+

KR20060021252A - Anode active material for secondary battery coated with zirconia and manufacturing method thereof, and secondary battery using same - Google Patents

Anode active material for secondary battery coated with zirconia and manufacturing method thereof, and secondary battery using same Download PDF

Info

Publication number
KR20060021252A
KR20060021252A KR1020040082918A KR20040082918A KR20060021252A KR 20060021252 A KR20060021252 A KR 20060021252A KR 1020040082918 A KR1020040082918 A KR 1020040082918A KR 20040082918 A KR20040082918 A KR 20040082918A KR 20060021252 A KR20060021252 A KR 20060021252A
Authority
KR
South Korea
Prior art keywords
zirconia
active material
coated
weight
lithium cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
KR1020040082918A
Other languages
Korean (ko)
Inventor
유동환
박재철
김형식
장은정
Original Assignee
주식회사 디지털텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 디지털텍 filed Critical 주식회사 디지털텍
Publication of KR20060021252A publication Critical patent/KR20060021252A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Complex oxides containing cobalt and at least one other metal element
    • C01G51/42Complex oxides containing cobalt and at least one other metal element containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 코발트계 활물질의 입자 표면에, 지르코니아 또는 지르코니아를 함유하는 합금 또는 지르코니아 산화물이 코팅되어 있는 이차 전지용 리튬 코발트계 양극활물질 및 이를 사용한 이차전지를 제공한다.The present invention provides a lithium cobalt-based positive electrode active material for a secondary battery having a surface of particles of a lithium cobalt-based active material coated with zirconia or an alloy containing zirconia or zirconia oxide, and a secondary battery using the same.

바람직하게는, 리튬 코발트계 활물질의 입자 표면에, 지르코니아 또는 지르코니아를 함유하는 합금 또는 지르코니아 산화물이 0.2 중량% 내지 2 중량% 만큼 코팅되어 있는 것이 좋다.Preferably, the surface of the particles of the lithium cobalt-based active material is coated with zirconia or an alloy containing zirconia or zirconia oxide by 0.2% by weight to 2% by weight.

또한, 본 발명은 이차 전지용 양극활물질의 제조방법으로서, 지르코늄 옥사이드를 이소프로필 알코올로 희석하여, 수분과의 반응을 억제하는 단계, 생성된 용액에, 코팅되는 지르코니아의 양이 0.2 ~ 2 중량% 가 되도록 LiCoO2 의 양을 조절하여 첨가한 후 이를 교반하는 단계, 교반하는 동안 어드히젼 프로모터 (adhesion promoter) 로서 3-글리시드옥시프로릴트리메트옥실레인 (3-glycidoxyproryltrimethoxysilane)을 첨가하는 단계, 교반이 완료된 후 가열하여 솔벤트를 증발시키는 단계, 및 상기 솔벤트가 증발된 후 열처리를 행하는 단계를 포함하는 이차 전지용 리튬 코발트계 양극활물질 제조방법을 제공한다.In addition, the present invention is a method for producing a positive electrode active material for a secondary battery, the step of diluting zirconium oxide with isopropyl alcohol to inhibit the reaction with water, the amount of zirconia coated in the resulting solution, 0.2 to 2% by weight Adjust the amount of LiCoO 2 so that it is added, and then stir it, adding 3-glycidoxyproryltrimethoxysilane as an adhesion promoter during stirring, and stirring Provided is a method for producing a lithium cobalt-based positive electrode active material for a secondary battery comprising the step of evaporating the solvent by heating after completion, and performing a heat treatment after the solvent is evaporated.

Description

지르코니아로 코팅된 이차 전지용 양극활물질 및 그 제조방법, 그리고 이를 사용한 이차전지{POSITIVE ELECTRODE ACTIVE MATERIAL COATED WITH ZIRCONIA, METHOD FOR MANUFACTURING THE SAME, AND SECONDARY CELL USING THIS}Positive electrode active material for secondary battery coated with zirconia and its manufacturing method, and secondary battery using same {POSITIVE ELECTRODE ACTIVE MATERIAL COATED WITH ZIRCONIA, METHOD FOR MANUFACTURING THE SAME, AND SECONDARY CELL USING THIS}

도 1은 본 발명의 실시예 1 내지 실시예 4와 비교예 1 에 관한 비저항 특성을 도시한 그래프.1 is a graph showing the specific resistance characteristics according to Examples 1 to 4 and Comparative Example 1 of the present invention.

도 2는 본 발명의 실시예 5 내지 실시예 8과 비교예 2 에 관한 싸이클 수명 특성을 도시한 그래프.2 is a graph showing the cycle life characteristics according to Examples 5 to 8 and Comparative Example 2 of the present invention.

도 3은 본 발명의 실시예 9 내지 실시예 12와 비교예 3 에 관한 고율 충방전시의 초기 방전용량 특성을 도시한 그래프.3 is a graph showing initial discharge capacity characteristics during high rate charge and discharge according to Examples 9 to 12 and Comparative Example 3 of the present invention.

도 4은 본 발명의 실시예 13 내지 실시예 16과 비교예 4 에 관한 고온 수명 특성을 도시한 그래프.4 is a graph showing the high temperature life characteristics according to Examples 13 to 16 and Comparative Example 4 of the present invention.

본 발명은 이차 전지의 양극활물질에 관한 것으로서, 보다 상세하게는 양극활물질의 표면을 코팅처리함으로써 특성을 양호하게 한 이차전지용 양극활물질 및 그 제조방법, 그리고 이를 사용한 이차전지에 관한 것이다.The present invention relates to a positive electrode active material of a secondary battery, and more particularly, to a positive electrode active material for a secondary battery, a method for manufacturing the same, and a secondary battery using the same, having improved characteristics by coating a surface of the positive electrode active material.

일반적으로 리튬 계열 이차 전지의 개략적인 구조는 양극용 집전체 (Ni) 에 도포된 양극활물질, 음극용 집전체(Cu)에 도포된 음극활물질, 전해질과 세퍼레이터 등으로 구성되어 있다.In general, a schematic structure of a lithium-based secondary battery is composed of a positive electrode active material applied to a positive electrode current collector (Ni), a negative electrode active material applied to a negative electrode current collector (Cu), an electrolyte and a separator.

음극활물질로는 초기에 리튬 금속을 사용하였다. 그러나, 음극활물질로서 리튬 금속을 사용한 이차전지는 충방전이 계속됨에 따라 용량이 크게 감소된다는 점과, 리튬 이온이 석출되어 덴드라이트(dendrite) 상을 형성하여 세퍼레이터를 파괴함으로써 전지의 수명을 단축시키는 점이 문제로서 지적되었다. 이를 해결하기 위하여 리튬 합금을 사용하였으나, 리튬 금속을 사용하는 경우에 발생하는 위 문제점을 크게 개선하지 못하였다.Lithium metal was initially used as a negative electrode active material. However, a secondary battery using lithium metal as a negative electrode active material has a significant decrease in capacity as charging and discharging continues, and lithium ions are precipitated to form a dendrite to destroy the separator, thereby shortening the life of the battery. The point was pointed out as a problem. In order to solve this problem, a lithium alloy was used, but the above problems caused when using lithium metal were not greatly improved.

따라서, 근래에는 전해액 중의 Li 이온이 탄소 재료 속으로 인터카레이션(intercalation)되고 다시 디인터카레이션(deintercalation)되는 과정에서 저장 방출되는 전기에너지 값이 다르다는 원리를 이용하여 탄소재를 음극활물질로 사용하고 있다. Therefore, in recent years, carbon materials are used as negative electrode active materials by using the principle that the electric energy values stored and released during the process of intercalating and deintercalating Li ions in the electrolyte into the carbon material are different. Doing.

한편, 양극활물질로는 리튬 금속 또는 리튬 전이금속 산화물(LiCoO2), LiNiO2, LiMn2, LiNiO2, LiMn2O4 등을 사용하고, 전해질로는 유기 전해액이나 고체 폴리머 전해질이 사용되며, 세퍼레이터로는 폴리에틸렌 계열의 다공성 고분자를 사용한다. Lithium metal or lithium transition metal oxide (LiCoO 2 ), LiNiO 2 , LiMn 2 , LiNiO 2 , LiMn 2 O 4, etc. are used as the positive electrode active material, and an organic electrolyte or a solid polymer electrolyte is used as the electrolyte. Furnace uses a polyethylene-based porous polymer.

리튬 전지의 전지용량을 결정하는 것은 실질적으로 양극활물질이므로, 리튬 전지 기술분야에서 양극활물질 관련 기술은 매우 중요한 위치를 차지하고 있다. 특히, 양극활물질 중 LiCoO2 (리튬코발트계) 활물질은 방전 용량이 크고, 충방전 특성이 우수하다는 장점이 있다. Since determining the battery capacity of the lithium battery is substantially a positive electrode active material, the positive electrode active material related technology in the lithium battery technology field occupies a very important position. In particular, the LiCoO 2 (lithium cobalt-based) active material of the positive electrode active material has a large discharge capacity and excellent charge and discharge characteristics.

그러나, 리튬코발트계 양극활물질은 Li 이온의 삽입 및 탈리가 반복됨에 따라 LiCoO2 의 층상 구조가 붕괴될 가능성이 높다. 즉, LiCoO2 의 층상 구조는 CoO2의 층간에 Li 이온이 기둥이 되어 받치고 있는 형상이나, 충전시에 Li 이온이 탈리되면 층상 구조는 변형이 용이한 불안정한 상태가 된다. Li 이온이 탈리된 후 층상 구조가 변형되어 버리면, 변형된 구조 내로는 Li 이온이 삽입될 수 없다. 따라서, 충방전이 거듭될수록 리튬 전지의 방전 용량이 저하되어 싸이클 특성이 악화된다. However, lithium cobalt-based positive electrode active material is likely to collapse the layer structure of LiCoO 2 as the insertion and desorption of Li ions are repeated. That is, the layer structure of LiCoO 2 is a shape in which Li ions are supported by pillars between layers of CoO 2 , but when Li ions are released during charging, the layer structure is in an unstable state where deformation is easy. If the layer structure is deformed after the Li ions are released, Li ions cannot be inserted into the modified structure. Therefore, as the charge and discharge are repeated, the discharge capacity of the lithium battery decreases, and the cycle characteristics deteriorate.

특히, 고전압에서 리튬 전지를 충전하게 되면 저전압의 경우보다 Li 의 누출이 심하기 때문에 층상 구조의 붕괴가능성은 더욱 높아지므로, 고전압하에서 충방전을 반복하는 것에는 어려움이 있었다.In particular, when the lithium battery is charged at a high voltage, the leakage of Li is greater than that at the low voltage, so that the layer structure is more likely to collapse. Therefore, it is difficult to repeat charge and discharge under a high voltage.

또한, 충전 시 LiCoO2 에서 Li 이온이 탈리되면서 코발트(Co) 이온은 3가에서 4가로 그 상태가 바뀌게 되어, 코발트 이온은 전해액과 부반응을 일으키기 용이한 상태로 변화하게 된다. 즉, 충방전이 거듭됨에 따라 코발트 이온이 전해액에 녹아들게 되고, 그 결과 LiCoO2 의 구조가 붕괴된다.In addition, as the Li ions are released from LiCoO 2 during charging, the cobalt (Co) ions are changed from trivalent to tetravalent, and the cobalt ions are changed to a state that is likely to cause side reactions with the electrolyte. That is, as charge and discharge are repeated, cobalt ions are dissolved in the electrolyte, and as a result, the structure of LiCoO 2 is collapsed.

또한, 리튬 코발트계 양극활물질을 사용한 리튬 전지는 특히 고온에서 전지 수명이 급격히 저하되는 문제점이 있다.In addition, a lithium battery using a lithium cobalt-based positive electrode active material has a problem in that battery life sharply decreases, particularly at high temperatures.

이러한 문제점들을 보완하기 위하여, 고율 충방전 시 LiCoO2 의 결정 격자 붕괴를 방지하기 위해, 코발트산 리튬의 제조단계에서 지르코늄 화합물을 첨가한 코발트산 리튬을 양극활물질로 사용하는 비수계 이차전지가 제안된 바 있다. In order to solve these problems, in order to prevent the crystal lattice collapse of LiCoO 2 during high-rate charging and discharging, a non-aqueous secondary battery using lithium cobalt acid containing a zirconium compound as a cathode active material in the manufacturing step of lithium cobalt is proposed. There is a bar.

예컨대, 코발트산 리튬 또는 이 화합물 중에서 코발트의 일부를 천이금속으로 치환한 복합 산화물에 코발트에 대한 몰비가 1~10% 인 지르코늄을 첨가한 양극 활물질을 이용한 비수계 이차전지 등이 제안되었다.For example, a non-aqueous secondary battery using a positive electrode active material in which zirconium having a molar ratio of 1 to 10% of cobalt is added to lithium cobalt or a composite oxide in which a part of cobalt is substituted with a transition metal among these compounds has been proposed.

그러나, 지르코늄 원자를 첨가한 리튬 코발트계 복합 산화물은 사이클 특성이 약간 향상되기는 하였으나, 이는 방전 용량을 희생하여 사이클 특성을 향상시킨 것이므로, 필연적으로 방전 용량의 저하를 야기하게 된다.However, although the lithium cobalt-based composite oxide added with zirconium atoms slightly improved the cycle characteristics, this improved the cycle characteristics at the expense of the discharge capacity, which inevitably causes the discharge capacity to decrease.

이외에도, 리튬 코발트계 금속 산화물의 전기 전도도를 향상시킴으로써 싸이클 특성을 향상시키고자 하는 시도가 있었으나, 이 방법으로는 리튬 코발트계 금속 산화물의 구조 붕괴 자체를 방지할 수는 없었다. 또한, 도전재를 혼합하기 위해서는, 도전재와 금속 산화물이 잘 결합되도록 별도의 결합재를 첨가해야 하고, 그 결과 상대적으로 활물질 양이 줄어들게 되며, 또한 활물질, 도전재 및 결합재의 혼합상태의 불균일로 인하여 전지의 신뢰성 등이 저하되는 새로운 문제를 야기하였다.In addition, attempts have been made to improve cycle characteristics by improving the electrical conductivity of lithium cobalt-based metal oxides, but this method cannot prevent the structural collapse of lithium cobalt-based metal oxides themselves. In addition, in order to mix the conductive material, a separate binder must be added so that the conductive material and the metal oxide are well bonded, and as a result, the amount of the active material is relatively reduced, and also due to the nonuniformity of the mixed state of the active material, the conductive material and the binder material. It caused a new problem that the reliability of the battery is lowered.

따라서, 본 발명에서는 리튬 이차 전지의 양극활물질로서, 충방전을 반복하여도 결정 구조가 붕괴되지 않아 사이클 특성의 열화가 적은 리튬 코발트계 양극활 물질 및 그 제조방법, 그리고 이를 사용한 이차 전지를 제공하는 것을 목적으로 한다.Accordingly, the present invention provides a lithium cobalt-based cathode active material, a method of manufacturing the same, and a secondary battery using the same as a cathode active material of a lithium secondary battery, the crystal structure of which does not collapse even after repeated charging and discharging. For the purpose of

본 발명의 다른 목적은 열전도성을 향상시켜 고온에서도 수명 특성이 양호한 리튬 코발트계 양극활물질 및 그 제조방법, 그리고 이를 사용한 이차 전지를 제공하고자 한다.Another object of the present invention is to provide a lithium cobalt-based positive electrode active material, a method of manufacturing the same, and a secondary battery using the same, having improved thermal conductivity and good life characteristics even at high temperatures.

본 발명의 또 다른 목적은 전기 전도성을 향상시켜 방전 말기 전압의 저하가 적고, 레이트 특성이 우수한 리튬 코발트계 양극활물질 및 그 제조방법, 그리고 이를 사용한 이차 전지를 제공하자고 한다.Still another object of the present invention is to provide a lithium cobalt-based positive electrode active material, a method of manufacturing the same, and a secondary battery using the same, having improved electrical conductivity, reducing the terminal voltage at the end of discharge, and having excellent rate characteristics.

상술한 목적을 달성하기 위하여, 본 발명은 리튬 코발트계 활물질의 입자 표면에, 지르코니아 또는 지르코니아를 함유하는 합금 또는 지르코니아 산화물이 코팅되어 있는 이차 전지용 리튬 코발트계 양극활물질 및 이를 사용한 이차전지를 제공한다.In order to achieve the above object, the present invention provides a lithium cobalt-based positive electrode active material for a secondary battery, and a secondary battery using the same, the surface of the particles of the lithium cobalt-based active material is coated with zirconia or an alloy containing zirconia or zirconia oxide.

바람직하게는, 리튬 코발트계 활물질의 입자 표면에, 지르코니아 또는 지르코니아를 함유하는 합금 또는 지르코니아 산화물이 0.2 중량% 내지 2 중량% 만큼 코팅되어 있는 것이 좋다.Preferably, the surface of the particles of the lithium cobalt-based active material is coated with zirconia or an alloy containing zirconia or zirconia oxide by 0.2% by weight to 2% by weight.

더욱 바람직하게는, 리튬 코발트계 활물질의 입자 표면에, 지르코니아 또는 지르코니아를 함유하는 합금 또는 지르코니아 산화물이 0.5 중량% 만큼 코팅되어 있는 것이 좋다.More preferably, zirconia or an alloy containing zirconia or zirconia oxide is coated on the particle surface of the lithium cobalt-based active material by 0.5% by weight.

또한, 본 발명은 이차 전지용 양극활물질의 제조방법으로서, 지르코늄 옥사 이드를 이소프로필 알코올로 희석하여, 수분과의 반응을 억제하는 단계, 생성된 용액에, 코팅되는 지르코니아의 양이 0.2 ~ 2 중량% 가 되도록 LiCoO2 의 양을 조절하여 첨가한 후 이를 교반하는 단계, 교반하는 동안 어드히젼 프로모터 (adhesion promoter) 로서 3-글리시드옥시프로릴트리메트옥실레인 (3-glycidoxyproryltrimethoxysilane)을 첨가하는 단계, 교반이 완료된 후 가열하여 솔벤트를 증발시키는 단계, 및 상기 솔벤트가 증발된 후 열처리를 행하는 단계를 포함하는 이차 전지용 리튬 코발트계 양극활물질 제조방법을 제공한다.In addition, the present invention is a method for producing a positive electrode active material for a secondary battery, the step of diluting zirconium oxide with isopropyl alcohol to inhibit the reaction with water, the amount of zirconia coated in the resulting solution, 0.2 to 2% by weight Adjusting the amount of LiCoO 2 to be added, followed by stirring, and adding 3-glycidoxyproryltrimethoxysilane as an adhesion promoter during stirring, stirring After the completion of the heating to provide a method for producing a lithium cobalt-based positive electrode active material for a secondary battery comprising the step of evaporating the solvent, and the heat treatment after the solvent is evaporated.

이상과 같은 본 발명에 있어서는, 리튬 코발트계 산화물 표면에 지르코니아가 코팅되는 것으로서, 코발트 원소가 지르코니아 원소로 치환되는 것이 아니므로, 전지의 방전 용량은 저하되지 않으면서도, 리튬 코발트계 산화물 결정이 코팅막 (외력) 에 의하여 보호되기 때문에, 충전 시 발생하는 리튬 이온의 탈리에 의한 층상 구조의 붕괴를 억제할 수 있다.In the present invention as described above, since the zirconia is coated on the surface of the lithium cobalt-based oxide, the cobalt element is not replaced by the zirconia element, and thus the lithium cobalt-based oxide crystal is coated with the coating film ( Since it is protected by external force), the collapse of the layered structure due to desorption of lithium ions generated during charging can be suppressed.

또한, 본 발명에 따르면 리튬 코발트계 산화물 표면에 지르코니아가 코팅되기 때문에, 전해액이 코발트와 반응하는 것을 차단하여, 코발트가 전해액에 녹아들어 결정 구조가 붕괴되는 것을 방지한다.In addition, according to the present invention, since the zirconia is coated on the surface of the lithium cobalt-based oxide, the electrolyte solution is prevented from reacting with the cobalt, thereby preventing the cobalt from dissolving in the electrolyte solution and the collapse of the crystal structure.

또한, 본 발명에 따르면, 리튬 코발트계 산화물 표면에 열 전도성이 양호한 지르코니아가 코팅되기 때문에, 양극에서 발생하는 열을 쉽게 외부로 방출할 수 있어 고온에서도 양호한 수명 특성을 나타낸다.In addition, according to the present invention, since zirconia having good thermal conductivity is coated on the surface of the lithium cobalt-based oxide, heat generated from the anode can be easily released to the outside, thereby exhibiting good life characteristics even at high temperatures.

또한, 본 발명에 따르면, 리튬 코발트계 산화물 표면에 전기 전도성이 양호 한 지르코니아가 코팅되기 때문에, 양극의 내부 저항이 감소되어 방전 말기의 방전 전압의 저하가 억제되고, 레이트 특성이 향상되며, 고전압 하에서 충방전을 반복하여도 사이클 특성이 열화되지 않는 리튬 코발트계 양극활물질을 얻을 수 있다. In addition, according to the present invention, since the zirconia having good electrical conductivity is coated on the surface of the lithium cobalt oxide, the internal resistance of the anode is reduced, so that the drop in discharge voltage at the end of discharge is suppressed, the rate characteristic is improved, and under high voltage It is possible to obtain a lithium cobalt-based cathode active material which does not deteriorate cycle characteristics even after repeated charging and discharging.

이하에서는, 우선 본 발명에 따른 양극활물질의 제조 과정을 설명하고, 제조된 양극활물질을 사용한 실시예와 비교예의 결과를 도면을 참조하여 고찰한다.Hereinafter, first, the manufacturing process of the positive electrode active material according to the present invention will be described, and the results of Examples and Comparative Examples using the prepared positive electrode active material will be considered with reference to the drawings.

본 발명에 의해 리튬 코발트계 산화물 표면에 지르코니아 피막을 형성하는 과정은 다음과 같다. The process of forming the zirconia film on the surface of the lithium cobalt oxide according to the present invention is as follows.

우선, 지르코늄 옥사이드를 이소프로필 알코올로 희석하여, 수분과의 반응을 억제한다. First, zirconium oxide is diluted with isopropyl alcohol to suppress the reaction with water.

다음, 이 용액에 LiCoO2를 첨가하여 3시간 동안 교반한다. 이때, 첨가되는 LiCoO2 의 양을 조절하여, 코팅되는 지르코니아의 양이 0.2 ~ 2 중량%(wt%) 가 되도록 한다.Next, LiCoO 2 is added to this solution and stirred for 3 hours. At this time, by adjusting the amount of LiCoO 2 is added, the amount of the coated zirconia is 0.2 to 2% by weight (wt%).

교반하는 동안, 어드히젼 프로모터 (adhesion promoter) 로서 3-글리시드옥시프로릴트리메트옥실레인 (3-glycidoxyproryltrimethoxysilane)을 첨가한다.While stirring, 3-glycidoxyproryltrimethoxysilane is added as an adhesion promoter.

다음으로, 100 ℃ 에서 12시간 동안 가열하여 솔벤트를 증발시킨다. Next, the solvent is evaporated by heating at 100 ° C. for 12 hours.

그 후, 400 ~ 700 ℃ 에서 열처리하게 되면, 1 ~ 100 nm 두께의 지르코니아 층이 코팅된 리튬 코발트계 산화물이 생성된다. Subsequently, heat treatment at 400 to 700 ° C. produces a lithium cobalt oxide coated with a zirconia layer having a thickness of 1 to 100 nm.

이상과 같은 과정을 거쳐 생성된 양극활물질을 사용하여 양극을 형성하고, 싸이클 특성, 방전 용량 등 전지 특성을 조사하였다.The positive electrode was formed using the positive electrode active material produced through the above process, and the battery characteristics such as cycle characteristics and discharge capacity were investigated.

(실시예 1) (Example 1)

지르코니아가 0.2 중량%(wt%) 만큼 코팅된 LiCoO2, 도전재 Super-P 를 바인더로 쓰이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. After zirconia coated 0.2 wt% (wt%) of LiCoO 2 and conductive material Super-P together with PVdF used as a binder in an appropriate amount of NMP, when appropriate viscosity was obtained, it was cast on aluminum sheet and dried , And rolled to make an electrode.

이때, 지르코니아가 코팅된 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 이상과 같이 제조된 전극으로 비저항을 측정하여 그 결과를 도1 에 나타내었다.At this time, the amount of the zirconia coated LiCoO 2 and the conductive material was 96%, 2% by weight, respectively. The specific resistance was measured by the electrode manufactured as described above, and the result is shown in FIG. 1.

(실시예 2)(Example 2)

지르코니아가 0.5 중량% 만큼 코팅된 LiCoO2, 도전재 Super-P 를 바인더로 쓰이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. LiCoO 2 coated with 0.5% by weight of zirconia and Super-P, a conductive material, were mixed with PVdF used as a binder in an appropriate amount of NMP. When a suitable viscosity was obtained, it was cast on an aluminum sheet, dried, and rolled to form an electrode. Made.

이때, 지르코니아가 코팅된 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 이상과 같이 제조된 전극으로 비저항을 측정하여 그 결과를 도1 에 나타내었다.At this time, the amount of the zirconia coated LiCoO 2 and the conductive material was 96%, 2% by weight, respectively. The specific resistance was measured by the electrode manufactured as described above, and the result is shown in FIG. 1.

(실시예 3)(Example 3)

지르코니아가 1 중량% 만큼 코팅된 LiCoO2, 도전재 Super-P 를 바인더로 쓰이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. LiCoO 2 coated with 1% by weight of zirconia and Super-P, a conductive material, were mixed with PVdF used as a binder in an appropriate amount of NMP. When a suitable viscosity was obtained, it was cast on an aluminum sheet, dried, and rolled to form an electrode. Made.

이때, 지르코니아가 코팅된 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 이상과 같이 제조된 전극으로 비저항을 측정하여 그 결과를 도1 에 나타내었다.At this time, the amount of the zirconia coated LiCoO 2 and the conductive material was 96%, 2% by weight, respectively. The specific resistance was measured by the electrode manufactured as described above, and the result is shown in FIG. 1.

(실시예 4)(Example 4)

지르코니아가 2 중량% 만큼 코팅된 LiCoO2, 도전재 Super-P 를 바인더로 쓰이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. LiCoO 2 coated with 2% by weight of zirconia and Super-P conductive material were mixed with PVdF used as a binder in an appropriate amount of NMP. When a suitable viscosity was obtained, it was cast on an aluminum sheet, dried, and rolled to form an electrode. Made.

이때, 지르코니아가 코팅된 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 이상과 같이 제조된 전극으로 비저항을 측정하여 그 결과를 도1 에 나타내었다.At this time, the amount of the zirconia coated LiCoO 2 and the conductive material was 96%, 2% by weight, respectively. The specific resistance was measured by the electrode manufactured as described above, and the result is shown in FIG. 1.

(비교예 1)(Comparative Example 1)

지르코니아가 코팅되지 않은 LiCoO2, 도전재 Super-P 를 바인더로 쓰이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. Zirconia-coated LiCoO 2 and the conductive material Super-P were mixed with PVdF used as a binder in an appropriate amount of NMP, and then, when an appropriate viscosity was obtained, they were cast on an aluminum sheet, dried, and rolled to make an electrode.

이때, 지르코니아가 코팅되지 않은 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 이상과 같이 제조된 전극으로 비저항을 측정하여 그 결과를 도1 에 나타내었다.At this time, the amount of LiCoO 2 and the conductive material not coated with zirconia were 96% and 2% by weight, respectively. The specific resistance was measured by the electrode manufactured as described above, and the result is shown in FIG. 1.

도 1 을 참조하여 실시예 1 내지 실시예 4 및 비교예 1 의 결과를 고찰하여 보면, 본 발명에 따른 지르코니아가 0.2 중량% 내지 2 중량% 만큼 코팅된 리튬 코발트계 금속 산화물을 사용한 경우, 지르코니아로 코팅되지 않은 경우보다 비저항이 월등히 낮았다. Referring to the results of Examples 1 to 4 and Comparative Example 1 with reference to Figure 1, when the zirconia according to the present invention using lithium cobalt-based metal oxide coated by 0.2% to 2% by weight, The resistivity was much lower than that without the coating.

다만, 지르코니아를 0.5 중량% 이상 코팅하는 경우에는, 지르코니아의 중량% 를 그 이상 증가시켜도 비저항의 차이가 크게 발생하지 않았다.However, in the case of coating 0.5% by weight or more of zirconia, even if the weight% of zirconia was increased more than, the difference in specific resistance did not occur significantly.

이상으로부터, 본 발명에 따라서 전기 전도도가 우수한 지르코니아로 0.2 중량% 이상 리튬 코발트계 금속 산화물을 코팅하게 되면, 활물질의 내부저항을 월등히 감소시킬 수 있음을 알 수 있다.From the above, it can be seen that when the lithium cobalt-based metal oxide is coated with zirconia having excellent electrical conductivity according to the present invention, the internal resistance of the active material can be greatly reduced.

(실시예 5)(Example 5)

지르코니아가 0.2 중량% 만큼 코팅된 LiCoO2, 도전재 Super-P 를 바인더로 쓰이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. LiCoO 2 coated with 0.2% by weight of zirconia and Super-P, a conductive material, were mixed with PVdF used as a binder in an appropriate amount of NMP. When a suitable viscosity was obtained, it was cast on an aluminum sheet, dried, and rolled to form an electrode. Made.

이때, 지르코니아가 코팅된 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 상대 전극인 음극으로는 리튬 금속판, 분리막으로는 PO(Poly Olefine)분리막을 사용하였고, 전해질로는 1M LiPF6 가 용해된 EC:EMC 용액을 분리막에 충분히 적셔 사용하였다. 이후 충방전율을 C/5 로 하여, LiCoO2 전극을 기준으로 한 전극 용량 및 싸이클 수명을 조사하였고, 그 결과를 도2 에 나타내었다.At this time, the amount of the zirconia coated LiCoO 2 and the conductive material was 96%, 2% by weight, respectively. A lithium metal plate was used as a negative electrode as a counter electrode, and a PO (Poly Olefine) separator was used as a separator, and an EC: EMC solution in which 1M LiPF6 was dissolved was sufficiently wetted in the separator as an electrolyte. Then, the charge and discharge rate was set to C / 5, and the electrode capacity and cycle life based on the LiCoO 2 electrode were examined, and the results are shown in FIG. 2.

(실시예 6)(Example 6)

지르코니아가 0.5 중량% 만큼 코팅된 LiCoO2, 도전재 Super-P 를 바인더로 쓰이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. LiCoO 2 coated with 0.5% by weight of zirconia and Super-P, a conductive material, were mixed with PVdF used as a binder in an appropriate amount of NMP. When a suitable viscosity was obtained, it was cast on an aluminum sheet, dried, and rolled to form an electrode. Made.

이때, 지르코니아가 코팅된 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 상대 전극인 음극으로는 리튬 금속판, 분리막으로는 PO(Poly Olefine)분리막을 사용하였고, 전해질로는 1M LiPF6 가 용해된 EC:EMC 용액을 분리막에 충분히 적셔 사용하였다. 이후 충방전율을 C/5 로 하여, LiCoO2 전극을 기준으로 한 전극 용량 및 싸이클 수명을 조사하였고, 그 결과를 도2 에 나타내었다.At this time, the amount of the zirconia coated LiCoO 2 and the conductive material was 96%, 2% by weight, respectively. A lithium metal plate was used as a negative electrode as a counter electrode, and a PO (Poly Olefine) separator was used as a separator, and an EC: EMC solution in which 1M LiPF6 was dissolved was sufficiently wetted in the separator as an electrolyte. Then, the charge and discharge rate was set to C / 5, and the electrode capacity and cycle life based on the LiCoO 2 electrode were examined, and the results are shown in FIG. 2.

(실시예 7)(Example 7)

지르코니아가 1 중량% 만큼 코팅된 LiCoO2, 도전재 Super-P 를 바인더로 쓰이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. LiCoO 2 coated with 1% by weight of zirconia and Super-P, a conductive material, were mixed with PVdF used as a binder in an appropriate amount of NMP. When a suitable viscosity was obtained, it was cast on an aluminum sheet, dried, and rolled to form an electrode. Made.

이때, 지르코니아가 코팅된 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 상대 전극인 음극으로는 리튬 금속판, 분리막으로는 PO(Poly Olefine)분리막을 사용하였고, 전해질로는 1M LiPF6 가 용해된 EC:EMC 용액을 분리막에 충분히 적셔 사용하였다. 이후 충방전율을 C/5 로 하여, LiCoO2 전극을 기준으로 한 전극 용량 및 싸이클 수명을 조사하였고, 그 결과를 도2 에 나타내었다.At this time, the amount of the zirconia coated LiCoO 2 and the conductive material was 96%, 2% by weight, respectively. A lithium metal plate was used as a negative electrode as a counter electrode, and a PO (Poly Olefine) separator was used as a separator, and an EC: EMC solution in which 1M LiPF6 was dissolved was sufficiently wetted in the separator as an electrolyte. Then, the charge and discharge rate was set to C / 5, and the electrode capacity and cycle life based on the LiCoO 2 electrode were examined, and the results are shown in FIG. 2.

(실시예 8)(Example 8)

지르코니아가 2 중량% 만큼 코팅된 LiCoO2, 도전재 Super-P 를 바인더로 쓰 이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. LiCoO 2 coated with 2% by weight of zirconia and Super-P, a conductive material, were mixed with PVdF used as a binder in an appropriate amount of NMP. When a suitable viscosity was obtained, it was cast on an aluminum sheet, dried, and rolled. An electrode was made.

이때, 지르코니아가 코팅된 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 상대 전극인 음극으로는 리튬 금속판, 분리막으로는 PO(Poly Olefine)분리막을 사용하였고, 전해질로는 1M LiPF6 가 용해된 EC:EMC 용액을 분리막에 충분히 적셔 사용하였다. 이후 충방전율을 C/5 로 하여, LiCoO2 전극을 기준으로 한 전극 용량 및 싸이클 수명을 조사하였고, 그 결과를 도2 에 나타내었다.At this time, the amount of the zirconia coated LiCoO 2 and the conductive material was 96%, 2% by weight, respectively. A lithium metal plate was used as a negative electrode as a counter electrode, and a PO (Poly Olefine) separator was used as a separator, and an EC: EMC solution in which 1M LiPF6 was dissolved was sufficiently wetted in the separator as an electrolyte. Then, the charge and discharge rate was set to C / 5, and the electrode capacity and cycle life based on the LiCoO 2 electrode were examined, and the results are shown in FIG. 2.

(비교예 2)(Comparative Example 2)

지르코니아로 코팅되지 않은 LiCoO2, 도전재 Super-P 를 바인더로 쓰이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. The zirconia-coated LiCoO 2 and the conductive material Super-P were mixed with PVdF used as a binder in an appropriate amount of NMP, and then, when an appropriate viscosity was obtained, cast on an aluminum sheet, dried it, and rolled to make an electrode.

이때, 지르코니아가 코팅되지 않은 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 상대 전극인 음극으로는 리튬 금속판, 분리막으로는 PO(Poly Olefine)분리막을 사용하였고, 전해질로는 1M LiPF6 가 용해된 EC:EMC 용액을 분리막에 충분히 적셔 사용하였다. 이후 충방전율을 C/5 로 하여, LiCoO2 전극을 기준으로 한 전극 용량 및 싸이클 수명을 조사하였고, 그 결과를 도2 에 나타내었다.At this time, the amount of LiCoO 2 and the conductive material not coated with zirconia were 96% and 2% by weight, respectively. A lithium metal plate was used as a negative electrode as a counter electrode, and a PO (Poly Olefine) separator was used as a separator, and an EC: EMC solution in which 1M LiPF6 was dissolved was sufficiently wetted in the separator as an electrolyte. Then, the charge and discharge rate was set to C / 5, and the electrode capacity and cycle life based on the LiCoO 2 electrode were examined, and the results are shown in FIG. 2.

도2 를 참조하여 실시예 5 내지 실시예 8 및 비교예 2 의 결과를 고찰하여 보면, 본 발명에 따라서 지르코니아가 0.2 중량% 내지 2 중량% 만큼 코팅된 리튬 코발트계 금속 산화물을 사용한 경우가 지르코니아로 코팅되지 않은 경우보다 싸이클 특성 면에서 월등히 우수함을 알 수 있다. Referring to the results of Examples 5 to 8 and Comparative Example 2 with reference to Figure 2, according to the present invention, the case of using a lithium cobalt-based metal oxide coated with 0.2% to 2% by weight of zirconia as zirconia It can be seen that the cycle properties are much better than the uncoated case.

코팅되지 않은 경우에는 충방전 회수가 30회를 넘기면서 방전 용량이 20% 감소하였으며, 50 회 부근에서는 40% 이하로 급속히 감소하였다. 이에 비하여, 본 발명에 따라 지르코니아가 0.2 중량% 내지 2 중량% 만큼 코팅된 리튬 코발트계 산화물을 사용한 경우에는, 충방전 회수가 50 회에 이르러도 방전 용량이 크게 감소하는 현상은 발생하지 않았으며, 특히 지르코니아를 0.5 중량% 만큼 코팅한 경우에는 방전 용량의 감소가 거의 나타나지 않았다.When the coating was not coated, the discharge capacity was reduced by 20% as the number of charge and discharge cycles exceeded 30 times, and rapidly decreased to 40% or less at around 50 times. In contrast, in the case of using lithium cobalt-based oxide coated with zirconia by 0.2% by weight to 2% by weight according to the present invention, even when the number of charge and discharge cycles reached 50 times, a phenomenon in which the discharge capacity was greatly reduced did not occur. In particular, when the zirconia was coated by 0.5% by weight, there was almost no decrease in the discharge capacity.

이는 리튬 코발트계 양극 활물질에서 충방전이 거듭되더라도 지르코니아 코팅막에 의하여 Li 이온의 탈리로 인한 구조 붕괴가 억제됨으로써, 양극의 싸이클 특성의 악화가 억제되었기 때문이다. This is because even if charge and discharge are repeated in the lithium cobalt-based positive electrode active material, structural collapse due to desorption of Li ions by the zirconia coating film is suppressed, thereby deteriorating cycle characteristics of the positive electrode.

또한, 지르코니아 코팅막이 전해액과 코발트 원소의 부반응을 차단함으로써, 충방전이 반복됨에 따라 코발트 원소가 전해액에 녹아들어 양극 활물질의 구조가 붕괴되는 것을 방지하였기 때문이다. 또한, 양극 활물질이 전기 전도도가 우수한 지르코니아로 코팅됨으로써, 활물질의 내부저항이 감소하여 싸이클 특성이 향상되었기 때문이다.In addition, the zirconia coating film prevents side reactions between the electrolyte solution and the cobalt element, thereby preventing the cobalt element from dissolving in the electrolyte solution and disintegrating the structure of the positive electrode active material as charge and discharge are repeated. In addition, since the positive electrode active material is coated with zirconia having excellent electrical conductivity, the internal resistance of the active material is reduced, thereby improving cycle characteristics.

(실시예 9)(Example 9)

지르코니아가 0.2 중량% 만큼 코팅된 LiCoO2, 도전재 Super-P 를 바인더로 쓰이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. LiCoO 2 coated with 0.2% by weight of zirconia and Super-P, a conductive material, were mixed with PVdF used as a binder in an appropriate amount of NMP. When a suitable viscosity was obtained, it was cast on an aluminum sheet, dried, and rolled to form an electrode. Made.

이때, 지르코니아가 코팅된 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 상대 전극인 음극으로는 리튬 금속판, 분리막으로는 PO(Poly Olefine)분리막을 사용하였고, 전해질로는 1M LiPF6 가 용해된 EC:EMC 용액을 분리막에 충분히 적셔 사용하였다. 이후 충방전율을 C/5, 1C, 2C 로 하여, LiCoO2 전극을 기준으로 한 전극 용량을 조사하였고, 그 결과를 도3 에 나타내었다.At this time, the amount of the zirconia coated LiCoO 2 and the conductive material was 96%, 2% by weight, respectively. A lithium metal plate was used as a negative electrode as a counter electrode, and a PO (Poly Olefine) separator was used as a separator, and an EC: EMC solution in which 1M LiPF6 was dissolved was sufficiently wetted in the separator as an electrolyte. Thereafter, the charge and discharge rates were set to C / 5, 1C, and 2C, and the electrode capacities based on the LiCoO 2 electrodes were examined, and the results are shown in FIG. 3.

(실시예 10)(Example 10)

지르코니아가 0.5 중량% 만큼 코팅된 LiCoO2, 도전재 Super-P 를 바인더로 쓰이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. LiCoO 2 coated with 0.5% by weight of zirconia and Super-P, a conductive material, were mixed with PVdF used as a binder in an appropriate amount of NMP. When a suitable viscosity was obtained, it was cast on an aluminum sheet, dried, and rolled to form an electrode. Made.

이때, 지르코니아가 코팅된 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 상대 전극인 음극으로는 리튬 금속판, 분리막으로는 PO(Poly Olefine)분리막을 사용하였고, 전해질로는 1M LiPF6 가 용해된 EC:EMC 용액을 분리막에 충분히 적셔 사용하였다. 이후 충방전율을 C/5, 1C, 2C 로 하여, LiCoO2 전극을 기준으로 한 전극 용량을 조사하였고, 그 결과를 도3 에 나타내었다.At this time, the amount of the zirconia coated LiCoO 2 and the conductive material was 96%, 2% by weight, respectively. A lithium metal plate was used as a negative electrode as a counter electrode, and a PO (Poly Olefine) separator was used as a separator, and an EC: EMC solution in which 1M LiPF6 was dissolved was sufficiently wetted in the separator as an electrolyte. Thereafter, the charge and discharge rates were set to C / 5, 1C, and 2C, and the electrode capacities based on the LiCoO 2 electrodes were examined, and the results are shown in FIG. 3.

(실시예 11)(Example 11)

지르코니아가 1 중량% 만큼 코팅된 LiCoO2, 도전재 Super-P 를 바인더로 쓰 이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. LiCoO 2 coated with 1% by weight of zirconia and Super-P, a conductive material, were mixed with PVdF used as a binder in an appropriate amount of NMP. When a suitable viscosity was obtained, it was cast on an aluminum sheet, dried, and rolled. An electrode was made.

이때, 지르코니아가 코팅된 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 상대 전극인 음극으로는 리튬 금속판, 분리막으로는 PO(Poly Olefine)분리막을 사용하였고, 전해질로는 1M LiPF6 가 용해된 EC:EMC 용액을 분리막에 충분히 적셔 사용하였다. 이후 충방전율을 C/5, 1C, 2C 로 하여, LiCoO2 전극을 기준으로 한 전극 용량을 조사하였고, 그 결과를 도3 에 나타내었다.At this time, the amount of the zirconia coated LiCoO 2 and the conductive material was 96%, 2% by weight, respectively. A lithium metal plate was used as a negative electrode as a counter electrode, and a PO (Poly Olefine) separator was used as a separator, and an EC: EMC solution in which 1M LiPF6 was dissolved was sufficiently wetted in the separator as an electrolyte. Thereafter, the charge and discharge rates were set to C / 5, 1C, and 2C, and the electrode capacities based on the LiCoO 2 electrodes were examined, and the results are shown in FIG. 3.

(실시예 12)(Example 12)

지르코니아가 2 중량% 만큼 코팅된 LiCoO2, 도전재 Super-P 를 바인더로 쓰이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. LiCoO 2 coated with 2% by weight of zirconia and Super-P conductive material were mixed with PVdF used as a binder in an appropriate amount of NMP. When a suitable viscosity was obtained, it was cast on an aluminum sheet, dried, and rolled to form an electrode. Made.

이때, 지르코니아가 코팅된 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 상대 전극인 음극으로는 리튬 금속판, 분리막으로는 PO(Poly Olefine)분리막을 사용하였고, 전해질로는 1M LiPF6 가 용해된 EC:EMC 용액을 분리막에 충분히 적셔 사용하였다. 이후 충방전율을 C/5, 1C, 2C 로 하여, LiCoO2 전극을 기준으로 한 전극 용량을 조사하였고, 그 결과를 도3 에 나타내었다.At this time, the amount of the zirconia coated LiCoO 2 and the conductive material was 96%, 2% by weight, respectively. A lithium metal plate was used as a negative electrode as a counter electrode, and a PO (Poly Olefine) separator was used as a separator, and an EC: EMC solution in which 1M LiPF6 was dissolved was sufficiently wetted in the separator as an electrolyte. Thereafter, the charge and discharge rates were set to C / 5, 1C, and 2C, and the electrode capacities based on the LiCoO 2 electrodes were examined, and the results are shown in FIG. 3.

실시예 9 내지 실시예 12 는 충방전율을 변화시켜가며 초기 전극 용량을 측정하였다는 점에서 실시예 5 내지 실시예 8 과는 구분된다.Examples 9 to 12 are distinguished from Examples 5 to 8 in that initial electrode capacities were measured while changing charge and discharge rates.

(비교예 3)(Comparative Example 3)

지르코니아가 코팅되지 않은 LiCoO2, 도전재 Super-P 를 바인더로 쓰이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. Zirconia-coated LiCoO 2 and the conductive material Super-P were mixed with PVdF used as a binder in an appropriate amount of NMP, and then, when an appropriate viscosity was obtained, they were cast on an aluminum sheet, dried, and rolled to make an electrode.

이때, 지르코니아로 코팅되지 않은 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 상대 전극인 음극으로는 리튬 금속판, 분리막으로는 PO(Poly Olefine)분리막을 사용하였고, 전해질로는 1M LiPF6 가 용해된 EC:EMC 용액을 분리막에 충분히 적셔 사용하였다. 이후 충방전율을 C/5, 1C, 2C 로 하여, LiCoO2 전극을 기준으로 한 전극 용량을 조사하였고, 그 결과를 도3 에 나타내었다.At this time, the amount of LiCoO 2 and the conductive material not coated with zirconia were 96% and 2% by weight, respectively. A lithium metal plate was used as a negative electrode as a counter electrode, and a PO (Poly Olefine) separator was used as a separator, and an EC: EMC solution in which 1M LiPF6 was dissolved was sufficiently wetted in the separator as an electrolyte. Thereafter, the charge and discharge rates were set to C / 5, 1C, and 2C, and the electrode capacities based on the LiCoO 2 electrodes were examined, and the results are shown in FIG. 3.

비교예 3 은 충방전율을 변화시켜가며 초기 전극 용량을 측정하였다는 점에서 비교예 2 와 구분된다.Comparative Example 3 is distinguished from Comparative Example 2 in that the initial electrode capacity was measured while changing the charge / discharge rate.

도3 을 참조하여, 실시예 9 내지 실시예 12 및 비교예 3 의 결과를 고찰하여 보면, 낮은 충방전율 (C/5) 에서의 초기 전극 용량은 본 발명에 따른 지르코니아가 0.2 중량% 내지 2 중량% 만큼 코팅된 경우와 코팅되지 않은 경우 사이에 별다른 차이가 없다. Referring to Figure 3, considering the results of Examples 9 to 12 and Comparative Example 3, the initial electrode capacity at low charge and discharge rate (C / 5) is 0.2 to 2% by weight of zirconia according to the present invention There is no difference between when coated by% and uncoated.

그러나, 충방전율이 높아질수록, 지르코니아가 0.2 중량% 내지 2 중량% 만큼 코팅된 경우와 코팅되지 않은 경우의 초기 전극 용량값의 차이는 커진다. 즉, 지르코니아로 코팅되어 있지 않은 경우에는 충방전율이 높아짐에 따라 초기 전극 용량값이 현저히 저하되나, 지르코니아로 코팅되어 있는 경우에는 고율 충방전에서 도 초기 전극 용량이 일정값을 유지하고 있음을 알 수 있다. 특히, 지르코니아를 0.5 중량% 만큼 코팅한 경우에는 초기 전극 용량값의 감소가 거의 나타나지 않았다.However, the higher the charge / discharge rate, the larger the difference between the initial electrode capacity values when the zirconia is coated by 0.2 wt% to 2 wt% and when it is not coated. In other words, when the zirconia is not coated, the initial electrode capacity decreases significantly as the charge / discharge rate increases. However, when the zirconia is coated, the initial electrode capacity is maintained even at high rate charge and discharge. have. In particular, when the zirconia was coated by 0.5% by weight, there was almost no decrease in the initial electrode capacitance value.

이는 고율 충방전 시에는 Li 이온이 다량 탈리되어 구조 붕괴의 가능성이 높아지므로, 지르코니아로 코팅되지 않은 경우에는 충방전율이 높아짐에 따라 초기 전극 용량값이 낮아지지만, 본 발명에 따라 지르코니아로 코팅된 경우에는 코팅막이 외력으로서 작용하게 되어, Li 이온이 빠져나오게 되어도 Li 이온이 빠져나온 층상 구조의 붕괴가 억제되기 때문이다. This is because a large amount of Li ions are desorbed during high rate charge and discharge, thereby increasing the possibility of structural breakdown, and when not coated with zirconia, the initial electrode capacity value decreases as the charge and discharge rate increases, but when coated with zirconia according to the present invention. This is because the coating film acts as an external force, and even when Li ions escape, the collapse of the layered structure from which Li ions escapes is suppressed.

(실시예 13)(Example 13)

지르코니아가 0.2 중량% 만큼 코팅된 LiCoO2, 도전재 Super-P 를 바인더로 쓰이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. LiCoO 2 coated with 0.2% by weight of zirconia and Super-P, a conductive material, were mixed with PVdF used as a binder in an appropriate amount of NMP. When a suitable viscosity was obtained, it was cast on an aluminum sheet, dried, and rolled to form an electrode. Made.

이때, 지르코니아가 코팅된 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 상대 전극인 음극으로는 리튬 금속판, 분리막으로는 PO(Poly Olefine)분리막을 사용하였고, 전해질로는 1M LiPF6 가 용해된 EC:EMC 용액을 분리막에 충분히 적셔 사용하였다. 또한, 극판을 90 ℃ 에서 4시간 방치한 후 충방전율을 C/5 로 하여 LiCoO2 전극을 기준으로 한 전극 방전 용량을 조사한 후, 그 결과를 도4 에 나타내었다. At this time, the amount of the zirconia coated LiCoO 2 and the conductive material was 96%, 2% by weight, respectively. A lithium metal plate was used as a negative electrode as a counter electrode, and a PO (Poly Olefine) separator was used as a separator, and an EC: EMC solution in which 1M LiPF6 was dissolved was sufficiently wetted in the separator as an electrolyte. In addition, after leaving the electrode plate at 90 ° C. for 4 hours, the electrode discharge capacity based on the LiCoO 2 electrode was investigated with the charge / discharge rate as C / 5, and the results are shown in FIG. 4.

(실시예 14)(Example 14)

지르코니아가 0.5 중량% 만큼 코팅된 LiCoO2, 도전재 Super-P 를 바인더로 쓰이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. LiCoO 2 coated with 0.5% by weight of zirconia and Super-P, a conductive material, were mixed with PVdF used as a binder in an appropriate amount of NMP. When a suitable viscosity was obtained, it was cast on an aluminum sheet, dried, and rolled to form an electrode. Made.

이때, 지르코니아가 코팅된 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 상대 전극인 음극으로는 리튬 금속판, 분리막으로는 PO(Poly Olefine)분리막을 사용하였고, 전해질로는 1M LiPF6 가 용해된 EC:EMC 용액을 분리막에 충분히 적셔 사용하였다. 또한, 극판을 90 ℃ 에서 4시간 방치한 후 충방전율을 C/5 로 하여 LiCoO2 전극을 기준으로 한 전극 방전 용량을 조사한 후, 그 결과를 도4 에 나타내었다. At this time, the amount of the zirconia coated LiCoO 2 and the conductive material was 96%, 2% by weight, respectively. A lithium metal plate was used as a negative electrode as a counter electrode, and a PO (Poly Olefine) separator was used as a separator, and an EC: EMC solution in which 1M LiPF6 was dissolved was sufficiently wetted in the separator as an electrolyte. In addition, after leaving the electrode plate at 90 ° C. for 4 hours, the electrode discharge capacity based on the LiCoO 2 electrode was investigated with the charge / discharge rate as C / 5, and the results are shown in FIG. 4.

(실시예 15)(Example 15)

지르코니아가 1 중량% 만큼 코팅된 LiCoO2, 도전재 Super-P 를 바인더로 쓰이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. LiCoO 2 coated with 1% by weight of zirconia and Super-P, a conductive material, were mixed with PVdF used as a binder in an appropriate amount of NMP. When a suitable viscosity was obtained, it was cast on an aluminum sheet, dried, and rolled to form an electrode. Made.

이때, 지르코니아가 코팅된 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 상대 전극인 음극으로는 리튬 금속판, 분리막으로는 PO(Poly Olefine)분리막을 사용하였고, 전해질로는 1M LiPF6 가 용해된 EC:EMC 용액을 분리막에 충분히 적셔 사용하였다. 또한, 극판을 90 ℃ 에서 4시간 방치한 후 충방전율을 C/5 로 하여 LiCoO2 전극을 기준으로 한 전극 방전 용량을 조사한 후, 그 결 과를 도4 에 나타내었다. At this time, the amount of the zirconia coated LiCoO 2 and the conductive material was 96%, 2% by weight, respectively. A lithium metal plate was used as a negative electrode as a counter electrode, and a PO (Poly Olefine) separator was used as a separator, and an EC: EMC solution in which 1M LiPF6 was dissolved was sufficiently wetted in the separator as an electrolyte. In addition, after the electrode plate was left at 90 ° C. for 4 hours, the electrode discharge capacity based on the LiCoO 2 electrode was investigated with the charge / discharge rate as C / 5, and the result is shown in FIG. 4.

(실시예 16)(Example 16)

지르코니아가 2 중량% 만큼 코팅된 LiCoO2, 도전재 Super-P 를 바인더로 쓰이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. LiCoO 2 coated with 2% by weight of zirconia and Super-P conductive material were mixed with PVdF used as a binder in an appropriate amount of NMP. When a suitable viscosity was obtained, it was cast on an aluminum sheet, dried, and rolled to form an electrode. Made.

이때, 지르코니아가 코팅된 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 상대 전극인 음극으로는 리튬 금속판, 분리막으로는 PO(Poly Olefine)분리막을 사용하였고, 전해질로는 1M LiPF6 가 용해된 EC:EMC 용액을 분리막에 충분히 적셔 사용하였다. 또한, 극판을 90 ℃ 에서 4시간 방치한 후 충방전율을 C/5 로 하여 LiCoO2 전극을 기준으로 한 전극 방전 용량을 조사한 후, 그 결과를 도4 에 나타내었다. At this time, the amount of the zirconia coated LiCoO 2 and the conductive material was 96%, 2% by weight, respectively. A lithium metal plate was used as a negative electrode as a counter electrode, and a PO (Poly Olefine) separator was used as a separator, and an EC: EMC solution in which 1M LiPF6 was dissolved was sufficiently wetted in the separator as an electrolyte. In addition, after leaving the electrode plate at 90 ° C. for 4 hours, the electrode discharge capacity based on the LiCoO 2 electrode was investigated with the charge / discharge rate as C / 5, and the results are shown in FIG. 4.

실시예 13 내지 실시예 16 은 극판을 고온 (90℃)에서 소정시간 방치한 후 방전 용량을 측정하였다는 점에서 앞서의 실시예와 구분된다.Examples 13 to 16 are distinguished from the previous examples in that the discharge capacity was measured after leaving the electrode plate at a high temperature (90 ° C.) for a predetermined time.

(비교예 4)(Comparative Example 4)

지르코니아가 코팅되지 않은 LiCoO2, 도전재 Super-P 를 바인더로 쓰이는 PVdF 와 함께 적당량의 NMP 에 혼합한 후 적당한 점도가 얻어졌을 때, 알루미늄 박판 위에 캐스팅하고 이를 건조 시킨 후, 압연하여 전극을 만들었다. Zirconia-coated LiCoO 2 and the conductive material Super-P were mixed with PVdF used as a binder in an appropriate amount of NMP, and then, when an appropriate viscosity was obtained, cast on an aluminum sheet, dried it, and rolled to make an electrode.

이때, 지르코니아가 코팅되지 않은 LiCoO2 와 도전재의 양은 각각 무게로 96%, 2%가 되게 하였다. 상대 전극인 음극으로는 리튬 금속판, 분리막으로는 PO(Poly Olefine)분리막을 사용하였고, 전해질로는 1M LiPF6 가 용해된 EC:EMC 용액을 분리막에 충분히 적셔 사용하였다. 또한, 극판을 90 ℃ 에서 4시간 방치한 후 충방전율을 C/5 로 하여 LiCoO2 전극을 기준으로 한 전극 방전 용량을 조사한 후, 그 결과를 도4 에 나타내었다. At this time, the amount of LiCoO 2 and the conductive material not coated with zirconia were 96% and 2% by weight, respectively. A lithium metal plate was used as a negative electrode as a counter electrode, and a PO (Poly Olefine) separator was used as a separator, and an EC: EMC solution in which 1M LiPF6 was dissolved was sufficiently wetted in the separator as an electrolyte. In addition, after leaving the electrode plate at 90 ° C. for 4 hours, the electrode discharge capacity based on the LiCoO 2 electrode was investigated with the charge / discharge rate as C / 5, and the results are shown in FIG. 4.

비교예 4 는 극판을 고온 (90℃)에서 소정시간 방치한 후 방전 용량을 측정하였다는 점에서 앞서의 비교예와 구분된다.The comparative example 4 is distinguished from the comparative example by the point which measured discharge capacity after leaving a pole plate at high temperature (90 degreeC) for predetermined time.

도 4를 참조하여, 실시예 13 내지 실시예 16 및 비교예 4 의 결과를 고찰하면, 지르코니아로 코팅되지 않은 경우에는 고온에서 방전 용량의 변화에 대해 전압의 변화가 매우 큰 반면, 양극 활물질을 지르코니아로 0.2 중량% 내지 2 중량% 만큼 코팅한 경우에는 고온에서 방전 용량의 변화에 따라 전압의 변화가 작은 것을 알 수 있다. 특히, 지르코니아를 0.5 중량% 만큼 코팅한 경우 전압의 변화가 가장 작았다.Referring to FIG. 4, considering the results of Examples 13 to 16 and Comparative Example 4, when the zirconia is not coated, the voltage change is very large with respect to the change in the discharge capacity at a high temperature, whereas the positive electrode active material is zirconia. In the case of coating by 0.2% by weight to 2% by weight, it can be seen that the change in voltage is small according to the change in discharge capacity at high temperature. In particular, when the zirconia was coated by 0.5% by weight, the change in voltage was the smallest.

이는 열 전도성이 우수한 지르코니아 막이 양극의 열 발산을 도와 주게 되어, 양극 활물질이 고온에서의 수명 특성 등 전지 특성이 악화되는 것을 막아주기 때문이다.This is because the zirconia film having excellent thermal conductivity helps heat dissipation of the positive electrode, and prevents the positive electrode active material from deteriorating battery characteristics such as life characteristics at high temperatures.

이상의 내용은 본 발명을 예를 들어 설명한 것으로서, 본 발명은 상술한 예에 한정되지 않으며, 본 발명의 권리는 첨부된 특허청구범위에 기재된 바에 따라 결정된다. 또한, 동 업계에 종사하는 자에 의하여 본 발명의 다양한 변형예들이 실시될 수 있으나, 이는 모두 본 발명의 권리 범위에 속하는 것임을 명백히 한다.The foregoing has described the present invention with reference to the examples, and the present invention is not limited to the above-described examples, and the rights of the present invention are determined according to the appended claims. In addition, various modifications of the present invention can be carried out by those skilled in the art, but it is obvious that all belong to the scope of the present invention.

이상에서 검토한 바와 같이, 본 발명에 따라 지르코니아가 0.2 중량% 내지 2 중량% 만큼 코팅된 리튬 코발트계 전극을 사용하면, 리튬 코발트계 산화물 결정이 코팅막 (외력) 에 의하여 보호되게 되어, 리튬 이온의 탈리 시 (충전시) 층상 구조의 붕괴를 억제할 수 있다.As discussed above, when using a lithium cobalt-based electrode coated with 0.2% by weight to 2% by weight of zirconia according to the present invention, lithium cobalt-based oxide crystals are protected by a coating film (external force), It is possible to suppress the collapse of the layered structure upon desorption (when charging).

또한, 본 발명에 따르면 리튬 코발트계 산화물의 표면에 지르코니아가 0.2 중량% 내지 2 중량% 만큼 코팅되기 때문에, 전해액이 코발트와 반응하는 것을 차단하여, 코발트가 전해액에 녹아들어 결정 구조가 붕괴되는 것을 방지한다.In addition, according to the present invention, since the zirconia is coated by 0.2 wt% to 2 wt% on the surface of the lithium cobalt oxide, the electrolyte is prevented from reacting with the cobalt, thereby preventing the cobalt from dissolving in the electrolyte and causing the crystal structure to collapse. do.

또한, 본 발명에 따르면, 리튬 코발트계 산화물 표면에 열 전도성이 양호한 지르코니아가 0.2 중량% 내지 2 중량% 만큼 코팅되기 때문에, 양극에서 발생하는 열을 쉽게 외부로 방출하여 고온에서도 양호한 수명 특성을 나타낸다.In addition, according to the present invention, since the zirconia having good thermal conductivity is coated by 0.2 wt% to 2 wt% on the surface of the lithium cobalt oxide, the heat generated from the anode is easily released to the outside, thereby showing good life characteristics even at high temperatures.

또한, 본 발명에 따르면, 리튬 코발트계 산화물 표면에 전기 전도성이 양호한 지르코니아가 0.2 중량% 내지 2 중량% 만큼 코팅되기 때문에, 양극의 내부 저항이 감소되어 방전 말기의 방전 전압의 저하가 억제되며, 레이트 특성도 향상되고, 고전압 하에서 충방전을 반복하여도 싸이클 특성이 열화되지 않는 리튬 코발트계 양극 활물질을 얻을 수 있다. In addition, according to the present invention, since the zirconia having good electrical conductivity is coated by 0.2 wt% to 2 wt% on the surface of the lithium cobalt oxide, the internal resistance of the anode is reduced, so that the drop in the discharge voltage at the end of discharge is suppressed. It is possible to obtain a lithium cobalt-based positive active material in which the characteristics are also improved and the cycle characteristics are not deteriorated even after repeated charging and discharging under high voltage.

Claims (5)

이차 전지용 리튬 코발트계 활물질에 있어서,In the lithium cobalt-based active material for secondary batteries, 상기 리튬 코발트계 활물질의 입자 표면에, 지르코니아 또는 지르코니아를 함유하는 합금 또는 지르코니아 산화물이 코팅되어 있는 것을 특징으로 하는 이차 전지용 리튬 코발트계 양극활물질.Zirconia or an alloy containing zirconia or zirconia oxide is coated on the surface of the particles of the lithium cobalt-based active material, lithium cobalt-based positive electrode active material for secondary batteries. 제 1 항에 있어서,The method of claim 1, 상기 리튬 코발트계 활물질의 입자 표면에, 상기 지르코니아 또는 지르코니아를 함유하는 합금 또는 지르코니아 산화물이 0.2 중량% 내지 2 중량% 만큼 코팅되어 있는 것을 특징으로 하는 이차 전지용 리튬 코발트계 양극활물질.The lithium cobalt-based positive electrode active material for secondary batteries, characterized in that the zirconia or the alloy containing zirconia or zirconia oxide is coated by 0.2% by weight to 2% by weight on the surface of the particles of the lithium cobalt-based active material. 제 2 항에 있어서,The method of claim 2, 상기 리튬 코발트계 활물질의 입자 표면에, 상기 지르코니아 또는 지르코니아를 함유하는 합금 또는 지르코니아 산화물이 0.5 중량% 만큼 코팅되어 있는 것을 특징으로 하는 이차 전지용 리튬 코발트계 양극활물질.The lithium cobalt-based positive electrode active material for secondary batteries, characterized in that the zirconia or the alloy containing zirconia or zirconia oxide is coated by 0.5% by weight on the particle surface of the lithium cobalt-based active material. 제 1 항 내지 제 3 항 중 어느 한 항에 기재된 양극활물질을 사용한 이차 전지.The secondary battery using the positive electrode active material in any one of Claims 1-3. 이차 전지용 양극활물질을 제조하는 방법에 있어서, In the method for producing a positive electrode active material for a secondary battery, 지르코늄 옥사이드를 이소프로필 알코올로 희석하여, 수분과의 반응을 억제하는 단계;Diluting zirconium oxide with isopropyl alcohol to inhibit the reaction with moisture; 상기 단계에서 생성된 용액에, 코팅되는 지르코니아의 양이 0.2 ~ 2 중량% 가 되도록 LiCoO2 의 양을 조절하여 첨가한 후 이를 교반하는 단계;Adding to the solution produced in the above step by adjusting the amount of LiCoO 2 so that the amount of the coated zirconia is 0.2 to 2% by weight; 교반하는 동안, 어드히젼 프로모터 (adhesion promoter) 로서 3-글리시드옥시프로릴트리메트옥실레인 (3-glycidoxyproryltrimethoxysilane)을 첨가하는 단계;While stirring, adding 3-glycidoxyproryltrimethoxysilane as an adhesion promoter; 교반이 완료된 후, 가열하여 솔벤트를 증발시키는 단계; 및 After stirring is complete, heating to evaporate the solvent; And 상기 솔벤트가 증발된 후, 열처리를 행하는 단계를 포함하는 것을 특징으로 하는 이차 전지용 리튬 코발트계 양극활물질 제조방법.After the solvent is evaporated, the method for producing a lithium cobalt-based positive electrode active material for a secondary battery comprising the step of performing a heat treatment.
KR1020040082918A 2004-09-02 2004-10-16 Anode active material for secondary battery coated with zirconia and manufacturing method thereof, and secondary battery using same Ceased KR20060021252A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20040069777 2004-09-02
KR1020040069777 2004-09-02

Publications (1)

Publication Number Publication Date
KR20060021252A true KR20060021252A (en) 2006-03-07

Family

ID=37128205

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040082918A Ceased KR20060021252A (en) 2004-09-02 2004-10-16 Anode active material for secondary battery coated with zirconia and manufacturing method thereof, and secondary battery using same

Country Status (1)

Country Link
KR (1) KR20060021252A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100793818B1 (en) * 2006-02-08 2008-01-21 고려대학교 산학협력단 Composite cathode active material for lithium secondary battery and manufacturing method thereof
CN103199228A (en) * 2013-03-12 2013-07-10 东莞市翔丰华电池材料有限公司 A kind of preparation method of modified ternary cathode material
WO2015084026A1 (en) * 2013-12-02 2015-06-11 주식회사 엘앤에프신소재 Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery containing same
KR20150101181A (en) * 2014-02-26 2015-09-03 전자부품연구원 Positive active material, lithium secondary battery having the same and manufacturing method thereof
US9172086B2 (en) 2008-12-05 2015-10-27 Samsung Sdi Co., Ltd. Cathode and lithium battery using the same
US10128499B2 (en) 2015-11-05 2018-11-13 Samsung Sdi Co., Ltd. Positive electrode active material, preparing method thereof, and lithium secondary battery including positive electrode comprising the positive electrode active material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100793818B1 (en) * 2006-02-08 2008-01-21 고려대학교 산학협력단 Composite cathode active material for lithium secondary battery and manufacturing method thereof
US9172086B2 (en) 2008-12-05 2015-10-27 Samsung Sdi Co., Ltd. Cathode and lithium battery using the same
CN103199228A (en) * 2013-03-12 2013-07-10 东莞市翔丰华电池材料有限公司 A kind of preparation method of modified ternary cathode material
WO2015084026A1 (en) * 2013-12-02 2015-06-11 주식회사 엘앤에프신소재 Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery containing same
US10439211B2 (en) 2013-12-02 2019-10-08 L&F Co., Ltd. Cathode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery containing the same
KR20150101181A (en) * 2014-02-26 2015-09-03 전자부품연구원 Positive active material, lithium secondary battery having the same and manufacturing method thereof
US10128499B2 (en) 2015-11-05 2018-11-13 Samsung Sdi Co., Ltd. Positive electrode active material, preparing method thereof, and lithium secondary battery including positive electrode comprising the positive electrode active material

Similar Documents

Publication Publication Date Title
CN111819717B (en) Negative electrode active material for lithium secondary battery, preparation method thereof, negative electrode for lithium secondary battery and lithium secondary battery comprising same
JP5435934B2 (en) Cathode and lithium battery using the same
EP2787563B1 (en) Lithium secondary battery having improved safety and stability
CN1284261C (en) Nonaqueous electrolyte secondary battery and its manufacture
CN103563155B (en) Include the lithium ion electrochemical cells of fluorocarbon additive agent electrolyte
US8999579B2 (en) Surface treated anode active material and method of making the same, anode including the same, and lithium battery including the same
JP5972513B2 (en) Cathode and lithium battery using the same
JP7260573B2 (en) Composite positive electrode active material for lithium ion battery, manufacturing method thereof, and lithium ion battery including positive electrode containing the same
CN104835950B (en) Positive electrode active material, preparation method thereof, and rechargeable lithium battery
KR100814881B1 (en) Battery active material, electrode and battery comprising same
CN102195087B (en) Non-aqueous electrolyte combination and nonaqueous electrolyte battery
KR20110005807A (en) High voltage cathode composition
JP2010140901A (en) Anode active material for lithium secondary cell, method for manufacturing the same, and lithium secondary cell equipped with anode active material
CN111480251A (en) Negative electrode for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
CN111525194B (en) Electrochemical device and electronic device including the same
JP2017520892A (en) Positive electrode for lithium battery
CN104904049A (en) Negative electrode for secondary battery and lithium secondary battery including the negative electrode
US20220123305A1 (en) Anode active material for lithium secondary battery and lithium secondary battery comprising same
CN113795464B (en) Method for manufacturing positive electrode active material for lithium secondary battery and positive electrode active material manufactured by the method
CN104362370A (en) Lithium manganate lithium ion battery and preparation method thereof
US20130252096A1 (en) Nonaqueous Electrolyte Rechargeable Battery Having Electrode Containing Conductive Polymer
KR20130004826A (en) Cathod slurry composition, cathode prepared from the slurry, and lithium battery comprising the cathode
JP2007184261A (en) Lithium-ion secondary battery
US20130252102A1 (en) Nonaqueous Electrolyte Rechargeable Battery Having Electrode Containing Conductive Polymer
US20230231125A1 (en) Method for activating electrochemical property of cathode active material for lithium secondary battery and cathode active material for lithium secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20041016

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20060330

Patent event code: PE09021S01D

E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20060731

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20060330

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载