JPS6066210A - Method of manufacturing optical waveguide - Google Patents
Method of manufacturing optical waveguideInfo
- Publication number
- JPS6066210A JPS6066210A JP58175044A JP17504483A JPS6066210A JP S6066210 A JPS6066210 A JP S6066210A JP 58175044 A JP58175044 A JP 58175044A JP 17504483 A JP17504483 A JP 17504483A JP S6066210 A JPS6066210 A JP S6066210A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- glass substrate
- glass
- waveguide
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
- G02B6/134—Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
- G02B6/1345—Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using ion exchange
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(イ)産業上の利用分野
この発明は光導波路、特にガラスイオン交換法によるマ
ルチモード光導波路の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to an optical waveguide, and particularly to a method for manufacturing a multimode optical waveguide using a glass ion exchange method.
(ロ)従来技術
光分岐用などの光導波路を製作するのに、従来は、■ガ
ラスイオン交換により電界引き込みで導波路を基板内で
埋め込む方法、■熱拡散によって半円断面の導波路゛を
基板上に形成し、この基板を2枚向い合わせて貼り合わ
ず方法などが使用されている。(b) Conventional technology In order to manufacture optical waveguides for optical branching, etc., the conventional methods were: 1. burying the waveguide in a substrate by drawing an electric field through glass ion exchange, 2. manufacturing a waveguide with a semicircular cross section by thermal diffusion. A method is used in which the film is formed on a substrate, and the two substrates are not bonded to each other facing each other.
上記■の方法によって製作される光導波路は、第1図(
a)に示すように、ガラス基板1内に断面円形状の光導
波路が形成されるので、理想的な光導波路が得られるが
、この光導波路の製造方法は、まず最初にマスクパター
ン電極付きのガラス基板を高温の硝酸銀(AgNO3)
等の溶融塩中に浸漬し、ガラスイオン交換を行い、ガラ
ス基板表面に光導波路を形成した後、ガラス基板を前記
の溶融塩から取り出し、次に他の例えばKNO3の溶融
塩に基板を再び浸漬し、再度電界を加えて導波路部を基
板内に引き込むものであるから、製作が非富に面倒かつ
時間がかかるという欠点がある。The optical waveguide manufactured by the method (■) above is shown in Figure 1 (
As shown in a), since an optical waveguide with a circular cross section is formed in the glass substrate 1, an ideal optical waveguide can be obtained. A glass substrate is coated with high temperature silver nitrate (AgNO3).
After immersing the glass substrate in a molten salt such as KNO3 to perform glass ion exchange and forming an optical waveguide on the surface of the glass substrate, the glass substrate is removed from the molten salt, and then the substrate is immersed again in another molten salt such as KNO3. However, since the waveguide section is drawn into the substrate by applying an electric field again, there is a drawback that manufacturing is extremely troublesome and time-consuming.
また、上記■による方法は、第2図に示すように、表面
に断面半円形状の光導波路4を形成したガラス基板3を
光導波路4が対面するように、2楔接着剤5で貼り合わ
せて製作するものであるから、光導波路4の中央部に接
着剤5が位置することになり、光導波路内を光が通過す
る際、光散乱が生じ、損失を大きくするという欠点があ
った。In addition, as shown in FIG. 2, in the method (2) above, a glass substrate 3 on which an optical waveguide 4 having a semicircular cross section is formed is bonded with two wedges of adhesive 5 so that the optical waveguide 4 faces each other. Since the optical waveguide 4 is manufactured by using the optical waveguide, the adhesive 5 is located in the center of the optical waveguide 4, and when light passes through the optical waveguide, light scattering occurs and the loss increases.
(ハ)目的
この発明の目的は、上記した従来の光導波路の製造方法
の欠点を解消し、製造が比較的簡単に行え、しかも作製
された光導波路が損失の少ないものを得ることのできる
光導波路の製造方法を提供することである。(c) Purpose The purpose of the present invention is to solve the above-mentioned drawbacks of the conventional optical waveguide manufacturing method, to provide an optical waveguide that can be manufactured relatively easily, and that the manufactured optical waveguide has little loss. An object of the present invention is to provide a method for manufacturing a wave path.
(ニ)構成
上記目的を達成するために、この発明の光導波路の製造
方法は、片面全面に電極を、他面にマスクパターン電極
を設けたガラス基板を溶融塩中に浸漬し、前記全面電極
とマスクパターン電極間に電圧を印加して、前記ガラス
基板の非マスク部に、断面が半円状となる高屈折率部が
形成される程度を越えて十分にガラスイオン交換を行い
、続いて前記ガラス基板の前記高屈折率部が露出する面
に、前記ガラス基板と同質のガラスを貼り合わせるよ(
ホ)実施例
以下、実施例により、この発明をさらに詳細に説明する
。(D) Structure In order to achieve the above object, the method for manufacturing an optical waveguide of the present invention includes immersing a glass substrate provided with electrodes on the entire surface of one side and mask pattern electrodes on the other surface in a molten salt, A voltage is applied between the mask pattern electrode and the glass substrate to perform sufficient glass ion exchange to the extent that a high refractive index portion having a semicircular cross section is formed in the non-mask portion of the glass substrate, and then Glass of the same quality as the glass substrate is bonded to the surface of the glass substrate where the high refractive index portion is exposed (
E) Examples The present invention will be explained in more detail with reference to Examples below.
以下に示す実施例では、第3図(a)に示すように、主
導波路13、分岐導波路15.16からなる光分岐導波
路12をガラス基板11上に形成する場合について説明
する。In the embodiment shown below, as shown in FIG. 3(a), a case will be described in which an optical branching waveguide 12 consisting of a main waveguide 13 and branching waveguides 15 and 16 is formed on a glass substrate 11.
製造は、第4図に示すように、まずソーダライムガラス
あるいはBK−7などのガラス基板11の片面に、全面
電極18、他方の面にマスクパターン電極19を設け、
このガラス基板11を、槽20内に充填された高温の溶
融塩中21内に浸漬し、上記電極18と19間に電圧V
を印加し、ガラスイオン交換を行う。電圧Vの印加が継
続されると、溶融塩21中の金属イオンは、マスクパタ
ーン19の非マスク部19aよりガラス基板11内に浸
入し、やがて半円状の高屈折率部22が形成される。こ
の時点よりもさらにガラスイオン交換を継続し、電界を
加え続けると、断面半円形状の高屈折率部22は、ガラ
ス基板11の内部に向かって引き込まれ、高屈折率部2
2は半円形状からつり鐘状の形状をしたものとなる。In the manufacturing process, as shown in FIG. 4, first, a full-surface electrode 18 is provided on one side of a glass substrate 11 such as soda lime glass or BK-7, and a mask pattern electrode 19 is provided on the other side.
This glass substrate 11 is immersed in a high temperature molten salt 21 filled in a tank 20, and a voltage V is applied between the electrodes 18 and 19.
is applied to perform glass ion exchange. When the application of the voltage V continues, the metal ions in the molten salt 21 penetrate into the glass substrate 11 from the non-mask portion 19a of the mask pattern 19, and eventually a semicircular high refractive index portion 22 is formed. . If glass ion exchange is continued from this point on and the electric field is continued to be applied, the high refractive index portion 22 having a semicircular cross section will be drawn toward the inside of the glass substrate 11, and the high refractive index portion 22 will be drawn into the glass substrate 11.
2 has a bell-like shape instead of a semicircular shape.
ガラス基板11につり鐘状の高屈折率部22が形成され
ると、このガラス基板11を槽2oの溶融塩21から取
り出し、ガラス基板11の表面をよく洗浄し、その後つ
り鐘状の高屈折率部22が形成された側に、ガラス基板
11と同材料のガラス板16を接着剤17で貼着する。When the bell-shaped high refractive index portion 22 is formed on the glass substrate 11, the glass substrate 11 is taken out from the molten salt 21 in the tank 2o, the surface of the glass substrate 11 is thoroughly cleaned, and then the bell-shaped high refractive index portion 22 is formed. A glass plate 16 made of the same material as the glass substrate 11 is attached to the side on which the index portion 22 is formed using an adhesive 17.
