Similar Documents

Publication Publication Date Title
KR102483785B1 (en) Fiber manufacturing method and carbon fiber manufacturing method
JP6558288B2 (en) Method for producing acrylonitrile fiber bundle and method for producing carbon fiber bundle
US20210025082A1 (en) Method of manufacturing acrylonitrile fiber bundle and method of manufacturing carbon fiber bundle
US11932971B2 (en) Method of producing precursor fiber for carbon fiber and carbon fiber
US3415922A (en) Mist spinning
KR20200123776A (en) Fiber manufacturing method and carbon fiber manufacturing method
US10883195B2 (en) Method of producing acrylic fiber bundle and method of producing carbon fiber bundle
CN112708945A (en) Coagulating bath tank for wet spinning and polyacrylonitrile spinning solution coagulating and forming method
JP4983261B2 (en) Textile manufacturing method
JP2010236139A (en) Method for producing acrylic fiber
JP3799061B2 (en) Method for making filaments from optically anisotropic spinning solution
JP6520787B2 (en) Method for producing acrylic precursor fiber bundle and method for producing carbon fiber
JP2003096625A (en) Method for producing carbon fiber
JP3463768B2 (en) Method for producing polybenzazole fiber
JP2003147636A (en) Polyurethane elastic yarn and method for producing the same
WO2017082309A1 (en) Production method for carbon fiber and production method for flame-resistant fiber
JP2017141524A (en) Manufacturing method of synthetic fiber yarn
JP2016132847A (en) Manufacturing method of fiber bundle, polyacrylonitrile fiber bundle and carbon fiber bundle
KR101360987B1 (en) Aromatic polyamide monofilament having high-strength and process for preparing the same
JPS61215712A (en) Acrylic multifilament yarn having high tenacity
JP2002180327A (en) Method for producing polyester fiber
JP2016186136A (en) Wet type spinneret for triangular cross-section acrylic fiber

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20200702

Patent event code: PA01051R01D

Comment text: International Patent Application

PG1501 Laying open of application
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20210901

Comment text: Request for Examination of Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20221030

Patent event code: PE09021S01D

E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20230105

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20221030

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载