+

JP6325811B2 - Light control device - Google Patents

Light control device Download PDF

Info

Publication number
JP6325811B2
JP6325811B2 JP2013266639A JP2013266639A JP6325811B2 JP 6325811 B2 JP6325811 B2 JP 6325811B2 JP 2013266639 A JP2013266639 A JP 2013266639A JP 2013266639 A JP2013266639 A JP 2013266639A JP 6325811 B2 JP6325811 B2 JP 6325811B2
Authority
JP
Japan
Prior art keywords
electrode
control device
light control
layer
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013266639A
Other languages
Japanese (ja)
Other versions
JP2015121741A (en
Inventor
基弘 竹村
基弘 竹村
藤野 哲也
哲也 藤野
大見 忠弘
忠弘 大見
後藤 哲也
哲也 後藤
田中 宏明
宏明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Osaka Cement Co Ltd
Original Assignee
Tohoku University NUC
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Osaka Cement Co Ltd filed Critical Tohoku University NUC
Priority to JP2013266639A priority Critical patent/JP6325811B2/en
Publication of JP2015121741A publication Critical patent/JP2015121741A/en
Application granted granted Critical
Publication of JP6325811B2 publication Critical patent/JP6325811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、光制御デバイスに関し、特に、電気光学効果を有する結晶性基板上に、制御用電極をめっき法によって形成する光制御デバイスに関する。   The present invention relates to a light control device, and more particularly to a light control device in which a control electrode is formed on a crystalline substrate having an electro-optic effect by a plating method.

光通信分野や光測定分野において、電気光学効果を有する基板上に光導波路や変調電極を形成した導波路型光変調器などの光制御デバイスが多用されている。光制御デバイスでは、光導波路を伝搬する光波と変調電極を伝搬するマイクロ波との速度整合を行うことが重要であり、特許文献1には、基板の薄板化に加え、制御電極(変調電極)の厚みを10μm〜40μmに設定することが開示されている。   In the optical communication field and the optical measurement field, an optical control device such as a waveguide type optical modulator in which an optical waveguide or a modulation electrode is formed on a substrate having an electro-optic effect is frequently used. In an optical control device, it is important to perform speed matching between a light wave propagating through an optical waveguide and a microwave propagating through a modulation electrode. Patent Document 1 discloses a control electrode (modulation electrode) in addition to thinning the substrate. Is set to 10 μm to 40 μm.

しかしながら、特許文献2に示すように、ニオブ酸リチウムなどの電気光学効果を有する結晶性基板上に、変調電極などの制御用電極をめっき法で形成した場合、特に制御用電極の厚みを大きくした場合には、基板の配向性により制御用電極の表面に異常粒が発生する。   However, as shown in Patent Document 2, when a control electrode such as a modulation electrode is formed by plating on a crystalline substrate having an electro-optic effect such as lithium niobate, the thickness of the control electrode is particularly increased. In some cases, abnormal particles are generated on the surface of the control electrode due to the orientation of the substrate.

このような異常粒は、マイクロ波の散乱する原因となり、広帯域の光制御デバイスを作成する上で、大きな障害となる。特に、薄板化した結晶性基板を用いた場合には、異常粒成長を起因とした応力が光導波路に影響を与え、温度特性の劣化や基板の損傷が発生する。さらに、異常粒成長部は、局所的にめっき厚が高く(面内分布が大きく)、マイクロ波と光波との速度整合を満足できないため、広帯域の光制御デバイスを作成する上で、歩留が低下するなど多くの問題を生じていた。   Such abnormal particles cause microwaves to scatter, which is a major obstacle in creating a broadband light control device. In particular, when a thin crystalline substrate is used, stress due to abnormal grain growth affects the optical waveguide, resulting in deterioration of temperature characteristics and substrate damage. Furthermore, the abnormal grain growth part has a locally high plating thickness (large in-plane distribution) and cannot satisfy the speed matching between the microwave and the light wave. Many problems occurred, such as a drop.

特許文献2では、異常粒の成長を抑制するため、基板から電極への配向を抑制する層(電極配向等成長抑制層)を設けることを提案している。電極配向等成長抑制層の膜厚は厚くすると、配向性に係る影響を抑制する効果が高まるが、他方で、電気信号に対する抵抗が増大し、伝送可能な周波数帯域は劣化する。   Patent Document 2 proposes to provide a layer that suppresses the orientation from the substrate to the electrode (a growth restraining layer such as an electrode orientation) in order to suppress the growth of abnormal grains. Increasing the film thickness of the electrode orientation and the like growth suppression layer increases the effect of suppressing the influence on the orientation, but on the other hand, the resistance to electrical signals increases and the transmittable frequency band deteriorates.

特開2010−85789号公報JP 2010-85789 A 特開2007−122038号公報JP 2007-122038 A

本発明が解決しようとする課題は、上記の問題を解決し、制御用電極の表面の粗さを低減させ、電気信号特性を向上させた光制御デバイスを提供することである。   The problem to be solved by the present invention is to provide a light control device that solves the above problems, reduces the roughness of the surface of the control electrode, and improves the electrical signal characteristics.

上記課題を解決するために、本発明の光制御デバイスは以下のような技術的特徴を有する。
(1) 電気光学効果を有する結晶性基板上に、制御用電極をめっき法によって形成する光制御デバイスにおいて、該結晶性基板と該制御用電極との間に、少なくとも1層の電極配向等成長抑制層を有し、該電極配向等成長抑制層の厚みは、120〜500nmであり、該電極配向等成長抑制層の表面粗さは、Raで50nm以下に設定され、該制御用電極の厚みは、10〜50μmであり、該制御用電極の最上部の表面粗さは、Raで500nm以下であることを特徴とする。
In order to solve the above problems, the light control device of the present invention has the following technical features.
(1) In an optical control device in which a control electrode is formed on a crystalline substrate having an electro-optic effect by a plating method , at least one layer of electrode orientation and the like is grown between the crystalline substrate and the control electrode A thickness of the electrode orientation / growth suppression layer is 120 to 500 nm, and the surface roughness of the electrode orientation / growth inhibition layer is set to 50 nm or less in terms of Ra. Is 10 to 50 μm, and the surface roughness of the uppermost portion of the control electrode is 500 nm or less in terms of Ra.

(2) 上記(1)に記載の光制御デバイスにおいて、該電極配向等成長抑制層を構成する材料は、Ga,Mo,W,Ta,Si,Ti,Cr,Ni並びにこれらの窒化物又は酸化物の中から一種又は複数種類を用いることを特徴とする。 (2) In the light control device according to the above (1), the material constituting the growth control layer for electrode orientation is Ga, Mo, W, Ta, Si, Ti, Cr, Ni and nitrides or oxides thereof. It is characterized by using one or more kinds of things.

(3) 上記(1)又は(2)に記載の光制御デバイスにおいて、該制御用電極は、最上部近傍に形成されるめっきの粒度が、それより下層位置する部分のめっきの粒度より細かくなるよう設定されていることを特徴とする。 (3) In the light control device according to the above (1) or (2), the control electrode has a finer particle size of plating formed in the vicinity of the uppermost portion than the particle size of the plating in the lower layer portion. It is set as follows.

(4) 上記(1)乃至(3)のいずれかに記載の光制御デバイスにおいて、該電極配向等成長抑制層は、1層のみで形成されていることを特徴とする。 (4) The light control device according to any one of (1) to (3), wherein the growth suppressing layer for electrode orientation and the like is formed of only one layer.

(5) 上記(1)乃至(4)のいずれかに記載の光制御デバイスにおいて、該制御用電極は、多層で構成されていることを特徴とする。 (5) The light control device according to any one of (1) to (4), wherein the control electrode is formed of multiple layers.

(6) 上記(5)に記載の光制御デバイスにおいて、該多層で構成された制御用電極は、少なくとも一層が3〜38μmの膜厚で構成されていることを特徴とする。 (6) In the light control device according to the above (5), at least one layer of the multi-layer control electrode is formed with a film thickness of 3 to 38 μm.

本発明のように、電気光学効果を有する結晶性基板上に、制御用電極をめっき法によって形成する光制御デバイスにおいて、該制御用電極の厚みは、10〜50μmであり、該制御用電極の最上部の表面粗さは、Raで500nm以下であるため、電極配向等成長抑制層による導体損失の増加を抑制すると共に、制御用電極の表面粗さを低減し、広帯域化など電気信号特性を向上させた光制御デバイスを提供することが可能となる。   As in the present invention, in a light control device in which a control electrode is formed on a crystalline substrate having an electro-optic effect by a plating method, the thickness of the control electrode is 10 to 50 μm. Since the top surface roughness is 500 nm or less in terms of Ra, the increase in the conductor loss due to the growth suppressing layer such as the electrode orientation is suppressed, the surface roughness of the control electrode is reduced, and the electric signal characteristics such as broadening the band are obtained. It is possible to provide an improved light control device.

本発明の光制御デバイスの概略を示す断面図である。It is sectional drawing which shows the outline of the light control device of this invention. 制御用電極の表面粗さに対する電子信号特性との関係を示すグラフである。It is a graph which shows the relationship with the electronic signal characteristic with respect to the surface roughness of the electrode for control. 本発明の光制御デバイスの他の実施例を説明する断面図である。It is sectional drawing explaining the other Example of the light-control device of this invention.

以下、本発明について好適例を用いて詳細に説明する。
本発明は、図1に示すように、電気光学効果を有する結晶性基板上に、制御用電極をめっき法によって形成する光制御デバイスにおいて、該制御用電極の厚みは、10〜50μmであり、該制御用電極の最上部の表面粗さは、Raで500nm以下であることを特徴とする。なお、「Ra」は、算術平均粗さを意味する。以下、表面粗さは全て算術平均粗さで表示する。
Hereinafter, the present invention will be described in detail using preferred examples.
As shown in FIG. 1, the present invention provides a light control device in which a control electrode is formed on a crystalline substrate having an electro-optic effect by a plating method. The thickness of the control electrode is 10 to 50 μm, The uppermost surface roughness of the control electrode is characterized by Ra of 500 nm or less. “Ra” means arithmetic average roughness. Hereinafter, all surface roughness is expressed as arithmetic average roughness.

本発明の光制御デバイスに用いる電気光学効果を有する結晶性基板は、ニオブ酸リチウム(LiNbO)、タンタル酸リチウム(LiTaO)、PLZT(ジルコン酸チタン酸鉛ランタン)等の単結晶材料やこれらの固溶体結晶材料を用いることができる。基板の厚みは、特に限定されないが、特許文献1のように10μm以下の薄板を用いることも可能である。 The crystalline substrate having the electro-optic effect used in the light control device of the present invention includes single crystal materials such as lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), PLZT (lead lanthanum zirconate titanate), and the like. The solid solution crystal material can be used. The thickness of the substrate is not particularly limited, but it is also possible to use a thin plate having a thickness of 10 μm or less as in Patent Document 1.

結晶性基板の表面には、光導波路や制御用電極である信号電極と接地電極などが配置される。光導波路は、Ti等を基板中に熱拡散して形成したり、リッジ型導波路のように基板表面に溝等で凹凸を形成して構成することが可能である。   On the surface of the crystalline substrate, an optical waveguide, a signal electrode that is a control electrode, a ground electrode, and the like are disposed. The optical waveguide can be formed by thermally diffusing Ti or the like in the substrate, or can be formed by forming irregularities with grooves or the like on the surface of the substrate like a ridge waveguide.

制御用電極は、Au等の導電性金属をめっき法により形成し、電極の厚みが10〜50μmとなるように設定される。本発明の光制御デバイスでは、電極の厚みが厚いほど効果が高く、例えば、10〜50μm、更に30〜50μm、特に40〜50μmで顕著な効果が確認できている。   The control electrode is set such that a conductive metal such as Au is formed by plating and the thickness of the electrode is 10 to 50 μm. In the light control device of the present invention, the effect is higher as the thickness of the electrode is thicker. For example, a remarkable effect can be confirmed at 10 to 50 μm, further 30 to 50 μm, particularly 40 to 50 μm.

図2に示すように、制御用電極の表面粗さと帯域特性とは密接に関連している。図2のグラフの縦軸は制御用電極の表面粗さを示しており、横軸は光制御デバイスの電気信号特性が6dB低下する信号周波数を示している。横軸の数値が大きい程、広帯域化を達成することとなる。   As shown in FIG. 2, the surface roughness of the control electrode and the band characteristics are closely related. The vertical axis of the graph of FIG. 2 indicates the surface roughness of the control electrode, and the horizontal axis indicates the signal frequency at which the electrical signal characteristics of the light control device are reduced by 6 dB. The larger the numerical value on the horizontal axis, the wider the band will be achieved.

図2を見ると、制御用電極の最上部の表面粗さ(Ra)が500nm以下の場合には、6dB低下する電気信号特性値を8GHz程度まで伸ばすことが可能となり、優れた電気信号特性を得ることができる。   As shown in FIG. 2, when the surface roughness (Ra) of the uppermost portion of the control electrode is 500 nm or less, it is possible to extend the electric signal characteristic value that is reduced by 6 dB to about 8 GHz, and the excellent electric signal characteristic is obtained. Can be obtained.

本発明の光制御デバイスの特徴は、結晶性基板と制御用電極との間に電極配向等成長抑制層を設けることである。電極配向等成長抑制層を構成する材料としては、Ga,Mo,W,Ta,Si,Ti,Cr,Ni及びこれら材料の窒化物,酸化物等が利用可能である。また、電極配向等成長抑制層は、スパッタ法,蒸着法,CVD法等の真空成膜法等により、結晶性基板上に形成することができる。   A feature of the light control device of the present invention is that a growth suppression layer having an electrode orientation is provided between the crystalline substrate and the control electrode. As the material constituting the growth suppressing layer such as electrode orientation, Ga, Mo, W, Ta, Si, Ti, Cr, Ni and nitrides, oxides, and the like of these materials can be used. The growth suppressing layer for electrode orientation and the like can be formed on the crystalline substrate by a vacuum film forming method such as sputtering, vapor deposition, or CVD.

電極配向等成長抑制層は、上述した材料の中から異なる材料を用いて複数の膜体を積層して形成することも可能であるが、製造プロセスを簡略化するためには1種類の膜体(1層のみ)で構成することが好ましい。   The electrode orientation growth suppressing layer can be formed by laminating a plurality of film bodies using different materials from the above-mentioned materials. However, in order to simplify the manufacturing process, one type of film body is used. It is preferable to comprise (only one layer).

極配向等成長抑制層の厚みは、制御用電極の表面粗さへの影響や導体損失を考慮して決定される。例えば、電極配向等成長抑制層の厚さが85nm程度の場合は、電極の表面粗さが600〜800nmであるのに対し、電極配向等成長抑制層の厚さを120nmにすると、300〜500nmに低減することなどが確認できている。電極配向等成長抑制層の厚みは、120nm〜500nmの範囲とすることが、電極の表面粗さを500nm以下とするためにも好ましい。より好ましくは135nm〜200nmが適している。 The thickness of the electrodes oriented such growth inhibiting layer is determined in consideration of the influence and the conductor loss of the surface roughness of the control electrode. For example, when the thickness of the growth suppressing layer for electrode orientation is about 85 nm, the surface roughness of the electrode is 600 to 800 nm, whereas when the thickness of the growth suppressing layer for electrode orientation is 120 nm, it is 300 to 500 nm. It has been confirmed that it is reduced. The thickness of the electrode orientation and other growth suppressing layer is preferably in the range of 120 nm to 500 nm in order to make the surface roughness of the electrode 500 nm or less. More preferably, 135 nm to 200 nm is suitable.

また、本発明者らが鋭意研究した結果、電極配向等成長抑制層の表面粗さも、制御用電極の表面粗さに大きな影響を与えていることが確認された。電極の表面粗さを500nm以下にするには、電極配向等成長抑制層の表面粗さを50nm以下に調整することが好ましい。   Further, as a result of intensive studies by the present inventors, it was confirmed that the surface roughness of the growth suppressing layer such as the electrode orientation has a great influence on the surface roughness of the control electrode. In order to reduce the surface roughness of the electrode to 500 nm or less, it is preferable to adjust the surface roughness of the growth suppressing layer for electrode orientation to 50 nm or less.

次に、制御用電極の表面粗さを更に改善する方法について説明する。図3に示すように、制御用電極の表面近傍に電極表面粗さ低減層を配置する。具体的には、電極を形成する電めっき条件を調整し、電極表面粗さの低減を行う。電めっき条件の例としては、パルスめっきや電流密度変更(低い値に設定)する。 Next, a method for further improving the surface roughness of the control electrode will be described. As shown in FIG. 3, an electrode surface roughness reducing layer is disposed near the surface of the control electrode. Specifically, by adjusting the electrolytic plating conditions for forming the electrode, performing the reduction of the electrode surface roughness. Examples of electrolytic plating conditions, pulse plating, the current density change (set to a low value).

つまり、上述のように電めっき条件を調整することで、制御用電極を構成するめっきの粒度がより小さくすることができ、表面粗さ低減することができる。制御用電極全体を低い粒度のめっきで構成すると、電極製造工程に長時間を要し、また、Auの使用量も増加するため、製造コストが増加する。このため、めっき法の初めは高レートで処理し、最後の数μmのみで電めっき条件を調整し、めっきの粒度を細かくする。これにより、電極の最上部近傍に形成されるめっきの粒度は、それより下層位置する部分のめっきの粒度より細かくなるよう設定される。 In other words, by adjusting the the electrolytic plating condition as described above, it is possible to size the plating constituting the control electrode is smaller, it is possible to reduce the surface roughness. If the entire control electrode is formed by plating with a low particle size, it takes a long time for the electrode manufacturing process, and the amount of Au used also increases, which increases the manufacturing cost. Therefore, the beginning of the plating is treated at a high rate, to adjust the last few μm only electrolytic plating conditions, a finer granularity of plating. Thereby, the particle size of the plating formed in the vicinity of the uppermost part of the electrode is set so as to be finer than the particle size of the plating located in the lower layer.

なお、電極表面粗さ低減層を、それより下層の電極部分と異なるめっき液を使用して構成することも可能である。ただし、異なるめっき液を使用する場合には、各電極界面による影響が大きくなり、電気信号特性が劣化する可能性がある。このため、同じ種類のめっき液を使用し、上述した電めっき条件で当該低減層を形成する方が、電極界面による特性劣化を防ぐ上では好ましい。 In addition, it is also possible to comprise an electrode surface roughness reduction layer using the plating solution different from the electrode part of the lower layer. However, when different plating solutions are used, there is a possibility that the influence of each electrode interface becomes large and the electric signal characteristics are deteriorated. Therefore, using the same type of plating solution, it is better to form the reduced layer in the above-described electrolytic plating conditions, preferable in preventing characteristic degradation due to the electrode surface.

また、30μm以上の高さの制御用電極を形成する場合に、めっきの粒度が大きく成長することを抑制するために、複数回に分けてめっきを行い、めっき層を多層で構成することも有効である。この場合は、連続してめっきする1回分の高さを、めっき条件にもよるが3〜38μm程度に制限することが望ましい。   In addition, when forming a control electrode with a height of 30 μm or more, it is also effective to form a plating layer in multiple layers by plating in multiple times in order to suppress the growth of the plating particle size. It is. In this case, it is desirable to limit the height of one continuous plating to about 3 to 38 μm although it depends on the plating conditions.

以上のように、本発明によれば、制御用電極の表面の粗さを低減させ、電気信号特性を向上させた光制御デバイスを提供することができる。   As described above, according to the present invention, it is possible to provide a light control device in which the surface roughness of the control electrode is reduced and the electric signal characteristics are improved.

Claims (6)

電気光学効果を有する結晶性基板上に、制御用電極をめっき法によって形成する光制御デバイスにおいて、
該結晶性基板と該制御用電極との間に、少なくとも1層の電極配向等成長抑制層を有し、
該電極配向等成長抑制層の厚みは、120〜500nmであり、
該電極配向等成長抑制層の表面粗さは、Raで50nm以下に設定され、
該制御用電極の厚みは、10〜50μmであり、
該制御用電極の最上部の表面粗さは、Raで500nm以下であることを特徴とする光制御デバイス。
In a light control device in which a control electrode is formed by a plating method on a crystalline substrate having an electro-optic effect,
Between the crystalline substrate and the control electrode, there is a growth suppressing layer having at least one layer of electrode orientation and the like,
The thickness of the electrode orientation and the like growth suppression layer is 120 to 500 nm,
The surface roughness of the electrode orientation and other growth suppression layer is set to 50 nm or less in Ra,
The thickness of the control electrode is 10 to 50 μm,
The surface roughness of the uppermost part of the control electrode is 500 nm or less in terms of Ra.
請求項1に記載の光制御デバイスにおいて、
該電極配向等成長抑制層を構成する材料は、Ga,Mo,W,Ta,Si,Ti,Cr,Ni並びにこれらの窒化物又は酸化物の中から一種又は複数種類を用いることを特徴とする光制御デバイス。
The light control device according to claim 1,
The material constituting the electrode orientation and other growth suppression layer is characterized by using one or more of Ga, Mo, W, Ta, Si, Ti, Cr, Ni and nitrides or oxides thereof. Light control device.
請求項1又は2に記載の光制御デバイスにおいて、
該制御用電極は、最上部近傍に形成されるめっきの粒度が、それより下層位置する部分のめっきの粒度より細かくなるよう設定されていることを特徴とする光制御デバイス。
The light control device according to claim 1 or 2,
The light control device, wherein the control electrode is set so that the particle size of the plating formed in the vicinity of the uppermost portion is finer than the particle size of the plating located in the lower layer.
請求項1乃至3のいずれかに記載の光制御デバイスにおいて、
該電極配向等成長抑制層は、1層のみで形成されていることを特徴とする光制御デバイス。
The light control device according to any one of claims 1 to 3,
The light control device, wherein the electrode orientation uniform growth suppression layer is formed of only one layer.
請求項1乃至4のいずれかに記載の光制御デバイスにおいて、
該制御用電極は、多層で構成されていることを特徴とする光制御デバイス。
The light control device according to claim 1,
The light control device is characterized in that the control electrode is composed of multiple layers.
請求項5に記載の光制御デバイスにおいて、
該多層で構成された制御用電極は、少なくとも一層が3〜38μmの膜厚で構成されていることを特徴とする光制御デバイス。
The light control device according to claim 5.
The light control device is characterized in that at least one layer of the control electrode constituted by the multilayer is constituted by a film thickness of 3 to 38 μm.
JP2013266639A 2013-12-25 2013-12-25 Light control device Active JP6325811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013266639A JP6325811B2 (en) 2013-12-25 2013-12-25 Light control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013266639A JP6325811B2 (en) 2013-12-25 2013-12-25 Light control device

Publications (2)

Publication Number Publication Date
JP2015121741A JP2015121741A (en) 2015-07-02
JP6325811B2 true JP6325811B2 (en) 2018-05-16

Family

ID=53533384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013266639A Active JP6325811B2 (en) 2013-12-25 2013-12-25 Light control device

Country Status (1)

Country Link
JP (1) JP6325811B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052487B2 (en) 2018-03-29 2022-04-12 住友大阪セメント株式会社 Optical element
JP7087555B2 (en) * 2018-03-29 2022-06-21 住友大阪セメント株式会社 Optical modulator
CN113267912A (en) * 2021-05-17 2021-08-17 北京世维通科技股份有限公司 Preparation method of metal electrode

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217226A (en) * 1990-12-19 1992-08-07 Fujitsu Ltd Manufacture of light guide path type device
EP1258772A1 (en) * 2001-05-14 2002-11-20 Corning O.T.I. S.p.A. Electro-optic modulator having high bandwith and low drive voltage
JP2003051679A (en) * 2001-08-06 2003-02-21 Ngk Spark Plug Co Ltd Ceramic wiring board and manufacturing method therefor
JP2008248371A (en) * 2007-03-30 2008-10-16 Dowa Metaltech Kk High corrosion resistance, and gold plating member of high productivity

Also Published As

Publication number Publication date
JP2015121741A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP5035421B2 (en) Elastic wave device
US11456716B2 (en) Elastic wave device and manufacturing method thereof
US9368712B2 (en) Surface acoustic wave device
WO2017002513A1 (en) Acoustic wave device
US8629598B2 (en) Boundary acoustic wave device
US8598968B2 (en) Elastic wave element and electronic device using the same
US8810104B2 (en) Acoustic wave device and method for fabricating the same
JP6325811B2 (en) Light control device
CN103701425B (en) Wave filter and manufacture method thereof
US7876021B2 (en) Surface acoustic wave device including an IDT defined by a metal filled in grooves in a piezoelectric substrate
JP5137828B2 (en) Surface acoustic wave device
US9105846B2 (en) Method of manufacturing a boundary acoustic wave device
US8575818B2 (en) Surface acoustic wave element
DE112016003084B4 (en) Elastic wave device
US7898145B2 (en) Boundary acoustic wave device
US9184367B2 (en) Elastic wave device
DE112007001405B4 (en) Surface acoustic wave device
JP4936838B2 (en) Light control device
KR102272686B1 (en) Acoustic wave devices, high-frequency front-end circuits and communication devices
JPH04288718A (en) Electrode structure for surface acoustic wave element
WO2025016207A1 (en) Semiconductor structure and forming method therefor
US11239820B2 (en) Acoustic wave device
JP2012099925A (en) Acoustic wave element and manufacturing method therefor
US20240171152A1 (en) Acoustic wave device
JP2001230648A (en) Producing method for surface acoustic wave element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180413

R150 Certificate of patent or registration of utility model

Ref document number: 6325811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载