+

JPH1038517A - Optical displacement measuring device - Google Patents

Optical displacement measuring device

Info

Publication number
JPH1038517A
JPH1038517A JP19331796A JP19331796A JPH1038517A JP H1038517 A JPH1038517 A JP H1038517A JP 19331796 A JP19331796 A JP 19331796A JP 19331796 A JP19331796 A JP 19331796A JP H1038517 A JPH1038517 A JP H1038517A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
parallel
grating
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19331796A
Other languages
Japanese (ja)
Inventor
誠 ▲高▼宮
Makoto Takamiya
Akira Ishizuka
公 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP19331796A priority Critical patent/JPH1038517A/en
Priority to US08/897,548 priority patent/US6005667A/en
Publication of JPH1038517A publication Critical patent/JPH1038517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To always accurately measure the displacement of a scale by irradiating a lens system which is positioned so that a diffraction grating can substantially come to its focal point with a parallel luminous flux from a light projecting means and forming a plurality of diffracted light rays from the diffraction grating to parallel luminous fluxes which are parallel with each other. SOLUTION: A divergent luminous flux from a laser diode 1 is made a parallel luminous flux through a collimator lens 2 and converged onto a diffraction grating G1 as a spot light through a lens 3 which is positioned above the grating grating G1 so that the distance from the grating G1 can become equal to its focal distance and the grating G1 emits + primary diffracted light rays by reflecting and diffracting the luminous flux. The diffracted light rays are again passed through the lens 3 and become two parallel luminous fluxes having parallel optical axes even when the scale 4 rotationally moves along the grating forming surface. Then the parallel luminous fluxes are polarized through blazed diffraction gratings 5a and 5b of the same pitch and synthesized into one luminous flux by truing their wave fronts through a diffraction grating 6. The synthesized luminous flux is received by means of a four-divided sensor 7. Then, the information on the moving amount and direction of the scale 4 is obtained by processing sine wave signals obtained when the scale 4 moves.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光学式変位測定装置
に関する。本発明は特に、物体に光を照射した際に発生
する回折、干渉により、干渉光束が変調されることを利
用したエンコーダに良好に適用できるものである。
The present invention relates to an optical displacement measuring device. In particular, the present invention can be favorably applied to an encoder that utilizes the fact that an interference light beam is modulated by diffraction and interference generated when an object is irradiated with light.

【0002】[0002]

【従来の技術】従来より光を物体に照射して高精度に物
体の移動や変位などの物理量を求める装置として、たと
えば光学式エンコーダ、レーザドップラー速度計、レー
ザ干渉計等が利用されている。これらの光を利用した装
置の特徴は、高精度、高分解能であり、最近では、より
広い分野に応用されるために更なる小型化が必要になっ
てきている。
2. Description of the Related Art Conventionally, optical encoders, laser Doppler velocimeters, laser interferometers, and the like have been used as devices for irradiating an object with light to obtain a physical quantity such as movement or displacement of the object with high accuracy. The features of these devices using light are high accuracy and high resolution, and recently, further miniaturization is required for application to a wider field.

【0003】このような装置では、特開昭62ー121
314号公報に示されるような、回折格子を3枚使った
エンコーダを小型化したものや、特開平3−27981
2号公報に示されるような、このような装置を同時に高
精度で簡易小型化したもの等が知られている。
In such an apparatus, Japanese Patent Application Laid-Open No. 62-121
No. 314, a miniaturized encoder using three diffraction gratings is disclosed.
As disclosed in Japanese Patent Application Laid-Open No. 2 (1999) -210, there is known a device in which such a device is simultaneously miniaturized with high accuracy.

【0004】[0004]

【発明が解決しようとする課題】従来例に示したような
エンコーダは小型化、高精度化が図られているが、以下
のような課題が存在する。
Although the encoder as shown in the prior art has been reduced in size and increased in accuracy, it has the following problems.

【0005】これらに開示された装置では、発光源から
射出された光を左右に2分割、叉はそれ以上に光路を分
割して移動回折格子に入射させ、それぞれから得られた
回折光の干渉光を光電素子で受光している。このような
構成では、干渉させる為に合波用の回折格子で合成した
光束間に傾きがあると、光電素子の受光面上に縞が発生
する。この場合、干渉光の時間的な強弱変化において、
この縞の存在によって受光面上の干渉領域毎に互いの位
相が異なってしまう。
In the devices disclosed in these publications, the light emitted from the light emitting source is split into two parts on the left and right, or the light path is further divided and made incident on the moving diffraction grating. Light is received by the photoelectric element. In such a configuration, if there is an inclination between the light beams synthesized by the multiplexing diffraction grating to cause interference, fringes are generated on the light receiving surface of the photoelectric element. In this case, in the temporal change of the interference light,
Due to the presence of the fringes, the respective phases are different for each interference region on the light receiving surface.

【0006】従って、合波する光束間の傾きの発生を厳
密に防止し、受光面上での干渉状態をすべて等しく一定
状態に調整しなければならない。しかしながら、回折格
子で合成された干渉光束の干渉状態を干渉領域すべてで
等しく一定状態に調整する事は非常に困難である。特に
本体分解能を向上させればさせるほど、取付誤差等の影
響で干渉状態が変動し易くなる。
Therefore, it is necessary to strictly prevent the occurrence of a tilt between the multiplexed light beams, and to adjust the interference state on the light receiving surface to a uniform state. However, it is very difficult to adjust the interference state of the interference light beam synthesized by the diffraction grating to be constant in all interference regions. In particular, as the resolution of the main body is improved, the interference state is more likely to fluctuate due to the influence of a mounting error or the like.

【0007】この様な干渉状態の変動は、干渉縞発生時
に受光面上での干渉光の時間的な強弱変化を平均化して
検出される信号の振幅を低下させ、信号振幅を不安定な
ものとしてしまう。また、例えば合波回折格子を位相の
異なる複数の回折格子で構成し、それぞれから出射する
干渉光を個別に検出してAB相信号を得る構成の装置で
は、合波した光束間に傾きが発生するようであれば、異
なる干渉領域で得られる信号間の位相差は安定しない。
又、それぞれから検出される信号の振幅も不安定なもの
となる。
[0007] Such fluctuations in the interference state cause the amplitude of the detected signal to decrease by averaging the temporal change in the intensity of the interference light on the light receiving surface when an interference fringe occurs, thereby making the signal amplitude unstable. I will. Further, for example, in an apparatus in which a multiplexed diffraction grating is configured by a plurality of diffraction gratings having different phases and an interference light emitted from each of the diffraction gratings is individually detected to obtain an AB phase signal, an inclination occurs between the multiplexed light fluxes. If so, the phase difference between signals obtained in different interference regions is not stable.
Also, the amplitude of the signal detected from each becomes unstable.

【0008】特開平3−279812号に記載されてい
る装置を例として考えた場合、特に投光手段と受光手段
とが設けられたヘッド部とスケール部の取り付け誤差に
よる干渉状態変動が問題である。回折格子が形成された
面に垂直な軸を中心とした回転が発生する様な取付誤差
が生じると回折格子の配列方向に平行な干渉縞が生じ、
回折格子が形成された面内で回折格子の配列方向に垂直
な軸を中心とした回転が発生する様な取付誤差が生じる
と、この回転軸方向に平行な干渉縞が生じる。以下で
は、回折格子が形成された面に垂直な軸を中心とした回
転取付誤差の回転角を『アジマス角(η)』と呼び、回
折格子が形成された面内で回折格子の配列方向に垂直な
軸を中心とした回転取付誤差の回転角を『回転角
(φ)』と呼ぶ事にする。
When the apparatus described in Japanese Patent Application Laid-Open No. 3-279812 is taken as an example, there is a problem in particular that the interference state varies due to an error in mounting the head and the scale provided with the light projecting means and the light receiving means. . If a mounting error occurs such that rotation about an axis perpendicular to the surface on which the diffraction grating is formed occurs, interference fringes parallel to the arrangement direction of the diffraction grating occur.
When a mounting error occurs such that rotation occurs around an axis perpendicular to the arrangement direction of the diffraction gratings in the plane on which the diffraction grating is formed, interference fringes parallel to the rotation axis direction are generated. In the following, the rotation angle of the rotation mounting error about the axis perpendicular to the surface on which the diffraction grating is formed is referred to as “azimuth angle (η)”, and the rotation angle in the direction in which the diffraction grating is arranged within the surface on which the diffraction grating is formed. The rotation angle of the rotation mounting error about the vertical axis is referred to as “rotation angle (φ)”.

【0009】干渉させる2光束に平行光を用いた場合、
回転角方向の取付誤差があっても些少であれば干渉2光
束間の角度差は余り生じないが、極端に回転角方向にズ
レが生じると干渉状態は不安定となる。また、アジマス
角方向の取付誤差ではちょっとのズレで干渉2光束間の
角度差が付いてしまい、敏感に干渉状態が不安定とな
る。
When parallel light is used for two beams to be interfered,
Even if there is a slight mounting error in the rotation angle direction, if the difference is small, there will not be much difference in the angle between the two beams of interference, but if there is an extreme deviation in the rotation angle direction, the interference state will be unstable. In addition, a slight deviation in the mounting error in the azimuth angle direction causes an angle difference between the two light beams of the interference, which makes the interference state sensitively unstable.

【0010】本発明は上述従来例に鑑み、原理的に取付
誤差による干渉縞の発生を防止し、回折格子ないし検出
側の取付状態によらず常に正確に変位測定を実行できる
装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned prior art, and has as its object to provide an apparatus which in principle can prevent the occurrence of interference fringes due to mounting errors and can always accurately measure displacement regardless of the mounting state of a diffraction grating or a detection side. With the goal.

【0011】[0011]

【課題を解決するための手段】上述目的を達成するため
の第1発明は、相対変位を検出すべき物体上に設けられ
た回折格子に光束をスポット投影する投光手段と、前記
回折格子のスポット投影位置からの次数の異なる回折光
を、該次数の異なる回折光が共に平行光束でかつ互いに
平行である形態か、あるいは該次数の異なる回折光の波
面が同一曲率中心を有する形態で、互いに合波して得ら
れる干渉光束を受光する光検出手段とを有することを特
徴とする光学式変位測定装置である。
According to a first aspect of the present invention, there is provided a light-emitting device for spot-projecting a light beam onto a diffraction grating provided on an object whose relative displacement is to be detected; Diffracted light beams of different orders from the spot projection position are compared with each other in a form in which the diffracted lights of different orders are both parallel light beams and parallel to each other, or in a form in which the wavefronts of the diffracted lights of different orders have the same center of curvature. An optical displacement measuring device comprising: a light detecting unit that receives an interference light beam obtained by multiplexing.

【0012】上述目的を達成するための第2発明は、相
対変位を検出すべき物体上に設けられた回折格子に光束
をスポット投影する投光手段と、前記回折格子のスポッ
ト投影位置からの次数の異なる回折光を、該次数の異な
る回折光の波面を互いにそろえた形で合波して得られる
干渉光束を受光する光検出手段とを有することを特徴と
する光学式変位測定装置である。
According to a second aspect of the present invention, there is provided a light projecting means for spot-projecting a light beam onto a diffraction grating provided on an object whose relative displacement is to be detected, and an order from the spot projection position of the diffraction grating. And a light detecting means for receiving an interference light beam obtained by multiplexing the diffracted lights of different orders in such a manner that the wavefronts of the diffracted lights of different orders are aligned with each other.

【0013】第3発明は更に、前記回折格子のスポット
投影位置からの次数の異なる回折光を、発散光のままあ
るいは平行光変換して、合波した形で前記光検出手段に
導く光学系を有することを特徴とする。
The third invention further provides an optical system for guiding diffracted light of different orders from the spot projection position of the diffraction grating as divergent light or parallel light to guide the combined light to the light detecting means. It is characterized by having.

【0014】第4発明は更に、前記光学系内に、前記複
数の回折光の各光束それぞれに対して実質的に2枚の光
束合波用回折格子が配置され、前記実質的に2枚の光束
合波用回折格子の一方の光束透過領域内に格子配列位相
の異なる格子部分を設けたことを特徴とする。
According to a fourth aspect of the present invention, in the optical system, substantially two light beam multiplexing diffraction gratings are arranged for each of the plurality of light beams of the diffracted light, and the substantially two light beam multiplexing diffraction gratings are arranged. A grating portion having a different grating arrangement phase is provided in one of the light beam transmitting regions of the light beam combining diffraction grating.

【0015】第5、第6発明は更に、前記投光手段は前
記回折格子が実質的に焦点位置になるように配置された
レンズ系へ平行光束照射し、前記回折格子からの複数の
回折光を該レンズ系により平行光束で且つ互いに平行に
することを特徴とする。
According to a fifth and a sixth aspect of the present invention, the light projecting means further irradiates a parallel light beam to a lens system arranged such that the diffraction grating is substantially at a focal position, and a plurality of diffracted lights from the diffraction grating. Are collimated by the lens system and are made parallel to each other.

【0016】[0016]

【発明の実施の形態】図1は本発明に係る第1の実施例
の光学式変位測定装置の光学構成を示した概略説明図で
ある。
FIG. 1 is a schematic explanatory view showing an optical configuration of an optical displacement measuring apparatus according to a first embodiment of the present invention.

【0017】図中、1はレーザーダイオード、2はコリ
メータレンズ、3は対物レンズである。4は移動物体側
に設けられたスケールで、回折格子G1が設けられてい
る。5a、5bはブレーズド回折格子、6は格子位相が
λ/4づつずれた4つの格子領域を持つ光束合波用の回
折格子、7は回折格子6の4つの格子領域に対応した4
つの受光領域を設けた4分割センサーである。
In the figure, 1 is a laser diode, 2 is a collimator lens, and 3 is an objective lens. Reference numeral 4 denotes a scale provided on the moving object side, on which a diffraction grating G1 is provided. 5a and 5b are blazed diffraction gratings, 6 is a diffraction grating for multiplexing light beams having four grating regions whose grating phases are shifted by λ / 4, and 7 is a diffraction grating 6 corresponding to four grating regions.
This is a four-divided sensor provided with two light receiving areas.

【0018】レーザーダイオード1から射出した発散光
束は、コリメータレンズ2にて平行光束となり、スケー
ル4上の回折格子G1との距離を焦点位置fに合わされ
たレンズ3によって集光されて回折格子G1上に点照射
される。この回折格子G1は、±1次回折光を特に強く
反射回折する様に、格子高さが実質的に4分の1波長に
構成された位相型回折格子となっている。このとき、レ
ーザー波長をλ、レーザー平行光束の径をaとすると、
回折格子G1上でのビームウエストω1は、 ω1=1.273×λ×|f|/a となる。この回折格子G1上でのビームウエストω1
は、回折格子G1の格子ピッチpに対し、数本以上にな
るようにレーザー平行光束の径aと焦点位置fを選択し
ている。
The divergent light beam emitted from the laser diode 1 is converted into a parallel light beam by the collimator lens 2, and is condensed by the lens 3 adjusted to the focal position f by adjusting the distance from the diffraction grating G1 on the scale 4 to the light on the diffraction grating G1. Point irradiation. The diffraction grating G1 is a phase type diffraction grating having a grating height of substantially a quarter wavelength so as to particularly strongly reflect and diffract ± 1st-order diffracted light. At this time, if the laser wavelength is λ and the diameter of the laser parallel light beam is a,
The beam waist ω1 on the diffraction grating G1 is as follows: ω1 = 1.273 × λ × | f | / a. Beam waist ω1 on this diffraction grating G1
Selects the diameter a and the focal position f of the laser parallel beam so as to be several or more with respect to the grating pitch p of the diffraction grating G1.

【0019】回折格子G1上に照射された光束は反射回
折され、±1次回折光を出射する。
The light beam irradiated on the diffraction grating G1 is reflected and diffracted, and emits ± first-order diffracted light.

【0020】このとき±1次回折光光軸の回折角θは、
次式より得られる。
At this time, the diffraction angle θ of the ± 1st-order diffracted optical axis is
It is obtained from the following equation.

【0021】psinθ=λ この±1次回折光は再び回折格子G1との距離が焦点位
置fに合わされたレンズを透過し、互いに光軸が平行な
2つの平行光束となる。この光学系により、スケールが
格子形成面に沿って回転移動しても回折格子G1より得
られた±1次の回折光が共に平行光束でかつ光軸も平行
となる光学系を実現する。
P sin θ = λ The ± 1st-order diffracted light passes through the lens whose distance from the diffraction grating G1 is adjusted to the focal position f again, and becomes two parallel light beams whose optical axes are parallel to each other. This optical system realizes an optical system in which the ± 1st-order diffracted lights obtained from the diffraction grating G1 are both parallel light beams and the optical axes are parallel even if the scale is rotationally moved along the grating forming surface.

【0022】2つの平行光束は、それぞれ光学系全体の
光軸方向に偏向されるように配置された等ピッチのブレ
ーズド回折格子5a、5bにより偏向され、偏向光束の
交叉位置に配置された、ブレーズド回折格子5a、5b
と等しいピッチでしかも2光束透過領域内で格子位相が
λ/4づつずれた4つの格子領域を持つ回折格子6によ
り、波面を揃えて合波される。
The two parallel light beams are deflected by blazed diffraction gratings 5a and 5b of equal pitch, which are disposed so as to be deflected in the direction of the optical axis of the entire optical system, and are blazed at the intersection of the deflected light beams. Diffraction gratings 5a, 5b
The wavefronts are aligned and multiplexed by a diffraction grating 6 having four grating regions having the same pitch as that and having a grating phase shifted by λ / 4 in the two light beam transmitting regions.

【0023】そしてそれぞれの4つの格子領域それぞれ
で合波された光束を受光する位置に各受光領域を配置さ
れた4分割センサー7により受光される。4分割センサ
ー7からは、スケール4の移動に伴って各受光領域より
互いに1/4周期位相差を持つ4つの正弦波信号が得ら
れるようになっている。この4信号を不図示の信号処理
系で処理してスケール4の移動量と移動方向の情報を得
る。このような信号処理についてはすでに知られてお
り、よって詳細は省略する。
Then, the light is received by a four-divided sensor 7 in which each light receiving region is arranged at a position where the light beam combined in each of the four grating regions is received. From the four-divided sensor 7, four sine wave signals having a quarter cycle phase difference from each other are obtained from each light receiving area as the scale 4 moves. The four signals are processed by a signal processing system (not shown) to obtain information on the movement amount and movement direction of the scale 4. Such signal processing is already known, and therefore, the details are omitted.

【0024】このように2つの平行光束を波面を揃えて
合波する光学系として、1光束に対して2枚の回折格子
を配置し、2枚の回折格子のいずれかの光束透過領域内
に格子配列位相の異なる部分を設けることにより、例え
ば、1/4波長板と偏向プリズムの組み合わせのような
複雑な光学構成を取ることなく、位相ズレ信号を発生さ
せることができ、簡単な構成で高精度検出を可能とす
る。
As described above, as an optical system for combining two parallel light beams with their wavefronts aligned, two diffraction gratings are arranged for one light beam, and the two diffraction gratings are disposed in a light transmission area of one of the two diffraction gratings. By providing portions having different grating arrangement phases, it is possible to generate a phase shift signal without taking a complicated optical configuration such as a combination of a quarter-wave plate and a deflecting prism. Enables accuracy detection.

【0025】ここで、本実施例においてスケール4がア
ジマス方向に回転した場合を考える。
Here, consider the case where the scale 4 rotates in the azimuth direction in this embodiment.

【0026】図2は、スケール4にアジマス方向の取付
ズレがある時の光路図である。
FIG. 2 is an optical path diagram when the scale 4 is displaced in the azimuth direction.

【0027】図からわかるように、スケール4にアジマ
ス角ηの取付ズレがあると、±1次回折光は回折格子上
から、取付ずれのない状態(点線)よりもアジマス角方
向にそれぞれずれて、発散しながら出射する。
As can be seen from the figure, if the scale 4 has a misalignment of the azimuth angle η, the ± 1st-order diffracted light is shifted from the diffraction grating in the azimuth angle direction as compared with a state where there is no misalignment (dotted line). It emits while diverging.

【0028】この2つの発散光束はレンズ3で透過偏向
されるが、回折格子G1はレンズ3の焦点位置に合わさ
れているため、アジマス角ηがどうであっても、必ず互
いに光軸が平行な2つの平行光束となる。これによりブ
レーズド回折格子5a、5bと回折格子6によって合波
された状態でも、2光束間に若干の位置ずれは発生して
も、2光束の光軸は平行なままである。即ち、取付ズレ
のアジマス角ηの値に関わらず、合波された2光束間に
角度ズレは発生せず、4分割センサー7の受光面上では
空間的な干渉縞の発生がない。
The two divergent light beams are transmitted and deflected by the lens 3. However, since the diffraction grating G1 is set at the focal position of the lens 3, the optical axes are always parallel to each other regardless of the azimuth angle η. It becomes two parallel light beams. As a result, even when the blazed diffraction gratings 5a and 5b and the diffraction grating 6 combine the light beams, the optical axes of the two light beams remain parallel even if a slight displacement occurs between the two light beams. That is, regardless of the value of the azimuth angle η of the mounting deviation, no angle deviation occurs between the combined two light beams, and no spatial interference fringes occur on the light receiving surface of the four-divided sensor 7.

【0029】図3は、スケール4に回転方向の取付ズレ
がある時の光路図である。
FIG. 3 is an optical path diagram when the scale 4 is displaced in the rotational direction.

【0030】図からわかるように、スケール4に回転角
φの取付ズレがあると、±1次回折光の光軸のレンズ3
光軸に対してなす角(見かけ上の回折角)は±1次でそ
れぞれ異なることになる。各見かけ上の回折角θ±2φ
は次式により得られる。
As can be seen from the figure, if the scale 4 has a displacement of the rotation angle φ, the lens 3 of the optical axis of ± 1st-order diffracted light
The angles (apparent diffraction angles) formed with respect to the optical axis differ from each other in ± 1 order. Each apparent diffraction angle θ ± 2φ
Is obtained by the following equation.

【0031】p(sinθ±sinφ)=λ この見かけ上の回折角が異なる±1次回折光は、回折格
子上から、取付ずれのない状態(点線)よりも回転角方
向にそれぞれずれて、発散しながら出射する。
P (sin θ ± sin φ) = λ The ± 1st-order diffracted lights having different apparent diffraction angles are diverged from the diffraction grating in the direction of the rotation angle as compared with the state where there is no misalignment (dotted line). While emitting.

【0032】この2つの発散光束は、レンズ3で透過偏
向されるが、回折格子G1はレンズ3の焦点位置に合わ
されているため、回転角φがどうであっても、必ず互い
に光軸が平行な2つの平行光束となる。これによりブレ
ーズド回折格子5a、5bと回折格子6によって合波さ
れた状態でも、2光束間に若干の位置ずれは発生して
も、2光束の光軸は平行なままである。即ち、取付ズレ
の回転角φの値に関わらず、合波された2光束間に角度
ズレは発生せず、4分割センサー7の受光面上では空間
的な干渉縞の発生がない。
The two divergent light beams are transmitted and deflected by the lens 3, but since the diffraction grating G1 is adjusted to the focal position of the lens 3, the optical axes are always parallel to each other regardless of the rotation angle φ. Two parallel light beams. As a result, even when the blazed diffraction gratings 5a and 5b and the diffraction grating 6 combine the light beams, the optical axes of the two light beams remain parallel even if a slight displacement occurs between the two light beams. That is, regardless of the value of the rotation angle φ of the mounting deviation, no angular deviation occurs between the combined two light beams, and no spatial interference fringes occur on the light receiving surface of the four-divided sensor 7.

【0033】以上の構成を取ることにより、スケールの
取り付け精度をほとんど気にすることのない光学式変位
測定を提供することが可能となる。
By adopting the above configuration, it is possible to provide an optical displacement measurement that hardly cares about the scale mounting accuracy.

【0034】図2、図3で説明したように、スケール取
付けにズレが発生した場合、合波2光束の光路は多少平
行ずれを発生するが、最終的に4つの領域の光検出器へ
2光束が到達するように、設計段階で想定されるスケー
ル取付けズレに合わせて、入射する光束の径、格子ピッ
チ、レンズ焦点距離を選択すればよく、あらゆる条件下
で対応可能な光学式変位測定装置を実現することができ
る。
As described with reference to FIGS. 2 and 3, when the scale is displaced, the optical paths of the combined two light beams slightly shift in parallel. An optical displacement measuring device that can be used under all conditions can be selected by selecting the diameter, grating pitch, and lens focal length of the incident light beam according to the scale mounting deviation assumed at the design stage so that the light beam arrives. Can be realized.

【0035】また、アジマス角発生時においては、最終
的に得られる変位情報にsinη分の測定誤差が乗るこ
とになるが、これは想定されるスケール取付ズレによる
この誤差分が影響のない程度にスケール範囲、スケール
ピッチ等を選択すればよい。
When an azimuth angle is generated, a measurement error corresponding to sinη is added to the displacement information finally obtained, but this is so small that the error due to the assumed displacement of the scale does not influence. What is necessary is just to select a scale range, a scale pitch, and the like.

【0036】第1実施例では、回折格子に入射する投光
光学系として焦点位置に合わせたレンズ系としての対物
レンズ3へ平行光束照射して、回折格子G1上に点照射
する例を示したが、対物レンズ3を投影側と受光側で分
離して構成し、このような回折格子を焦点位置に合わせ
たレンズを介さずに、直接回折格子G1上に点照射する
構成を取っても同様な効果を得る事ができる。その場
合、回折格子G1上のビームウエストは投光光学系によ
り決定されるため、回折格子G1の格子ピッチpに対す
る照射本数を高い自由度で設定することができる。
In the first embodiment, an example is shown in which a parallel light beam is radiated to the objective lens 3 as a lens system adjusted to the focal position as a light projecting optical system which enters the diffraction grating, and a point is radiated onto the diffraction grating G1. However, it is also possible to adopt a configuration in which the objective lens 3 is configured to be separated on the projection side and the light receiving side, and a point irradiation is directly performed on the diffraction grating G1 without passing through such a diffraction grating at a focal position. Effects can be obtained. In this case, since the beam waist on the diffraction grating G1 is determined by the light projecting optical system, the number of irradiations with respect to the grating pitch p of the diffraction grating G1 can be set with a high degree of freedom.

【0037】また第1実施例では、2つの平行光束を波
面を揃えて合波する偏向光学系として、1光束につき2
枚の回折格子を配置した例を示したが、プリズム系を配
置して波面を揃えて合波する偏向光学系を採用してもよ
い。
In the first embodiment, a deflecting optical system for combining two parallel light beams with their wavefronts aligned is used for two light beams per light beam.
Although an example in which a plurality of diffraction gratings are arranged has been described, a deflecting optical system in which a prism system is arranged and wave surfaces are aligned and multiplexed may be employed.

【0038】更に、第1実施例における回折格子6を一
つの格子より構成し、4分割センサー7を一つの受光面
のセンサーに置き換えた上で、第1実施例におけるレー
ザーダイオード1及びコリメータレンズ2の組とセンサ
ー7との配置を逆としても、同様にスケールの取り付け
精度をほとんど気にすることのない光学式変位測定装置
が実現される。
Further, the diffraction grating 6 in the first embodiment is constituted by one grating, and the four-division sensor 7 is replaced by a sensor having one light receiving surface. Then, the laser diode 1 and the collimator lens 2 in the first embodiment are replaced. Even if the arrangement of the set 7 and the sensor 7 is reversed, an optical displacement measuring device which hardly cares about the accuracy of mounting the scale is also realized.

【0039】これを説明すると、回折格子6により分割
された2平行光束がブレーズド回折格子5a、5b及び
レンズ3を介して回折格子G1上にビームウエストを形
成し、ここから合波された状態で回折格子形成面法線方
向に発生する±1次回折光は、レンズ3で平行光束に変
換されてセンサーに入射する。この±1次回折光は第1
実施例の場合同様、レンズ3によって平行光束に変換さ
れた後は、アジマス角方向や回転角方向の取付ズレが発
生しても平行ズレのみ発生し、角度ズレは発生しない。
To explain this, two parallel light beams split by the diffraction grating 6 form a beam waist on the diffraction grating G1 via the blazed diffraction gratings 5a and 5b and the lens 3, and are multiplexed from the beam waist. The ± 1st-order diffracted light generated in the normal direction of the diffraction grating forming surface is converted into a parallel light beam by the lens 3 and enters the sensor. This ± 1st order diffracted light is the first
As in the case of the embodiment, after being converted into a parallel light beam by the lens 3, even if the mounting displacement occurs in the azimuth angle direction or the rotation angle direction, only the parallel displacement occurs, and no angle displacement occurs.

【0040】図4は本発明に係る他の実施例の光学式変
位測定装置の光学構成を示した概略説明図である。
FIG. 4 is a schematic explanatory view showing an optical configuration of an optical displacement measuring device according to another embodiment of the present invention.

【0041】前述と同様の部材には同じ符番を冠してあ
る。第1実施例と同様の部分の説明は省略する。
The same members as those described above are denoted by the same reference numerals. The description of the same parts as in the first embodiment is omitted.

【0042】レンズ2で集光されて回折格子G1上にス
ポット照射された光束は反射回折され、±1次回折光を
出射する。
The light beam condensed by the lens 2 and spot-irradiated on the diffraction grating G1 is reflected and diffracted, and emits ± 1st-order diffracted light.

【0043】このとき±1次回折光光軸の回折角θは、
回折格子G1の格子ピッチをp1とすると、第1実施例
同様次式より得られる。
At this time, the diffraction angle θ of the ± 1st-order diffracted optical axis is
Assuming that the grating pitch of the diffraction grating G1 is p1, it can be obtained from the following equation as in the first embodiment.

【0044】p1sinθ=λ この±1次回折光は、それぞれ光学系全体の光軸方向に
偏向されるように配置された格子ピッチ:p2のプレ一
ズド回折格子5a、5bにより偏向され、格子ピッチ:
p3でしかも2光束透過領域内で格子位相がλ/4づつ
ずれた4つの格子領域を持つ回折格子6により波面を揃
えて合波される。
P1 sin θ = λ The ± 1st-order diffracted lights are deflected by the provided diffraction gratings 5a and 5b having a grating pitch: p2 arranged so as to be deflected in the optical axis direction of the entire optical system, respectively.
The wavefronts are aligned and combined by the diffraction grating 6 having four grating regions at p3 and having a grating phase shifted by λ / 4 within the two light beam transmitting regions.

【0045】そして、後は第1実施例と同様にそれぞれ
の4つの格子領域に対応した4分割センサー7により、
スケールの移動に伴つて1/4周期位相差を正弦波信号
が得られるようになっている。
Then, similarly to the first embodiment, the four-division sensor 7 corresponding to each of the four grid regions is used.
With the movement of the scale, a sine wave signal having a 1/4 period phase difference can be obtained.

【0046】このとき3枚の回折格子の格子ピッチp
1、p2、p3は、以下の関係を満たす。
At this time, the grating pitch p of the three diffraction gratings
1, p2 and p3 satisfy the following relationship.

【0047】1/p2=1/p1十1/p3 回折格子6で2つの回折光の光軸を合わせるように回折
格子間隔を設定することにより、回折格子6から出射す
る2つの回折光の波面の曲率中心を一致させることがで
きる。これにより、最終的に2つの回折光を波面を揃え
て合波する偏向光学系を実現する。
1 / p2 = 1 / p1 1 / p3 By setting the diffraction grating interval so that the optical axes of the two diffracted lights are aligned by the diffraction grating 6, the wavefront of the two diffracted lights emitted from the diffraction grating 6 is obtained. Can be matched. As a result, a deflecting optical system that finally combines the two diffracted lights with their wavefronts aligned is realized.

【0048】図5は、スケール4にアジマス方向の取付
ズレがある時の光路図である。
FIG. 5 is an optical path diagram when the scale 4 is displaced in the azimuth direction.

【0049】図からわかるように、スケール4にアジマ
ス角ηの取付ズレがあると、±1次回折光は回折格子上
から、取付ずれのない状態(点線)よりもアジマス角方
向にそれぞれずれて、発散しながら出射する。
As can be seen from the figure, if the azimuth angle η is misaligned on the scale 4, the ± 1st-order diffracted light is shifted from the diffraction grating in the azimuth angle direction from the state where there is no misalignment (dotted line). It emits while diverging.

【0050】この2つの発散光束は、回折格子G1がレ
ンズ2による光束集光位置に合わされているため、アジ
マス角ηがどうであっても、必ず回折格子上の照射点を
曲率中心とした波面のままとなる。これによりブレーズ
ド回折格子5a、5bと回折格子6によって合波され進
行方向を合わされた状態でも、2光束間に若干の位置ず
れは発生しても、2光束の波面の曲率中心は互いに一致
したままである。即ち、取付ズレのアジマス角ηの値に
関わらず、合波された2光束間に波面の曲率中心ズレは
発生せず、4分割センサー7の受光面上では空間的な干
渉縞の発生がない。
Since the two divergent light beams are adjusted to the light beam condensing position of the lens 2 by the diffraction grating G1, the wavefront whose irradiation point on the diffraction grating is always the center of curvature is always used regardless of the azimuth angle η. Will remain. Thus, even when the blazed diffraction gratings 5a and 5b and the diffraction grating 6 are multiplexed and the traveling directions are aligned, even if a slight displacement occurs between the two light beams, the centers of curvature of the wavefronts of the two light beams remain coincident with each other. It is. That is, regardless of the value of the azimuth angle η of the mounting deviation, the center of curvature of the wavefront does not deviate between the combined two light beams, and no spatial interference fringes occur on the light receiving surface of the four-divided sensor 7. .

【0051】図6は、スケール4に回転方向の取付ズレ
がある時の光路図である。
FIG. 6 is an optical path diagram when the scale 4 is displaced in the rotational direction.

【0052】図からわかるように、スケール4に回転角
φの取付ズレがあると、±1次回折光の光軸のレンズ2
光軸に対してなす角(見かけ上の回折角)は±1次でそ
れぞれ異なることになる。各見かけ上の回折角θ±2φ
は次式により得られる。
As can be seen from the drawing, if the scale 4 has a misalignment of the rotation angle φ, the lens 2 of the optical axis of the ± 1st-order diffracted light can be used.
The angles (apparent diffraction angles) formed with respect to the optical axis differ from each other in ± 1 order. Each apparent diffraction angle θ ± 2φ
Is obtained by the following equation.

【0053】p1(sinθ±sinφ)=λ この見かけ上の回折角が異なる±1次回折光は、回折格
子上から、取付ずれのない状態(点線)よりも回転角方
向にそれぞれずれて、発散しながら出射する。
P1 (sin θ ± sin φ) = λ The ± 1st-order diffracted lights having different apparent diffraction angles are diverged from the diffraction grating in the direction of the rotation angle as compared with the state where there is no misalignment (dotted line). While emitting.

【0054】この2つの発散光束は、回折格子G1がレ
ンズ2による光束集光位置に合わされているため、回転
角φがどうであっても、必ず回折格子上の照射点を曲率
中心とした波面のままとなる。これによりブレーズド回
折格子5a、5bと回折格子6によって合波され進行方
向を合わされた状態でも、2光束間に若干の位置ずれは
発生しても、2光束の波面の曲率中心は互いに一致した
ままである。即ち、取付ズレの回転角φの値に関わら
ず、合波された2光束間に波面の曲率中心ズレは発生せ
ず、4分割センサー7の受光面上では空間的な干渉縞の
発生がない。
Since the two divergent light beams are aligned with the light beam condensing position of the lens 2 by the diffraction grating G1, the wavefront having the irradiation point on the diffraction grating as the center of curvature is always required regardless of the rotation angle φ. Will remain. Thus, even when the blazed diffraction gratings 5a and 5b and the diffraction grating 6 are multiplexed and the traveling directions are aligned, even if a slight displacement occurs between the two light beams, the centers of curvature of the wavefronts of the two light beams remain coincident with each other. It is. That is, the center of curvature of the wavefront does not deviate between the combined two light beams regardless of the value of the rotation angle φ of the mounting deviation, and no spatial interference fringes occur on the light receiving surface of the four-divided sensor 7. .

【0055】以上の構成を取ることにより、第1実施例
同様にスケールの取り付け精度をほとんど気にすること
のない光学式変位測定を提供することが可能となる。
By adopting the above configuration, it is possible to provide an optical displacement measurement that hardly cares about the scale mounting accuracy as in the first embodiment.

【0056】更に、第1実施例と同様に、第2実施例に
おける回折格子6を一つの格子より構成し、4分割セン
サー7を一つの受光面のセンサーに置き換えた上で、第
1実施例におけるレーザーダイオード1及びコリメータ
レンズ2の組とセンサー7との配置を逆としても、同様
にスケールの取り付け精度をほとんど気にすることのな
い光学式変位測定装置が実現される。
Further, similarly to the first embodiment, the diffraction grating 6 in the second embodiment is constituted by one grating, and the four-divided sensor 7 is replaced with a sensor having one light receiving surface. Even if the arrangement of the sensor 7 and the set of the laser diode 1 and the collimator lens 2 is reversed, an optical displacement measuring device which hardly cares about the mounting accuracy of the scale can be realized.

【0057】その他、図4に於いて、ブレーズド回折格
子5a、5bの代わりに互いに反射面を対向させた平行
ミラーを配置することも可能である。この場合回折格子
G1と回折格子6との格子ピッチを一致させる。これに
よっても上述実施例と同様の光学系を実現することがで
きる。
In addition, in FIG. 4, instead of the blazed diffraction gratings 5a and 5b, it is also possible to arrange parallel mirrors whose reflection surfaces face each other. In this case, the grating pitch between the diffraction grating G1 and the diffraction grating 6 is made to match. With this configuration, an optical system similar to that of the above-described embodiment can be realized.

【0058】[0058]

【発明の効果】以上説明したように、第1発明によれ
ば、スケールに相対的にアジマスや回転の取付ズレが発
生しても干渉状態は安定しており、常に安定した信号が
得られる。
As described above, according to the first aspect, even if azimuth or rotational misalignment occurs relative to the scale, the interference state is stable, and a stable signal is always obtained.

【0059】又、第2発明によれば、スケールに相対的
にアジマスや回転の取付ズレが発生しても干渉状態は安
定しており、常に安定した信号が得られる。
According to the second aspect of the present invention, even if azimuth or rotational misalignment occurs relative to the scale, the interference state is stable, and a stable signal is always obtained.

【0060】第3発明によれば更に、よりアジマスや回
転に強い装置が実現される。
According to the third aspect of the present invention, a device which is more resistant to azimuth and rotation can be realized.

【0061】第4発明によれば更に、複雑な光学構成を
取ることなく位相の異なる出力信号を検出することがで
き、高精度検出を可能とする。
According to the fourth aspect of the present invention, output signals having different phases can be detected without taking a complicated optical configuration, thereby enabling high-precision detection.

【0062】第5、第6発明によれば更に、簡単な光学
系でスポット投影ができるとともに、回折格子からの複
数の回折光を平行光束且つ互いに平行にできる。
According to the fifth and sixth aspects of the present invention, spot projection can be performed with a simple optical system, and a plurality of diffracted lights from the diffraction grating can be made parallel light beams and parallel to each other.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を説明する概略説明図FIG. 1 is a schematic explanatory diagram illustrating a first embodiment of the present invention.

【図2】スケール回転ズレ時の光路図FIG. 2 is an optical path diagram when the scale is misaligned.

【図3】スケールアジマスズレ時の光路図FIG. 3 Optical path diagram when scale azimuth shift

【図4】本発明の他の実施例を説明する概略説明図FIG. 4 is a schematic explanatory view illustrating another embodiment of the present invention.

【図5】スケール回転ズレ時の光路図FIG. 5 is an optical path diagram when the scale is misaligned.

【図6】スケールアジマスズレ時の光路図FIG. 6 is an optical path diagram when a scale azimuth shift is performed.

【符号の説明】[Explanation of symbols]

1 レーザーダイオード 2 コリメータレンズ 3 レンズ 4 スケール G1 位相型回折格子 5a、5b ブレーズド型回折格子 6 回折格子 7 4分割センサー DESCRIPTION OF SYMBOLS 1 Laser diode 2 Collimator lens 3 Lens 4 Scale G1 Phase type diffraction grating 5a, 5b Blazed type diffraction grating 6 Diffraction grating 7 Quadrant sensor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 相対変位を検出すべき物体上に設けられ
た回折格子に光束をスポット投影する投光手段と、前記
回折格子のスポット投影位置からの次数の異なる回折光
を、該次数の異なる回折光が共に平行光束でかつ互いに
平行である形態か、あるいは該次数の異なる回折光の波
面が同一曲率中心を有する形態で、互いに合波して得ら
れる干渉光束を受光する光検出手段とを有することを特
徴とする光学式変位測定装置。
1. A light projecting means for spot-projecting a light beam onto a diffraction grating provided on an object whose relative displacement is to be detected, and diffracted light beams of different orders from the spot projection position of the diffraction grating. A form in which the diffracted lights are both parallel beams and parallel to each other, or a form in which the wavefronts of the diffracted lights having the different orders have the same center of curvature, and a light detecting means for receiving an interference light beam obtained by combining the diffracted lights with each other. An optical displacement measuring device comprising:
【請求項2】 相対変位を検出すべき物体上に設けられ
た回折格子に光束をスポット投影する投光手段と、前記
回折格子のスポット投影位置からの次数の異なる回折光
を、該次数の異なる回折光の波面を互いにそろえた形で
合波して得られる干渉光束を受光する光検出手段とを有
することを特徴とする光学式変位測定装置。
2. A light projecting means for spot-projecting a light beam onto a diffraction grating provided on an object whose relative displacement is to be detected, and diffracted light beams of different orders from the spot projection position of the diffraction grating, the light beams having different orders. An optical displacement measuring device, comprising: light detecting means for receiving an interference light beam obtained by multiplexing the diffracted light beams in such a manner that their wavefronts are aligned.
【請求項3】 更に前記回折格子のスポット投影位置か
らの次数の異なる回折光を、発散光のままあるいは平行
光変換して、合波した形で前記光検出手段に導く光学系
を有することを特徴とする請求項2に記載の光学式変位
測定装置。
3. An optical system for diffracting light of different orders from the spot projection position of the diffraction grating, as divergent light or parallel light conversion, to guide the combined light to the light detecting means. The optical displacement measuring device according to claim 2, wherein:
【請求項4】 前記光学系内に、前記複数の回折光の各
光束それぞれに対して実質的に2枚の光束合波用回折格
子が配置され、前記実質的に2枚の光束合波用回折格子
の一方の光束透過領域内に格子配列位相の異なる格子部
分を設けたことを特徴とする請求項3に記載の光学式変
位測定装置。
4. In the optical system, substantially two light beam multiplexing diffraction gratings are arranged for each of the light beams of the plurality of diffracted lights, and the two substantially light beam multiplexing diffraction gratings are arranged. 4. The optical displacement measuring apparatus according to claim 3, wherein grating portions having different grating arrangement phases are provided in one of the light beam transmitting regions of the diffraction grating.
【請求項5】 前記投光手段は前記回折格子が実質的に
焦点位置になるように配置されたレンズ系へ平行光束照
射し、前記光学系は前記回折格子からの複数の回折光を
該レンズ系により平行光束で且つ互いに平行にすること
を特徴とする請求項2に記載の光学式変位測定装置。
5. The light projecting means irradiates a parallel light beam to a lens system arranged such that the diffraction grating is substantially at a focal position, and the optical system applies a plurality of diffracted lights from the diffraction grating to the lens system. The optical displacement measuring apparatus according to claim 2, wherein the system is configured to make the light beams parallel and mutually parallel by a system.
【請求項6】 前記投光手段は前記回折格子が実質的に
焦点位置になるように配置されたレンズ系へ平行光束照
射し、前記回折格子からの複数の回折光を該レンズ系に
より平行光束で且つ互いに平行にすることを特徴とする
請求項1に記載の光学式変位測定装置。
6. The light projecting means irradiates a parallel light beam to a lens system arranged so that the diffraction grating is substantially at the focal position, and emits a plurality of diffracted lights from the diffraction grating by the lens system. The optical displacement measuring device according to claim 1, wherein the optical displacement measuring devices are parallel to each other.
JP19331796A 1996-07-23 1996-07-23 Optical displacement measuring device Pending JPH1038517A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19331796A JPH1038517A (en) 1996-07-23 1996-07-23 Optical displacement measuring device
US08/897,548 US6005667A (en) 1996-07-23 1997-07-21 Optical displacement measurement apparatus and information recording apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19331796A JPH1038517A (en) 1996-07-23 1996-07-23 Optical displacement measuring device

Publications (1)

Publication Number Publication Date
JPH1038517A true JPH1038517A (en) 1998-02-13

Family

ID=16305900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19331796A Pending JPH1038517A (en) 1996-07-23 1996-07-23 Optical displacement measuring device

Country Status (1)

Country Link
JP (1) JPH1038517A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304918A (en) * 2000-02-15 2001-10-31 Canon Inc Grating interference type optical encoder
JP2004069702A (en) * 2002-08-07 2004-03-04 Dr Johannes Heidenhain Gmbh Interference type position-measuring instrument
WO2007142351A1 (en) * 2006-06-09 2007-12-13 Nikon Corporation Apparatus with mobile body, exposure apparatus, exposure method and device manufacturing method
WO2009098891A1 (en) * 2008-02-08 2009-08-13 Nikon Corporation Position measuring system and position measuring method, mobile body device, mobile body driving method, exposure device and exposure method, pattern forming device, and device manufacturing method
US7999918B2 (en) 2006-09-29 2011-08-16 Nikon Corporation Movable body system, pattern formation apparatus, exposure apparatus and exposure method, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8760622B2 (en) 2007-12-11 2014-06-24 Nikon Corporation Movable body apparatus, exposure apparatus and pattern formation apparatus, and device manufacturing method
JP2015194365A (en) * 2014-03-31 2015-11-05 並木精密宝石株式会社 Reflective encoder
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304918A (en) * 2000-02-15 2001-10-31 Canon Inc Grating interference type optical encoder
JP2004069702A (en) * 2002-08-07 2004-03-04 Dr Johannes Heidenhain Gmbh Interference type position-measuring instrument
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
TWI425318B (en) * 2006-06-09 2014-02-01 尼康股份有限公司 Mobile device, exposure device and exposure method, and component manufacturing method
JP2012256893A (en) * 2006-06-09 2012-12-27 Nikon Corp Exposure device and exposure method, and method of manufacturing device
US8390780B2 (en) 2006-06-09 2013-03-05 Nikon Corporation Movable-body apparatus, exposure apparatus, exposure method, and device manufacturing method
JPWO2007142351A1 (en) * 2006-06-09 2009-10-29 株式会社ニコン MOBILE DEVICE, EXPOSURE APPARATUS, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD
WO2007142351A1 (en) * 2006-06-09 2007-12-13 Nikon Corporation Apparatus with mobile body, exposure apparatus, exposure method and device manufacturing method
US8514373B2 (en) 2006-09-29 2013-08-20 Nikon Corporation Movable body system, pattern formation apparatus, exposure apparatus and exposure method, and device manufacturing method
US7999918B2 (en) 2006-09-29 2011-08-16 Nikon Corporation Movable body system, pattern formation apparatus, exposure apparatus and exposure method, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8760622B2 (en) 2007-12-11 2014-06-24 Nikon Corporation Movable body apparatus, exposure apparatus and pattern formation apparatus, and device manufacturing method
JP5344180B2 (en) * 2008-02-08 2013-11-20 株式会社ニコン POSITION MEASUREMENT SYSTEM AND POSITION MEASUREMENT METHOD, MOBILE DEVICE, MOBILE BODY DRIVING METHOD, EXPOSURE DEVICE AND EXPOSURE METHOD, PATTERN FORMING DEVICE, AND DEVICE MANUFACTURING METHOD
US8208128B2 (en) 2008-02-08 2012-06-26 Nikon Corporation Position measuring system and position measuring method, Movable body apparatus, movable body drive method, exposure apparatus and exposure method, pattern forming apparatus, and device manufacturing method
CN101796614B (en) 2008-02-08 2012-01-18 株式会社尼康 Position measuring system and position measuring method, mobile body device, mobile body driving method, exposure device and exposure method, pattern forming device, and device manufacturing method
WO2009098891A1 (en) * 2008-02-08 2009-08-13 Nikon Corporation Position measuring system and position measuring method, mobile body device, mobile body driving method, exposure device and exposure method, pattern forming device, and device manufacturing method
JP2015194365A (en) * 2014-03-31 2015-11-05 並木精密宝石株式会社 Reflective encoder

Similar Documents

Publication Publication Date Title
JP3028716B2 (en) Optical displacement sensor
US4979826A (en) Displacement measuring apparatus
US6771377B2 (en) Optical displacement sensing device with reduced sensitivity to misalignment
CN107462159B (en) Displacement detection device
US4970388A (en) Encoder with diffraction grating and multiply diffracted light
EP1435510A1 (en) Grating interference type optical encoder
US9175987B2 (en) Displacement detecting device
CN103608645B (en) Position detector and light deflecting apparatus
JPH1038517A (en) Optical displacement measuring device
US6407815B2 (en) Optical displacement measurement system
US6005667A (en) Optical displacement measurement apparatus and information recording apparatus
US6956654B2 (en) Displacement measuring device with interference grating
JP2004144581A (en) Displacement detecting apparatus
JP3977126B2 (en) Displacement information detector
US6166817A (en) Optical displacement measurement system for detecting the relative movement of a machine part
EP1347271B1 (en) Optical displacement sensing device with reduced sensitivity to misalignment
JPH0778433B2 (en) Rotary encoder
US10527405B2 (en) Optical position-measuring device
JPH03279812A (en) Diffractive interferometric encoder
US5017777A (en) Diffracted beam encoder
JP3513251B2 (en) Optical displacement sensor
WO2007074752A1 (en) Tilt sensor and encoder
JP2018009933A (en) Displacement detector
JP3501529B2 (en) Optical displacement measuring device
JP2020076593A (en) Displacement detection device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030729

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载