KR20060052558A - How nanostructures are selectively adsorbed at the tip of a probe microscope and probe microscopes equipped with the probe - Google Patents
How nanostructures are selectively adsorbed at the tip of a probe microscope and probe microscopes equipped with the probe Download PDFInfo
- Publication number
- KR20060052558A KR20060052558A KR1020050106976A KR20050106976A KR20060052558A KR 20060052558 A KR20060052558 A KR 20060052558A KR 1020050106976 A KR1020050106976 A KR 1020050106976A KR 20050106976 A KR20050106976 A KR 20050106976A KR 20060052558 A KR20060052558 A KR 20060052558A
- Authority
- KR
- South Korea
- Prior art keywords
- probe
- tip
- adsorption
- coating film
- microscope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q70/00—General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
- G01Q70/08—Probe characteristics
- G01Q70/10—Shape or taper
- G01Q70/12—Nanotube tips
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q10/00—Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
- G01Q10/04—Fine scanning or positioning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q70/00—General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
- G01Q70/16—Probe manufacture
- G01Q70/18—Functionalisation
Landscapes
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
본 발명은 나노구조를 탐침의 끝 부분에 선택적으로 흡착시키는 기술에 관한 것으로, 탐침 현미경의 탐침 끝 부분에 나노구조가 직접 선택적으로 흡착되거나, 링커분자를 거쳐 선택적으로 흡착되는 방법 및 그 탐침이 장착되어 해상도가 향상된 탐침 현미경에 관한 것이다.The present invention relates to a technique for selectively adsorbing nanostructures to the tip of the probe, and a method in which the nanostructure is selectively adsorbed directly on the tip of the probe microscope, or selectively adsorbed through a linker molecule, and the probe is mounted. And a probe microscope with improved resolution.
탐침 현미경, 탐침, 나노입자, 나노구조, 선택적 흡착 Probe microscope, probe, nanoparticle, nanostructure, selective adsorption
Description
도 1은 나노입자가 붙어 있는 탐침 현미경의 탐침의 응용 예를 보여주는 개략도,1 is a schematic diagram showing an application example of the probe of the probe microscope with nanoparticles attached,
도 2는 기존의 나노입자 탐침의 부분 확대 사진 및 이를 이용한 실험의 예를 나타낸 개략도 및 사진,2 is a schematic diagram and a photograph showing a partial enlarged photograph of a conventional nanoparticle probe and an example of an experiment using the same;
도 3은 나노구조를 탐침 끝 부분에 직접 흡착시키는 방법의 개략도,3 is a schematic diagram of a method of directly adsorbing a nanostructure to the tip of the probe,
도 4는 나노구조를 탐침 끝 부분에 링커분자를 이용해 흡착시키는 방법의 개략도,4 is a schematic diagram of a method of adsorbing nanostructures using linker molecules at the tip of a probe;
도 5는 Au 나노입자를 SiO2 표면을 가진 탐침의 끝 부분에 흡착시키는 실시예의 개략도,5 is a schematic representation of an embodiment in which Au nanoparticles are adsorbed onto the tip of a probe with a SiO 2 surface,
도 6은 50㎛ Au 나노입자가 탐침 끝 부분에 선택적으로 흡착된 것을 보여주 는 SEM 이미지 사진,6 is a SEM image showing that 50 μm Au nanoparticles are selectively adsorbed at the tip of the probe,
도 7은 폴리싱에 의해 탐침 끝 부분의 흡착방지용 코팅막을 제거하는 방법을 나타내는 개략도이다.Figure 7 is a schematic diagram showing a method of removing the adsorption preventing coating film of the tip of the probe by polishing.
본 발명은 나노입자를 포함하는 다양한 종류의 나노구조를 탐침 끝 부분에 선택적으로 흡착시키는 방법 및 그 탐침을 이용한 탐침 현미경에 관한 것이다.The present invention relates to a method for selectively adsorbing various types of nanostructures including nanoparticles at the tip of a probe and a probe microscope using the probe.
최근 탐침 현미경의 급격한 발달로 물질계를 나노미터 해상도로 측정하는 것이 가능하게 되었다. 탐침 현미경의 해상도를 결정하는 가장 중요한 부분은 탐침의 끝 부분인데, 현재 많이 쓰이는 탐침은 Si3N4나 Si등의 물질로 만들어지며, 탐침 끝 부분의 반지름이 10nm 이하에 까지 이르고 있다. 그러나, 현재까지의 기술로는 가장 중요한 탐침 끝 부분의 모양이나 성질을 원하는 대로 조절하는 것이 매우 어려운 상황이다.Recent advances in probe microscopy have made it possible to measure material systems at nanometer resolution. The most important part of determining the resolution of the probe microscope is the tip of the probe. Currently used probes are made of materials such as Si 3 N 4 or Si, and the radius of the probe tip is less than 10 nm. However, with the technology to date, it is very difficult to adjust the shape or properties of the most important probe tip as desired.
