JP7085972B2 - Species monitoring method in water area - Google Patents
Species monitoring method in water area Download PDFInfo
- Publication number
- JP7085972B2 JP7085972B2 JP2018232546A JP2018232546A JP7085972B2 JP 7085972 B2 JP7085972 B2 JP 7085972B2 JP 2018232546 A JP2018232546 A JP 2018232546A JP 2018232546 A JP2018232546 A JP 2018232546A JP 7085972 B2 JP7085972 B2 JP 7085972B2
- Authority
- JP
- Japan
- Prior art keywords
- environmental
- dna
- sudden change
- species
- change region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 31
- 238000012544 monitoring process Methods 0.000 title claims description 25
- 230000007613 environmental effect Effects 0.000 claims description 153
- 239000002245 particle Substances 0.000 claims description 39
- 238000005206 flow analysis Methods 0.000 claims description 24
- 238000005070 sampling Methods 0.000 claims description 20
- 230000006866 deterioration Effects 0.000 claims description 8
- 230000001617 migratory effect Effects 0.000 claims description 8
- 239000003643 water by type Substances 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 2
- 241000894007 species Species 0.000 description 30
- 241001123263 Zostera Species 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 13
- 238000009792 diffusion process Methods 0.000 description 6
- 230000009189 diving Effects 0.000 description 6
- 241001116501 Zostera japonica Species 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 244000132059 Carica parviflora Species 0.000 description 2
- 235000014653 Carica parviflora Nutrition 0.000 description 2
- 241000257465 Echinoidea Species 0.000 description 2
- 241000544058 Halophila Species 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 235000015170 shellfish Nutrition 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000258957 Asteroidea Species 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 206010011951 Decompression Sickness Diseases 0.000 description 1
- 206010013647 Drowning Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Description
本発明は、環境の急変が予想される水域、特に、潮流のように一日のうちに流れる方向が変化する水域における、生物種のモニタリング方法に関する。 The present invention relates to a method for monitoring an organism in a water area where a sudden change in the environment is expected, particularly in a water area where the flow direction changes in a day such as a tidal current.
土木工事等の開発において、自然環境に影響が及ぶ場合がある。地上での土木工事では、周辺環境のモニタリングは容易であるが、埋立・浚渫、橋梁基礎工事等、海洋や湖沼での土木工事では、周辺環境をモニタリングするために、ダイバーによる目視や撮影が必要となる場合がある。ダイバーによる調査は、必要なときにすぐに行うことができないため迅速性に劣る、潜水時間に制限があるため調査回数、頻度、範囲が限られる、減圧症や溺れ等の潜水作業による危険が伴うという問題がある。 In the development of civil engineering work, etc., the natural environment may be affected. In civil engineering work on the ground, it is easy to monitor the surrounding environment, but in civil engineering work in the ocean or lakes such as landfill / dredging and bridge foundation work, visual inspection and photography by divers are required to monitor the surrounding environment. May be. Surveys by divers are inferior in speed because they cannot be performed immediately when needed, the number, frequency and range of surveys are limited due to the limited dive time, and there are risks due to diving work such as decompression sickness and drowning. There is a problem.
遠隔操作可能な水中カメラ搭載のロボットによる調査も可能であるが、これらのロボットは、操作に習熟が必要、高価なため紛失する可能性のある流れの速い現場では使用しにくい等の問題から、あまり普及していない。 It is possible to investigate with a robot equipped with a remote-controlled underwater camera, but these robots require proficiency in operation and are expensive and difficult to use in fast-flowing sites where they may be lost. Not very popular.
水中に生息する生物種の調査方法として、環境DNAが注目されている。環境DNAとは、細胞片や排泄物等に含まれ、環境中に存在するDNAの総称であり、環境DNAを分析することにより、生息している生物種の情報を知ることができる。例えば、本発明者らは、非特許文献1において、三重県英虞湾において、アマモとコアマモの環境DNAの移流拡散解析(濃度拡散解析)を行い、海流に沿ってアマモとコアマモの環境DNAが検出でき、離れるほど濃度が薄くなることを報告している。
Environmental DNA is attracting attention as a method for investigating species that live in water. Environmental DNA is a general term for DNA that is contained in cell fragments, excrement, etc. and exists in the environment, and by analyzing the environmental DNA, it is possible to obtain information on the living organism species. For example, in Non-Patent
環境DNAを用いた、水域における環境急変領域に生息する回遊しない生物種の、簡便で精度の高いモニタリング方法を提供することを課題とする。 It is an object of the present invention to provide a simple and highly accurate monitoring method for non-migratory species that inhabit a sudden change in the environment in a water area using environmental DNA.
本発明の課題を解決するための手段は以下のとおりである。
1.環境の急変が予想される水域に生息する回遊しない生物種の中から調査生物種を決定するとともに、前記調査生物種の生息域を調査する工程、
前記調査生物種の生息域から少なくとも環境急変領域を区分する工程、
前記調査生物種の環境急変領域由来の環境DNA(環境急変領域)と全生息域由来の環境DNA(全)について粒子流動解析する工程、
前記粒子流動解析の結果から、前記環境DNA(環境急変領域)の割合が低いポイントを割り出し、このポイントを含む採水箇所を決定する工程、
前記採水箇所から得た検体の調査生物種の環境DNAを分析する工程、
を備えることを特徴とする、生物種のモニタリング方法。
2.前記採水箇所が、前記環境DNA(環境急変領域)の割合が高いポイントを含むことを特徴とする1.に記載のモニタリング方法。
3.環境の急変が予想される水域に生息する回遊しない生物種の中から調査生物種を決定するとともに、前記調査生物種の生息域を調査する工程、
前記調査生物種の生息域から少なくとも環境急変領域を区分する工程、
前記調査生物種の環境急変領域由来の環境DNA(環境急変領域)と全生息域由来の環境DNA(全)について粒子流動解析する工程、
前記粒子流動解析の結果から、前記環境DNA(環境急変領域)の割合が高いポイントを割り出し、このポイントを含む採水箇所を決定する工程、
前記採水箇所から得た検体の調査生物種の環境DNAを分析する工程、
を備えることを特徴とする、生物種のモニタリング方法。
4.前記粒子流動解析において、前記環境DNAの粒子に劣化情報を付与することを特徴とする1.~3.のいずれかに記載のモニタリング方法。
5.前記環境急変領域が、水域における土木工事の施工現場であることを特徴とする1.~4.のいずれかに記載のモニタリング方法。
The means for solving the problems of the present invention are as follows.
1. 1. The process of determining the survey species from the non-migratory species that live in waters where sudden changes in the environment are expected, and investigating the habitat of the survey species.
The process of classifying at least a sudden environmental change area from the habitat of the surveyed species,
A step of particle flow analysis of the environmental DNA (environmental sudden change region) derived from the environmental sudden change region and the environmental DNA (all) derived from the entire habitat of the surveyed organism.
A step of determining a point where the ratio of the environmental DNA (environmental sudden change region) is low from the result of the particle flow analysis and determining a water sampling point including this point.
Step of analyzing the environmental DNA of the survey organism of the sample obtained from the water sampling point,
A method of monitoring an organism, characterized in that it is equipped with.
2. 2. 1. The water sampling point includes a point where the ratio of the environmental DNA (environmental sudden change region) is high. The monitoring method described in.
3. 3. The process of determining the survey species from the non-migratory species that live in waters where sudden changes in the environment are expected, and investigating the habitat of the survey species.
The process of classifying at least a sudden environmental change area from the habitat of the surveyed species,
A step of particle flow analysis of the environmental DNA (environmental sudden change region) derived from the environmental sudden change region and the environmental DNA (all) derived from the entire habitat of the surveyed organism.
A step of determining a point having a high ratio of the environmental DNA (environmental sudden change region) from the result of the particle flow analysis and determining a water sampling point including this point.
Step of analyzing the environmental DNA of the survey organism of the sample obtained from the water sampling point,
A method of monitoring an organism, characterized in that it is equipped with.
4. 1. The particle flow analysis is characterized in that deterioration information is given to the particles of the environmental DNA. ~ 3. The monitoring method described in any of.
5. The area where the environment suddenly changes is characterized by being a construction site for civil engineering work in a water area. ~ 4. The monitoring method described in any of.
本発明のモニタリング方法は、環境DNAの分析により行うことができるため、潜水作業が不要であり、広範囲、高頻度での調査が可能であり、また、潜水作業に伴うリスクを減らすことができる。環境急変領域由来の環境DNA(環境急変領域)と全生息域由来の環境DNA(全)とについて粒子流動解析を行うことにより、ある地点の環境DNAについて、環境DNA(環境急変領域)の割合を算出することができ、採水場所として適切な場所を選択することができる。そのため、環境DNA(環境急変領域)の割合が低いポイントで採水することにより、環境の急変が周辺環境に影響を及ぼしているかを判断することができる。環境DNA(環境急変領域)の割合が高いポイントで採水することにより、環境変化をモニタリングすることができる。粒子流動解析に、粒子の劣化情報を付与することにより、より正確な解析が可能となる。 Since the monitoring method of the present invention can be performed by analysis of environmental DNA, diving work is not required, wide-area and high-frequency investigation is possible, and the risk associated with diving work can be reduced. By performing particle flow analysis on the environmental DNA derived from the environmental sudden change region (environmental sudden change region) and the environmental DNA derived from the entire habitat (all), the ratio of the environmental DNA (environmental sudden change region) to the environmental DNA at a certain point can be obtained. It can be calculated and an appropriate place can be selected as a water sampling place. Therefore, by collecting water at a point where the ratio of environmental DNA (environmental sudden change region) is low, it is possible to determine whether the sudden change in the environment is affecting the surrounding environment. Environmental changes can be monitored by sampling water at a point where the proportion of environmental DNA (environmental sudden change region) is high. By adding particle deterioration information to the particle flow analysis, more accurate analysis becomes possible.
・第一の実施態様
本発明の第一の実施態様である生物種のモニタリング方法は、
環境の急変が予想される水域に生息する回遊しない生物種の中から調査生物種を決定するとともに、前記調査生物種の生息域を調査する工程、
前記調査生物種の生息域から少なくとも環境急変領域を区分する工程、
前記調査生物種の環境急変領域由来の環境DNA(環境急変領域)と全生息域由来の環境DNA(全)について粒子流動解析する工程、
前記粒子流動解析の結果から、前記環境DNA(環境急変領域)の割合が低いポイントを割り出し、このポイントを含む採水箇所を決定する工程、
前記採水箇所から得た検体の調査生物種の環境DNAを分析する工程、
を備えることを特徴とする。
First Embodiment The method for monitoring an organism according to the first embodiment of the present invention is as follows.
The process of determining the survey species from the non-migratory species that live in waters where sudden changes in the environment are expected, and investigating the habitat of the survey species.
The process of classifying at least a sudden environmental change area from the habitat of the surveyed species,
A step of particle flow analysis of the environmental DNA (environmental sudden change region) derived from the environmental sudden change region and the environmental DNA (all) derived from the entire habitat of the surveyed organism.
A step of determining a point where the ratio of the environmental DNA (environmental sudden change region) is low from the result of the particle flow analysis and determining a water sampling point including this point.
Step of analyzing the environmental DNA of the survey organism of the sample obtained from the water sampling point,
It is characterized by having.
以下、第一の実施態様であるモニタリング方法を、工程順に沿って説明する。
・調査工程
まず、環境の急変が予想される水域に生息する回遊しない生物種の中から調査生物種を決定するとともに、前記調査生物種の生息域を調査する。環境の急変としては、例えば、水域における土木工事が挙げられる。本発明のモニタリング方法は、粒子流動解析を行うものであるため、潮流の向きが変化する、湾、入江、海峡等において、高い精度でモニタリングすることができる。
Hereinafter, the monitoring method according to the first embodiment will be described along with the process order.
-Survey process First, the survey species are determined from the non-migratory species that live in the water area where sudden changes in the environment are expected, and the habitat of the survey species is surveyed. Examples of sudden changes in the environment include civil engineering work in water bodies. Since the monitoring method of the present invention performs particle flow analysis, it is possible to monitor with high accuracy in bays, coves, straits, etc. where the direction of tidal current changes.
本発明は、回遊しない生物種のモニタリング方法であり、対象とする生物種としては、サンゴ、海草、水草、藻類、貝類、ウニ、ナマコ、ヒトデ、イソギンチャク、甲殻類、魚類等の移動しない、または、季節を通してほぼ同じ地点に生息する生物種が挙げられる。
環境の急変が予想される水域に生息するこれらの回遊しない生物種の中から、調査生物種を決定する。調査生物種を選ぶポイントとしては、希少性や、生態系への影響の大きさ等が挙げられる。また、環境DNAの検出が可能となるようにある程度以上の生息数が必要である。そのため、調査生物種としては、サンゴ、海草を選定する場合が多い。
調査生物種を決定した後、この調査生物種の生息域を調査する。この調査は、ダイバーが実際に潜水しての調査でもよく、自治体や大学が以前に実施した生息域調査の結果を用いてもよい。
The present invention is a method for monitoring organisms that do not migrate, and the target organisms include coral, seaweed, aquatic plants, algae, shellfish, sea urchins, sea urchins, starfish, isoginchak, shellfish, fish, etc. , Species that live in almost the same spot throughout the season.