以上の過程により、断面がつり鐘状をした主導波路13
、分岐導波路15.16からなる光分岐導波路12が、
ガラス基板11上に形成される。Through the above process, the main waveguide 13 with a bell-shaped cross section
, the optical branching waveguide 12 consists of branching waveguides 15 and 16,
It is formed on a glass substrate 11.
以上のようにして得られた光分岐導波路の断面形状は、
円形ではないがつり鐘状をしており、光導波路の中央部
には接着剤が位置しないので、導波路内を伝播する光は
、散乱などによる損失を受けることなく伝播する。The cross-sectional shape of the optical branching waveguide obtained as described above is
Although it is not circular, it is bell-shaped, and since no adhesive is located in the center of the optical waveguide, light propagating within the waveguide propagates without suffering loss due to scattering or the like.
なお、断面形状は円形ではないが、伝播する光のモード
がマルチモードの場合、完全円形でないことはさしつか
えなく、全体として良好な光伝播を得ることができる。Note that although the cross-sectional shape is not circular, if the mode of the propagating light is multimode, there is no problem that the cross-sectional shape is not completely circular, and good light propagation can be obtained as a whole.
(へ)効果
この発明によれば、ガラスイオン交換は一回だけである
ので、比較的短時間で光導波路を製作することができ、
また光導波路の断面形状がつり鐘状に形成され、つり鐘
状の底面に接着剤によりガラス板を貼着して光導波路を
構成するものであるから、光導波路の中央部には接着剤
などが占めることがないので、伝播する光は散乱などを
受けず、従って低損失のマルチモード導波路を得ること
ができるし、また安定な特性のものを得ることができる
。(f) Effects According to this invention, since glass ion exchange is performed only once, an optical waveguide can be manufactured in a relatively short time.
In addition, the cross-sectional shape of the optical waveguide is formed into a bell shape, and the optical waveguide is constructed by pasting a glass plate with adhesive to the bottom of the bell shape. Since the propagating light does not undergo scattering, it is possible to obtain a multimode waveguide with low loss and stable characteristics.
第1図は従来の光導波路の製造方法によって得られた光
導波路を示す図であって、第1図(a)は同平面図、第
1図(b)は同側面図、第2図は従来の他の製造方法に
よって製作された光導波路を示ず図であって、第2図(
a)は同光導波路の斜視図、第2図(b)は同光導波路
の側面図、第3図はこの発明の光導波路の製造方法によ
って製作された光導波路を示す図であって、第3図(a
)は同光導波路の斜視図、第3図(b)は同光導波路の
側面図、第4図はこの発明の一実施例を説明するための
槽内を示す図である。
11ニガラス基板、12:光分岐導波路、16:ガラス
板、 17:接着剤、
18:電極、 19:マスクパターン電極特許出願人
株式会社島津製作所
代理人 弁理士 中 村 茂 信
第1図
(C7) (b)
11 −1?3FIG. 1 is a diagram showing an optical waveguide obtained by a conventional optical waveguide manufacturing method, in which FIG. 1(a) is a plan view, FIG. 1(b) is a side view, and FIG. FIG. 2 is a diagram (not showing an optical waveguide manufactured by another conventional manufacturing method);
a) is a perspective view of the same optical waveguide, FIG. 2(b) is a side view of the same optical waveguide, and FIG. Figure 3 (a
) is a perspective view of the optical waveguide, FIG. 3(b) is a side view of the optical waveguide, and FIG. 4 is a diagram showing the inside of a tank for explaining an embodiment of the present invention. 11: glass substrate, 12: optical branching waveguide, 16: glass plate, 17: adhesive, 18: electrode, 19: mask pattern electrode patent applicant
Shimadzu Corporation Representative Patent Attorney Shigeru Nakamura Figure 1 (C7) (b) 11 -1?3
Claims (1)
設けたガラス基板を溶融塩中に浸漬し、前記全面電極と
マスクパターン電極間に電圧を印加し、前記ガラス基板
の非マスク部に、断面が半円状となる高屈折率部が形成
される程度を越えて十分にガラスイオン交換を行い、そ
の後、前記ガラス基板の前記高屈折率部が露出する面に
、前記ガラス基板と同質のガラス板を貼着するようにし
た光導波路の製造方法。(1) A glass substrate with an electrode on the front surface of one side and a mask pattern electrode on the other side is immersed in molten salt, a voltage is applied between the entire surface electrode and the mask pattern electrode, and a voltage is applied to the non-mask portion of the glass substrate. , perform glass ion exchange sufficiently to the extent that a high refractive index portion having a semicircular cross section is formed, and then apply a material of the same material as the glass substrate to the surface of the glass substrate where the high refractive index portion is exposed. A method for manufacturing an optical waveguide in which a glass plate is attached.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP58175044A JPS6066210A (en) | 1983-09-20 | 1983-09-20 | Method of manufacturing optical waveguide |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP58175044A JPS6066210A (en) | 1983-09-20 | 1983-09-20 | Method of manufacturing optical waveguide |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS6066210A true JPS6066210A (en) | 1985-04-16 |
Family
ID=15989235
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP58175044A Pending JPS6066210A (en) | 1983-09-20 | 1983-09-20 | Method of manufacturing optical waveguide |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS6066210A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5035734A (en) * | 1989-04-13 | 1991-07-30 | Oy Nokia Ab | Method of producing optical waveguides |
| US5269888A (en) * | 1990-04-19 | 1993-12-14 | Cselt - Centro Studi E Laboratori Telecomunicazioni S.P.A. | Method of fabricating integrated optical devices by means of field-assisted ion exchange |
| JP2009089481A (en) * | 2007-09-28 | 2009-04-23 | Chugoku Electric Power Co Inc:The | Cable laying method |
-
1983
- 1983-09-20 JP JP58175044A patent/JPS6066210A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5035734A (en) * | 1989-04-13 | 1991-07-30 | Oy Nokia Ab | Method of producing optical waveguides |
| US5269888A (en) * | 1990-04-19 | 1993-12-14 | Cselt - Centro Studi E Laboratori Telecomunicazioni S.P.A. | Method of fabricating integrated optical devices by means of field-assisted ion exchange |
| JP2009089481A (en) * | 2007-09-28 | 2009-04-23 | Chugoku Electric Power Co Inc:The | Cable laying method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3880630A (en) | Method for forming optical waveguides | |
| US4711514A (en) | Product of and process for forming tapered waveguides | |
| JPH02293351A (en) | Production of light waveguide path and ion exchange mask used for it | |
| JPH02221139A (en) | Preparation of directly buried waveguide | |
| JPS6066210A (en) | Method of manufacturing optical waveguide | |
| JPS58118610A (en) | Production of tapered optical waveguide | |
| JPH0244041B2 (en) | ||
| JPH0251446A (en) | Optical waveguide creation method | |
| JPS58209709A (en) | Star coupler for multimode optical fiber and its manufacture | |
| JPS5936727B2 (en) | Dielectric waveguide with electrodes and manufacturing method thereof | |
| JPS58118609A (en) | Production of optical waveguide | |
| JPH0350241B2 (en) | ||
| JPS57176005A (en) | Manufacture of optical waveguide circuit | |
| JPH0197907A (en) | Production of optical waveguide circuit | |
| JPS5897005A (en) | Production of optical waveguide | |
| KR100263606B1 (en) | Manufacturing method of optical waveguide device with integrated optical mirror | |
| JPS6012515A (en) | Manufacture of optical waveguide circuit | |
| JPS63250611A (en) | Method of manufacturing optical waveguide | |
| JPH07270634A (en) | Manufacture of optical waveguide and optical waveguide substrate | |
| JPS58118607A (en) | Production of optical waveguide | |
| JPS60145935A (en) | Method of manufacturing optical waveguide | |
| JPS58118606A (en) | Production of optical waveguide | |
| JPS58154820A (en) | Formation method of waveguide for optical switch | |
| JPS62133402A (en) | Preparation of hologram lens | |
| JPS6064309A (en) | Formation of end lens for optical waveguide |