JPH0380184A - Method for growing crystal - Google Patents
Method for growing crystalInfo
- Publication number
- JPH0380184A JPH0380184A JP21650889A JP21650889A JPH0380184A JP H0380184 A JPH0380184 A JP H0380184A JP 21650889 A JP21650889 A JP 21650889A JP 21650889 A JP21650889 A JP 21650889A JP H0380184 A JPH0380184 A JP H0380184A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- growth
- dislocation
- dislocations
- seed crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 15
- 239000004065 semiconductor Substances 0.000 claims abstract description 16
- 239000000155 melt Substances 0.000 claims abstract description 8
- 238000002109 crystal growth method Methods 0.000 claims description 3
- 230000007547 defect Effects 0.000 abstract description 6
- 239000013598 vector Substances 0.000 abstract description 6
- 230000001902 propagating effect Effects 0.000 abstract description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000015220 hamburgers Nutrition 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、融液引き上げ法による結晶育成方法に関し、
特に結晶欠陥が種結晶から育成中の半導体結晶に伝播し
ない育成方法に関する。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a crystal growth method using a melt pulling method.
In particular, the present invention relates to a growth method that prevents crystal defects from propagating from a seed crystal to a growing semiconductor crystal.
(従来の技術)
SiやGaAs等の半導体ウェーハは、一般にるつぼ内
の融液中に種結晶を付けて回転しながら引き上げる融液
引き上げ法よより育成している。従来、この方法で育成
した半導体結晶中には、多数の転移が残存することが知
られている。Si結晶においては、現在、完全に無転位
の結晶を得る技術が確立しているが、GaAsやInP
等の化合物半導体中には104から105cm ”の濃
度の転移が残存する。このうち熱応力により滑り転位は
、不純物を添加することによってその発生を低減できる
が、種結晶から成長方向に真直ぐ伝播する転移(軸上転
位)は完全に除去できない。軸上転位を除去する方法と
して従来様々な方法が試みられている。たとえば、ネッ
キングにより転位を結晶の外部へ逃がす方法があるが、
中心部の軸上転移は残り、本質的な解決にならない。ま
た、クワモトとホームズ(ジャーナルオブクリスタルグ
ローズ(J、 of Crystal Growth)
第91巻、1988年、567頁)は一般的なく001
>引き上げの他に<111>や<441>引き上げを行
ったが、軸上転位は存在すること報告している。(Prior Art) Semiconductor wafers such as Si and GaAs are generally grown by a melt pulling method in which a seed crystal is attached to a melt in a crucible and pulled up while rotating. Conventionally, it has been known that a large number of dislocations remain in semiconductor crystals grown by this method. Currently, the technology to obtain completely dislocation-free Si crystals has been established, but GaAs and InP
Dislocations with a concentration of 104 to 105 cm remain in compound semiconductors such as 104 to 105 cm. Among these, the occurrence of slip dislocations due to thermal stress can be reduced by adding impurities, but they propagate straight from the seed crystal in the growth direction. Dislocations (on-axis dislocations) cannot be completely removed. Various methods have been tried to remove axial dislocations. For example, there is a method of escaping dislocations to the outside of the crystal by necking.
The axial displacement in the center remains and is not an essential solution. Also, Kuwamoto and Holmes (J, of Crystal Growth)
Volume 91, 1988, p. 567) is generally not 001
In addition to <111> and <441> pulling, it has been reported that axial dislocations still exist.
(発明が解決しようとする課題)
上述した従来の結晶育成方法では、種結晶から成長方向
に真直ぐに伝播する軸上転位を完全に除去できないとい
う欠点があった。(Problems to be Solved by the Invention) The conventional crystal growth method described above has a drawback in that axial dislocations that propagate straight from the seed crystal in the growth direction cannot be completely removed.
本発明は、このような従来の問題点を解決した半導体結
晶の育成方法を提供することを目的とする。An object of the present invention is to provide a method for growing semiconductor crystals that solves these conventional problems.
(課題を解決するための手段)
本発明は、融液引き上げ法による半導体結晶の育成方法
であり、種結晶の方位を<410>とすることを特徴と
している。(Means for Solving the Problems) The present invention is a method for growing a semiconductor crystal by a melt pulling method, and is characterized in that the orientation of the seed crystal is <410>.
また、本発明は、< 001 >と<101>との間の
範囲の任意方向に種結晶の方位を定め、その設定した方
位に対して最も適当な長さのネッキングを行うことを特
徴としている。Furthermore, the present invention is characterized in that the orientation of the seed crystal is set in an arbitrary direction within the range between <001> and <101>, and necking is performed to the most appropriate length for the set orientation. .
(実施例) 次に、本発明について図面を参照して説明する。(Example) Next, the present invention will be explained with reference to the drawings.
一般的な法則として、結晶成長に伴って伝播して行く転
位は、その転位のエネルギーが最小になるような方向に
伸びる。それで、半導体結晶のようなダイヤモンド型構
造のすべり系に対し上の法則を適用し、任意の成長方向
に対して任意の方向を持つ転位のエネルギーを計算し、
それらが最小になる位置を求めた。第1図は、6種類の
それぞれのバーガースベクトルを持つ転位について、そ
れらの転位のエネルギーが最小になる位置を示している
。横軸は成長方向で、[001]からの離角として示し
ている。縦軸はエネルギーが最小となる転位線の方向で
、成長方向ならの離角として示している。第1図によれ
ば、成長方向が[001]の場合、バーガースベクトル
bが±a/2[110]と±a/2[110]の転位は
成長軸と一致した方向でエネルギー最小となり、したが
って、結晶成長と共に伝播し軸上転位となる。また、成
長方向が[101]の場合には、バーガースベクトルb
が±a/2[101]と±a/2[101]の転位が成
長軸と一致した方向でエネルギー最小となり、軸上転位
となる。すべての転位が成長軸から最も遠ざかるのは、
成長軸を[001]から約14度傾けた場合、すなわち
、[104]であることが第1図から読み取れる。As a general rule, dislocations that propagate as the crystal grows grow in the direction that minimizes the energy of the dislocations. Therefore, by applying the above law to a slip system with a diamond-type structure such as a semiconductor crystal, we can calculate the energy of a dislocation having an arbitrary direction with respect to an arbitrary growth direction.
We found the position where they are minimum. FIG. 1 shows the position where the energy of each of six types of dislocations having Burgers vectors is minimum. The horizontal axis is the growth direction, which is shown as an elongation angle from [001]. The vertical axis is the direction of the dislocation line where the energy is minimum, and is shown as an elongation from the growth direction. According to Fig. 1, when the growth direction is [001], dislocations with Burgers vector b of ±a/2[110] and ±a/2[110] have the minimum energy in the direction that coincides with the growth axis, so , propagates as the crystal grows and becomes an axial dislocation. Moreover, when the growth direction is [101], Burgers vector b
The dislocations of ±a/2[101] and ±a/2[101] have the minimum energy in the direction that coincides with the growth axis, and become on-axis dislocations. The furthest distance of all dislocations from the growth axis is
It can be seen from FIG. 1 that when the growth axis is tilted approximately 14 degrees from [001], that is, [104].
以上のように、種結晶の方位を<410>とすることに
より、軸上転位を本質的に除去し、結晶欠陥の無い半導
体結晶を育成できる。As described above, by setting the orientation of the seed crystal to <410>, it is possible to essentially eliminate axial dislocations and grow a semiconductor crystal free of crystal defects.
また、[001]と[101]との間の範囲の任意方向
に種結晶の方位を定めると、最も成長軸に近い転位でも
結晶の成長軸からある角度をもって伝播する。Furthermore, if the seed crystal is oriented in any direction between [001] and [101], even the dislocation closest to the growth axis propagates at a certain angle from the crystal growth axis.
その角度をAとすると、種結晶の直径がDの時、D/1
anAだけの長さのネッキングを行えばすべての転位は
完全に除去することができる。例えば成長方向を[10
2]とすると、最も成長軸に近い転位は第1図によれば
バーガースベクトルbが士a/2[101]の転位であ
り、転位の伝播方向は約9度と読みとれる。If the angle is A, then when the diameter of the seed crystal is D, D/1
All dislocations can be completely removed by necking with a length of anA. For example, if the growth direction is [10
2], then the dislocation closest to the growth axis is a dislocation with a Burgers vector b of x a/2 [101] according to FIG. 1, and the propagation direction of the dislocation can be read as approximately 9 degrees.
種結晶の直径りはふつう2〜3mmなので、D/1an
A = 3/jan9°=19(mm)だけの長さネッ
キングすれば、種結晶からの転位をすべて除去できる。The diameter of the seed crystal is usually 2 to 3 mm, so D/1an
All dislocations from the seed crystal can be removed by necking for a length of A=3/jan9°=19 (mm).
以上のように、<001>と<101>との間の範囲の
任意方向に種結晶の方位を定め、その設定した方位に対
して最も適当な長さのネッキングを行うことにより、軸
上転位を本質的に除去し、結晶欠陥の無い半導体結晶を
育成できる。As described above, by setting the orientation of the seed crystal in an arbitrary direction within the range between <001> and <101>, and performing necking to the most appropriate length for the set orientation, axial dislocations can be can be essentially removed, and semiconductor crystals without crystal defects can be grown.
(発明の効果)
以上説明したように、本発明によれば融液引き上げ法に
より育成する半導体結晶中に種結晶から伝播する軸上転
位を本質的に除去し、結晶欠陥の無い半導体結晶を育成
できる。(Effects of the Invention) As explained above, according to the present invention, axial dislocations propagated from a seed crystal are essentially removed in a semiconductor crystal grown by a melt pulling method, and a semiconductor crystal free of crystal defects is grown. can.
第1図は、転位の伝播方向と結晶の成長方向との関係を
示す図である。FIG. 1 is a diagram showing the relationship between the propagation direction of dislocations and the direction of crystal growth.
Claims (2)
、種結晶の方位を<410>とすることを特徴とする結
晶育成方法。(1) A method for growing a semiconductor crystal by a melt pulling method, characterized in that the orientation of the seed crystal is <410>.
、<001>と<101>との間の範囲に任意方向に種
結晶の方位を定め、その設定した方位に対して最も適当
な長さのネッキングを行うことを特徴とする結晶育成方
法。(2) In growing semiconductor crystals by the melt pulling method, set the orientation of the seed crystal in an arbitrary direction in the range between <001> and <101>, and choose the most appropriate length for the set orientation. A crystal growth method characterized by necking.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21650889A JPH0818899B2 (en) | 1989-08-22 | 1989-08-22 | Crystal growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21650889A JPH0818899B2 (en) | 1989-08-22 | 1989-08-22 | Crystal growth method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0380184A true JPH0380184A (en) | 1991-04-04 |
JPH0818899B2 JPH0818899B2 (en) | 1996-02-28 |
Family
ID=16689528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21650889A Expired - Lifetime JPH0818899B2 (en) | 1989-08-22 | 1989-08-22 | Crystal growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0818899B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003089697A1 (en) * | 2002-04-19 | 2003-10-30 | Komatsu Denshi Kinzoku Kabushiki Kaisha | Single crystal silicon producing method, single crystal silicon wafer producing method, seed crystal for producing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer |
DE102008026784A1 (en) | 2008-06-04 | 2009-12-10 | Siltronic Ag | Epitaxial silicon wafer with <110> crystal orientation and process for its preparation |
-
1989
- 1989-08-22 JP JP21650889A patent/JPH0818899B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003089697A1 (en) * | 2002-04-19 | 2003-10-30 | Komatsu Denshi Kinzoku Kabushiki Kaisha | Single crystal silicon producing method, single crystal silicon wafer producing method, seed crystal for producing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer |
US7226506B2 (en) | 2002-04-19 | 2007-06-05 | Sumco Techxiv Corporation | Single crystal silicon producing method, single crystal silicon wafer producing method, seed crystal for producing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer |
DE102008026784A1 (en) | 2008-06-04 | 2009-12-10 | Siltronic Ag | Epitaxial silicon wafer with <110> crystal orientation and process for its preparation |
US8133318B2 (en) | 2008-06-04 | 2012-03-13 | Siltronic Ag | Epitaxially coated silicon wafer with 110 orientation and method for producing it |
Also Published As
Publication number | Publication date |
---|---|
JPH0818899B2 (en) | 1996-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2000000674A3 (en) | Process for growth of defect free silicon crystals of arbitrarily large diameters | |
EP1498516B8 (en) | Single crystal silicon producing method, single crystal silicon wafer and ingot produced thereby | |
JP3841863B2 (en) | Method of pulling silicon single crystal | |
KR100951760B1 (en) | Method for producing silicon single crystal | |
JPH107487A (en) | Production of single semiconductor crystal by magnetic field impression | |
JP2848067B2 (en) | Seed crystal of silicon single crystal | |
JPH0380184A (en) | Method for growing crystal | |
US5769941A (en) | Method of forming semiconductor material | |
JPH05155682A (en) | Method for pulling up silicon single crystal | |
JP2001240493A (en) | Method for producing dislocation-free silicon single crystal | |
JP2525300B2 (en) | Method for producing silicon single crystal | |
JPH04104988A (en) | Growth of single crystal | |
JPH10130100A (en) | Apparatus for production of semiconductor single crystal and its production | |
MY133116A (en) | Process for preparing defect free silicon crystals which allows for variability in process conditions | |
Taishi et al. | Behavior of dislocations due to thermal shock in B-doped Si seed in Czochralski Si crystal growth | |
JPH0380183A (en) | Method for growing single crystal of pare earth silicate | |
JPS61242983A (en) | Production of semiconductor single crystal rod | |
CN118600530A (en) | A large diameter silicon crystal rod growth process | |
JPH01115890A (en) | Method for growing single crystal | |
KR950007598B1 (en) | Method for decreasing dislocation of gaas single crystal by vertical temperature gradient | |
JPH09110575A (en) | Crucible for producing single crystal and production of single crystal | |
JPS5912639B2 (en) | crystal growth method | |
JPS63210097A (en) | Production of compound semiconductor | |
JPH0193494A (en) | Growth of compound semiconductor single crystal | |
JPS58115085A (en) | Preparation of semiconductor crystal |