From these non-migratory species that live in waters where sudden changes in the environment are expected, the species to be investigated will be determined. The points for selecting a survey species include its rarity and the magnitude of its impact on the ecosystem. In addition, it is necessary to have a certain number of inhabitants so that environmental DNA can be detected. Therefore, coral and seagrass are often selected as the species to be investigated.
After determining the species to be investigated, the habitat of this species will be investigated. This survey may be a survey of divers actually diving, or may use the results of habitat surveys previously conducted by local governments and universities.
・区分工程
調査工程において決定した調査生物種の生息域から、少なくとも環境急変領域を区分する。
環境急変領域とは、環境急変による何らかの影響を受け得る領域である。環境急変領域は、環境の急変が予想される地点を中心とした一定距離の範囲内のように一律に定めることもでき、水域における土木工事の場合、施工現場を管轄する漁協や自治体との合議により定めることもできる。本発明において、生息域を2以上の領域に区分することもでき、例えば、環境急変領域を2以上に区分することもでき、環境急変領域以外の領域を2以上に区分することもできる。
-Classification process At least the area of sudden environmental change is classified from the habitat of the surveyed species determined in the survey process.
The area of sudden environmental change is an area that can be affected by sudden changes in the environment. The area of sudden environmental change can be uniformly defined as within a certain distance centered on the point where sudden change in the environment is expected. It can also be determined by. In the present invention, the habitat can be divided into two or more regions, for example, the environmental sudden change region can be divided into two or more, and the region other than the environmental sudden change region can be divided into two or more.
・解析工程
調査生物種の環境DNAについて、環境急変領域由来の環境DNA(環境急変領域)と全生息域由来の環境DNA(全)のそれぞれを粒子流動解析する。粒子流動解析は、生息域を環境DNAの粒子の出発点として、潮流によりどのように広がるかを解析する。この際、生息域の全体に同一数の粒子を投入して解析してもよく、生息密度に応じて異なる数の粒子を投入して解析してもよい。現実に近い条件で解析を行うほうが、より正確な解析を行うことができる。また、2以上の領域に区分した場合は、それぞれの領域に由来する環境DNAを異なる粒子として解析を行うこともできる。
-Analysis process Regarding the environmental DNA of the surveyed organism, particle flow analysis is performed for each of the environmental DNA derived from the sudden environmental change region (the sudden environmental change region) and the environmental DNA derived from the entire habitat (all). The particle flow analysis analyzes how the habitat expands due to the tidal current, with the habitat as the starting point of the particles of environmental DNA. At this time, the same number of particles may be charged into the entire habitat for analysis, or different numbers of particles may be charged according to the habitat density for analysis. More accurate analysis can be performed by performing analysis under conditions closer to reality. Further, when the particles are divided into two or more regions, the environmental DNA derived from each region can be analyzed as different particles.
本発明で行う粒子流動解析は、ある地点における潮流により拡散した後の粒子の個数をカウントするものであるため、環境急変領域由来の環境DNA(環境急変領域)と全生息域由来の環境DNA(全)とについて、解析を行うことにより、拡散後の環境DNAについて、環境急変領域由来の環境DNA(環境急変領域)の割合を算出することができる。すなわち、粒子流動解析により、ある地点に存在する環境DNAについて、環境DNA(環境急変領域)が20%の割合で含まれるといった情報を得ることができる。 Since the particle flow analysis performed in the present invention counts the number of particles after being diffused by the tidal current at a certain point, the environmental DNA derived from the environmental sudden change region (environmental sudden change region) and the environmental DNA derived from the entire habitat (environmental sudden change region) (environmental DNA derived from the entire habitat) By analyzing all), it is possible to calculate the ratio of the environmental DNA (environmental sudden change region) derived from the environmental sudden change region to the environmental DNA after diffusion. That is, it is possible to obtain information that the environmental DNA (environmental sudden change region) is contained at a ratio of 20% for the environmental DNA existing at a certain point by the particle flow analysis.
さらに、粒子流動解析は、粒子(環境DNA)に劣化情報を付与することができる。環境DNAは、環境中で微生物により代謝されたり、紫外線により分解されたりして、1週間程度で消滅する。例えば、粒子流動解析は「5日後に消滅する」という劣化情報を付与した上で、一定時間ごとに一定数の粒子を投入することができ、刻々と変化する潮流の向きに応じて、その時々の粒子数をカウントすることができる。 Further, the particle flow analysis can add deterioration information to the particles (environmental DNA). Environmental DNA is metabolized by microorganisms in the environment or decomposed by ultraviolet rays, and disappears in about one week. For example, particle flow analysis can add a certain number of particles at regular intervals after adding deterioration information that "disappears after 5 days", and depending on the direction of the tidal current that changes from moment to moment, it can be changed from time to time. The number of particles can be counted.
なお、環境DNAの解析方法としては、通常、濃度拡散解析が行われている。しかし、濃度拡散解析は、潮流により拡散した後の環境DNAの分布(濃度)を知ることはできるが、環境急変領域由来の環境DNA(環境急変領域)の割合を知ることはできない。また、濃度拡散解析は、最終的には薄まるのみであり、消滅するという劣化情報を付与することはできない。 As a method for analyzing environmental DNA, concentration diffusion analysis is usually performed. However, although the concentration diffusion analysis can know the distribution (concentration) of the environmental DNA after being diffused by the tidal current, it cannot know the ratio of the environmental DNA (environmental sudden change region) derived from the environmental sudden change region. In addition, the concentration diffusion analysis only dilutes in the end, and cannot give deterioration information that it disappears.
・選定工程
粒子流動解析の結果から、環境DNA(環境急変領域)の割合が低いポイントを割り出し、このポイントを含む採水箇所を選定する。
・分析工程
この採水箇所から得た検体の保護対象生物種の環境DNAを分析する。
-Selection process From the results of particle flow analysis, determine the point where the ratio of environmental DNA (environmental sudden change region) is low, and select the water sampling point including this point.
-Analysis process The environmental DNA of the species to be protected of the sample obtained from this water sampling point is analyzed.
採水箇所として、環境DNA(環境急変領域)の割合が少ない、または存在しないポイントを選定することにより、環境急変の影響を受けないと予測される周辺領域に生息する調査生物種の情報を知ることができる。そのため、環境DNA(環境急変領域)の割合が低いポイントから採水した検体の分析を定期的に行い、その変動量を比較することにより、その周辺領域に生息する調査生物種の増減をモニタリングすることができ、環境の急変が周辺領域の環境にどのような影響を及ぼしたかを知ることができる。 By selecting a point where the proportion of environmental DNA (environmental sudden change area) is small or does not exist as a water sampling point, we will know information on the surveyed organisms that inhabit the surrounding area that are not expected to be affected by the environmental sudden change. be able to. Therefore, we will periodically analyze the samples collected from the point where the ratio of environmental DNA (environmental sudden change region) is low, and monitor the increase and decrease of the surveyed organisms inhabiting the surrounding region by comparing the fluctuation amount. It is possible to know how the sudden change in the environment affected the environment in the surrounding area.
第一の実施態様であるモニタリング方法は、環境急変領域由来の環境DNA(環境急変領域)の割合が低いポイントから採水した検体を分析することにより、環境の急変による影響を受けないと予測される周辺領域についてのウェートが大きな情報を得ることができる。そのため、環境の急変による影響が当然に起こり得る環境急変領域での変化に惑わされることなく、周辺領域において予期せぬ環境変化が起きていないかを知ることができる。環境急変領域の変動を排除する観点から、採水箇所として選定するポイントは、環境DNA(環境急変領域)の割合が50%以下であることが好ましく、30%以下であることがより好ましく、10%以下であることがさらに好ましく、1%以下であることが最も好ましい。 The monitoring method, which is the first embodiment, is predicted not to be affected by the sudden change in the environment by analyzing the sample collected from the point where the ratio of the environmental DNA (the sudden change in the environment) derived from the sudden change in the environment is low. The weight of the surrounding area can be very informative. Therefore, it is possible to know whether or not an unexpected environmental change has occurred in the surrounding area without being confused by the change in the environmental sudden change area where the influence of the sudden change in the environment can naturally occur. From the viewpoint of eliminating fluctuations in the sudden change in the environment, the point to be selected as the water sampling point is preferably that the ratio of the environmental DNA (the sudden change in the environment) is 50% or less, more preferably 30% or less. It is more preferably% or less, and most preferably 1% or less.
第一の実施態様であるモニタリング方法は、さらに、環境DNA(環境急変領域)の割合が高いポイントを選定し、採水箇所とすることができる。環境DNA(環境急変領域)の割合が低いポイント、高いポイントの両方の情報を得ることにより、周辺領域に生息する調査生物種の変動をより正確に把握することができる。 In the monitoring method according to the first embodiment, a point having a high ratio of environmental DNA (environmental sudden change region) can be further selected and used as a water sampling point. By obtaining information on both points where the ratio of environmental DNA (environmental sudden change region) is low and points where it is high, it is possible to more accurately grasp the fluctuations of the surveyed organisms inhabiting the surrounding region.
・第二の実施態様
本発明の第二の実施態様である生物種のモニタリング方法は、環境急変領域由来の環境DNA(環境急変領域)の割合が高いポイントを割り出し、このポイントを含む採水箇所を選定する以外は、第一の実施態様である生物種のモニタリング方法と同様である。
-Second Embodiment In the method of monitoring an organism species according to the second embodiment of the present invention, a point having a high ratio of environmental DNA (environmental sudden change region) derived from the environmental sudden change region is determined, and a water sampling point including this point is determined. It is the same as the method for monitoring an organism, which is the first embodiment, except that the above method is selected.
第二の実施態様であるモニタリング方法は、環境急変領域のウェートが大きな情報を得ることができる。そして、環境急変領域での調査生物種の変動をモニタリングすることにより、環境急変後の環境回復措置の検討が容易となり、さらに、経時での自然回復の状況を知ることができる。 In the monitoring method according to the second embodiment, the weight of the sudden environmental change area can obtain a large amount of information. By monitoring changes in the species of the surveyed organism in the area of sudden environmental change, it becomes easier to study environmental recovery measures after the sudden change in the environment, and it is possible to know the status of natural recovery over time.
本発明のモニタリング方法において、環境DNAから何らかの変化が確認できた場合は、ダイバーによる潜水調査を行うことが好ましい。環境DNAにより、様々な情報を得ることはできるが、実際の現場を観察した情報を得ることにより、変動が生じた原因を追求し、対策を講じることが容易となる。 When any change can be confirmed from the environmental DNA in the monitoring method of the present invention, it is preferable to carry out a diving survey by a diver. Various information can be obtained from environmental DNA, but by obtaining information by observing the actual site, it becomes easy to pursue the cause of the fluctuation and take countermeasures.
環境の急変が予想される水域として、三重県英虞湾を想定し、アマモ、コアマモを調査生物種として決定した。また、アマモ、コアマモの生息域は、潜水により調査した。図1にアマモ場の分布を示す。なお、図1中の枠は、仮定の環境急変領域である。 Assuming Ago Bay in Mie Prefecture as a water area where sudden changes in the environment are expected, eelgrass and Zostera japonica were selected as survey species. The habitats of eelgrass and Zostera japonica were investigated by diving. FIG. 1 shows the distribution of the eelgrass field. The frame in FIG. 1 is a hypothetical environment sudden change area.
潮汐を外力とした流れに基づいた粒子流動解析を行った。追跡する環境DNAの粒子は、アマモ場から時々刻々と放出される極微細な草体片と考え、流れに完全受動な粒子とした。粒子の初期位置は、アマモ生息領域の底層(10層)とし、2時間ごとに粒子を計算格子に各4個投入した。なお、環境DNAには、5日後に消滅するとの劣化情報を付与した。 Particle flow analysis was performed based on the flow using the tide as an external force. The particles of the environmental DNA to be tracked were considered to be ultrafine pieces of grass that were released from the eelgrass field every moment, and were completely passive to the flow. The initial position of the particles was the bottom layer (10 layers) of the eelgrass habitat, and 4 particles were put into the calculation grid every 2 hours. The environmental DNA was given deterioration information that it disappeared after 5 days.
アマモの環境DNAが劣化せず検出できる限界の5日間を計算時間として、5日後の環境DNAの分布を、3次元流動シミュレーション(Delft3D,Deltares・オランダ)により算出した。環境急変領域から流出した環境DNA(環境急変領域)の分布を図2に、アマモ場全体から流出した環境DNA(全)の分布を図3に、環境DNA(全)に対する環境DNA(環境急変領域)の割合を図4に示す。なお、図2、3において、色が濃いほど環境DNAの粒子数が多いことを表し、図4において、色が濃いほど環境DNA(環境急変領域)の割合が高いことを表す。 The distribution of environmental DNA after 5 days was calculated by a three-dimensional flow simulation (Delft3D, Deltares, The Netherlands), with the calculation time being 5 days, which is the limit at which the environmental DNA of eelgrass can be detected without deterioration. The distribution of environmental DNA (environmental sudden change region) leaked from the environmental sudden change region is shown in Fig. 2, the distribution of environmental DNA (whole) leaked from the entire eelgrass field is shown in Fig. 3, and the environmental DNA (environmental sudden change region) relative to the environmental DNA (whole) is shown in Fig. 3. ) Is shown in FIG. In FIGS. 2 and 3, the darker the color, the larger the number of particles of the environmental DNA, and in FIG. 4, the darker the color, the higher the proportion of the environmental DNA (environmental sudden change region).
図2~4より、環境DNA(環境急変領域)の割合が低いポイントとして、例えば、図3の矢印で指し示すポイントが挙げられる。このポイントの環境DNAを分析することにより、環境急変領域に生息するアマモの増減を排除して、周辺領域におけるアマモの変動を効率的に検知することができる。
また、図2~4より、環境DNA(環境急変領域)の割合が高いポイントとして、例えば、図4の矢印で指し示すポイントが挙げられる。このポイントの環境DNAを分析することにより、環境急変領域に生息するアマモの変動を効率的に検知することができる。
From FIGS. 2 to 4, as a point where the ratio of environmental DNA (environmental sudden change region) is low, for example, a point indicated by an arrow in FIG. 3 can be mentioned. By analyzing the environmental DNA at this point, it is possible to eliminate the increase or decrease of the eelgrass inhabiting the sudden environmental change region and efficiently detect the fluctuation of the eelgrass in the peripheral region.
Further, from FIGS. 2 to 4, as a point where the ratio of environmental DNA (environmental sudden change region) is high, for example, the point indicated by the arrow in FIG. 4 can be mentioned. By analyzing the environmental DNA at this point, it is possible to efficiently detect the fluctuation of eelgrass inhabiting the sudden environmental change region.
Claims (5)
前記調査生物種の生息域から少なくとも環境急変領域を区分する工程、
前記調査生物種の環境急変領域由来の環境DNA(環境急変領域)と全生息域由来の環境DNA(全)について粒子流動解析する工程、
前記粒子流動解析の結果から、前記環境DNA(環境急変領域)の割合が低いポイントを割り出し、このポイントを含む採水箇所を決定する工程、
前記採水箇所から得た検体の調査生物種の環境DNAを分析する工程、
を備えることを特徴とする、生物種のモニタリング方法。 The process of determining the survey species from the non-migratory species that live in waters where sudden changes in the environment are expected, and investigating the habitat of the survey species.
The process of classifying at least a sudden environmental change area from the habitat of the surveyed species,
A step of particle flow analysis of the environmental DNA (environmental sudden change region) derived from the environmental sudden change region and the environmental DNA (all) derived from the entire habitat of the surveyed organism.
A step of determining a point where the ratio of the environmental DNA (environmental sudden change region) is low from the result of the particle flow analysis and determining a water sampling point including this point.
Step of analyzing the environmental DNA of the survey organism of the sample obtained from the water sampling point,
A method of monitoring an organism, characterized in that it is equipped with.
前記調査生物種の生息域から少なくとも環境急変領域を区分する工程、
前記調査生物種の環境急変領域由来の環境DNA(環境急変領域)と全生息域由来の環境DNA(全)について粒子流動解析する工程、
前記粒子流動解析の結果から、前記環境DNA(環境急変領域)の割合が高いポイントを割り出し、このポイントを含む採水箇所を決定する工程、
前記採水箇所から得た検体の調査生物種の環境DNAを分析する工程、
を備えることを特徴とする、生物種のモニタリング方法。 The process of determining the survey species from the non-migratory species that live in waters where sudden changes in the environment are expected, and investigating the habitat of the survey species.
The process of classifying at least a sudden environmental change area from the habitat of the surveyed species,
A step of particle flow analysis of the environmental DNA (environmental sudden change region) derived from the environmental sudden change region and the environmental DNA (all) derived from the entire habitat of the surveyed organism.
A step of determining a point having a high ratio of the environmental DNA (environmental sudden change region) from the result of the particle flow analysis and determining a water sampling point including this point.
Step of analyzing the environmental DNA of the survey organism of the sample obtained from the water sampling point,
A method of monitoring an organism, characterized in that it is equipped with.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018232546A JP7085972B2 (en) | 2018-12-12 | 2018-12-12 | Species monitoring method in water area |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018232546A JP7085972B2 (en) | 2018-12-12 | 2018-12-12 | Species monitoring method in water area |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020092645A JP2020092645A (en) | 2020-06-18 |
JP7085972B2 true JP7085972B2 (en) | 2022-06-17 |
Family
ID=71083860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018232546A Active JP7085972B2 (en) | 2018-12-12 | 2018-12-12 | Species monitoring method in water area |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7085972B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111966137A (en) * | 2020-08-17 | 2020-11-20 | 刘同友 | Aquatic product transportation environment intelligent monitoring regulation and control system based on big data |
JP2023105452A (en) | 2022-01-19 | 2023-07-31 | 株式会社豊田中央研究所 | Organism-derived nucleic acid collecting method and organism-derived nucleic acid collecting device |
CN115927663A (en) * | 2022-10-11 | 2023-04-07 | 中国科学院南海海洋研究所 | Primer and method for monitoring biomass of holothuria leucospilota based on environmental DNA amplification |
JP7420901B1 (en) | 2022-11-25 | 2024-01-23 | 東急建設株式会社 | Biodiversity assessment methods |
-
2018
- 2018-12-12 JP JP2018232546A patent/JP7085972B2/en active Active
Non-Patent Citations (3)
Title |
---|
Proceedings of the Twenty-eighth (2018) International Ocean and Polar Engineering Conference,2018年06月10日,1538-1544 |
土木学会論文集B2(海岸工学),2017年,vol.73,no.2,I_1267-I_1272 |
土木学会論文集B2(海岸工学),2018年11月10日,vol.74,no.2,I_1225-I_1230 |
Also Published As
Publication number | Publication date |
---|---|
JP2020092645A (en) | 2020-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7085972B2 (en) | Species monitoring method in water area | |
Goatley et al. | Sediments and herbivory as sensitive indicators of coral reef degradation | |
Neckles et al. | Integrating scales of seagrass monitoring to meet conservation needs | |
Moritz et al. | Disentangling the role of connectivity, environmental filtering, and spatial structure on metacommunity dynamics | |
Short et al. | Site-selection model for optimal transplantation of eelgrass Zostera marina in the northeastern US | |
Mohammed et al. | Critical review of salinity intrusion in rivers and estuaries | |
Garcia-Ayllon | Long-term GIS analysis of seaside impacts associated to infrastructures and urbanization and spatial correlation with coastal vulnerability in a mediterranean area | |
Espinasse et al. | Defining zooplankton habitats in the Gulf of Lion (NW Mediterranean Sea) using size structure and environmental conditions | |
Li et al. | Assessing metal toxicity in sediments using the equilibrium partitioning model and empirical sediment quality guidelines: a case study in the nearshore zone of the Bohai Sea, China | |
Chou et al. | Habitat evaluation using suitability index and habitat type diversity: a case study involving a shallow forest stream in central Taiwan | |
Murray et al. | Cumulative impact mapping and vulnerability of Canadian Marine ecosystems to anthropogenic activities and stressors | |
Scala et al. | COAST-PROSIM: A Model for Predicting Shoreline Evolution and Assessing the Impacts of Coastal Defence Structures | |
Xu et al. | An indicator to quantify the effects of hydrodynamic disturbances caused by coastal reclamation on aquatic organisms | |
Sekine et al. | Development of a simulation model considering vegetation growth and flushing in Arakawa River | |
Pastor Rollan et al. | Current trends in biophysical modeling of eDNA dynamics for the detection of marine species | |
Roché et al. | Birds as bio-indicators and as tools to evaluate restoration measures | |
Bučas | Distribution patterns and ecological role of the red alga Furcellaria lumbricalis (Hudson) JV Lamouroux off the exposed Baltic Sea coast of Lithuania | |
Greeley | Habitat selection and movement behaviour of yellow lampmussel (Lampsilis cariosa) in the Wolastoq River catchment, New Brunswick | |
Bégin | Land use and sedimentation impacts on coral reefs in the eastern Caribbean | |
Pert et al. | Infestation rates of lice Lepeophtheirus salmonis and Caligus elongatus on Atlantic salmon in fixed and towed sentinel cages | |
Reyns et al. | Vulnerability of coral reef protected coastlines in a changing environment | |
MORI et al. | Mangrove conservation genetics | |
Mohamed | Assessment of Temporal Variation of Fish Assemblages between Natural and Artificial Reefs | |
Kanaya et al. | 4. Impacts of the 2011 tsunami on tidal flat ecosystems: future perspectivesfor conservation of macrozoobenthic biodiversity | |
Bruce et al. | Integrated aquaculture modelling to determine carrying capacity of aquaculture development zones in the Arabian Gulf |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220531 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220531 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220607 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7085972 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |