+

JP6956491B2 - Heat exchanger and heat exchange system - Google Patents

Heat exchanger and heat exchange system Download PDF

Info

Publication number
JP6956491B2
JP6956491B2 JP2017017090A JP2017017090A JP6956491B2 JP 6956491 B2 JP6956491 B2 JP 6956491B2 JP 2017017090 A JP2017017090 A JP 2017017090A JP 2017017090 A JP2017017090 A JP 2017017090A JP 6956491 B2 JP6956491 B2 JP 6956491B2
Authority
JP
Japan
Prior art keywords
shell
heated
fluid
heating line
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017017090A
Other languages
Japanese (ja)
Other versions
JP2018124019A (en
Inventor
市川 達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Plant Services Corp
Original Assignee
IHI Plant Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Plant Services Corp filed Critical IHI Plant Services Corp
Priority to JP2017017090A priority Critical patent/JP6956491B2/en
Publication of JP2018124019A publication Critical patent/JP2018124019A/en
Application granted granted Critical
Publication of JP6956491B2 publication Critical patent/JP6956491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、液化天然ガス等の流体を加熱するための熱交換器及び熱交換システムに関する。 The present invention relates to heat exchangers and heat exchange systems for heating fluids such as liquefied natural gas.

一般に、液化天然ガス(LNG)を燃料として利用する際には、低温で貯蔵されたLNGを加熱して気化させ、更に場合によっては気化した天然ガス(NG)を過熱し、所要の温度まで昇温させる必要がある。この際、LNGを気化し、過熱するための装置として、例えば、シェルアンドチューブ型と呼ばれる型式の熱交換器が用いられる(例えば、下記特許文献1参照)。 Generally, when liquefied natural gas (LNG) is used as fuel, LNG stored at a low temperature is heated and vaporized, and in some cases, the vaporized natural gas (NG) is overheated and raised to a required temperature. It needs to be warmed. At this time, as a device for vaporizing and overheating LNG, for example, a heat exchanger of a type called a shell-and-tube type is used (see, for example, Patent Document 1 below).

この種の熱交換器では、シェルの内部にLNGの流路としての管(チューブ)を収容し、前記シェルの内部に熱媒を流通させて、前記管内を流れるLNGと、前記管の周囲を流れる熱媒との間で熱交換させることでLNGの加熱を行うようになっている。 In this type of heat exchanger, a tube (tube) as a flow path for LNG is housed inside the shell, a heat medium is circulated inside the shell, and the LNG flowing through the tube and the periphery of the tube are circulated. LNG is heated by exchanging heat with the flowing heat medium.

尚、以下では、熱交換器を用いてLNG等の被加熱流体を加熱する一連の工程のうち、液体の状態の被加熱流体を気化させる工程を「気化」、気体となった被加熱流体に更に熱を加えて昇温させる工程を「過熱」と特に呼称することとする。 In the following, among a series of steps of heating a heated fluid such as LNG using a heat exchanger, the step of vaporizing the heated fluid in a liquid state is "vaporized", and the heated fluid becomes a gas. The process of further applying heat to raise the temperature is particularly referred to as "overheating".

特表2008−518187号公報Japanese Patent Publication No. 2008-518187

上述の如き熱交換器では、要求される性能を満たすために、設計段階において管の径や長さ、本数、管同士の間隔、シェルの大きさといった仕様が適宜決定される。ここで、従来のシェルアンドチューブ型の熱交換器の場合、LNGの流路をなす管は、それぞれが入口から出口までを単一の管にて構成されている。すなわち、シェルの入口から出口に至る流路の全体に亘り、各管の径や本数、管同士の間隔等は同一である。 In the heat exchanger as described above, specifications such as the diameter and length of pipes, the number of pipes, the distance between pipes, and the size of shells are appropriately determined at the design stage in order to satisfy the required performance. Here, in the case of the conventional shell-and-tube type heat exchanger, each of the pipes forming the LNG flow path is composed of a single pipe from the inlet to the outlet. That is, the diameter and number of each pipe, the distance between the pipes, and the like are the same over the entire flow path from the inlet to the outlet of the shell.

一方、LNGの気化に用いられる熱交換器では、上流側の流路における単位長さあたりの熱交換量と、下流側の流路における単位長さあたりの熱交換量とが大きく異なる。上流側では、液体であるLNGがNGへと気化する過程で熱媒から気化熱を奪うために熱交換量が大きいが、下流側では既に気化したNGを過熱する工程が行われるので、上流側と比較して熱交換量が小さい。 On the other hand, in the heat exchanger used for vaporizing LNG, the amount of heat exchange per unit length in the upstream flow path and the amount of heat exchange per unit length in the downstream flow path are significantly different. On the upstream side, the amount of heat exchange is large because the heat of vaporization is taken from the heat medium in the process of vaporizing the liquid LNG to NG, but on the downstream side, the process of overheating the already vaporized NG is performed, so the upstream side The amount of heat exchange is small compared to.

ところが、上述の如く、管の径や配置による流路の構成は上流側と下流側とで同一であり、設計上の熱交換に係る性能は、上流側と下流側とで差がない。したがって、上流側における熱交換量の大きさを考慮し、熱媒の凍結を防止し得るように管の径や配置を決定した場合、下流側では実際の熱交換量に対する設計上の性能が過大になってしまう。かと言って、逆に下流側での熱交換量に合わせて管を設計すれば、上流側では要求される熱交換量に対して設計上の性能が不足してしまうので、結局は上流側での熱交換量に合わせて全体を設計せざるを得ない。このように、従来のシェルアンドチューブ型の熱交換器では、要求される熱交換量に対して熱交換に係る性能が部分的に過剰となってしまい、その分、装置の構造に無駄な大型化が生じてしまっていた。装置の大型化は、据付架台の大型化を要して建造費の高騰を招くほか、積載可能な車両が限定されるなど、輸送上の制限をも生じ得る。 However, as described above, the configuration of the flow path depending on the diameter and arrangement of the pipes is the same on the upstream side and the downstream side, and the performance related to heat exchange in design is not different between the upstream side and the downstream side. Therefore, if the diameter and arrangement of the pipes are determined so as to prevent the heat medium from freezing in consideration of the size of the heat exchange amount on the upstream side, the design performance with respect to the actual heat exchange amount is excessive on the downstream side. Become. On the contrary, if the pipe is designed according to the heat exchange amount on the downstream side, the design performance will be insufficient for the required heat exchange amount on the upstream side, so in the end, on the upstream side. There is no choice but to design the whole according to the amount of heat exchange. In this way, in the conventional shell-and-tube type heat exchanger, the performance related to heat exchange is partially excessive with respect to the required heat exchange amount, and the size of the device is uselessly large. It had been transformed. Increasing the size of the device requires an increase in the size of the installation stand, which leads to an increase in construction costs, and may also cause transportation restrictions such as a limitation on the vehicles that can be loaded.

本発明は、斯かる実情に鑑み、熱交換に係る性能を部分毎に最適化し、装置の大型化を抑え得る熱交換器及び熱交換システムを提供しようとするものである。 In view of such circumstances, the present invention aims to provide a heat exchanger and a heat exchange system capable of optimizing the performance related to heat exchange for each part and suppressing the increase in size of the apparatus.

本発明は、被加熱流体を流通させる第一加熱ラインを内部に収容し、該第一加熱ラインの周囲に熱媒を供給するよう構成された第一シェルと、前記第一加熱ラインを通過した被加熱流体を流通させる第二加熱ラインを内部に収容し、該第二加熱ラインの周囲に熱媒を供給するよう構成された第二シェルと、前記第一シェルと前記第二シェルの間に位置し、内部に設けた空間に被加熱流体を流通させるよう構成された中間シェルとを備え、前記第一シェルの下部から前記第一加熱ラインに導入した被加熱流体を、前記中間シェルを介して前記第二加熱ラインの上方へ抜き出すよう構成され、前記第一加熱ラインにおける単位長さあたりの熱交換量が前記第二加熱ラインにおける単位長さあたりの熱交換量より大きくなるよう、前記第一シェルにおける被加熱流体の流路断面積、被加熱流体の体積あたりの熱媒との接触面積、又は被加熱流体の体積あたりの熱媒の容量の少なくともいずれか一つが、前記第二シェルよりも大きくなるよう構成されたシェルアンドチューブ型の熱交換器にかかるものである。 The present invention has passed through a first shell configured to house a first heating line through which a fluid to be heated flows and to supply a heat medium around the first heating line, and the first heating line. Between the first shell and the second shell, which is configured to house a second heating line through which the fluid to be heated flows and to supply a heat medium around the second heating line. It is provided with an intermediate shell that is located and is configured to allow the fluid to be heated to flow through the space provided inside, and the fluid to be heated introduced from the lower part of the first shell into the first heating line is passed through the intermediate shell. The first heating line is configured to be extracted above the second heating line so that the amount of heat exchanged per unit length in the first heating line is larger than the amount of heat exchanged per unit length in the second heating line. At least one of the cross-sectional area of the flow path of the fluid to be heated, the contact area with the heat medium per volume of the fluid to be heated, or the capacity of the heat medium per volume of the fluid to be heated in one shell is from the second shell. It is related to a shell-and-tube type heat exchanger that is configured to be large.

本発明の熱交換器を具体的に実施するにあたっては、前記第一加熱ラインを複数の管として、前記第二加熱ラインを一本以上の管としてそれぞれ構成し、前記第一加熱ラインを構成する管の本数を前記第二加熱ラインを構成する管の本数より多くすることができる。 In concretely implementing the heat exchanger of the present invention, the first heating line is configured as a plurality of tubes, the second heating line is configured as one or more tubes, and the first heating line is configured. The number of tubes can be larger than the number of tubes constituting the second heating line.

本発明の熱交換器を具体的に実施するにあたっては、前記第一加熱ライン及び前記第二加熱ラインをそれぞれ複数の管として構成し、前記第一加熱ラインを構成する管同士の間隔を前記第二加熱ラインを構成する管同士の間隔より広く設定し、且つ前記第一シェルの管に直交する断面の面積が前記第二シェルの管に直交する断面の面積より大きく設定することができる。 In concretely implementing the heat exchanger of the present invention, the first heating line and the second heating line are each configured as a plurality of tubes, and the distance between the tubes constituting the first heating line is set to the first. (Ii) It can be set wider than the distance between the pipes constituting the heating line, and the area of the cross section orthogonal to the pipe of the first shell can be set larger than the area of the cross section orthogonal to the pipe of the second shell.

また、本発明は、前記熱交換器に、被加熱流体の温度を検出する温度センサ又は被加熱流体の圧力を検出する圧力センサの少なくとも一方を備えた、請求項1に記載の熱交換器を用いた熱交換システムにかかるものである。 The present invention also provides the heat exchanger according to claim 1, wherein the heat exchanger is provided with at least one of a temperature sensor for detecting the temperature of the fluid to be heated and a pressure sensor for detecting the pressure of the fluid to be heated. It depends on the heat exchange system used.

本発明の熱交換システムにおいて、前記温度センサ又は前記圧力センサは前記中間シェルに備えられていることが好ましい。 In the heat exchange system of the present invention, it is preferable that the temperature sensor or the pressure sensor is provided in the intermediate shell.

本発明の熱交換器及び熱交換システムによれば、熱交換に係る性能を部分毎に最適化し、装置の大型化を抑え得るという優れた効果を奏し得る。 According to the heat exchanger and the heat exchange system of the present invention, it is possible to achieve an excellent effect that the performance related to heat exchange can be optimized for each part and the size of the apparatus can be suppressed.

本発明の第一実施例による熱交換器の形態を説明する正断面図である。It is a front sectional view explaining the form of the heat exchanger according to 1st Example of this invention. 本発明の第二実施例による熱交換器の形態を説明する正断面図である。It is a front sectional view explaining the form of the heat exchanger according to the 2nd Example of this invention. 本発明の第三実施例による熱交換器の形態を説明する正断面図である。It is a front sectional view explaining the form of the heat exchanger according to the 3rd Example of this invention. 本発明の第四実施例による熱交換器の形態を説明する正断面図である。It is a front sectional view explaining the form of the heat exchanger according to the 4th Example of this invention. 本発明の実施による熱交換システムの一例を説明するブロック図である。It is a block diagram explaining an example of the heat exchange system by carrying out this invention.

以下、本発明の実施の形態を添付図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は本発明の第一実施例による熱交換器の形態を示している。本第一実施例の熱交換器1は、シェルアンドチューブ型に分類される型式であるが、管を内部に収容したシェルを上流側と下流側の二段に分割し、さらにその間を中間シェルで接続することにより、該二段のシェルの間で管による流路構成の変更を可能にした点を特徴としている。 FIG. 1 shows a form of a heat exchanger according to the first embodiment of the present invention. The heat exchanger 1 of the first embodiment is a type classified into a shell-and-tube type, but the shell containing the pipe inside is divided into two stages, an upstream side and a downstream side, and an intermediate shell is further formed between them. It is characterized in that the flow path configuration can be changed by a pipe between the two-stage shells by connecting with.

図1に示す如く、熱交換器1は、LNG等の被加熱流体Lを内部に流通させる第一加熱ラインとしての複数の管2を収容した上流側の第一シェル3と、同様に被加熱流体Lを内部に流通させる第二加熱ラインとしての複数の管4を収容した第二シェル5とを備え、第一シェル3と第二シェル5との間を中間シェル6により接続してなる。第一シェル3と第二シェル5は、それぞれ内部に熱媒Aが導入されるようになっており、第一シェル3、第二シェル5内に導入された熱媒Aは、管2,4の周囲に供給されて該管2,4を介して被加熱流体Lと接触し、該被加熱流体Lと熱交換するようになっている。第二シェル5は中間シェル6を介して第一シェル3の上方に配置されており、上流側と下流側の管2,4はそれぞれ、第一シェル3又は第二シェル5の内部に鉛直方向に沿った向きで配置されている。 As shown in FIG. 1, the heat exchanger 1 is similarly heated as the first shell 3 on the upstream side accommodating a plurality of pipes 2 as a first heating line for circulating a fluid L to be heated such as LNG inside. A second shell 5 accommodating a plurality of pipes 4 as a second heating line for circulating the fluid L inside is provided, and the first shell 3 and the second shell 5 are connected by an intermediate shell 6. The heat medium A is introduced into the first shell 3 and the second shell 5, respectively, and the heat medium A introduced into the first shell 3 and the second shell 5 is the tubes 2 and 4. It is supplied to the periphery of the water, contacts the fluid L to be heated via the pipes 2 and 4, and exchanges heat with the fluid L to be heated. The second shell 5 is arranged above the first shell 3 via the intermediate shell 6, and the upstream and downstream pipes 2 and 4 are vertically inside the first shell 3 or the second shell 5, respectively. It is arranged in the direction along the.

第一シェル3は、全体として円柱形の形状をなす中空の部材であり、円筒状の面をなす側面3aの下面を底板3b、上面を上板3cにより覆われてなる。側面3aの適宜位置には、第一シェル3内に熱媒Aを導入するための熱媒入口3dと、第一シェル3から熱媒Aを導出するための熱媒出口3eが設けられている。ここに示した例では、側面3aの上端付近の一箇所に熱媒入口3dを備えており、側面3aの中心軸に関して熱媒入口3dとは反対側における下端付近の一箇所に熱媒出口3eを配置している。 The first shell 3 is a hollow member having a cylindrical shape as a whole, and the lower surface of the side surface 3a forming the cylindrical surface is covered with the bottom plate 3b and the upper surface is covered with the upper plate 3c. At appropriate positions on the side surface 3a, a heat medium inlet 3d for introducing the heat medium A into the first shell 3 and a heat medium outlet 3e for deriving the heat medium A from the first shell 3 are provided. .. In the example shown here, the heat medium inlet 3d is provided at one place near the upper end of the side surface 3a, and the heat medium outlet 3e is provided at one place near the lower end on the side opposite to the heat medium inlet 3d with respect to the central axis of the side surface 3a. Is placed.

第一加熱ラインを構成する管2は、底板3bから上板3cまで延びており、底板3b及び上板3cは、それぞれ第一シェル3の内部に備えられた管2の端部に貫通されている。こうして、被加熱流体Lが流通する管2内部の空間と、熱媒Aが流通する第一シェル3の内側で且つ管2の外部の空間とは互いに隔絶されている。 The pipe 2 constituting the first heating line extends from the bottom plate 3b to the upper plate 3c, and the bottom plate 3b and the upper plate 3c are each penetrated through the end of the pipe 2 provided inside the first shell 3. There is. In this way, the space inside the pipe 2 through which the fluid L to be heated flows and the space inside the first shell 3 through which the heat medium A flows and outside the pipe 2 are isolated from each other.

第一シェル3の内部には、管2と直交する面をなすように、二枚の邪魔板7a,7bが備えられている。このうち、上側に位置する邪魔板7aは、熱媒入口3dの下方において第一シェル3内の空間を横断するように区切っているが、この邪魔板7aは熱媒出口3e側の側面3aの内壁付近は閉塞しておらず、該内壁との間に開口が存在している。また、下側に位置する邪魔板7bは、熱媒出口3eの上方において水平方向に沿った面をなして第一シェル3内の空間を区切っているが、熱媒入口3d側の側面3aの内壁との間には開口が存在している。これらの邪魔板7a,7bは、各管2と交差する箇所においては管2に貫通されており、管2内部の被加熱流体Lの流路を妨げることはない。すなわち、邪魔板7a,7bは、管2内部の空間とは隔絶された第一シェル3内の空間に設置されている。 Inside the first shell 3, two baffle plates 7a and 7b are provided so as to form a surface orthogonal to the pipe 2. Of these, the baffle plate 7a located on the upper side is divided so as to cross the space inside the first shell 3 below the heat medium inlet 3d, and the baffle plate 7a is on the side surface 3a on the heat medium outlet 3e side. The vicinity of the inner wall is not closed, and an opening exists between the inner wall and the inner wall. Further, the baffle plate 7b located on the lower side forms a surface along the horizontal direction above the heat medium outlet 3e to divide the space in the first shell 3, but the side surface 3a on the heat medium inlet 3d side. There is an opening between it and the inner wall. These baffle plates 7a and 7b are penetrated through the pipe 2 at the intersections with the pipes 2 and do not obstruct the flow path of the fluid L to be heated inside the pipe 2. That is, the baffle plates 7a and 7b are installed in the space in the first shell 3 isolated from the space inside the pipe 2.

熱媒入口3dから第一シェル3内に導入された熱媒Aは、まず第一シェル3内の上板3c付近を水平方向に沿って流れ、熱媒入口3dと反対側の側面3aの内壁付近にて邪魔板7aを迂回しつつ下方へ流れる。さらに、邪魔板7aと邪魔板7bの間を熱媒入口3d側に向かい水平方向に沿って流れた後、邪魔板7bを迂回しつつ下方へ向かい、底板3b付近を水平方向に沿って流れて熱媒出口3eに達する。このように、第一シェル3内に邪魔板7a,7bを熱媒Aの流路に対し互い違いに配することで、熱媒入口3dから導入された熱媒Aを管2の周囲を蛇行させつつ熱媒出口3eへと導くようになっている。こうして熱媒Aの流れを蛇行させることで、熱媒Aが管2を介して被加熱流体Lと接触する機会を増やし、熱交換効率を向上させるようにしている。尚、ここでは邪魔板として、二枚の邪魔板7a,7bを第一シェル3に備えた場合を例示したが、第一シェル3の寸法や熱媒入口3d、熱媒出口3eの配置等に合わせ、邪魔板の数はこれより増やすことも減らすことも可能である。邪魔板の数を増やす際には、上述の邪魔板7a,7bの如く、複数の邪魔板を互い違いに配置することで熱媒Aを蛇行させるようにすると、熱交換効率の面で有利である。 The heat medium A introduced into the first shell 3 from the heat medium inlet 3d first flows along the horizontal direction in the vicinity of the upper plate 3c in the first shell 3, and the inner wall of the side surface 3a opposite to the heat medium inlet 3d. It flows downward while bypassing the obstruction plate 7a in the vicinity. Further, after flowing horizontally between the baffle plate 7a and the baffle plate 7b toward the heat medium inlet 3d side, it flows downward while bypassing the baffle plate 7b and flows along the horizontal direction near the bottom plate 3b. It reaches the heat medium outlet 3e. In this way, by arranging the baffle plates 7a and 7b alternately with respect to the flow path of the heat medium A in the first shell 3, the heat medium A introduced from the heat medium inlet 3d meanders around the tube 2. At the same time, it leads to the heat medium outlet 3e. By meandering the flow of the heat medium A in this way, the chance that the heat medium A comes into contact with the fluid L to be heated via the tube 2 is increased, and the heat exchange efficiency is improved. Here, as the baffle plate, the case where two baffle plates 7a and 7b are provided in the first shell 3 is illustrated, but the dimensions of the first shell 3, the heat medium inlet 3d, the heat medium outlet 3e, etc. In addition, the number of baffles can be increased or decreased. When increasing the number of baffle plates, it is advantageous in terms of heat exchange efficiency to make the heat medium A meander by arranging a plurality of baffle plates alternately as in the above-mentioned baffle plates 7a and 7b. ..

第二シェル5は、第一シェル3と概ね同様の構成を有しており、全体として円柱形の形状をなす中空の部材である。円筒状の面をなす側面5aの下面が底板5bに、上面が上板5cにより各々覆われており、第二加熱ラインを構成する管4が底板5bから上板5cまで延びている。底板5b及び上板5cは管4の端部に貫通され、管4内部の空間と、第二シェル5の内側で且つ管4の外部の空間とは互いに隔絶されている。側面5aの上端付近の一箇所には熱媒入口5dを備え、側面5aの中心軸に関して熱媒入口5dとは反対側における下端付近の一箇所に熱媒出口5eを備え、第二シェル5の内側で且つ管4の外部の空間に熱媒Aを流通させるようになっている。尚、ここに示した例では、第二シェル5には第一シェル3内の邪魔板7a,7bに相当する構成を備えていないが、第二シェル5の寸法や要求される熱交換量によっては、適宜邪魔板7a,7bと類似する邪魔板を備えるようにしても良い。 The second shell 5 has substantially the same structure as the first shell 3, and is a hollow member having a cylindrical shape as a whole. The lower surface of the side surface 5a forming a cylindrical surface is covered with the bottom plate 5b, and the upper surface is covered with the upper plate 5c, and the pipe 4 constituting the second heating line extends from the bottom plate 5b to the upper plate 5c. The bottom plate 5b and the top plate 5c are penetrated through the end of the pipe 4, and the space inside the pipe 4 and the space inside the second shell 5 and outside the pipe 4 are isolated from each other. A heat medium inlet 5d is provided at one location near the upper end of the side surface 5a, and a heat medium outlet 5e is provided at a location near the lower end on the side opposite to the heat medium inlet 5d with respect to the central axis of the side surface 5a. The heat medium A is circulated inside and outside the tube 4. In the example shown here, the second shell 5 does not have a configuration corresponding to the baffle plates 7a and 7b in the first shell 3, but it depends on the dimensions of the second shell 5 and the required heat exchange amount. May be provided with a baffle plate similar to the baffle plates 7a and 7b as appropriate.

そして、本第一実施例の場合、第一シェル3と第二シェル5の間では、それぞれ内部に収容した管2と管4の本数が互いに異なっており、第一シェル3にて第一加熱ラインを構成する管2の本数が、第二シェル5にて第二加熱ラインを構成する管4の本数よりも多く設定されている。また、これに伴い、第一シェル3の直径は、第二シェル5の直径より大きく設定されている。尚、図1はあくまで熱交換器1の構成を概念的に説明する模式図であって、図1に示す管2や管4の径や本数等は必ずしも実際をそのまま反映してはいない。以下の図2〜図5でも同様である。 In the case of the first embodiment, the number of the pipes 2 and the pipes 4 housed in the first shell 3 and the second shell 5 are different from each other, and the first shell 3 is used for the first heating. The number of pipes 2 forming the line is set to be larger than the number of pipes 4 forming the second heating line in the second shell 5. Along with this, the diameter of the first shell 3 is set to be larger than the diameter of the second shell 5. Note that FIG. 1 is a schematic diagram for conceptually explaining the configuration of the heat exchanger 1, and the diameters and numbers of the pipes 2 and 4 shown in FIG. 1 do not necessarily reflect the actual situation as they are. The same applies to FIGS. 2 to 5 below.

本第一実施例では、各管2の材質や径、肉厚は、各管4の材質や径、肉厚と同じであり、したがって、一本の管の単位長さあたりの熱交換に係る性能は、管2と管4の間で等しい。ただし、管2の本数が管4の本数よりも多いことで、第一加熱ライン全体としての流路断面積が、第二加熱ライン全体としての流路断面積よりも大きくなっている。したがって、仮に被加熱流体Lを同じ速さ且つ同じ密度で流通させた場合、第一加熱ラインを構成する管2全体の単位長さあたりに流れる被加熱流体Lの量は、第二加熱ラインを構成する管4全体の単位長さあたりに流れる被加熱流体Lの量よりも多くなる。また、仮に被加熱流体Lを同じ量で流通させた場合、管2を流れる被加熱流体Lの流速は、管4を流れる被加熱流体Lの流速よりも遅くなる。 In the first embodiment, the material, diameter, and wall thickness of each pipe 2 are the same as the material, diameter, and wall thickness of each pipe 4, and therefore, it relates to heat exchange per unit length of one pipe. Performance is equal between tube 2 and tube 4. However, since the number of pipes 2 is larger than the number of pipes 4, the flow path cross-sectional area of the first heating line as a whole is larger than the flow path cross-sectional area of the second heating line as a whole. Therefore, if the fluid L to be heated is circulated at the same speed and at the same density, the amount of the fluid L to be heated flowing per unit length of the entire pipe 2 constituting the first heating line is the same as that of the second heating line. It is larger than the amount of the fluid L to be heated that flows per unit length of the entire constituent pipe 4. Further, if the heated fluid L is circulated in the same amount, the flow velocity of the heated fluid L flowing through the pipe 2 becomes slower than the flow velocity of the heated fluid L flowing through the pipe 4.

中間シェル6は、下側の第一シェル3と、上側の第二シェル5との間に設置された中空の部材である。中間シェル6の側面6aは、全体として截頭円錐体の円錐面をなしており、該円錐面の下側の径は第一シェル3の上板3cの径に、上側の径は第二シェル5の底板5bの径にそれぞれ等しい。側面6aの下端及び上端は、第一シェル3の側面3aの上端及び第二シェル5の側面5aの下端にそれぞれ周溶接されており、中間シェル6の側面6aと、第一シェル3の上板3c及び第二シェル5の底板5bとにより截頭円錐体状の空間が形成されている。この空間は、第一加熱ラインをなす管2内部の空間及び第二加熱ラインをなす管4の内部の空間と連通しており、管2の外側で且つ第一シェル3の内側の空間、及び管4の外側で第二シェル5の内側の空間とは、それぞれ第一シェル3の上板3c及び第二シェル5の底板5bにより隔絶されている。こうして、中間シェル6は、管2により構成される第一加熱ラインと、管4により構成される第二加熱ラインとの間を連絡する被加熱流体Lの流路をなしている。 The intermediate shell 6 is a hollow member installed between the lower first shell 3 and the upper second shell 5. The side surface 6a of the intermediate shell 6 forms a conical surface of a conical surface as a whole, and the lower diameter of the conical surface is the diameter of the upper plate 3c of the first shell 3, and the upper diameter is the diameter of the second shell. It is equal to the diameter of the bottom plate 5b of 5. The lower and upper ends of the side surface 6a are circumferentially welded to the upper end of the side surface 3a of the first shell 3 and the lower end of the side surface 5a of the second shell 5, respectively, and the side surface 6a of the intermediate shell 6 and the upper plate of the first shell 3 are welded. A truncated cone-shaped space is formed by 3c and the bottom plate 5b of the second shell 5. This space communicates with the space inside the pipe 2 forming the first heating line and the space inside the pipe 4 forming the second heating line, and is connected to the space outside the pipe 2 and inside the first shell 3 and the space inside the first shell 3. The space outside the tube 4 and inside the second shell 5 is separated from the space inside the second shell 5 by the upper plate 3c of the first shell 3 and the bottom plate 5b of the second shell 5, respectively. In this way, the intermediate shell 6 forms a flow path of the fluid L to be heated that connects the first heating line formed by the tube 2 and the second heating line formed by the tube 4.

第一シェル3の下方には、底板3bの下側を覆うように前室8が設けられており、被加熱流体Lはこの前室8に備えた被加熱流体入口8aから前室8の内部空間に供給され、ここから第一加熱ラインである管2に導入される。また、第二シェル5の上方には、上板5cの上側を覆うように後室9が設けられており、第二加熱ラインである管4を流通する被加熱流体Lは、後室9の内部空間に導かれた後、後室9に備えた被加熱流体出口9aから下流へと流れ出て行くようになっている。 An anterior chamber 8 is provided below the first shell 3 so as to cover the lower side of the bottom plate 3b, and the heated fluid L is provided in the anterior chamber 8 from the heated fluid inlet 8a to the inside of the anterior chamber 8. It is supplied to the space and introduced from here to the tube 2 which is the first heating line. A rear chamber 9 is provided above the second shell 5 so as to cover the upper side of the upper plate 5c, and the fluid L to be heated flowing through the pipe 4 which is the second heating line is the rear chamber 9. After being guided to the internal space, it flows out downstream from the heated fluid outlet 9a provided in the rear chamber 9.

こうして、本第一実施例の熱交換器1では、該熱交換器1下部の被加熱流体入口8aから前室8内に被加熱流体Lを導入し、管2に下方から流入させて第一シェル3内の熱媒Aと熱交換させた上で上方の中間シェル6に抜き出し、さらに該中間シェル6から管4の下方に流入させて第二シェル5内の熱媒Aと熱交換させ、後室9から上方の被加熱流体出口9aを通して抜き出すようになっている。 In this way, in the heat exchanger 1 of the first embodiment, the heated fluid L is introduced into the anterior chamber 8 from the heated fluid inlet 8a at the lower part of the heat exchanger 1 and flows into the pipe 2 from below. After exchanging heat with the heat medium A in the shell 3, it is extracted into the upper intermediate shell 6 and further flowed from the intermediate shell 6 below the tube 4 to exchange heat with the heat medium A in the second shell 5. It is drawn out from the rear chamber 9 through the upper heated fluid outlet 9a.

この際、上述の如く、第一加熱ラインを構成する管2の本数は、第二加熱ラインを構成する管4の本数よりも多い。したがって、被加熱流体Lの体積あたりの熱媒Aとの接触面積は、管2において管4よりも大きい。また、管2では、本数が多い分、被加熱流体Lの流路断面積の合計が管4よりも大きいため、被加熱流体Lの流速が遅い。このため、被加熱流体Lが管2内をゆっくりと流通しながら加熱されることになるので、単位長さあたりの熱交換量が大きくなる。これにより、第一シェル3における熱交換に係る性能は、第二シェル5よりも高くなっている。 At this time, as described above, the number of tubes 2 constituting the first heating line is larger than the number of tubes 4 constituting the second heating line. Therefore, the contact area of the fluid L to be heated with the heat medium A per volume is larger in the tube 2 than in the tube 4. Further, in the pipe 2, since the total flow path cross-sectional area of the fluid L to be heated is larger than that of the pipe 4 due to the large number of pipes 2, the flow velocity of the fluid L to be heated is slow. Therefore, the fluid L to be heated is heated while slowly flowing through the pipe 2, so that the amount of heat exchange per unit length becomes large. As a result, the performance related to heat exchange in the first shell 3 is higher than that in the second shell 5.

上述の如く、第一シェル3では、低温の液体として流入する被加熱流体Lの気化が主に行われ、熱媒Aから多量の気化熱が奪われるため、多量の熱交換を必要とする。被加熱流体Lと熱媒Aとの接触面積が大きく、且つ被加熱流体Lの流速が小さければ、その分、多くの熱を熱媒Aから被加熱流体Lへ受け渡すことができるので、第一シェル3において効率よく被加熱流体Lが気化される。 As described above, in the first shell 3, the fluid L to be heated that flows in as a low-temperature liquid is mainly vaporized, and a large amount of heat of vaporization is taken from the heat medium A, so that a large amount of heat exchange is required. If the contact area between the heated fluid L and the heat medium A is large and the flow velocity of the heated fluid L is small, more heat can be transferred from the heat medium A to the heated fluid L. The fluid L to be heated is efficiently vaporized in one shell 3.

また、この際、第一シェル3では、管2同士の間隔を管4同士の間隔より広く取っている。また、第一シェル3の管2に直交する断面の面積は、第二シェル5の管4に直交する断面の面積より大きくしてあるので、第一シェル3内の熱媒Aの容量は、管2を流通する被加熱流体Lの体積に対して十分に大きく確保されている。したがって、被加熱流体Lの気化により多量の熱を奪われた熱媒Aが凍結するような事態は未然に防ぐことができる。 Further, at this time, in the first shell 3, the distance between the pipes 2 is wider than the distance between the pipes 4. Further, since the area of the cross section orthogonal to the tube 2 of the first shell 3 is larger than the area of the cross section orthogonal to the tube 4 of the second shell 5, the capacity of the heat medium A in the first shell 3 is large. It is secured sufficiently large with respect to the volume of the fluid L to be heated flowing through the pipe 2. Therefore, it is possible to prevent a situation in which the heat medium A, which has been deprived of a large amount of heat due to the vaporization of the fluid L to be heated, freezes.

一方、第二シェル5では、第一シェル3にて気化された被加熱流体Lが流通し、ここでは該被加熱流体Lの過熱が行われるのみであるので、要求される熱交換効率は小さい。したがって、第一シェル3と比較して被加熱流体Lの熱媒Aとの接触面積が小さく、流速が速くても、性能上の問題は生じない。 On the other hand, in the second shell 5, the heated fluid L vaporized in the first shell 3 flows, and here only the heated fluid L is overheated, so that the required heat exchange efficiency is small. .. Therefore, even if the contact area of the fluid L to be heated with the heat medium A is smaller than that of the first shell 3 and the flow velocity is high, there is no problem in performance.

このように、本第一実施例の熱交換器1では、従来は一段であったシェルを第一シェル3と第二シェル5の二段に分割することで、熱交換器1の上流側と下流側とで流路構成を変更し、熱交換に係る性能を異ならしめることができる。したがって、第一シェル3と第二シェル5を、各々熱交換に際して要求される性能に合わせて設計し、熱交換器1の各部の性能を、各部に要求される性能に見合うように最適化することが可能である。従来の熱交換器では熱交換に係る性能が過剰となっていた下流側の流路を、本来必要とされる性能に見合った構造とすることができるので、結果的に性能余剰分の流路に係る構成を削減することができ、装置の大型化を抑えることができる。この際、第一シェル3と第二シェル5との間には、被加熱流体Lの流路として中間シェル6を介在させているので、第一シェル3と第二シェル5との間で管2,4による流路構成が異なるとしても、被加熱流体Lの流通に関して不都合は生じない。 As described above, in the heat exchanger 1 of the first embodiment, the shell, which was conventionally one-stage, is divided into two stages, the first shell 3 and the second shell 5, so that the shell can be connected to the upstream side of the heat exchanger 1. The flow path configuration can be changed on the downstream side to make the performance related to heat exchange different. Therefore, the first shell 3 and the second shell 5 are each designed according to the performance required for heat exchange, and the performance of each part of the heat exchanger 1 is optimized so as to meet the performance required for each part. It is possible. In the conventional heat exchanger, the flow path on the downstream side where the performance related to heat exchange is excessive can be made into a structure that matches the performance originally required, and as a result, the flow path for the excess performance can be obtained. It is possible to reduce the number of configurations related to the above, and it is possible to suppress the increase in size of the device. At this time, since the intermediate shell 6 is interposed between the first shell 3 and the second shell 5 as a flow path for the fluid L to be heated, a pipe is provided between the first shell 3 and the second shell 5. Even if the flow path configurations of 2 and 4 are different, no inconvenience occurs with respect to the flow of the fluid L to be heated.

また、このとき、各管2を通過した被加熱流体Lは、中間シェル6に抜き出されてから下流の管4に導入されるので、中間シェル6に流入した段階で一旦混ざり合ってから管4に流入することになる。したがって、仮に管2の出口における被加熱流体Lの温度に関し、管2間でばらつきがあったとしても、中間シェル6において各管2から抜き出された被加熱流体Lが混ざり合った結果、後に管4の上方から抜き出される被加熱流体Lの温度が均質化されるという効果も期待できる。 Further, at this time, the fluid L to be heated that has passed through each of the pipes 2 is extracted into the intermediate shell 6 and then introduced into the downstream pipe 4, so that the fluids L are mixed once when they flow into the intermediate shell 6 and then the pipes. It will flow into 4. Therefore, even if there is a variation in the temperature of the heated fluid L at the outlet of the pipe 2 between the pipes 2, as a result of mixing the heated fluid L extracted from each pipe 2 in the intermediate shell 6, later The effect of homogenizing the temperature of the fluid L to be heated extracted from above the pipe 4 can also be expected.

ここで、図1では中間シェル6の内部に構造物等を特に備えていない場合を例示しているが、例えばこの部分に、被加熱流体Lの流れを誘導する整流板や、中間シェル6の強度を確保するための構造材等を別途備えても良い。 Here, FIG. 1 illustrates a case where a structure or the like is not particularly provided inside the intermediate shell 6, but for example, a straightening vane that guides the flow of the fluid L to be heated or the intermediate shell 6 is provided in this portion. A structural material or the like for ensuring strength may be separately provided.

また、管2,4については、それぞれの長さを適宜変更することで、熱媒Aと接触する流路長を調節し、以て第一シェル3及び第二シェル5それぞれにおける熱交換量を調整することができる。すなわち、管2の長さは被加熱流体Lの気化を適切に実行可能な流路長に、管4の長さは気化した被加熱流体Lを必要な温度に過熱可能な流路長に、それぞれ設計段階において適宜設定すれば良い。 Further, with respect to the tubes 2 and 4, the length of the flow path in contact with the heat medium A is adjusted by appropriately changing the length of each, and thus the amount of heat exchange in each of the first shell 3 and the second shell 5 is increased. Can be adjusted. That is, the length of the pipe 2 is the length of the flow path that can appropriately vaporize the fluid L to be heated, and the length of the pipe 4 is the length of the flow path that can superheat the vaporized fluid L to the required temperature. Each may be set appropriately at the design stage.

第一シェル3及び第二シェル5では、上述の如く、各々上端付近に備えた熱媒入口3d,5dから、下端付近に備えた熱媒出口3e,5eに向けて熱媒Aが流通するようになっている。一方、管2や管4を流通する被加熱流体Lは下から上に向かって流れるので、被加熱流体Lの流れと熱媒Aの流れは全体として互いに上下に向かい合う対向流をなしている。熱媒Aにとっては、第一シェル3又は第二シェル5の上方から下方に向かって徐々に熱を奪われて温度が低下していき、被加熱流体Lにとっては、下方から上方に向かいより温度の高い熱媒Aと次々に接触して熱を受け取る形となるので、効率の良い熱交換が可能となっている。 In the first shell 3 and the second shell 5, as described above, the heat medium A flows from the heat medium inlets 3d and 5d provided near the upper end to the heat medium outlets 3e and 5e provided near the lower end, respectively. It has become. On the other hand, since the fluid L to be heated flowing through the pipes 2 and 4 flows from the bottom to the top, the flow of the fluid L to be heated and the flow of the heat medium A are countercurrents facing each other vertically as a whole. For the heat medium A, heat is gradually taken away from the upper side to the lower side of the first shell 3 or the second shell 5, and the temperature gradually decreases, and for the fluid to be heated L, the temperature is higher from the lower side to the upper side. Since the heat is received in contact with the high heat medium A one after another, efficient heat exchange is possible.

このようにシェルを分割した構造には、強度や耐久性の面でも利点がある。従来の熱交換器では、流路を構成する各管を上流から下流までそれぞれ単一の長い管としているために剛性が小さくなり、ねじれや振動、それらによる変形等が発生しやすくなる傾向があった。本第一実施例の熱交換器1の場合、第一加熱ライン及び第二加熱ラインを構成する管2及び管4は、それぞれの長さが分割された各シェル(第一シェル3、第二シェル5)の長さと等しいため、従来の一段のシェルによる熱交換器と比較して全長が著しく短い。したがって、各管2,4の剛性を保ちやすく、振動や変形といった問題を容易に回避することができる。 The structure in which the shell is divided in this way also has advantages in terms of strength and durability. In the conventional heat exchanger, since each pipe constituting the flow path is a single long pipe from the upstream to the downstream, the rigidity is reduced, and there is a tendency that twisting, vibration, deformation due to them, etc. are likely to occur. rice field. In the case of the heat exchanger 1 of the first embodiment, the pipes 2 and 4 constituting the first heating line and the second heating line are each shell (first shell 3, second shell) having a divided length. Since it is equal to the length of the shell 5), the total length is significantly shorter than that of the conventional one-stage shell heat exchanger. Therefore, the rigidity of each of the pipes 2 and 4 can be easily maintained, and problems such as vibration and deformation can be easily avoided.

ここで、上述の第一実施例では、管2,4を収容した二個のシェル(第一シェル3、第二シェル5)の間に一個の中間シェル6を備えた二段式の熱交換器1を例示したが、本発明の構成はこれに限定されない。例えば、管を収容したシェルを合計三個とし、該三個のシェル同士の間に二個の中間シェルを備えた三段式の熱交換器とすることもできるし、段数を更に多くしても構わない。その他、熱交換器一台あたりの各シェルの個数は適宜変更することが可能である。このことは、後述する第二〜第四実施例においても同様である。 Here, in the first embodiment described above, a two-stage heat exchange in which one intermediate shell 6 is provided between two shells (first shell 3, second shell 5) accommodating pipes 2 and 4. Although the vessel 1 has been illustrated, the configuration of the present invention is not limited to this. For example, a total of three shells accommodating pipes can be used, and a three-stage heat exchanger having two intermediate shells between the three shells can be used, or the number of stages can be further increased. It doesn't matter. In addition, the number of shells per heat exchanger can be changed as appropriate. This also applies to the second to fourth embodiments described later.

以上のように、上記本第一実施例の熱交換器1においては、第一加熱ライン2を収容した第一シェル3と、前記第一加熱ライン2の下流に位置する第二加熱ライン4を収容した第二シェルと、前記第一シェル3と前記第二シェル5の間に位置し、内部に設けた空間に被加熱流体Lを流通させるよう構成された中間シェル6とを備え、前記第一シェル3における被加熱流体Lの流路断面積、被加熱流体Lの体積あたりの熱媒Aとの接触面積、又は被加熱流体Lの体積あたりの熱媒Aの容量の少なくともいずれか一つが、前記第二シェル5よりも大きくなるよう構成されているので、第一シェル3における熱交換に係る性能を第二シェル5と異ならしめることができる。 As described above, in the heat exchanger 1 of the first embodiment, the first shell 3 accommodating the first heating line 2 and the second heating line 4 located downstream of the first heating line 2 are provided. The housed second shell and an intermediate shell 6 located between the first shell 3 and the second shell 5 and configured to allow the fluid L to be heated to flow through the space provided inside are provided. At least one of the cross-sectional area of the flow path of the fluid L to be heated in one shell 3, the contact area with the heat medium A per volume of the fluid L to be heated, or the capacity of the heat medium A per volume of the fluid L to be heated. Since it is configured to be larger than the second shell 5, the performance related to heat exchange in the first shell 3 can be made different from that of the second shell 5.

本発明の熱交換器1において、前記第一加熱ライン2は複数の管2として、前記第二加熱ライン4は一本以上の管4としてそれぞれ構成されており、管2の本数が管4の本数より多いので、簡単な構成により、第一シェル3における被加熱流体Lの流路断面積と、被加熱流体Lの体積あたりの熱媒Aとの接触面積を第二シェル5よりも大きくすることができる。 In the heat exchanger 1 of the present invention, the first heating line 2 is configured as a plurality of tubes 2, the second heating line 4 is configured as one or more tubes 4, and the number of tubes 2 is the number of tubes 4. Since the number is larger than the number, the contact area between the flow path cross-sectional area of the fluid L to be heated in the first shell 3 and the heat medium A per volume of the fluid L to be heated in the first shell 3 is made larger than that in the second shell 5 by a simple configuration. be able to.

本発明の熱交換器1においては、管2同士の間隔が管4同士の間隔より広く設定され、且つ前記第一シェルの管に直交する断面の面積が前記第二シェルの管に直交する断面の面積より大きく設定されているので、簡単な構成により、第一シェル3における被加熱流体Lの体積あたりの熱媒Aの容量を第二シェル5よりも大きくすることができる。 In the heat exchanger 1 of the present invention, the distance between the pipes 2 is set wider than the distance between the pipes 4, and the area of the cross section orthogonal to the pipe of the first shell is orthogonal to the pipe of the second shell. Since the area is set to be larger than the area of, the capacity of the heat medium A per volume of the fluid to be heated L in the first shell 3 can be made larger than that in the second shell 5 by a simple configuration.

本発明の熱交換器1は、前記第一シェル3の下部から前記第一加熱ライン2に導入した被加熱流体Lを、前記中間シェル6を介して前記第二加熱ライン4の上方へ抜き出すよう構成されているので、下方から導入した被加熱流体Lを上方へ抜き出す型式の熱交換器1に関し、熱交換に係る性能を部分毎に最適化することができる。 The heat exchanger 1 of the present invention draws the heated fluid L introduced into the first heating line 2 from the lower part of the first shell 3 to the upper part of the second heating line 4 via the intermediate shell 6. Since it is configured, the performance related to heat exchange can be optimized for each part of the heat exchanger 1 of the type that extracts the heated fluid L introduced from below upward.

したがって、上記本第一実施例の熱交換器によれば、熱交換に係る性能を部分毎に最適化し、装置の大型化を抑え得る。 Therefore, according to the heat exchanger of the first embodiment, the performance related to heat exchange can be optimized for each part, and the size of the apparatus can be suppressed.

図2は本発明の第二実施例による熱交換器の形態を示している。基本的な構成は上記第一実施例の熱交換器1(図1参照)と同様であるが、本第二実施例の熱交換器21の場合、上流側の第一シェル23と下流側の第二シェル25との間で、管22と管24の本数ではなく、径と配置を異ならせることで、熱交換に係る性能の最適化を図っている。 FIG. 2 shows the form of the heat exchanger according to the second embodiment of the present invention. The basic configuration is the same as that of the heat exchanger 1 (see FIG. 1) of the first embodiment, but in the case of the heat exchanger 21 of the second embodiment, the first shell 23 on the upstream side and the first shell 23 on the downstream side are on the downstream side. The performance related to heat exchange is optimized by making the diameter and arrangement of the second shell 25 different from that of the second shell 25, not the number of pipes 22 and 24.

具体的には、上流側の第一加熱ラインを構成する管22では、下流側の第二加熱ラインを構成する管24と比較して径が大きくしている。このようにすると、管22における被加熱流体Lの体積あたりの熱媒Aとの接触面積は管24よりも小さいものの、被加熱流体Lの管22における流速は管24における流速よりも小さくなる。流速を十分に小さく取れば、単位長さあたりの熱交換量を大きくすることができるので、被加熱流体Lの気化が行われる上流側の第一シェル23において要求される熱交換に係る性能を十分に確保することができる。また、この際、合わせて第一加熱ラインを構成する管22同士の間隔を広く取ると共に、第一シェル23の断面積を大きくすることで、熱交換に十分な量の熱媒Aを管22間に流通させ、熱媒Aの凍結を防止することができる。一方、気化した被加熱流体Lの過熱を行う第二シェル25では、熱交換に関して第一シェル23ほどの性能は要求されず、熱媒Aが凍結する虞もないので、管24の径を小さくして被加熱流体Lの流速を速くし、管24同士の間隔を狭くして第二シェル25の断面積を小さくしても特に問題はない。 Specifically, the pipe 22 constituting the first heating line on the upstream side has a larger diameter than the pipe 24 forming the second heating line on the downstream side. In this way, the contact area of the heated fluid L with the heat medium A per volume in the pipe 22 is smaller than that of the pipe 24, but the flow velocity of the heated fluid L in the pipe 22 is smaller than the flow velocity in the pipe 24. If the flow velocity is sufficiently small, the amount of heat exchange per unit length can be increased. Therefore, the performance related to heat exchange required in the first shell 23 on the upstream side where the fluid to be heated L is vaporized can be obtained. It can be secured sufficiently. Further, at this time, by widening the distance between the pipes 22 constituting the first heating line and increasing the cross-sectional area of the first shell 23, a sufficient amount of heat medium A for heat exchange is provided to the pipes 22. It can be circulated in between to prevent the heat medium A from freezing. On the other hand, in the second shell 25 that overheats the vaporized fluid L to be heated, the performance of the first shell 23 is not required for heat exchange, and there is no possibility that the heat medium A freezes, so that the diameter of the tube 24 is reduced. Therefore, there is no particular problem even if the flow velocity of the fluid L to be heated is increased, the distance between the pipes 24 is narrowed, and the cross-sectional area of the second shell 25 is reduced.

その他の構成や作用効果については上記第一実施例の熱交換器と同様であるため説明を省略するが、上記本第二実施例の熱交換器によっても、熱交換に係る性能を部分毎に最適化し、装置の大型化を抑え得る。 Since other configurations and operational effects are the same as those of the heat exchanger of the first embodiment, the description thereof will be omitted. However, the heat exchanger of the second embodiment also has the performance related to heat exchange for each part. It can be optimized and the size of the device can be suppressed.

図3は本発明の第三実施例による熱交換器の形態を示している。基本的な構成は上記第一、第二実施例の熱交換器1(図1参照)及び熱交換器21(図2参照)と同様であるが、本第三実施例の熱交換器31の場合、上流側の第一シェル33の管32の本数を下流側の第二シェル35の管34の本数より多くすると共に、各管32の径を各管34の径より小さくしている。これにより、第一加熱ラインを構成する管32では、被加熱流体Lの体積あたりの熱媒Aとの接触面積が、第二加熱ラインを構成する管34よりも大きくなっている。管32における被加熱流体Lの流路断面積の合計は、管34における流路断面積の合計と等しい。 FIG. 3 shows the form of the heat exchanger according to the third embodiment of the present invention. The basic configuration is the same as that of the heat exchanger 1 (see FIG. 1) and the heat exchanger 21 (see FIG. 2) of the first and second embodiments, but the heat exchanger 31 of the third embodiment. In this case, the number of pipes 32 of the first shell 33 on the upstream side is larger than the number of pipes 34 of the second shell 35 on the downstream side, and the diameter of each pipe 32 is smaller than the diameter of each pipe 34. As a result, in the pipe 32 constituting the first heating line, the contact area with the heat medium A per volume of the fluid L to be heated is larger than that of the pipe 34 forming the second heating line. The total flow path cross-sectional area of the fluid L to be heated in the pipe 32 is equal to the total flow path cross-sectional area in the pipe 34.

このようにすると、被加熱流体Lの流速は管32と管34との間でさほど大きな差はない(ただし、管34には気化された被加熱流体Lが流通するため、管32内に液相の状態で流通する被加熱流体Lより流速は速くなる)が、管32では熱媒Aとの接触面積が大きいことによって高い熱交換効率が確保される。 In this way, the flow velocity of the fluid to be heated L does not differ so much between the pipe 32 and the pipe 34 (however, since the vaporized fluid L to be heated flows through the pipe 34, the liquid is contained in the pipe 32. The flow velocity is faster than that of the fluid L to be heated that flows in the phase state), but high heat exchange efficiency is ensured in the tube 32 due to the large contact area with the heat medium A.

ここで、本第三実施例では、管32を管34より多数設置することで第一加熱ライン32における被加熱流体Lと熱媒Aとの接触面積を大きくしているが、接触面積の調整は管本数の変更に限らず、例えば管32の形状を変更することによっても可能である。例えば、管32を扁平管、管34を円形管として構成すれば、仮に管32と管34との間で合計の流路断面積が等しくても、管32における被加熱流体Lと熱媒Aとの接触面積は管34よりも大きくなる。 Here, in the third embodiment, the contact area between the fluid L to be heated and the heat medium A in the first heating line 32 is increased by installing more pipes 32 than the pipes 34, but the contact area is adjusted. Is not limited to changing the number of pipes, but can also be changed, for example, by changing the shape of the pipe 32. For example, if the pipe 32 is a flat pipe and the pipe 34 is a circular pipe, even if the total flow path cross-sectional area is the same between the pipe 32 and the pipe 34, the fluid L to be heated and the heat medium A in the pipe 32 The contact area with is larger than that of the pipe 34.

その他の構成や作用効果については上記第一実施例の熱交換器と同様であるため説明を省略するが、上記本第三実施例の熱交換器によっても、熱交換に係る性能を部分毎に最適化し、装置の大型化を抑え得る。 Since other configurations and operational effects are the same as those of the heat exchanger of the first embodiment, the description thereof will be omitted. However, the heat exchanger of the third embodiment also has the performance related to heat exchange for each part. It can be optimized and the size of the device can be suppressed.

図4は本発明の第四実施例による熱交換器の形態を示しており、基本的な構成は上記第一〜第三実施例の熱交換器1,21,31(図1〜3参照)と同様である。本第四実施例の熱交換器41では、上流側の第一シェル43の管42の本数は、下流側の第二シェル45の管44の本数と同じであり、また、各管42と各管44の径も等しい。すなわち、被加熱流体Lの体積あたりの熱媒Aとの接触面積は、管42と管44との間で差がなく、また、被加熱流体Lの流速にも、液相の流速と気相の流速の差以上に大きな差はない。ただし、第一シェル43では、管42同士の間隔を、第二シェル45内における管44同士の間隔よりも広く取っており、管42間をより多くの熱媒Aが流通するようになっている。また、第一シェル43の管42に直交する断面の面積は、第二シェル45の管44に直交する断面の面積より大きく、第一シェル43内の熱媒Aの容量は第二シェル45よりも大きくなっている。 FIG. 4 shows the form of the heat exchanger according to the fourth embodiment of the present invention, and the basic configuration is the heat exchangers 1, 21, 31 of the first to third embodiments (see FIGS. 1 to 3). Is similar to. In the heat exchanger 41 of the fourth embodiment, the number of pipes 42 of the first shell 43 on the upstream side is the same as the number of pipes 44 of the second shell 45 on the downstream side, and each pipe 42 and each The diameter of the pipe 44 is also the same. That is, there is no difference in the contact area of the heated fluid L with the heat medium A per volume between the pipe 42 and the pipe 44, and the flow velocity of the heated fluid L is also the flow velocity of the liquid phase and the gas phase. There is no greater difference than the difference in flow velocity. However, in the first shell 43, the distance between the pipes 42 is wider than the distance between the pipes 44 in the second shell 45, so that a larger amount of heat medium A circulates between the pipes 42. There is. Further, the area of the cross section of the first shell 43 orthogonal to the pipe 42 is larger than the area of the cross section orthogonal to the pipe 44 of the second shell 45, and the capacity of the heat medium A in the first shell 43 is larger than that of the second shell 45. Is also getting bigger.

このようにすると、第一シェル43では、管42を流通する被加熱流体Lの体積に対し、該被加熱流体Lと熱交換する熱媒Aの容量が十分に大きい。したがって、被加熱流体Lの気化が行われる第一シェル43において、被加熱流体Lと熱媒Aの熱交換量を大きくすると共に、熱媒Aの凍結を防止することができる。 In this way, in the first shell 43, the capacity of the heat medium A that exchanges heat with the heated fluid L is sufficiently large with respect to the volume of the heated fluid L flowing through the pipe 42. Therefore, in the first shell 43 in which the fluid L to be heated is vaporized, the amount of heat exchange between the fluid L to be heated and the heat medium A can be increased, and the heat medium A can be prevented from freezing.

その他の構成や作用効果については上記第一実施例の熱交換器と同様であるため説明を省略するが、上記本第四実施例の熱交換器によっても、熱交換に係る性能を部分毎に最適化し、装置の大型化を抑え得る。 Since other configurations and operational effects are the same as those of the heat exchanger of the first embodiment, the description thereof will be omitted. However, the heat exchanger of the fourth embodiment also has the performance related to heat exchange for each part. It can be optimized and the size of the device can be suppressed.

図5は上述の如き本発明の熱交換器を適用した熱交換システムの一例を示している。ここでは熱交換器として、上記第一実施例(図1参照)と同じ熱交換器1を採用した場合を例示している。 FIG. 5 shows an example of a heat exchange system to which the heat exchanger of the present invention is applied as described above. Here, as the heat exchanger, the case where the same heat exchanger 1 as in the first embodiment (see FIG. 1) is adopted is illustrated.

本熱交換システムでは、熱交換器1のシェルが上流側と下流側の二段に分割された構成を利用し、上流側の第一シェル3と、下流側の第二シェル5に供給する熱媒Aの流量をそれぞれ個別に調整できるようにしている。 In this heat exchange system, the shell of the heat exchanger 1 is divided into two stages, an upstream side and a downstream side, and heat is supplied to the first shell 3 on the upstream side and the second shell 5 on the downstream side. The flow rate of the medium A can be adjusted individually.

ポンプ10は、熱媒Aとして海水を汲み上げ、熱媒供給流路11を介して第一シェル3と第二シェル5に送り込むようになっている。熱媒供給流路11は、ポンプ10の下流で第一分岐路11aと第二分岐路11bとに分岐しており、第一分岐路11aは第一シェル3の熱媒入口3dに、第二分岐路11bは第二シェル5の熱媒入口5dに、それぞれ接続されている。第一分岐路11a及び第二分岐路11bの途中には、それぞれ第一熱媒流量弁12及び第二熱媒流量弁13が備えられており、ここでポンプ10から第一シェル3又は第二シェル5に送り込まれる熱媒Aの量を調整できるようになっている。熱媒入口3d,5dから第一シェル3、第二シェル5に送り込まれた熱媒Aは、それぞれ熱媒出口3e又は熱媒出口5eから排出される。尚、ここでは熱媒Aとして海水を流通させる場合を例示したが、この他に、例えば不凍液等の熱媒を加熱しつつ循環させる方式を採用しても良い。 The pump 10 pumps seawater as the heat medium A and sends it to the first shell 3 and the second shell 5 via the heat medium supply flow path 11. The heat medium supply flow path 11 is branched into a first branch path 11a and a second branch path 11b downstream of the pump 10, and the first branch path 11a is at the heat medium inlet 3d of the first shell 3 and is second. The branch path 11b is connected to the heat medium inlet 5d of the second shell 5, respectively. A first heat medium flow valve 12 and a second heat medium flow valve 13 are provided in the middle of the first branch path 11a and the second branch path 11b, respectively, from which the pump 10 to the first shell 3 or the second. The amount of heat medium A sent to the shell 5 can be adjusted. The heat medium A sent from the heat medium inlets 3d and 5d to the first shell 3 and the second shell 5 is discharged from the heat medium outlet 3e or the heat medium outlet 5e, respectively. Here, the case where seawater is circulated as the heat medium A is illustrated, but in addition to this, a method of circulating a heat medium such as antifreeze while heating it may be adopted.

ポンプ10の出力は、制御装置14からポンプ10に入力される流量制御信号10aにより制御され、これにより、熱媒供給流路11に送り込まれる熱媒Aの流量が操作される。制御装置14は、熱交換器1を利用した熱交換システム全体を制御する制御装置であり、第一熱媒流量弁12、及び第二熱媒流量弁13の開度をも、それぞれ開度信号12a,13aを介して制御するようになっている。 The output of the pump 10 is controlled by the flow rate control signal 10a input from the control device 14 to the pump 10, whereby the flow rate of the heat medium A sent to the heat medium supply flow path 11 is manipulated. The control device 14 is a control device that controls the entire heat exchange system using the heat exchanger 1, and also indicates the opening degree of the first heat medium flow valve 12 and the second heat medium flow valve 13, respectively. It is designed to be controlled via 12a and 13a.

熱交換器1の中間シェル6には温度センサ15と圧力センサ16が備えられており、該温度センサ15と圧力センサ16は、中間シェル6内における被加熱流体Lの温度及び圧力を検出し、それぞれ温度信号15a及び圧力信号16aとして制御装置14に入力するようになっている。 The intermediate shell 6 of the heat exchanger 1 is provided with a temperature sensor 15 and a pressure sensor 16, and the temperature sensor 15 and the pressure sensor 16 detect the temperature and pressure of the fluid L to be heated in the intermediate shell 6. The temperature signal 15a and the pressure signal 16a are input to the control device 14, respectively.

熱交換器1下部の前室8に備えた被加熱流体入口8aには、タンク17から被加熱流体供給流路18を介して被加熱流体Lが供給される。被加熱流体供給流路18の途中には被加熱流体流量弁19が備えられており、この被加熱流体流量弁19の開度を変更することにより、熱交換器1に供給される被加熱流体Lの量を調整することができるようになっている。被加熱流体流量弁19の開度は、制御装置14から入力される開度信号19aにより操作される。 The heated fluid L is supplied from the tank 17 to the heated fluid inlet 8a provided in the front chamber 8 below the heat exchanger 1 via the heated fluid supply flow path 18. A fluid to be heated flow valve 19 is provided in the middle of the fluid supply flow path 18 to be heated, and the fluid to be heated to be supplied to the heat exchanger 1 by changing the opening degree of the fluid flow valve 19 to be heated. The amount of L can be adjusted. The opening degree of the fluid flow rate valve 19 to be heated is operated by the opening degree signal 19a input from the control device 14.

以上の構成により、制御装置14では、中間シェル6における被加熱流体Lの温度や圧力の検出値に基づき、熱交換器1への被加熱流体Lの供給量や、第一シェル3、第二シェル5への熱媒Aの供給量を適宜調整することができる。熱媒Aの温度等は気候等の諸条件により変動するので、中間シェル6にて被加熱流体Lの状態を常時監視しておき、例えば、被加熱流体Lの温度が低い場合には、ポンプ10からの熱媒Aの供給量を増加させると共に第二熱媒流量弁13の開度を大きくして第二シェル5に供給される熱媒Aの量を増加させ、第二シェル5における熱交換量を増やして被加熱流体Lの過熱量を増大させる。また例えば、中間シェル6における被加熱流体Lの圧力が低いようであれば、ポンプ10からの熱媒Aの供給量を増加させると共に第一熱媒流量弁12の開度を大きくして第一シェル3に供給される熱媒Aの量を増加させ、第一シェル3における熱交換量を増やして被加熱流体Lの気化を促進する。あるいは、被加熱流体流量弁19の開度を大きくして被加熱流体Lの供給量を増やすこともできる。この他、制御装置14では、検出される被加熱流体Lの温度や圧力により、被加熱流体Lや熱媒Aの供給量に関し種々の調整を実行することができる。尚、ここでは被加熱流体Lの状態を監視するためのセンサとして温度センサ15と圧力センサ16を備えた場合を例示しているが、温度センサ15と圧力センサ16のいずれか一方のみを備えて被加熱流体Lや熱媒Aの供給量を制御するよう構成することも可能である。 With the above configuration, in the control device 14, based on the detected values of the temperature and pressure of the fluid L to be heated in the intermediate shell 6, the supply amount of the fluid L to be heated to the heat exchanger 1 and the first shell 3 and the second shell 3 are used. The amount of heat medium A supplied to the shell 5 can be adjusted as appropriate. Since the temperature of the heat medium A fluctuates depending on various conditions such as climate, the state of the fluid L to be heated is constantly monitored by the intermediate shell 6, and for example, when the temperature of the fluid L to be heated is low, a pump is used. The amount of heat medium A supplied from 10 is increased and the opening degree of the second heat medium flow valve 13 is increased to increase the amount of heat medium A supplied to the second shell 5, and the heat in the second shell 5 is increased. The amount of exchange is increased to increase the amount of overheating of the fluid L to be heated. Further, for example, if the pressure of the fluid L to be heated in the intermediate shell 6 is low, the supply amount of the heat medium A from the pump 10 is increased and the opening degree of the first heat medium flow valve 12 is increased. The amount of heat medium A supplied to the shell 3 is increased, and the amount of heat exchange in the first shell 3 is increased to promote the vaporization of the fluid L to be heated. Alternatively, the opening degree of the fluid to be heated flow valve 19 can be increased to increase the supply amount of the fluid to be heated L. In addition, the control device 14 can perform various adjustments regarding the supply amount of the heated fluid L and the heat medium A depending on the detected temperature and pressure of the heated fluid L. Although the case where the temperature sensor 15 and the pressure sensor 16 are provided as the sensors for monitoring the state of the fluid L to be heated is illustrated here, only one of the temperature sensor 15 and the pressure sensor 16 is provided. It is also possible to control the supply amount of the fluid L to be heated and the heat medium A.

このとき、本実施例の熱交換システムでは、主に被加熱流体Lの気化が行われる第一シェル3への熱媒Aの供給と、被加熱流体Lの過熱が行われる第二シェル5への熱媒Aの供給とを別々に制御するようにしているので、気化量と過熱量を各々個別に操作することが可能である。したがって、最終的に被加熱流体出口9aから排出される被加熱流体Lの量や温度を所要の状態に保つにあたっての操作が容易である。 At this time, in the heat exchange system of this embodiment, the heat medium A is mainly supplied to the first shell 3 where the heated fluid L is vaporized, and the second shell 5 where the heated fluid L is overheated is supplied. Since the supply of the heat medium A is controlled separately, it is possible to control the amount of vaporization and the amount of superheat individually. Therefore, the operation for keeping the amount and temperature of the heated fluid L finally discharged from the heated fluid outlet 9a in a required state is easy.

また、熱交換器1における被加熱流体Lの状態を把握するにあたり、温度センサ15や圧力センサ16の設置箇所を、気化の行われる第一シェル3と過熱の行われる第二シェル5との中間地点にあたる中間シェル6としている。気化から過熱に至る途中の地点にて被加熱流体Lの状態を監視するので、例えば前室8や後室9に温度センサ15や圧力センサ16を取り付ける場合と比べ、熱交換器1内における被加熱流体Lの加熱状況を適切に把握することが可能である。 Further, in grasping the state of the fluid L to be heated in the heat exchanger 1, the installation location of the temperature sensor 15 and the pressure sensor 16 is intermediate between the first shell 3 where vaporization is performed and the second shell 5 where overheating is performed. The intermediate shell 6 corresponding to the point is used. Since the state of the fluid to be heated L is monitored at a point on the way from vaporization to overheating, the cover in the heat exchanger 1 is compared with the case where the temperature sensor 15 and the pressure sensor 16 are attached to the front chamber 8 and the rear chamber 9, for example. It is possible to appropriately grasp the heating state of the heating fluid L.

以上のように、上記本実施例の熱交換システムは、前記熱交換器1に温度センサ15又は圧力センサ16の少なくとも一方を備えているので、熱交換器1による被加熱流体Lの気化量と過熱量を各々個別に操作することができ、最終的に排出される被加熱流体Lの量や温度を所要の状態に保つにあたって操作を容易にすることができる。 As described above, in the heat exchange system of the present embodiment, since the heat exchanger 1 includes at least one of the temperature sensor 15 and the pressure sensor 16, the amount of vaporization of the fluid L to be heated by the heat exchanger 1 The amount of superheat can be individually manipulated, and the operation can be facilitated in maintaining the amount and temperature of the finally discharged fluid L to be heated in a required state.

本発明の熱交換システムにおいて、前記温度センサ15又は前記圧力センサ16は前記中間シェル6に備えられているので、熱交換器1内における被加熱流体Lの加熱状況を適切に把握することができる。 In the heat exchange system of the present invention, since the temperature sensor 15 or the pressure sensor 16 is provided in the intermediate shell 6, the heating state of the fluid L to be heated in the heat exchanger 1 can be appropriately grasped. ..

その他の構成や作用効果については、システム中に採用している上記第一実施例の熱交換器の作用効果と同様であるため説明を省略するが、上記本実施例の熱交換システムによれば、熱交換に係る性能を部分毎に最適化し、装置の大型化を抑え得る。 Other configurations and effects are the same as those of the heat exchanger of the first embodiment adopted in the system, and thus description thereof will be omitted. However, according to the heat exchange system of the present embodiment. , The performance related to heat exchange can be optimized for each part, and the size of the device can be suppressed.

尚、本発明の熱交換器及び熱交換システムは、上述の実施例にのみ限定されるものではなく、被加熱流体としてはLNG以外にも種々の流体を想定し得ること等、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 The heat exchanger and heat exchange system of the present invention are not limited to the above-described embodiment, and various fluids other than LNG can be assumed as the fluid to be heated. Of course, various changes can be made within the range that does not deviate from.

1 熱交換器
2 第一加熱ライン(管)
3 第一シェル
4 第二加熱ライン(管)
5 第二シェル
6 中間シェル
15 温度センサ
16 圧力センサ
21 熱交換器
22 第一加熱ライン(管)
23 第一シェル
24 第二加熱ライン(管)
25 第二シェル
31 熱交換器
32 第一加熱ライン(管)
33 第一シェル
34 第二加熱ライン(管)
35 第二シェル
41 熱交換器
42 第一加熱ライン(管)
43 第一シェル
44 第二加熱ライン(管)
45 第二シェル
A 熱媒
L 被加熱流体
1 Heat exchanger 2 First heating line (tube)
3 1st shell 4 2nd heating line (tube)
5 Second shell 6 Intermediate shell 15 Temperature sensor 16 Pressure sensor 21 Heat exchanger 22 First heating line (tube)
23 1st shell 24 2nd heating line (tube)
25 Second shell 31 Heat exchanger 32 First heating line (tube)
33 1st shell 34 2nd heating line (tube)
35 Second shell 41 Heat exchanger 42 First heating line (tube)
43 1st shell 44 2nd heating line (tube)
45 Second shell A Heat medium L Fluid to be heated

Claims (5)

被加熱流体を流通させる第一加熱ラインを内部に収容し、該第一加熱ラインの周囲に熱媒を供給するよう構成された第一シェルと、
前記第一加熱ラインを通過した被加熱流体を流通させる第二加熱ラインを内部に収容し、該第二加熱ラインの周囲に熱媒を供給するよう構成された第二シェルと、
前記第一シェルと前記第二シェルの間に位置し、内部に設けた空間に被加熱流体を流通させるよう構成された中間シェルとを備え、
前記第一シェルの下部から前記第一加熱ラインに導入した被加熱流体を、前記中間シェルを介して前記第二加熱ラインの上方へ抜き出すよう構成され、
前記第一加熱ラインにおける単位長さあたりの熱交換量が前記第二加熱ラインにおける単位長さあたりの熱交換量より大きくなるよう、前記第一シェルにおける被加熱流体の流路断面積、被加熱流体の体積あたりの熱媒との接触面積、又は被加熱流体の体積あたりの熱媒の容量の少なくともいずれか一つが、前記第二シェルよりも大きくなるよう構成されたシェルアンドチューブ型の熱交換器。
A first shell configured to house a first heating line through which a fluid to be heated flows and to supply a heat medium around the first heating line.
A second shell configured to house a second heating line for circulating a fluid to be heated that has passed through the first heating line and to supply a heat medium around the second heating line.
An intermediate shell located between the first shell and the second shell and configured to allow a fluid to be heated to flow in a space provided inside is provided.
The fluid to be heated introduced into the first heating line from the lower part of the first shell is configured to be withdrawn above the second heating line via the intermediate shell.
The flow path cross-sectional area of the fluid to be heated in the first shell and the heat to be heated so that the amount of heat exchanged per unit length in the first heating line is larger than the amount of heat exchanged per unit length in the second heating line. A shell-and-tube type heat exchange configured such that at least one of the contact area with the heat medium per volume of the fluid or the capacity of the heat medium per volume of the fluid to be heated is larger than that of the second shell. vessel.
前記第一加熱ラインは複数の管として、前記第二加熱ラインは一本以上の管としてそれぞれ構成されており、前記第一加熱ラインを構成する管の本数が前記第二加熱ラインを構成する管の本数より多い、請求項1に記載の熱交換器。 The first heating line is configured as a plurality of tubes, the second heating line is configured as one or more tubes, and the number of tubes constituting the first heating line constitutes the second heating line. The heat exchanger according to claim 1, which is larger than the number of heat exchangers. 前記第一加熱ライン及び前記第二加熱ラインはそれぞれ複数の管として構成されており、前記第一加熱ラインを構成する管同士の間隔が前記第二加熱ラインを構成する管同士の間隔より広く設定され、且つ前記第一シェルの管に直交する断面の面積が前記第二シェルの管に直交する断面の面積より大きく設定されている、請求項1に記載の熱交換器。 The first heating line and the second heating line are each configured as a plurality of pipes, and the distance between the pipes constituting the first heating line is set wider than the distance between the pipes constituting the second heating line. The heat exchanger according to claim 1, wherein the area of the cross section orthogonal to the tube of the first shell is set to be larger than the area of the cross section orthogonal to the tube of the second shell. 前記熱交換器に、被加熱流体の温度を検出する温度センサ又は被加熱流体の圧力を検出する圧力センサの少なくとも一方を備えた、請求項1に記載の熱交換器を用いた熱交換システム。 The heat exchange system using the heat exchanger according to claim 1, wherein the heat exchanger includes at least one of a temperature sensor for detecting the temperature of the fluid to be heated and a pressure sensor for detecting the pressure of the fluid to be heated. 前記温度センサ又は前記圧力センサは前記中間シェルに備えられている、請求項に記載の熱交換システム。
The heat exchange system according to claim 4 , wherein the temperature sensor or the pressure sensor is provided in the intermediate shell.
JP2017017090A 2017-02-01 2017-02-01 Heat exchanger and heat exchange system Active JP6956491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017017090A JP6956491B2 (en) 2017-02-01 2017-02-01 Heat exchanger and heat exchange system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017017090A JP6956491B2 (en) 2017-02-01 2017-02-01 Heat exchanger and heat exchange system

Publications (2)

Publication Number Publication Date
JP2018124019A JP2018124019A (en) 2018-08-09
JP6956491B2 true JP6956491B2 (en) 2021-11-02

Family

ID=63109559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017017090A Active JP6956491B2 (en) 2017-02-01 2017-02-01 Heat exchanger and heat exchange system

Country Status (1)

Country Link
JP (1) JP6956491B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166799A (en) * 1983-03-11 1984-09-20 Tokyo Gas Co Ltd Liquefied natural gas vaporization equipment
JPS60181507U (en) * 1984-05-09 1985-12-02 三浦工業株式会社 Composite boiler
EP0400014B1 (en) * 1988-12-13 1992-09-16 Deggendorfer Werft Und Eisenbau Gmbh Tube reactor
JPH08145503A (en) * 1994-11-25 1996-06-07 Hitachi Ltd Heat exchanger
JPH1082590A (en) * 1996-09-05 1998-03-31 Daikin Ind Ltd Shell and tube heat exchanger
JPH10205703A (en) * 1997-01-27 1998-08-04 Mitsubishi Heavy Ind Ltd Composite boiler
JP2866939B1 (en) * 1998-02-03 1999-03-08 工業技術院長 Liquefied natural gas vaporizer and refrigeration system using the same
JP2001027157A (en) * 1999-07-13 2001-01-30 Mitsubishi Motors Corp Structure of EGR cooler
JP3946398B2 (en) * 2000-01-18 2007-07-18 株式会社神戸製鋼所 Intermediate medium type vaporizer and method of supplying natural gas using the vaporizer
JP4422977B2 (en) * 2003-04-24 2010-03-03 株式会社神戸製鋼所 Low temperature liquefied gas vaporizer and operation method thereof
JP2005291657A (en) * 2004-04-02 2005-10-20 Nissan Motor Co Ltd Heat exchanger and its manufacturing method

Also Published As

Publication number Publication date
JP2018124019A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
EP2771622B1 (en) Heat exchanger for the condensing boiler
EP2375209A2 (en) Improved heat exchanger having an inlet distributor and outlet collector
US20130199751A1 (en) Heat storage device for an engine
JP2013515944A (en) Accumulator tank with partition wall
WO2017061211A1 (en) Evaporator and turbo-freezer provided with same
TW445366B (en) Assembly body of heat exchange coils
EP2351979B1 (en) Heat Exchanger comprising three concentric tubes
EP3394522B1 (en) Fired heat exchanger
EP2282140B1 (en) Heat exchanger and hot-water supply device using same
CN101033922B (en) Pipeline Microtube Heat Exchanger
RU2674850C2 (en) Tube for heat exchanger with at least partially variable cross-section and heat exchanger equipped therewith
JP6956491B2 (en) Heat exchanger and heat exchange system
WO2014063249A1 (en) Heat exchanger and method for heating a fracturing fluid
CN110736088A (en) steam generator controlled by water level control valve
JP4857987B2 (en) Heat exchanger and water heater
CN110736373A (en) self-heating loop heat pipe heat accumulator
JP5194279B2 (en) Evaporator
JP2007247554A (en) Exhaust heat recovery device
CN104215099A (en) Heat exchanger
JP2012132574A (en) Device for vaporizing low temperature liquid
CN217504441U (en) Steam heating device
CN113790615B (en) Volumetric heat exchanger applied to steam-water heat exchange secondary pressure equalizing
CN212902102U (en) Heat exchanger and refrigerating and heating system with same
JP2014149102A (en) Heat pump water heater
JP7274737B2 (en) Fluid circulation device and piping member used therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20191128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211005

R150 Certificate of patent or registration of utility model

Ref document number: 6956491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载