한편, 최근 나노 과학의 급격한 발달로, 다양한 물질로 이루어진 균일한 형태의 나노구조들이 많이 개발되었다. 그 예로는 Au, Ag, CdSe 등으로 이루어진 나노입자 또는 각종 나노선 등을 들 수 있는데, 이들의 광학적, 전기적 성질이나 모양, 크기 등은 매우 정확하게 조절이 가능하다. 그리고 이러한 나노 과학의 진보는 보다 정밀한 탐침 현미경이 가능하게 하였다.Meanwhile, with the recent rapid development of nanoscience, many nanostructures having a uniform shape made of various materials have been developed. Examples thereof include nanoparticles or various nanowires made of Au, Ag, CdSe, etc., and their optical and electrical properties, shapes, and sizes can be controlled very accurately. And these advances in nanoscience have made possible more precise probe microscopy.
나노입자 또는 나노구조를 탐침 현미경의 탐침에 붙여서 새로운 종류의 탐침 현미경을 개발하려는 노력은 이미 진행이 되어 왔다. 그 한 예로, Banin 등은, 도 2에 도시된 바와 같이, 탐침 표면 전체에 CdSe 형광 나노입자를 흡착시킨 후 이를 이용하여 nano-FRET(Fluorescent Resonance Energy Transfer) 이미징을 실현하였다.(U.Banin et al., JACS 108,93(2004) 참조) 그러나, 이 경우 관찰샘플 표면의 원자와 탐침 표면에 흡착된 다수의 나노입자 간에 측정이 이루어지므로 해상도가 많이 떨어지는 문제점이 있다. Efforts have been made to develop new kinds of probe microscopes by attaching nanoparticles or nanostructures to probes in probe microscopes. As an example, Banin et al., As shown in Figure 2, by adsorbing the CdSe fluorescent nanoparticles on the entire surface of the probe and using it to realize nano-Fluorescent Resonance Energy Transfer (FFR) imaging (U.Banin et. al., see JACS 108,93 (2004). However, in this case, the measurement is performed between the atoms of the observation sample surface and a plurality of nanoparticles adsorbed on the probe surface.
그런데 만약 탐침의 끝 부분에만 나노입자가 흡착된다면 관찰샘플 표면의 원자와 탐침 끝 부분에 흡착된 나노입자 간에 측정이 이루어질 것이므로, 기존의 탐침 현미경보다 정밀한 측정이 가능하게 되며, 이를 통해 탐침 현미경의 해상도를 비약적으로 향상시킬 수 있게 된다. However, if the nanoparticles are adsorbed only at the tip of the probe, the measurement will be made between the atoms on the surface of the sample and the nanoparticles adsorbed at the tip of the probe, which will enable more accurate measurement than conventional probe microscopes. Can be improved dramatically.
나아가 이러한 탐침을 이용하여 새로운 종류의 탐침 현미경의 개발도 가능하다. 예를 들어, 나노입자를 탐침 끝에 붙일 경우 고해상도의 nano-FRET이나 nano-SERS 등의 나노광학측정 방식의 개발이 가능하다. 또한, 균일한 모양을 가진 나노입자가 붙은 탐침은 기존에 행해지던 나노 스케일의 힘 측정을 보다 정밀하게 해 줄 것이다. Furthermore, it is possible to develop new kinds of probe microscopes using these probes. For example, attaching nanoparticles to the tip of a probe enables the development of high-resolution nano-optical measuring methods such as nano-FRET and nano-SERS. In addition, probes with uniformly shaped nanoparticles will provide more accurate nanoscale force measurements.
본 발명은 나노입자 또는 나노구조가 탐침 현미경의 탐침 끝에만 선택적으로 흡착되도록 하는 방법을 제공함으로써, 보다 정밀한 측정이 가능하게 하며, 이를 통해 보다 향상된 해상도를 얻을 수 있는 탐침 현미경을 제공하는데 목적이 있다. An object of the present invention is to provide a probe microscope that allows the nanoparticles or nanostructures to be selectively adsorbed only at the probe tip of the probe microscope, thereby enabling a more accurate measurement, thereby providing a probe microscope that can obtain improved resolution. .
본 발명인 탐침 현미경의 탐침 끝 부분에 나노구조가 선택적으로 흡착되는 방법은, 탐침 현미경의 탐침 표면에 흡착방지용 코팅막이 형성되는 단계; 탐침의 끝 부분에 형성된 흡착방지용 코팅막이 제거되는 단계; 나노구조가 함유된 용액 또는 가스 내에서 흡착방지용 코팅막이 제거된 탐침 끝 부분에 나노구조가 흡착되는 단계를 포함하는 것을 특징으로 한다.The method of selectively adsorbing the nanostructure on the probe tip of the probe microscope of the present invention, the step of forming a coating for preventing adsorption on the probe surface of the probe microscope; Removing the anti-suction coating film formed at the tip of the probe; The nanostructure is characterized in that it comprises the step of adsorbing the nanostructure to the end of the probe in which the anti-adhesion coating film is removed in the solution or gas containing the nanostructure.
그리고, 흡착방지용 코팅막 제거 단계의 다음에는, 흡착방지용 코팅막이 제거된 탐침 끝 부분에 링커 분자의 일 단이 흡착되는 단계; 나노구조가 함유된 용액 또는 가스 내에서 링커 분자의 타 단에 나노구조가 흡착되는 단계를 더 포함하는 것을 특징으로 한다. Then, after the adsorption prevention coating film removal step, the step of adsorbing one end of the linker molecules to the end of the probe from which the adsorption prevention coating film is removed; The nanostructure is characterized in that it further comprises the step of adsorbing the nanostructure to the other end of the linker molecule in the solution or gas containing the nanostructure.
한편, 흡착방지용 코팅막 형성 단계는, 탐침 표면에 하나 이상의 중간막이 형성되는 단계를 거친 후, 중간막 위에 상기 흡착방지용 코팅막이 형성되는 것을 특징으로 하고, 흡착방지용 코팅막 제거 단계는, 탐침 끝부분에 형성된 중간막 및 흡착방지용 코팅막의 적어도 일부가 제거되는 것을 특징으로 한다.On the other hand, the adsorption preventing coating film forming step, after the step of forming at least one intermediate film on the probe surface, characterized in that the adsorption preventing coating film is formed on the intermediate film, the adsorption preventing coating film removing step, the intermediate film formed at the tip of the probe And at least a portion of the anti-adsorption coating film is removed.
본 발명인 탐침이 장착되는 탐침 현미경은, 탐침 끝 부분을 제외한 탐침 표면에 형성된 흡착방지용 코팅막과; 탐침 끝부분에 선택적으로 흡착되는 나노구조를 구비한 탐침을 포함하여 구성되는 것을 특징으로 한다.Probe microscope is equipped with a probe of the present invention, the anti-suction coating film formed on the surface of the probe except the tip; It is characterized in that it comprises a probe having a nanostructure that is selectively adsorbed to the tip of the probe.
본 발명인 탐침 현미경은, 탐침 끝 부분에 일 단이 흡착되고, 나노구조에 타 단이 흡착되는 링커분자를 더 포함하는 것을 특징으로 한다.The probe microscope of the present invention is characterized in that it further comprises a linker molecule in which one end is adsorbed to the tip of the probe and the other end is adsorbed to the nanostructure.
본 발명인 탐침 현미경은, 탐침 표면과 흡착방지용 코팅막 사이에 하나 이상의 중간막이 형성되는 것을 특징으로 한다.The probe microscope of the present invention is characterized in that at least one intermediate film is formed between the probe surface and the anti-adsorption coating film.
이하에서 본 발명에 대해 상세히 설명한다. 본 발명에서 나노구조란, 나노입자, 나노튜브, 나노선, 탄소나노튜브, SAM, DNA, RNA, 프로테인, 항원, 항체, Cell 등의 모든 나노 크기의 구조를 통칭하는 의미이다. Hereinafter, the present invention will be described in detail. In the present invention, the nanostructure, the nanoparticles, nanotubes, nanowires, carbon nanotubes, SAM, DNA, RNA, proteins, antigens, antibodies, cells, etc., are used to mean all nano-size structures collectively.
본 발명에 따른 선택적 흡착의 기본 개념을 도 3을 참조하여 설명한다. 우선 탐침 현미경의 탐침(도 3의 (A))표면에 나노구조가 흡착되지 않는 흡착방지용 코팅막을 한다(도 3의 (B)). 그런 후, 탐침의 끝 부분을 폴리싱(polishing) 함으로써 탐침 끝 부분에 형성된 코팅을 제거한다.(도 3의 (C)). 여기서, 폴리싱 방법으로서는 화학기계적 연마(CMP: Chemical Mechanical Polishing)시스템을 이용하거나, 하나 또는 다수의 탐침을 탐침 현미경 장치에 설치하여 소정의 고체 표면을 일정한 힘으로 수차례 스캔하는 방식으로 긁는 것이 가능하다. The basic concept of selective adsorption according to the present invention will be described with reference to FIG. 3. First, an anti-adsorption coating film in which nanostructures are not adsorbed is formed on the surface of the probe (FIG. 3A) of the probe microscope (FIG. 3B). Then, the coating formed on the tip of the probe is removed by polishing the tip of the probe (FIG. 3C). Here, as the polishing method, it is possible to scrape by using a chemical mechanical polishing (CMP) system or by installing one or more probes in a probe microscope device to scan a predetermined solid surface several times with a constant force. .
폴리싱에 의해 탐침의 끝 부분만 탐침 표면이 노출되고, 나머지 부분은 흡착방지용 코팅막으로 표면처리가 된다. 여기서 노출된 탐침 표면이 양(+)전하를 띠고, 나노구조가 음(-)전하를 띤다면, 탐침의 끝부분에만 나노구조가 직접 흡착될 수 있다. 그리고 노출된 탐침 표면이 SiO2 , Au 등과 같이 음(-)전하를 띠고, 나노구조가 양(+)전하를 띤다면, 탐침의 끝부분에만 나노구조가 직접 흡착될 수 있다.( 도 3의 (D))By polishing, the probe surface is exposed only at the tip of the probe, and the remaining portion is surface treated with a coating for preventing adsorption. If the exposed probe surface has a positive charge and the nanostructure has a negative charge, the nanostructure may be directly adsorbed only at the tip of the probe. If the exposed probe surface has a negative charge such as SiO 2 , Au, etc., and the nanostructure has a positive charge, the nanostructure may be directly adsorbed only at the tip of the probe. (D))
그러나 노출된 탐침 표면이 음(-)전하를 띠고, 나노구조도 음(-)전하를 띤다면, 동일한 극성에 의한 반발력이 발생하므로, 탐침 끝 부분에 나노구조가 직접 흡착되는 것이 곤란하다.However, if the exposed probe surface has a negative charge and the nanostructure also has a negative charge, a repulsion force is generated due to the same polarity, and thus it is difficult to directly adsorb the nanostructure at the tip of the probe.
이 경우에는, 링크분자를 매개로 하여 탐침 끝 부분에 나노구조를 흡착시킬 수도 있다. 즉 탐침 끝에 소정의 나노구조가 잘 흡착되는 소정의 링커 분자의 일 단을 흡착시킨 후(도 4의 (E)), 그 탐침을 흡착된 링커 분자와 선택적 흡착을 하는 나노구조가 함유된 용액 또는 가스에 넣는다. 그러면 나노구조들이 링커 분자의 타 단에 선택적으로 흡착된다.(도 4의 (F), 도 5 참조)In this case, nanostructures can be adsorbed to the tip of the probe via link molecules. That is, after adsorbing one end of a predetermined linker molecule to which a predetermined nanostructure is well adsorbed at the end of the probe (FIG. 4E), the probe contains a solution containing a nanostructure that selectively adsorbs the adsorbed linker molecule or Put it in gas. The nanostructures are then selectively adsorbed to the other end of the linker molecule (see Figure 4 (F), Figure 5).
본 발명의 구체적인 실시 예로서, Au 나노입자를 SiO2 표면을 가진 탐침 끝에 흡착시키는 공정을 도 5를 참조하여 설명한다.As a specific embodiment of the present invention, a process of adsorbing Au nanoparticles at the tip of a probe having a SiO 2 surface will be described with reference to FIG. 5.
탐침 표면이 SiO2 로 이루어지면, 옥타데칸싸이올(이하 ODT; octadecanethiol) 분자막을 흡착방지용 코팅막으로 사용하는 경우에는 직접 흡착이 곤란하므로, 다음과 같은 과정을 거쳐 ODT 분자막을 탐침 표면에 흡착시킨다. When the probe surface is made of SiO 2 , direct adsorption is difficult when the octadecanethiol (ODT; octadecanethiol) molecular membrane is used as the anti-adsorption coating membrane. Therefore, the ODT molecular membrane is adsorbed on the probe surface by the following process Let's do it.
탐침의 SiO2 표면(도 4의 (A))에, 접착제 역할을 하는 Ti막을 증착시킨 후, 그 위에 Au막을 열 증착(thermal evaporation) 방법을 이용하여 증착시킨다.(도 5의 (B)) 증착된 중간막인 Ti/Au막의 두께는 약 10nm ~ 30nm 이다. After depositing a Ti film serving as an adhesive on the SiO 2 surface (FIG. 4A) of the probe, the Au film is deposited thereon using a thermal evaporation method (FIG. 5B). The thickness of the deposited Ti / Au film is about 10 nm to 30 nm.
중간막인 Ti/Au막 위에 흡착방지용 코팅막으로서, Au 나노입자의 흡착성이 매우 낮은 ODT 분자막을 증착한다.(도 4의 (C)) 구체적으로 1- ODT를 아세토니트릴 (acetonitrile)에 녹인 용액에 탐침을 약 30초 동안 담가둠으로써, Au막 위에 ODT 분자막이 형성되도록 한다. 이 경우, ODT/아세토니트릴의 농도는 약 3mM 이다.As a coating film for adsorption prevention on the Ti / Au film, which is an intermediate film, an ODT molecular film having very low adsorption of Au nanoparticles is deposited (FIG. 4C). Specifically, 1-ODT is dissolved in acetonitrile. Immerse the probe for about 30 seconds to allow the ODT molecular film to form on the Au film. In this case, the concentration of ODT / acetonitrile is about 3 mM.
이 탐침을 AFM(Atomic Force Microscope: 원자간력현미경)등의 탐침 현미경에 설치한 후, 실리콘(Si) 웨이퍼 등의 단단한 표면에 소정 영역 예로 20㎛×20㎛ 영역에, 약 4nN의 힘으로 약 3회를 스캔, 즉 폴리싱(도 7 참조) 함으로써, 탐침 끝 부분에 형성된 Ti/Au막과 ODT 분자막을 제거시키고, 탐침의 Si를 노출시킬 수 있다.The probe is placed on a probe microscope such as an AFM (Atomic Force Microscope), and then applied to a hard surface such as a silicon (Si) wafer in a predetermined area, for example, in a 20 μm × 20 μm region with a force of about 4 nN. By scanning three times, i.e., polishing (see Fig. 7), the Ti / Au film and the ODT molecular film formed at the tip of the probe can be removed and the Si of the probe can be exposed.
한편, 아미노프로필트리에톡시실란(이하 APTES;aminopropyltriethoxysilane)을 에탄올에 녹인 용액을 마련한다. 이 경우, APTES/에탄올의 농도는 2%(vol/vol)로 하였다. 그리고 끝 부분의 막이 제거된 탐침을 이 용액에 약 10분간 담가 두면, 탐침 끝에 APTES의 일 단이 증착된다.(도 5의 (E))On the other hand, a solution in which aminopropyltriethoxysilane (hereinafter referred to as APTES; aminopropyltriethoxysilane) is dissolved in ethanol is prepared. In this case, the concentration of APTES / ethanol was 2% (vol / vol). Then, the soaked tip of the tip is immersed in this solution for about 10 minutes, and one end of APTES is deposited at the tip of the probe (FIG. 5E).
이 탐침을 약 50nm 지름의 Au 나노입자가 들어있는 용액(Au colloidal solution)에 약 1시간 동안 넣어두면, Au 나노입자가 APTES의 타 단에 선택적으로 흡착된다.(그림 5의 (F)). 결국 탐침의 끝 부분에만 Au 나노입자가 선택적으로 흡착되는 것이다. If the probe is placed in an Au colloidal solution containing about 50nm diameter Au nanoparticles for about 1 hour, Au nanoparticles are selectively adsorbed on the other end of APTES (Fig. 5 (F)). As a result, Au nanoparticles are selectively adsorbed only at the tip of the probe.
이 방식으로 제작된 나노입자 탐침을 도 6에 나타내었다. 도 6은 50nm Au 나노입자가 탐침 끝에만 선택적으로 흡착된 것을 보여주는 SEM(Scanning Electron Microscope; 주사(走査) 전자 현미경)의 이미지 사진이다.The nanoparticle probe produced in this manner is shown in FIG. 6. 6 is an image of a scanning electron microscope (SEM) showing that 50 nm Au nanoparticles are selectively adsorbed only at the tip of the probe.
한편, 탐침 표면이 SiO2 로 된 경우에는, 흡착방지용 1-옥타데실트리클로로 실란(octadecyltrichlorosilane) 분자막이 Au막을 거치지 않고 탐침 표면에 직접 증착될 수 있고, 탐침 표면이 Au로 된 경우에는, 흡착방지용 ODT분자막이 Au막을 거치지 않고 탐침 표면에 직접 증착되는 것이 가능하다. On the other hand, when the probe surface is SiO 2 , the adsorption preventing 1-octadecyltrichlorosilane molecular film can be deposited directly on the probe surface without passing through the Au membrane, and when the probe surface is Au, the adsorption It is possible to prevent the ODT molecule film from being deposited directly on the probe surface without passing through the Au film.
또한, 흡착방지용 코팅막의 용이한 증착을 위해, 탐침 표면의 소재와 흡착방지용 코팅막의 종류에 따라, 탐침과 코팅막 사이에 하나 이상의 막이 형성될 수 있다.Further, for easy deposition of the anti-adsorption coating film, one or more films may be formed between the probe and the coating film, depending on the material of the probe surface and the type of the anti-adsorption coating film.
이하에서는 본 발명에 대해 보다 구체적으로 설명한다. 본 발명에 의하면, 탐침을 이용하는 모든 종류의 탐침 현미경의 탐침 끝에 나노입자를 선택적으로 흡착시킬 수 있다. 일 예로, AFM(Atomic Force Microscope: 원자간력 현미경)의 탐침, STM(Scanning Tunneling Microscope: 주사형 터널현미경)의 탐침, NSOM(Near-Field Scanning Optical Microscope: 주사형 근접장광학현미경)의 탐침 등을 들 수 있다.Hereinafter, the present invention will be described in more detail. According to the present invention, nanoparticles can be selectively adsorbed on the tip of probes of all kinds of probe microscopes using probes. For example, AFM (Atomic Force Microscope) probe, STM (Scanning Tunneling Microscope) probe, NSOM (Near-Field Scanning Optical Microscope) probe, etc. Can be mentioned.
본 발명에 사용되는 흡착방지용 코팅막은 사용하는 탐침의 표면 재질에 따라 적당한 분자막이 증착됨으로써 생성될 수 있다. 구체적인 예는 아래의 표 1에 나타난 바와 같다. 이 경우, 분자막의 증착은 용액이나 기체를 이용하여 증착될 수 있는데, 이미 개발된 기존의 방법을 활용할 수 있다.The anti-adsorption coating film used in the present invention may be produced by depositing an appropriate molecular film depending on the surface material of the probe to be used. Specific examples are as shown in Table 1 below. In this case, the deposition of the molecular film may be deposited using a solution or a gas, and may utilize an existing method that has already been developed.
흡착방지용 코팅막을 형성시키는 다른 방법으로써, 도 4에 도시된 바와 같이, 먼저 탐침 표면에 적당한 중간막(고체박막)을 증착한 후 그 위에 흡착방지용 코팅막을 형성시킬 수도 있다. 중간막의 경우, 증발기(evaporator), 스퍼터링(sputtering) 등의 방법을 사용할 수 있고 흡착방지용 코팅막의 경우, 전술한 바와 같이 용액이나 기체를 이용하여 증착이 가능하다.As another method of forming the adsorption preventing coating film, as shown in FIG. 4, a suitable intermediate film (solid thin film) may be first deposited on the probe surface, and then an adsorption preventing coating film may be formed thereon. In the case of the interlayer film, an evaporator, a sputtering method, or the like may be used, and in the case of a coating film for preventing adsorption, deposition may be performed using a solution or a gas as described above.
본 발명에 있어서, 탐침 끝 부분에 형성된 막의 제거는 탐침 끝 부분을 폴리싱 함으로써 가능해 진다. 폴리싱 방법은 기존에 개발된 모든 방법을 활용할 수 있으며, 일 예로 물체 표면에 직접 접촉하거나 FIB(Focused Ion Beam)기기를 이용할 수도 있다. 직접 접촉 방법의 경우, 하나 또는 웨이퍼 상태에 있는 다 수의 탐침을 고체 표면에 접촉시킨 후 수회 긁을 수 있는데, 도 7은 이러한 폴리싱에 의해 탐침 끝 부분에 형성된 흡착방지용 코팅막을 제거하는 방법을 나타내고 있다.In the present invention, removal of the membrane formed at the tip of the probe is made possible by polishing the tip of the probe. The polishing method may utilize all existing methods. For example, the polishing method may directly contact an object surface or use a focused ion beam (FIB) device. In the case of the direct contact method, a plurality of probes in one or a wafer state can be contacted with a solid surface and scraped several times. FIG. 7 shows a method of removing the anti-adhesion coating film formed at the tip of the probe by polishing. .
보다 구체적으로, 하나 또는 다 수의 탐침을 AFM(Atomic Force Microscope: 원자간력 현미경)에 설치하여 SiO2 같은 단단한 고체 표면에 접촉시킨 후 2~100nN 정도의 힘을 이용하여 소정 영역을 1초 내지 1일 동안 스캔하는 방법이 있다. More specifically, one or more probes are installed in an Atomic Force Microscope (AFM) to contact a solid solid surface such as SiO 2 , and then a predetermined region is applied for 1 second to 100 nN using a force of about 2 to 100 nN. There is a way to scan for 1 day.
대량생산 방법으로는 화학기계적 연마(chemical mechanical polishing: CMP) 방법을 이용하여, 웨이퍼 상태의 탐침 끝 부분의 막을 제거하는 방법이 있다. As a mass production method, a chemical mechanical polishing (CMP) method is used to remove the film at the tip of the probe in the wafer state.
그리고 본 발명에 있어서 링커 분자의 흡착방법은 다음과 같다. 즉 탐침 끝 부분에 링커 분자를 흡착시키기 위해서 탐침을 링커분자 용액 또는 링커분자 가스에 넣는다. 구체적으로, 탐침과 APTES를 작고 밀폐된 용기 속에 서로 닿지 않게 함께 넣은 후 60℃로 가열하여 탐침을 APTES 증기에 1초 ~ 10일 동안 보관하면 된다. And the adsorption method of the linker molecule in the present invention is as follows. That is, the probe is placed in a linker molecule solution or a linker molecule gas in order to adsorb linker molecules at the tip of the probe. Specifically, the probe and APTES are put together in a small, closed container so as not to touch each other, and then heated to 60 ° C. to keep the probe in the APTES vapor for 1 second to 10 days.
그 후 이 탐침을 Au 나노입자 혹은 CdSe 나노입자들이 들어 있는 용액 속에 1초 ~ 10일 동안 보관하면 나노입자들이 탐침 끝에 붙어 있는 링커 분자에 흡착된다. 이 경우, 흡착하고자 하는 나노구조의 종류와 탐침의 재질에 따라 적당한 링커 분자들은 이미 알려져 있다.The probe is then stored in a solution containing Au nanoparticles or CdSe nanoparticles for 1 second to 10 days, allowing the nanoparticles to adsorb to the linker molecules attached to the tip of the probe. In this case, suitable linker molecules are already known according to the type of nanostructure to be adsorbed and the material of the probe.
본 발명을 이용하면, 모든 종류의 나노구조를 탐침 끝에만 선택적으로 흡착이 가능하며, 도체 나노입자, 형광성 나노입자, 자성 나노입자, 탄소나노튜브(CNT: Carbon Nano Tube), SAM(Self Assembled Monolayer), DNA, RNA, 프로테인(protein), 항원, 항체, Cell(세포) 등이 이에 포함된다. By using the present invention, all kinds of nanostructures can be selectively adsorbed only at the tip of the probe, conductor nanoparticles, fluorescent nanoparticles, magnetic nanoparticles, carbon nanotubes (CNT), and self-assembled monolayers (SAM). ), DNA, RNA, protein (protein), antigen, antibody, Cell (cell) and the like.
구체적으로 도체 나노입자에는 Au, Ag, Ti, Cr, Pt, ZnO, Tin Oxide, Pb, CeO2 및 SiO2 등이 해당된다. 형광성 나노입자에는, CdSe, CdS, ZnS, GaN, GaAs, PbSe, InAs, CdTe 및 PbS 등이 해당된다. 자성 나노입자에는 Fe3O4, CoPt, Ni/NiO, FeAl, FePt, Co 및 CoO 등이 해당된다.Specifically, Au, Ag, Ti, Cr, Pt, ZnO, Tin Oxide, Pb, CeO 2 , SiO 2, and the like correspond to the conductor nanoparticles. Examples of the fluorescent nanoparticles include CdSe, CdS, ZnS, GaN, GaAs, PbSe, InAs, CdTe, PbS, and the like. Magnetic nanoparticles include Fe 3 O 4 , CoPt, Ni / NiO, FeAl, FePt, Co and CoO.
본 발명에 대한 구체적인 응용 예로서, Au, Ag 등 도체 나노입자가 흡착된 탐침은 Nano-SERS 이미징에 사용될 수 있고, CdSe 등 형광성 나노입자가 흡착된 탐침은 Nano-FRET에 사용될 수 있으며, Fe3O4등 자성 나노입자가 흡착된 탐침은 MFM((Magnetic Force Microscope: 자기력 탐침 현미경)에 사용될 수 있으며, 프로테인(protein)이 흡착된 탐침은 프로테인 분자 간의 힘 측정 등에 사용할 수 있다.As a specific application of the present invention, a probe to which conductive nanoparticles such as Au and Ag are adsorbed may be used for Nano-SERS imaging, and a probe to which fluorescent nanoparticles such as CdSe may be adsorbed to Nano-FRET, Fe 3 Magnetic nanoparticles, such as O 4 , can be used as a magnetic force microscope (MFM), and protein-adsorbed probes can be used for measuring force between protein molecules.
본 발명에 의해, 직접 또는 링크분자를 매개로 하여, 나노구조를 흡착방지용 코팅막이 형성되지 않은 탐침의 끝 부분에 용이하게 흡착시킬 수 있다. 이러한 탐침을 장착한 탐침 현미경은 종래의 탐침 현미경에 비해, 보다 향상된 해상도를 제공하게 되며, 보다 정밀한 나노 제어가 가능하게 된다.According to the present invention, the nanostructure can be easily adsorbed to the tip of the probe in which the anti-adsorption coating film is not formed, either directly or via a link molecule. The probe microscope equipped with such a probe provides more improved resolution and more precise nano control than a conventional probe microscope.
Claims (16)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/KR2005/003832 WO2006052105A1 (en) | 2004-11-12 | 2005-11-11 | Method for adhering nanostructures to end of probe of microscope and microscope having probe made by the same method |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020040092598 | 2004-11-12 | ||
| KR20040092598 | 2004-11-12 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20060052558A true KR20060052558A (en) | 2006-05-19 |
| KR100736358B1 KR100736358B1 (en) | 2007-07-06 |
Family
ID=37150149
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020050106976A Expired - Fee Related KR100736358B1 (en) | 2004-11-12 | 2005-11-09 | Method to assemble nanostructures at the end of scanning probe microscope's probe and scanning probe microscope with the probe |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR100736358B1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100866325B1 (en) * | 2007-04-04 | 2008-10-31 | 한국기계연구원 | Signal detection and electron emission probe and manufacturing method thereof |
| WO2009075481A3 (en) * | 2007-12-10 | 2009-08-27 | Seoul National University Industry Foundation | A method for adsorption using solid thin film mask of nano-particle and adsorption matter |
| US20100270265A1 (en) * | 2007-08-09 | 2010-10-28 | Seung-Hun Hong | Method for adsorption of nano-structure and adsorption matter using solid thin film mask |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102006004922B4 (en) | 2006-02-01 | 2008-04-30 | Nanoscale Systems Nanoss Gmbh | Miniaturized spring element and method for its production, beam probe, atomic force microscope and method for its operation |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2789244B2 (en) * | 1989-12-08 | 1998-08-20 | キヤノン株式会社 | Method of forming microprobe |
| JPH06300515A (en) * | 1993-04-16 | 1994-10-28 | Matsushita Electric Ind Co Ltd | Scanning probe Microscope probe and microfabrication equipment |
| JP3557459B2 (en) | 2001-06-26 | 2004-08-25 | 北海道大学長 | Scanning probe microscope |
| JP2004309272A (en) | 2003-04-04 | 2004-11-04 | Ricoh Co Ltd | Planar probe, method of manufacturing the same, and optical pickup device |
| JP2005049186A (en) | 2003-07-28 | 2005-02-24 | Kishun Kin | Probe of scanning tunneling microscope and its manufacturing method |
-
2005
- 2005-11-09 KR KR1020050106976A patent/KR100736358B1/en not_active Expired - Fee Related
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100866325B1 (en) * | 2007-04-04 | 2008-10-31 | 한국기계연구원 | Signal detection and electron emission probe and manufacturing method thereof |
| US20100270265A1 (en) * | 2007-08-09 | 2010-10-28 | Seung-Hun Hong | Method for adsorption of nano-structure and adsorption matter using solid thin film mask |
| WO2009075481A3 (en) * | 2007-12-10 | 2009-08-27 | Seoul National University Industry Foundation | A method for adsorption using solid thin film mask of nano-particle and adsorption matter |
Also Published As
| Publication number | Publication date |
|---|---|
| KR100736358B1 (en) | 2007-07-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Garno et al. | Precise positioning of nanoparticles on surfaces using scanning probe lithography | |
| Samorì | Scanning probe microscopies beyond imaging | |
| Ben Ali et al. | Atomic force microscope tip nanoprinting of gold nanoclusters | |
| Zhong et al. | Soft lithographic approach to the fabrication of highly ordered 2D arrays of magnetic nanoparticles on the surfaces of silicon substrates | |
| Li et al. | Site-selective assemblies of gold nanoparticles on an AFM tip-defined silicon template | |
| Kolibal et al. | Guided assembly of gold colloidal nanoparticles on silicon substrates prepatterned by charged particle beams | |
| Garno et al. | Directed electroless growth of metal nanostructures on patterned self-assembled monolayers | |
| Wu et al. | Dynamics of decanethiol self-assembled monolayers on Au (111) studied by time-resolved scanning tunneling microscopy | |
| KR100736358B1 (en) | Method to assemble nanostructures at the end of scanning probe microscope's probe and scanning probe microscope with the probe | |
| WO2008021614A2 (en) | Coded particle arrays for high throughput analyte analysis | |
| Wang et al. | Sequential electrochemical oxidation and site-selective growth of nanoparticles onto AFM probes | |
| US20080093550A1 (en) | Method For Adhering Nanostructures to End of Probe of Microscope and Microscope Having Probe Made By the Same Method | |
| KR20090015779A (en) | Adsorption method of nano structure and adsorbent material using solid thin film mask | |
| WO2006052105A1 (en) | Method for adhering nanostructures to end of probe of microscope and microscope having probe made by the same method | |
| Horňáková et al. | Study of DNA immobilization on mica surface by atomic force microscopy | |
| Davis et al. | Scanning probe technology in metalloprotein and biomolecular electronics | |
| Liu | Thermal Scanning Probe Lithography for Nanomedicine and Nanoelectronics Applications | |
| Lyles | Surface studies of organic thin films using scanning probe microscopy and nanofabrication | |
| Myhra | Tip-induced local anodic oxidation: Nanolithography and nanobiotechnology | |
| KR20100087740A (en) | A method for adsorption of nano-structure and adsorption matter using solid thin film mask | |
| Kuang et al. | Current detection during tip-induced anodic oxidation of titanium by atomic force microscope | |
| Tian | Scanning Probe Investigations of the Surface Self-Assembly of Organothiols and Organosilanes Using Nanoscale Lithography | |
| Rana | Investigation of genetically-engineered β-sheet polypeptides for nanoelectronics | |
| Hölscher et al. | Monday, February 28, 2011 | |
| Morf | Self-assembled monolayers beyond thiols: dithiocarbamates-from pure layers to ternary assembly systems |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
| PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
| PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
| D13-X000 | Search requested |
St.27 status event code: A-1-2-D10-D13-srh-X000 |
|
| D14-X000 | Search report completed |
St.27 status event code: A-1-2-D10-D14-srh-X000 |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
| PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U11-oth-PR1002 Fee payment year number: 1 |
|
| PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 4 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 5 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 6 |
|
| FPAY | Annual fee payment |
Payment date: 20130611 Year of fee payment: 7 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 7 |
|
| FPAY | Annual fee payment |
Payment date: 20140613 Year of fee payment: 8 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 8 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| LAPS | Lapse due to unpaid annual fee | ||
| PC1903 | Unpaid annual fee |
St.27 status event code: A-4-4-U10-U13-oth-PC1903 Not in force date: 20150630 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE |
|
| PC1903 | Unpaid annual fee |
St.27 status event code: N-4-6-H10-H13-oth-PC1903 Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20150630 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |