+

JP5151166B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP5151166B2
JP5151166B2 JP2007020227A JP2007020227A JP5151166B2 JP 5151166 B2 JP5151166 B2 JP 5151166B2 JP 2007020227 A JP2007020227 A JP 2007020227A JP 2007020227 A JP2007020227 A JP 2007020227A JP 5151166 B2 JP5151166 B2 JP 5151166B2
Authority
JP
Japan
Prior art keywords
light
region
group iii
transmitting member
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007020227A
Other languages
Japanese (ja)
Other versions
JP2008187059A (en
Inventor
正司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2007020227A priority Critical patent/JP5151166B2/en
Publication of JP2008187059A publication Critical patent/JP2008187059A/en
Application granted granted Critical
Publication of JP5151166B2 publication Critical patent/JP5151166B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Description

本件発明は、半導体発光素子に関し、より詳細には、表面に光透過部材を有する半導体発光素子に関する。   The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device having a light transmitting member on the surface.

半導体発光素子は、通常、表面の平坦な半導体層が形成され、その上に形成される電極層や絶縁層も平坦であることから、発光層からの光の一部は各層の界面や素子表面で全反射してしまい、取り出すことができなかった。そこで、従来、光取り出し面側の表面に凹凸を形成することで光の角度を変え、全反射を減少させる発光素子が提案された(例えば、特許文献1〜3)。その一例を、図8に示す。図8に示す発光素子は、基板81上に、n型GaN層82と、InGaN発光層83と、表面が凹凸状のp型GaN層84とを順に有し、n型GaN層82上にはn側電極85が形成され、p型GaN層84の上にはp側透光性電極88とボンディング電極86が形成され、ボンディング電極86下のp型GaN層84上には電流阻止層87が形成されている。p側透光性電極88の表面は、その下のp型GaN層84表面が凹凸状であるため、同様に凹凸状となっている。このように、光取り出し側に設けられたp型GaN層84やp側透光性電極86の表面が凹凸状であることで、凹凸面における全反射を減少させることができ、光の外部への取り出し効率を改善することができる。   A semiconductor light emitting device usually has a flat semiconductor layer formed thereon, and an electrode layer and an insulating layer formed on the semiconductor layer are also flat. Therefore, part of the light from the light emitting layer is part of the interface between the layers and the device surface. It was totally reflected and could not be taken out. Therefore, conventionally, there has been proposed a light emitting element that changes the angle of light by forming irregularities on the light extraction surface side to reduce total reflection (for example, Patent Documents 1 to 3). An example is shown in FIG. The light-emitting element shown in FIG. 8 has an n-type GaN layer 82, an InGaN light-emitting layer 83, and a p-type GaN layer 84 having a concavo-convex surface in this order on a substrate 81. An n-side electrode 85 is formed, a p-side translucent electrode 88 and a bonding electrode 86 are formed on the p-type GaN layer 84, and a current blocking layer 87 is formed on the p-type GaN layer 84 below the bonding electrode 86. Is formed. The surface of the p-side translucent electrode 88 is similarly uneven since the surface of the underlying p-type GaN layer 84 is uneven. As described above, since the surface of the p-type GaN layer 84 and the p-side translucent electrode 86 provided on the light extraction side is uneven, total reflection on the uneven surface can be reduced, and light is emitted to the outside. The extraction efficiency can be improved.

また、特許文献4及び5には、ガリウム酸化膜をIII−V族化合物半導体からなる半導体層上に設けることが記載されている。   Patent Documents 4 and 5 describe providing a gallium oxide film on a semiconductor layer made of a III-V group compound semiconductor.

特開2000−196152号公報JP 2000-196152 A 特開2005−79266号公報JP-A-2005-79266 WO2003/065464WO2003 / 066544 特開昭52−47377号公報JP-A-52-47377 特開昭55−138286号公報JP-A-55-138286

しかしながら、上記従来の半導体発光素子では、p型GaN層とp側透光性電極との界面の凸部上にp側透光性電極表面の凸部が設けられており、光の取り出し効率が充分ではなく、また、GaN層上にはp側透光性電極としてITO等のGaN層とは異なる材料が用いられており、GaN層へ拡散すると影響を及ぼすという問題があった。
一方、特許文献4及び5には、III−V族化合物半導体層上にガリウム膜を加熱することで酸化させてガリウム酸化膜を形成することが開示されるが、その加熱処理が素子に影響を及ぼすという問題がある。また、特許文献4に記載のガリウム酸化膜は均一な膜であり、平坦な半導体表面に設けられているため、光の取り出し効率を向上させるものとできない。
また、上記特許文献1に示すような半導体層表面の凹凸構造、又は、その表面に設けられる透光性電極、透光性保護膜表面の凹凸構造では、半導体層からの光の散乱、屈折などによる素子外部への光取り出し機構において、その凹凸構造表面に対向する他方の表面が、平坦な境界面、若しくは、凹部・凸部が相互に符合する凹凸表面では、その機構が十分に機能しない問題を新規に見出した。
However, in the above conventional semiconductor light emitting device, the convex portion of the p-side translucent electrode surface is provided on the convex portion of the interface between the p-type GaN layer and the p-side translucent electrode, and the light extraction efficiency is improved. In addition, a material different from the GaN layer such as ITO is used as a p-side translucent electrode on the GaN layer, and there is a problem in that the diffusion to the GaN layer has an effect.
On the other hand, Patent Documents 4 and 5 disclose that a gallium film is oxidized on a III-V group compound semiconductor layer by heating to form a gallium oxide film. However, the heat treatment affects the element. There is a problem of affecting. Further, since the gallium oxide film described in Patent Document 4 is a uniform film and is provided on a flat semiconductor surface, the light extraction efficiency cannot be improved.
Further, in the concavo-convex structure on the surface of the semiconductor layer as shown in Patent Document 1, or the concavo-convex structure on the surface of the translucent electrode or translucent protective film provided on the surface, light scattering, refraction, etc. from the semiconductor layer In the light extraction mechanism to the outside of the element, the other surface facing the uneven structure surface is a flat boundary surface, or the uneven surface where the concave and convex portions coincide with each other, the mechanism does not function sufficiently Was newly found.

そこで本件発明は、III族元素を有する光透過部材を備え、高出力、若しくは高配向性、などの発光特性に優れる半導体発光素子、又はその素子信頼性に優れる半導体発光素子を提供することを目的とする。   Therefore, the present invention has an object to provide a semiconductor light-emitting device having a light-transmitting member having a group III element and having excellent light-emitting characteristics such as high output or high orientation, or a semiconductor light-emitting device having excellent device reliability. And

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

以上の目的を達成するために、本発明の半導体発光素子は、発光領域を含み、III族元素含有領域を光取り出し側に有する半導体層構造と、III族元素含有領域の光取り出し側に設けられ、III族元素含有領域よりも屈折率の低い膜状の光透過部材と、を具備し、光透過部材は、III族元素含有領域と共通するIII族元素を含み、光取り出し側表面に凸部を有し、III族元素含有領域は、光透過部材との界面に凹部を有し、凸部と凹部が、半導体層構造面内において重なるように配置されている。これにより、光透過部材の対向する2つの表面に相互に対向する各々凸部が設けられ、他方、半導体層(III族元素
含有領域)には、その凸部に対向する凹部が形成され、これにより、半導体層構造の内部方向に突起したその凹部に半導体層構造内を伝搬する光が到達し、上記光透過部材の凸部の比較的広い媒質内で捕獲して、光取り出し側表面の凸部において好適に外部に取り出される高出力の半導体発光素子とできる。また、光透過部材がIII族元素含有領域と共通するIII族元素を有することで、上記光伝搬における半導体と光透過部材との良好な媒質境界を形成でき、素子動作、耐性に優れた保護膜として機能させることができる。

In order to achieve the above object, a semiconductor light emitting device of the present invention includes a semiconductor layer structure including a light emitting region and having a group III element-containing region on the light extraction side, and a light extraction side of the group III element containing region. A film-shaped light transmitting member having a refractive index lower than that of the group III element-containing region, and the light transmitting member includes a group III element common to the group III element-containing region, and has a convex portion on the light extraction side surface. The group III element-containing region has a concave portion at the interface with the light transmission member, and the convex portion and the concave portion are arranged so as to overlap in the plane of the semiconductor layer structure. As a result, the two opposing surfaces of the light transmitting member are provided with respective convex portions facing each other, while the semiconductor layer (group III element-containing region) is provided with a concave portion facing the convex portion. As a result, the light propagating in the semiconductor layer structure reaches the concave portion protruding in the inner direction of the semiconductor layer structure, and is captured in the relatively wide medium of the convex portion of the light transmitting member, and the convex on the light extraction side surface. It is possible to obtain a high-power semiconductor light-emitting element that is preferably taken out to the outside. In addition, since the light transmitting member has a group III element in common with the group III element-containing region, a good medium boundary between the semiconductor and the light transmitting member in the light propagation can be formed, and a protective film excellent in element operation and durability Can function as.

本発明のその他の態様に係る半導体発光素子では、上記態様に組み合わせて、
(1)光透過部材がIII族元素の酸化物の絶縁膜である、
(2)半導体層構造は光取り出し側表面に光透過部材が被覆された被覆領域と、電極が設けられた電極形成領域とを有する、
(3)半導体構造の凹部は電極形成領域表面より発光領域側に湾入した形状である、
(4)半導体層構造は発光領域と被覆領域及び電極形成領域との間に第1導電型半導体層を有し、第1導電型半導体層の膜厚が、被覆領域より電極形成領域が大きい、
(5)半導体構造は、発光領域を挟んで被覆領域及び電極形成領域側の第1導電型半導体層と、第1導電型半導体層に対向する第2導電型半導体層と、光取り出し側に配置され、第1,2導電型半導体にそれぞれ設けられた電極とを有すると共に、光取り出し側の半導体層構造面内で、発光領域に離間した第2導電型半導体層の露出部が設けられ、露出部に、第2導電型半導体層の電極形成領域と、光透過部材が被覆された被覆領域とを有する、
(6)露出部は、発光領域の外縁に配置され、露出部の被覆領域は、発光領域を囲むように配置されている、
(7)光透過部材が膜状で光取り出し側表面に凹凸構造を備え、凸部の厚膜部分と、厚膜部分に隣接する前記凹凸構造における凹部の薄膜部分とを複数有する、
(8)光透過部材とIII族元素含有領域とに共通するIII族元素は、ガリウム、アルミニウム、又はインジウムからなる群から選択される、
(9)光透過部材上に、光透過部材とは異なる材料を有する絶縁性保護膜が設けられた、
(10)光透過部材が光取り出し側表面に凸部を複数有する凹凸構造を備え、保護膜は凹凸構造の凸部、凹部にそれぞれ対向配置され、光取り出し側表面に設けられた凸部、凹部を有する凹凸表面を備える、
とする各態様とできる。
In the semiconductor light emitting device according to another aspect of the present invention, in combination with the above aspect,
(1) The light transmission member is an insulating film of an oxide of a group III element.
(2) The semiconductor layer structure has a covered region in which the light extraction side surface is coated with a light transmitting member and an electrode forming region in which an electrode is provided.
(3) The concave portion of the semiconductor structure has a shape that is recessed from the surface of the electrode forming region to the light emitting region side.
(4) The semiconductor layer structure has a first conductivity type semiconductor layer between the light emitting region, the covering region, and the electrode forming region, and the film thickness of the first conductivity type semiconductor layer is larger than the covering region.
(5) The semiconductor structure is arranged on the light extraction side, the first conductivity type semiconductor layer on the side of the covering region and the electrode formation region across the light emitting region, the second conductivity type semiconductor layer facing the first conductivity type semiconductor layer, and And an exposed portion of the second conductive type semiconductor layer spaced from the light emitting region in the semiconductor layer structure surface on the light extraction side, and having an electrode provided on each of the first and second conductive type semiconductors. In the part, the electrode forming region of the second conductivity type semiconductor layer, and a covering region covered with the light transmitting member,
(6) The exposed portion is disposed at the outer edge of the light emitting region, and the covered region of the exposed portion is disposed so as to surround the light emitting region.
(7) The light-transmitting member has a film shape and has a concavo-convex structure on the light extraction side surface, and has a plurality of thick film portions of the convex portions and a plurality of thin film portions of the concave portions in the concavo-convex structure adjacent to the thick film portions.
(8) The group III element common to the light transmitting member and the group III element-containing region is selected from the group consisting of gallium, aluminum, or indium.
(9) An insulating protective film having a material different from that of the light transmitting member is provided on the light transmitting member.
(10) The light transmitting member has a concavo-convex structure having a plurality of convex portions on the light extraction side surface, the protective film is disposed opposite to the convex portions and the concave portions of the concavo-convex structure, and is provided on the light extraction side surface. Comprising an uneven surface having
It can be set as each aspect.

上記(1)では、酸化物絶縁膜であることで、好適な素子の光取り出し窓部の保護膜として機能でき、上記(2)では電極部と被覆部(窓部)とを半導体構造面内で分離した素子構造として、電極直下の発光領域から被覆領域に斜め方向に伝搬する光をその窓部構造で効果的に取り出すことができ、上記(3)では電極部が非窓部となる場合でも、それより内側に突起した半導体層表面の凹部により、電極方向に伝搬する光を効果的に捕獲する構造、特にそれに適した凹部形状とすることができ、上記(4)では半導体層構造の発光領域から光取り出し側表面までの媒質内で、電極部では比較的厚膜の第1導電型層により好適な電流注入、拡散を実現し、窓部の被覆部では比較的薄膜として発光領域に近づけて、好適な光取り出しを実現できる。   In the above (1), the oxide insulating film can function as a protective film for the light extraction window portion of a suitable element. In the above (2), the electrode portion and the covering portion (window portion) are arranged in the semiconductor structure plane. In the element structure separated in step (3), light propagating in an oblique direction from the light emitting region directly below the electrode to the covering region can be effectively extracted by the window structure. In (3) above, the electrode portion is a non-window portion. However, the concave portion on the surface of the semiconductor layer that protrudes inwardly can effectively capture light propagating in the direction of the electrode, and can have a concave shape that is particularly suitable for the structure. In the medium from the light emitting area to the light extraction side surface, the electrode part realizes suitable current injection and diffusion by the relatively thick first conductivity type layer, and the window covering part becomes a relatively thin film in the light emitting area. It is possible to achieve suitable light extraction close to .

上記(5)では、第1,2導電型層の各電極が、光取り出し側の同一面側に設けられた構造において、発光領域が除去されるなどして、その領域から離間した露出部に、上記電極と上記光透過部材とを備えた構造とすることで、発光領域から面内方向に伝搬した光を好適に取り出すことができ、上記(6)では、その被覆領域を、素子の外縁、発光領域を囲む領域に設けて、その領域まで到達した光を好適に取り出すことができる。   In the above (5), in the structure in which the electrodes of the first and second conductivity type layers are provided on the same surface side of the light extraction side, the light emitting region is removed, for example, in the exposed portion separated from the region. By adopting a structure including the electrode and the light transmitting member, light propagating in the in-plane direction from the light emitting region can be preferably extracted. In (6), the covered region is defined as the outer edge of the element. The light that reaches the light emitting region can be suitably extracted by providing the light emitting region.

上記(7)では、光透過膜表面の凹凸構造を、厚膜部と薄膜部とすることで、上記厚膜部と半導体凹部で好適に光を捕獲し、半導体凸部では薄膜部を好適に通過する構造とでき、上記(8)では、発光特性、素子信頼性に好適な透光性膜、絶縁成膜とでき、上記(9)では光透過部材の凸部・凹凸構造、それに対向する半導体凹部・凹凸構造による上記各機能を損なわずに、好適な保護機能、若しくは光取り出しに好適な素子外部への屈折率分布機能を付加することが出来る。   In (7) above, the uneven structure on the surface of the light-transmitting film is a thick film part and a thin film part, so that light is preferably captured by the thick film part and the semiconductor concave part, and the thin film part is suitably used by the semiconductor convex part. In (8), a light-transmitting film suitable for light emission characteristics and device reliability and an insulating film can be formed. In (9), the convex / concave structure of the light transmitting member is opposed to it. A suitable protective function or a refractive index distribution function to the outside of the element suitable for light extraction can be added without impairing each of the above functions due to the semiconductor recess / concave structure.

<実施の形態1>
以下、図面を参照しながら、本発明の実施の形態について説明する。
図1A及び図1Bは、本実施の形態に係る半導体発光素子を示す断面図及び上面図である。図1A及びBに示す半導体発光素子では、成長用基板1上に、n型半導体層6と、発光領域7として活性層と、III族元素含有領域8としてp型半導体層とを有する半導体層構造2が設けられており、III族元素含有領域8の表面には、p電極としてp側オーミック電極31とp側パッド電極32が設けられ、III族元素含有領域8から露出しているn型半導体層6の表面にはn電極4が設けられている。更に、III族元素含有領域8の表面には、III族元素含有領域8よりも屈折率の低い光透過部材5が設けられており、光透過部材5の表面には凸部が設けられ、かつ、光透過部材5とIII族元素含有領域8との界面には凹部が設けられている。図1Aに示すように、凸部と凹部は、半導体層構造2の光取り出し側表面内において重なるように配置されている。光透過部材5は、図1Bにおいて斜線で示すように、p側オーミック電極31から露出したIII族元素含有領域8の表面に設けられている。
以下、各部材について詳細に説明する。各部材は、実施の形態2〜4においても、同様のものを用いることができる。
<Embodiment 1>
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1A and 1B are a cross-sectional view and a top view showing a semiconductor light emitting device according to the present embodiment. 1A and 1B, a semiconductor layer structure having an n-type semiconductor layer 6, an active layer as a light-emitting region 7, and a p-type semiconductor layer as a group III element-containing region 8 on a growth substrate 1. 2 is provided, and a p-side ohmic electrode 31 and a p-side pad electrode 32 are provided as p-electrodes on the surface of the group III element-containing region 8, and are exposed from the group III element-containing region 8. An n-electrode 4 is provided on the surface of the layer 6. Further, a light transmitting member 5 having a refractive index lower than that of the group III element-containing region 8 is provided on the surface of the group III element-containing region 8, a convex portion is provided on the surface of the light transmitting member 5, and A recess is provided at the interface between the light transmitting member 5 and the group III element-containing region 8. As shown in FIG. 1A, the convex portion and the concave portion are arranged so as to overlap in the light extraction side surface of the semiconductor layer structure 2. The light transmissive member 5 is provided on the surface of the group III element-containing region 8 exposed from the p-side ohmic electrode 31 as indicated by hatching in FIG. 1B.
Hereinafter, each member will be described in detail. The same members can be used in the second to fourth embodiments.

(光透過部材5)
図1Cに、光透過部材5近傍の拡大図を示す。光透過部材5の表面に凸部5aが設けられ、光透過部材5とIII族元素含有領域8との界面に凹部5bが設けられ、発光領域からの光を好適に、乱反射、屈折させ、光透過部材内に入射させることがきる。入射された光は、その凹部に対向する光透過部材の光取り出し側表面の凸部との間の領域に好適に捕獲され、その表面、例えば光透過部材5とその上の後述の保護膜や空気や封止樹脂との界面、で好適な乱反射、屈折で、その部材外部へ、特に凸部から好適に光が取り出される。
(Light transmission member 5)
FIG. 1C shows an enlarged view of the vicinity of the light transmitting member 5. A convex portion 5a is provided on the surface of the light transmissive member 5, and a concave portion 5b is provided at the interface between the light transmissive member 5 and the group III element-containing region 8. The light from the light emitting region is suitably diffusely reflected and refracted to generate light. The light can enter the transmissive member. The incident light is preferably captured in a region between the convex portion on the light extraction side surface of the light transmitting member facing the concave portion, and the surface, for example, the light transmitting member 5 and a protective film described later on Light is preferably extracted out of the member, particularly from the projections, by irregular reflection and refraction suitable at the interface with air and sealing resin.

図1Cに示すように、光透過部材5表面の凸部5aの高さをhとし、III族元素含有領域8と光透過部材5との界面の凹部5bの深さをhとすると、凸部5aの高さhと凹部5bの深さhとが略等しい構造で、光透過部材5に入射した光を効率よく取り出すことができる。 As shown in FIG. 1C, the height of the convex portion 5a of the light transmitting member 5 surface and h 1, when the depth of the interface of the recess 5b of the group III element-containing region 8 and the light transmitting member 5 and h 2, With the structure in which the height h 1 of the convex portion 5 a and the depth h 2 of the concave portion 5 b are substantially equal, the light incident on the light transmitting member 5 can be extracted efficiently.

また、光透過部材5とIII族元素含有領域8の界面に設けられる凹部5bの深さは、素子動作への影響を考慮して決定され、発光領域7よりも浅いことが好ましい。具体的には、発光領域と表面との間に第1導電型半導体層を有する構造の場合では、第1導電型半導体層内に凹部が形成される構造であり、また、発光領域と表面間の領域であるIII族元素含有領域8が複数の層を有する場合は、最表面の層と同じかそれよりも浅い凹部5bとすることが好ましい。図1(図1C)に観るように、半導体層構造の凹部5bは、半導体層構造の内部に凹欠したような形状、具体的には、発光領域の光取り出し側に設けられた第1導電型半導体層に、電極が設けられ、その電極形成表面よりも内部に湾入したような形状として、形成される。このように、電極形成面より、発光領域側に突起した界面が形成されることで、電極形成領域が光取り出しに対し遮光領域で、光透過部材の被覆領域が光取り出しの窓部となる場合に、この内側に突起した界面で、電極形成領域に進行する光を好適に捕獲、外部取り出しがなされる。一方、半導体層構造の凸部5aは、電極形成面よりも上に位置するような形状として形成され、このように電極形成面より光取り出し側に突起した界面が形成されることで、好適に外部取り出しがなされる。   Further, the depth of the recess 5 b provided at the interface between the light transmitting member 5 and the group III element-containing region 8 is determined in consideration of the influence on the device operation, and is preferably shallower than the light emitting region 7. Specifically, in the case of the structure having the first conductive type semiconductor layer between the light emitting region and the surface, the concave portion is formed in the first conductive type semiconductor layer, and between the light emitting region and the surface. In the case where the group III element-containing region 8, which is a region of the above, has a plurality of layers, it is preferable that the concave portion 5 b be the same as or shallower than the outermost layer. As shown in FIG. 1 (FIG. 1C), the recess 5b of the semiconductor layer structure has a shape that is recessed in the semiconductor layer structure, specifically, the first conductive provided on the light extraction side of the light emitting region. An electrode is provided in the mold semiconductor layer, and the electrode is formed in a shape as if entering the inside of the electrode formation surface. In this way, when the interface protruding from the electrode forming surface toward the light emitting region is formed, the electrode forming region is a light shielding region with respect to light extraction, and the covering region of the light transmitting member is a light extraction window portion. In addition, the light traveling to the electrode formation region is preferably captured and taken out to the outside at the interface protruding inward. On the other hand, the convex portion 5a of the semiconductor layer structure is formed in a shape that is located above the electrode formation surface, and thus an interface protruding from the electrode formation surface to the light extraction side is formed suitably. External retrieval is performed.

また、発光領域と、被覆領域、電極形成領域との間隔、例えば、第1導電型半導体層に電極形成領域を有する構造では、その凹部による残し膜厚、が、上述したように好ましくは電極形成領域を大きくすることであり、更にその残し膜厚、凹部・被覆領域と発光領域との間の領域、で電流拡散などの機能を担うようにできるため、この間の領域を有することが好ましい。
凹部、被覆領域が、発光領域に到達、貫通する構造とすることも出来るが、例えば、発光領域を挟んで第1,2導電型半導体層を有する構造で、光取り出し側の第1導電型半導体層を除去すると、素子のリークが問題となる場合がある。一方で、図1の構造、窒化物半導体の例では、第1導電型のp型層でほとんど電流拡散しない被覆領域となるため、被覆領域を第1導電型層除去領域とすること、発光領域若しくは第2導電型半導体層(n型層)表面に被覆領域を設けた電流阻止構造とすることもできる。
In addition, the distance between the light emitting region, the covering region, and the electrode forming region, for example, in the structure having the electrode forming region in the first conductivity type semiconductor layer, the remaining film thickness due to the recess is preferably the electrode formation as described above. The area is enlarged, and the remaining film thickness and the area between the recess / covering area and the light emitting area can be used for functions such as current diffusion.
The concave portion and the covering region may reach and penetrate the light emitting region. For example, the first conductive semiconductor on the light extraction side has a structure including first and second conductive type semiconductor layers sandwiching the light emitting region. If the layer is removed, device leakage may be a problem. On the other hand, in the structure of FIG. 1 and the example of the nitride semiconductor, the first conductivity type p-type layer is a covering region that hardly diffuses current. Alternatively, a current blocking structure in which a coating region is provided on the surface of the second conductivity type semiconductor layer (n-type layer) can also be used.

また、光透過部材は、III族元素含有領域の表面の少なくとも一部に形成することができるが、例えば図1Bに示すように、p側オーミック電極31から露出したIII族元素含有領域8の表面を全て覆うように光透過部材5を形成するように、膜状とすることが好ましく、その被覆領域を電極露出領域とすることが好ましい。
膜状の光透過部材5は、図1Cに示すように、凸部5aの厚膜部分と、厚膜部分よりも膜厚が薄く厚膜部分に隣接している薄膜部分とを有して、その表面に凹凸構造が形成されている。薄膜部分の膜厚dと厚膜部分の膜厚dの比d/dは、例えば、1/7以上、5/6以下とできる。尚、薄膜部分と厚膜部分の膜厚比d/dは、表面内で一定でも一定でなくても、例えば上記範囲で変動する形態でもよい。光透過部材の膜は、図1Cに示すように、凸部5aと凹部が相互に隣接して設けられる形態、例えば交互に配置される形態としても良く、図7Bに示すように表面内に凸部70、若しくは凹部が分布した形態でも良く、凸部及びそれに対向する半導体層構造の凹部が光取り出し面内で、相互に分離されて複数設けられる形態であることが好ましい。図1に観るように、III族元素含有領域8の凸部の上に光透過部材5表面の凹部が、半導体層構造2面内で重なるように配置されていることが好ましく、具体的には膜状の光透過部材表面と、半導体層構造表面にそれぞれ凹凸構造を有して、各凹部に対向した凸部が配置された構造となる。この場合、光透過部材5とIII族元素含有領域8との界面の凸部と、光透過部材5表面の凸部は、半導体層構造2面内で、交互に配置されている。薄膜部分に半導体層構造の凸部があることで、光透過部材を好適に透過できる。
The light transmitting member can be formed on at least a part of the surface of the group III element-containing region. For example, as shown in FIG. 1B, the surface of the group III element-containing region 8 exposed from the p-side ohmic electrode 31 It is preferable to form a film so that the light transmitting member 5 is formed so as to cover the entire surface, and the covered region is preferably an electrode exposed region.
As shown in FIG. 1C, the film-shaped light transmitting member 5 includes a thick film portion of the convex portion 5a and a thin film portion that is thinner than the thick film portion and is adjacent to the thick film portion. An uneven structure is formed on the surface. The ratio d 2 / d 1 between the film thickness d 2 of the thin film portion and the film thickness d 1 of the thick film portion can be, for example, 1/7 or more and 5/6 or less. Note that the film thickness ratio d 2 / d 1 between the thin film portion and the thick film portion may be constant or not constant within the surface, for example, may vary within the above range. As shown in FIG. 1C, the light-transmitting member film may have a form in which convex parts 5a and concave parts are provided adjacent to each other, for example, an alternating form. The part 70 or the form in which the concave part is distributed may be used, and it is preferable that the convex part and the concave part of the semiconductor layer structure opposite to the convex part are separated from each other in the light extraction surface. As seen in FIG. 1, it is preferable that the concave portion on the surface of the light transmitting member 5 is arranged on the convex portion of the group III element-containing region 8 so as to overlap in the plane of the semiconductor layer structure 2, specifically, The film-like light transmitting member surface and the semiconductor layer structure surface each have a concavo-convex structure, and a convex portion facing each concave portion is arranged. In this case, the convex portions at the interface between the light transmitting member 5 and the group III element-containing region 8 and the convex portions on the surface of the light transmitting member 5 are alternately arranged in the surface of the semiconductor layer structure 2. By having the convex part of the semiconductor layer structure in the thin film part, the light transmitting member can be suitably transmitted.

図1の例で示すように、発光領域の光取り出し側の第1導電型半導体層表面に、電極形成領域、被覆領域が設けられる構造では、電極が透光性導電膜でない場合には、遮光部、窓部としてそれぞれ機能する構造となる。透光性電極の場合には、図1に示すように、電極形成領域を被覆領域より広くし、図5に示すように電極が遮光領域の場合には、窓部領域となる被覆領域を電極領域より広くする。また、上記電極形成領域、被覆領域の他に、例えば、半導体層露出領域、保護膜被覆領域を別途設けても良く、電極形成領域と被覆領域で発光領域に対向する半導体構造の光取り出し側表面が構成されることが好ましい。発光領域外に被覆領域を設ける形態は、後述の実施の形態2以降で説明する。
具体的に光透過部材は、電極や絶縁膜から露出したIII族元素含有領域表面に設けられる。
光透過部材表面の凸部、及び、光透過部材とIII族元素含有領域との界面の凹部の断面形状としては、正弦波のような曲線状の形状が好ましく、これにより、方形波や三角波のような角のある形状に比べてより光取り出し効率が上がる。
As shown in the example of FIG. 1, in the structure in which the electrode formation region and the covering region are provided on the surface of the first conductive semiconductor layer on the light extraction side of the light emitting region, light shielding is performed when the electrode is not a translucent conductive film. It becomes a structure which each functions as a part and a window part. In the case of a translucent electrode, as shown in FIG. 1, the electrode forming region is made wider than the covering region, and when the electrode is a light shielding region as shown in FIG. Make it wider than the area. In addition to the electrode forming region and the covering region, for example, a semiconductor layer exposed region and a protective film covering region may be provided separately, and the light extraction side surface of the semiconductor structure facing the light emitting region in the electrode forming region and the covering region. Is preferably configured. The form in which the covering region is provided outside the light emitting region will be described in the second embodiment and later.
Specifically, the light transmitting member is provided on the surface of the group III element-containing region exposed from the electrode or the insulating film.
The cross-sectional shape of the convex portion on the surface of the light transmissive member and the concave portion at the interface between the light transmissive member and the group III element-containing region is preferably a curved shape such as a sine wave. The light extraction efficiency is higher than that of such a cornered shape.

光透過部材5の材料としては、発光領域7からの光を透過可能な材料が選択され、少なくともIII族元素含有領域8に含まれるものと同じIII族元素、具体的にはIII族元素含有領域の半導体層の構成元素が用いられる。具体的には、III族元素の酸化物であり、保護膜、素子リーク防止のために好ましくは絶縁性の酸化物膜とする。また、III族元素としては、ガリウム、アルミニウム、インジウムの方が透光性の膜、絶縁性の膜を形成しやすく好ましい。また、III族元素含有領域8が複数のIII族元素を含有、具体的には複数のIII族元素の混晶としている場合は、同様に複数のIII族元素を有する光透過部材5とすることが好ましく、例えば、III族元素含有領域としてAlGaNを用いる場合は、Al及びGaを含む光透過部材とすることが好ましい。さらに、後述するように、光透過部材の形成方法として、III族元素含有領域を酸化する方法を選択すると、III族元素含有領域と共通するIII族元素を含む光透過部材を、容易に形成することができ、特に複数の共通のIII族元素であることが好ましい。   As the material of the light transmitting member 5, a material that can transmit light from the light emitting region 7 is selected, and at least the same group III element as that contained in the group III element containing region 8, specifically a group III element containing region The constituent elements of the semiconductor layer are used. Specifically, it is an oxide of a group III element, and preferably a protective film and an insulating oxide film for preventing element leakage. As the group III element, gallium, aluminum, and indium are more preferable because they can easily form a light-transmitting film or an insulating film. Further, when the group III element-containing region 8 contains a plurality of group III elements, specifically, a mixed crystal of a plurality of group III elements, the light transmitting member 5 having a plurality of group III elements is similarly used. For example, when AlGaN is used as the group III element-containing region, a light transmissive member containing Al and Ga is preferable. Furthermore, as will be described later, when a method for oxidizing a group III element-containing region is selected as a method for forming a light transmitting member, a light transmitting member containing a group III element common to the group III element-containing region is easily formed. In particular, a plurality of common Group III elements are preferred.

図2に示すように、光透過部材5の上には、光透過部材とは異なる材料を有する保護膜20を設けてもよい。保護膜20は、通常の保護膜と同様に半導体層構造、電極の露出面に形成できる。具体的な保護膜20は、光透過部材5とは組成が異なっており、その材料としては、例えば、SiO、Ta、Nb、TiO、Al、ZrO等が挙げられる。更には、発光領域7からの光に対して透光性のものが好ましく、例えば、紫外域の光に対してはSiOやTa、青色光に対してはSiOやNb等が挙げられる。光透過部材5の上に形成される保護膜20は、その表面に光透過部材5と同様の凸部を有する構造とできる。また、保護膜20はその下の層の表面形状に依存するために、保護膜20と光透過部材5表面の凸部が互いに対向する構造、つまり、保護膜20表面の凸部と光透過部材5表面の凸部が半導体層構造2面内で重なるように配置された構造とできる。
また、後述するように、発光領域7を発光させることで光透過部材5を形成可能な場合には、光透過部材5上に保護膜20を形成することで、外気と隔離でき、光透過部材20の成長を止めることができる。
(成長用基板1)
As shown in FIG. 2, a protective film 20 having a material different from that of the light transmissive member may be provided on the light transmissive member 5. The protective film 20 can be formed on the exposed surface of the semiconductor layer structure and electrodes in the same manner as a normal protective film. The specific protective film 20 has a composition different from that of the light transmitting member 5, and examples of the material thereof include SiO 2 , Ta 2 O 5 , Nb 2 O 5 , TiO 2 , Al 2 O 3 , and ZrO 2. Etc. Further, a material that is transparent to light from the light emitting region 7 is preferable. For example, SiO 2 or Ta 2 O 5 for ultraviolet light, and SiO 2 or Nb 2 O for blue light. 5 etc. are mentioned. The protective film 20 formed on the light transmissive member 5 can have a structure having convex portions similar to those of the light transmissive member 5 on the surface thereof. Moreover, since the protective film 20 depends on the surface shape of the layer below it, the protective film 20 and the convex portions on the surface of the light transmitting member 5 are opposed to each other, that is, the convex portions on the surface of the protective film 20 and the light transmitting member. 5 It can be set as the structure arrange | positioned so that the convex part of the surface may overlap in the semiconductor layer structure 2 surface.
Further, as will be described later, when the light transmission member 5 can be formed by causing the light emitting region 7 to emit light, by forming the protective film 20 on the light transmission member 5, the light transmission member 5 can be isolated from the outside air. 20 growth can be stopped.
(Growth substrate 1)

成長用基板1は、半導体層構造2を成長可能な基板であればよく、例えば、C面、R面及びA面のいずれかを主面とするサファイア、スピネル(MgAlのような絶縁性基板)、SiC、Si、そして窒化物半導体と格子整合する酸化物基板等を挙げることができる。 The growth substrate 1 may be any substrate that can grow the semiconductor layer structure 2, for example, sapphire, spinel (insulation such as MgAl 2 O 4) whose main surface is any one of the C-plane, R-plane, and A-plane. Substrate), SiC, Si, and an oxide substrate lattice-matched with a nitride semiconductor.

(半導体層構造2)
半導体層構造2は、少なくとも、発光領域7と、表面側に設けられたIII族元素含有領域8とを有し、具体的には発光領域とその光取り出し側の第1導電型半導体層、更にはそれに対向して第2導電型半導体層を有している。半導体層構造2を構成する層としては、GaNやGaAs等、III族元素を有する種々の半導体を用いることができ、素子の種類によって種々の構造をとり得る。本発明は、半導体層の組成を特に限定するものではないが、例えば、InAlGa1−x−yN(0≦x、0≦y、x+y≦1)等の窒化ガリウム系化合物半導体が好適に用いられる。また、その層構造としては、MIS接合、PIN接合やPN接合を有したホモ構造、ヘテロ構造あるいはダブルへテロ構造のものが挙げられる。半導体層は、例えば、MOVPE(有機金属気相成長法)、HVPE、MBE等の公知の技術により形成することができる。また、半導体層の膜厚は特に限定されるものではなく、種々の膜厚のものを適用することができる。また、各半導体、各導電型層は、単層構造、組成及び膜厚等の異なる層の積層構造、超格子構造等であってもよい。
(Semiconductor layer structure 2)
The semiconductor layer structure 2 has at least a light emitting region 7 and a group III element-containing region 8 provided on the surface side. Specifically, the light emitting region and the first conductivity type semiconductor layer on the light extraction side thereof, Has a second conductivity type semiconductor layer opposite thereto. As a layer constituting the semiconductor layer structure 2, various semiconductors having a group III element such as GaN and GaAs can be used, and various structures can be taken depending on the type of element. Although the composition of the semiconductor layer is not particularly limited in the present invention, for example, a gallium nitride compound semiconductor such as In x Al y Ga 1-xy N (0 ≦ x, 0 ≦ y, x + y ≦ 1) Are preferably used. The layer structure includes a homo structure, a hetero structure or a double hetero structure having a MIS junction, a PIN junction or a PN junction. The semiconductor layer can be formed by a known technique such as MOVPE (metal organic chemical vapor deposition), HVPE, MBE, or the like. Further, the thickness of the semiconductor layer is not particularly limited, and various thicknesses can be applied. Further, each semiconductor and each conductivity type layer may have a single layer structure, a laminated structure of layers having different compositions and film thicknesses, a superlattice structure, or the like.

(発光領域7)
発光領域7は、発光が可能な領域であればよく、本実施の形態では発光領域7として発光層を用いている。特に、量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造を有する発光層を有する構造とすると、発光効率の高い素子を得ることができ、好ましい。
(Light emitting area 7)
The light emitting region 7 may be any region that can emit light. In the present embodiment, a light emitting layer is used as the light emitting region 7. In particular, a structure having a light emitting layer having a single quantum well structure or a multiple quantum well structure formed in a thin film in which a quantum effect is generated is preferable because an element with high light emission efficiency can be obtained.

(III族元素含有領域8)
III族元素含有領域8は、少なくともIII族元素を含む半導体で半導体層構造2の光取り出し表面に設けられる。含有されるIII族元素は、ガリウム、アルミニウム、インジウム等の半導体材料として用いられるものが好ましく、同じIII族元素が光透過部材5にも含まれる。本実施の形態では、III族元素含有領域8としてp型半導体層を用いているが、半導体層構造の最表面の層であれば、導電型に拘わらず種々の半導体層を用いることができる。III族元素含有領域は、発光領域の光取り出し面側に設けると、効率よく光出力を向上させることができ、好ましい。また、III族元素含有領域8を構成する半導体層としては、III―V族化合物半導体層とすることが好ましく、例えばGaN層やAlGaN層が挙げられ、紫外域の光を発光する半導体発光素子の場合は、GaN層よりも紫外域の光の吸収が少ないAlGaN層とすることが好ましい。
(Group III element-containing region 8)
The group III element-containing region 8 is a semiconductor containing at least a group III element and is provided on the light extraction surface of the semiconductor layer structure 2. The group III element contained is preferably one used as a semiconductor material such as gallium, aluminum, or indium, and the same group III element is also included in the light transmitting member 5. In the present embodiment, a p-type semiconductor layer is used as the group III element-containing region 8, but various semiconductor layers can be used regardless of the conductivity type as long as it is the outermost layer of the semiconductor layer structure. When the group III element-containing region is provided on the light extraction surface side of the light emitting region, the light output can be improved efficiently, which is preferable. The semiconductor layer constituting the group III element-containing region 8 is preferably a group III-V compound semiconductor layer, such as a GaN layer or an AlGaN layer, which is a semiconductor light emitting device that emits light in the ultraviolet region. In this case, an AlGaN layer that absorbs less ultraviolet light than the GaN layer is preferable.

(光透過部材5の製造方法)
本実施の形態の光透過部材5、及び半導体層構造の凹部、更にはそれらの凹凸構造は、リフトオフやエッチング等で加工すること、例えば半導体に凹部若しくは凹凸構造を形成して、その表面に光透過部材、膜を、半導体凹部と対向した凸部を形成することにより形成できる。また、以下に説明するような方法で光透過部材5を形成すると、エッチング等で加工する場合と比較して、半導体凹部に対向する光透過部材の凸部を好適に形成できる。
(Manufacturing method of the light transmissive member 5)
The light transmitting member 5 and the concave portion of the semiconductor layer structure, and the concave / convex structure thereof, are processed by lift-off, etching, or the like, for example, a concave portion or a concave / convex structure is formed in the semiconductor, and light is applied to the surface. The transmissive member and the film can be formed by forming a convex portion facing the semiconductor concave portion. Further, when the light transmissive member 5 is formed by the method described below, the convex portion of the light transmissive member facing the semiconductor concave portion can be suitably formed as compared with the case of processing by etching or the like.

まず、成長用基板1上に、n型半導体層6、発光領域7として発光層、III族元素含有領域8としてp型半導体層を含む半導体層構造2を形成し、III族元素含有領域8上にp側オーミック電極31とp側パッド電極32を形成し、III族元素含有領域8及び発光領域7の一部を除去して露出させたn型半導体層6上にn電極4を形成する。
次に、III族元素含有領域8の表面を露出させたまま、酸素を含む雰囲気中で、半導体発光素子に電流を流して発光領域7である発光層を発光させる。発光層を発光させたまま、一定時間経過後に観察すると、p側オーミック電極31から露出したIII族元素含有領域8の表面に、III族元素含有領域8と共通するIII族元素を有し、図1A〜Cに示すような、凸部と凹部を有する光透過部材5が形成される。
First, a semiconductor layer structure 2 including an n-type semiconductor layer 6, a light-emitting layer as a light-emitting region 7, and a p-type semiconductor layer as a group III element-containing region 8 is formed on the growth substrate 1. Then, the p-side ohmic electrode 31 and the p-side pad electrode 32 are formed, and the n-electrode 4 is formed on the n-type semiconductor layer 6 exposed by removing a part of the group III element-containing region 8 and the light emitting region 7.
Next, with the surface of the group III element-containing region 8 exposed, a current is passed through the semiconductor light-emitting element in an oxygen-containing atmosphere to cause the light-emitting layer that is the light-emitting region 7 to emit light. When the light emitting layer is allowed to emit light and observed after a certain period of time, the surface of the group III element-containing region 8 exposed from the p-side ohmic electrode 31 has a group III element common to the group III element-containing region 8. As shown to 1A-C, the light transmissive member 5 which has a convex part and a recessed part is formed.

このような方法によれば、光透過部材5は、半導体層構造2の表面側、つまりIII族元素含有領域8の表面が酸化されることによって形成され、III族元素含有領域8の一部を侵食するような形状で得られる。これにより、III族元素含有領域と同じIII族元素を有する光透過部材を得ることができる。III族元素含有領域8の酸化の進行は、通常、半導体層構造2面内において不均一であり、また、酸化されたIII族元素含有領域8は酸化前よりも体積が膨張するため、光透過部材5表面の凸部と、光透過部材5とIII族元素含有領域8との界面の凹部とが符合して、半導体層構造2面内において重なるように配置され、光透過部材の凸部と半導体凹部の対向構造とできる。光透過部材5は、III族元素含有領域8から酸化膜が面内不均一な状態で生成されるため、まずIII族元素含有領域8表面の一部に島状に形成され始め、さらに成長して膜状となり、III族元素含有領域8の露出表面を全て覆うように成長する。   According to such a method, the light transmitting member 5 is formed by oxidizing the surface side of the semiconductor layer structure 2, that is, the surface of the group III element-containing region 8, and a part of the group III element-containing region 8 is formed. Obtained in an erosive shape. Thereby, the light transmissive member which has the same group III element as a group III element containing area | region can be obtained. The progress of oxidation of the group III element-containing region 8 is usually non-uniform in the plane of the semiconductor layer structure 2, and the oxidized group III element-containing region 8 has a larger volume than before the oxidation, so that light transmission is possible. The convex portion on the surface of the member 5 and the concave portion at the interface between the light transmitting member 5 and the group III element-containing region 8 are aligned and overlapped in the plane of the semiconductor layer structure 2, and the convex portion of the light transmitting member A structure opposite to the semiconductor recess can be formed. Since the light transmission member 5 is generated from the group III element-containing region 8 in an in-plane non-uniform state, the light transmitting member 5 starts to be formed in an island shape on a part of the surface of the group III element-containing region 8 and further grows. The film grows so as to cover the entire exposed surface of the group III element-containing region 8.

光透過部材5の生成は、主に発光時間に依存して形成され、例えば、室温で、700mAの電流を流した場合は、100〜200時間経過頃から光透過部材5の形成が確認でき、形成時の温度が高温であるほど、形成時間を短縮することができる。形成時の環境温度は、少なくとも半導体層構造2形成時の温度より低くすることが好ましく、更に好ましくは100℃以下、更には室温程度とすると、量産性に富み好ましい。   The generation of the light transmissive member 5 is mainly formed depending on the light emission time. For example, when a current of 700 mA is passed at room temperature, the formation of the light transmissive member 5 can be confirmed from about 100 to 200 hours, The higher the temperature during formation, the shorter the formation time. The environmental temperature at the time of formation is preferably at least lower than the temperature at the time of forming the semiconductor layer structure 2, more preferably 100 ° C. or less, and further about room temperature, which is preferable in terms of mass productivity.

後述するように、III族元素含有領域8近傍の温度が同程度である場合に、発光させると光透過部材5が形成でき、発光させずに保管すると光透過部材5が形成できないことから、発光領域7からの光によりIII族元素含有領域8の酸化が促進されていると考えられる。このような発光領域7としては紫外域の光を発光するものが好ましく、この場合、III族元素含有領域8はAlGaN層とすると紫外域の光の吸収を比較的少なくできる。また、レーザ等の発光装置を用いて、同様の光を半導体発光素子の外部から照射することによっても、光透過部材5が形成可能と考えられる。しかし、発光領域7を発光させる方が、光密度の高い光を簡単に照射でき、また、素子の温度上昇を抑えることができるため、好ましい。   As will be described later, when the temperature in the vicinity of the group III element-containing region 8 is approximately the same, the light-transmitting member 5 can be formed by emitting light, and the light-transmitting member 5 cannot be formed if stored without emitting light. It is considered that the oxidation of the group III element-containing region 8 is promoted by the light from the region 7. Such a light emitting region 7 preferably emits light in the ultraviolet region. In this case, if the group III element-containing region 8 is an AlGaN layer, absorption of light in the ultraviolet region can be relatively reduced. Further, it is considered that the light transmitting member 5 can be formed by irradiating the same light from the outside of the semiconductor light emitting element using a light emitting device such as a laser. However, it is preferable to emit light from the light emitting region 7 because light with a high light density can be easily irradiated and an increase in temperature of the element can be suppressed.

<実施の形態2>
図3A及び図3Bは、実施の形態2に係る半導体発光素子を示す断面図及び平面図であり、この例では、成長用基板1上に、III族元素含有領域38としてn型半導体層と、発光領域37として活性層と、p型半導体層30とを有する半導体層構造33が設けられており、p型半導体層30上にはp電極としてp側オーミック電極31とp側パッド電極32が設けられ、III族元素含有領域38の表面にはn電極4が設けられている。n電極4から露出したIII族元素含有領域38の表面には光透過部材35が設けられており、光透過部材35は、図3Bにおいて斜線で示すように、n電極4から露出したIII族元素含有領域38の表面に設けられている。
<Embodiment 2>
3A and 3B are a cross-sectional view and a plan view showing the semiconductor light emitting device according to the second embodiment. In this example, an n-type semiconductor layer as a group III element-containing region 38 is formed on the growth substrate 1, and A semiconductor layer structure 33 having an active layer and a p-type semiconductor layer 30 is provided as the light emitting region 37, and a p-side ohmic electrode 31 and a p-side pad electrode 32 are provided on the p-type semiconductor layer 30 as p-electrodes. The n-electrode 4 is provided on the surface of the group III element-containing region 38. A light transmissive member 35 is provided on the surface of the group III element-containing region 38 exposed from the n electrode 4, and the light transmissive member 35 is exposed to the group III element exposed from the n electrode 4, as indicated by hatching in FIG. 3B. It is provided on the surface of the containing region 38.

図3A及び図3Bに示すように、半導体構造の光取り出し面側、第1,2導電型層の電極が同一面に設けられた構造の電極形成面側、に発光領域から離間した電極形成領域が設けられる露出部が形成され、その露出部に光透過部材の被覆領域が形成された構造となっている。この形態では、上記実施の形態1のように発光領域の光取り出し側表面に被覆領域が設けられる形態よりも、光取り出し効果は低下するが、他方、発光領域の電極形成領域に比して、発光構造への影響が小さいことから、電極形成領域を小さく、被覆領域を大きくすることができる。具体的には、n型半導体層表面に光透過部材35を形成しているため、p側オーミック電極31をp型半導体層のほぼ全面に形成することができる。
この時、半導体構造の光取り出し側面内で、好ましくは露出部の電極形成領域と発光領域との間に被覆領域が設けられると、上述した電極に進行する光、更に発光領域近傍の光を好適に取り出すことができる。また、被覆領域と発光領域との間に電極領域が設けられる形態、更には発光領域の外周部、素子外縁部の露出部に光透過部材の被覆領域が設けられることで、被覆面積を大きく、且つ素子能動領域外に進行、素子端面で反射する光を好適に取り出すことができ好ましい。また、上記実施の形態1のように発光領域内で、その外縁に設けられる形態でも、同様に、発光領域の端部、具体的には上記露出部との端部における光を好適に取り出すことができる。また、被覆領域により、各外縁部、外周部における素子リーク防止の絶縁性保護膜としても機能させることができる。
As shown in FIGS. 3A and 3B, the electrode formation region spaced from the light emitting region on the light extraction surface side of the semiconductor structure, the electrode formation surface side of the structure in which the electrodes of the first and second conductivity type layers are provided on the same surface An exposed portion is provided, and a covered region of the light transmitting member is formed in the exposed portion. In this form, the light extraction effect is lower than the form in which the covering region is provided on the light extraction side surface of the light emitting region as in the first embodiment, but on the other hand, compared to the electrode formation region of the light emitting region, Since the influence on the light emitting structure is small, the electrode formation region can be reduced and the covering region can be increased. Specifically, since the light transmission member 35 is formed on the surface of the n-type semiconductor layer, the p-side ohmic electrode 31 can be formed on almost the entire surface of the p-type semiconductor layer.
At this time, preferably, if a covering region is provided between the electrode formation region of the exposed portion and the light emitting region within the light extraction side surface of the semiconductor structure, the light traveling to the above-described electrode and further the light in the vicinity of the light emitting region are suitable. Can be taken out. In addition, the form in which the electrode region is provided between the covering region and the light emitting region, and further, the covering region of the light transmitting member is provided in the outer peripheral portion of the light emitting region and the exposed portion of the outer edge portion of the element, thereby increasing the covering area. In addition, light that travels outside the element active region and reflects off the end face of the element can be preferably extracted. Similarly, in the form provided at the outer edge in the light emitting region as in the first embodiment, similarly, light at the end of the light emitting region, specifically, the end with the exposed portion is preferably extracted. Can do. Moreover, it can be made to function as an insulating protective film for preventing element leakage in each outer edge portion and outer peripheral portion by the covering region.

<実施の形態3>
図4は、実施の形態3に係る半導体発光素子を示す断面図である。図4に示す半導体発光素子では、成長用基板1上に、第1のIII族元素含有領域401としてn型半導体層と、発光領域47として活性層と、第2のIII族元素含有領域402としてp型半導体層とを有する半導体層構造42が設けられており、第2のIII族元素含有領域402上にはp電極としてp側オーミック電極31とp側パッド電極32が設けられ、第1のIII族元素含有領域401の表面にはn電極4が設けられている。そして、各電極から露出した第1及び第2のIII族元素含有領域401、402の表面には光透過部材45が設けられている。このように、n型半導体層及びp型半導体層を第1及び第2のIII族元素含有領域401、402として、各半導体層の表面に光透過部材45を設けることもできる。
<Embodiment 3>
FIG. 4 is a sectional view showing a semiconductor light emitting element according to the third embodiment. In the semiconductor light emitting device shown in FIG. 4, an n-type semiconductor layer as the first group III element-containing region 401, an active layer as the light emitting region 47, and a second group III element containing region 402 are formed on the growth substrate 1. A semiconductor layer structure 42 having a p-type semiconductor layer is provided, and a p-side ohmic electrode 31 and a p-side pad electrode 32 are provided as p-electrodes on the second group III element-containing region 402, An n-electrode 4 is provided on the surface of the group III element-containing region 401. A light transmission member 45 is provided on the surfaces of the first and second group III element-containing regions 401 and 402 exposed from each electrode. As described above, the light transmitting member 45 can be provided on the surface of each semiconductor layer by using the n-type semiconductor layer and the p-type semiconductor layer as the first and second group III element-containing regions 401 and 402.

<実施の形態4>
図5A及び図5Bは、実施の形態4に係る半導体発光素子を示す断面図及び上面図である。図5A及び図5Bに示す半導体発光素子では、導電性支持基板11上に、導電層13、p電極53、絶縁膜12を介して、半導体層構造52が接合されている。半導体層構造52は、支持基板11側から順に、p型半導体層56と、発光領域57として発光層と、III族元素含有領域58としてn型半導体層と、を有している。p電極53は、p型半導体層56にオーミック接続しており、導電層13と支持基板11を介して外部と電気的に接続可能である。また、p電極53の周囲には絶縁膜12が形成されている。一方、III族元素含有領域58の表面にはn電極54が形成され、更に光透過部材55が形成されている。光透過部材55は、図5Bにおいて、n電極54から露出したIII族元素含有領域58の表面のほぼ全面に設けられている。
<Embodiment 4>
5A and 5B are a cross-sectional view and a top view showing the semiconductor light emitting element according to the fourth embodiment. In the semiconductor light emitting device shown in FIGS. 5A and 5B, the semiconductor layer structure 52 is bonded on the conductive support substrate 11 via the conductive layer 13, the p-electrode 53, and the insulating film 12. The semiconductor layer structure 52 includes, in order from the support substrate 11 side, a p-type semiconductor layer 56, a light-emitting layer as the light-emitting region 57, and an n-type semiconductor layer as the group III element-containing region 58. The p-electrode 53 is ohmically connected to the p-type semiconductor layer 56 and can be electrically connected to the outside through the conductive layer 13 and the support substrate 11. An insulating film 12 is formed around the p-electrode 53. On the other hand, an n-electrode 54 is formed on the surface of the group III element-containing region 58, and a light transmission member 55 is further formed. In FIG. 5B, the light transmission member 55 is provided on almost the entire surface of the group III element-containing region 58 exposed from the n-electrode 54.

図5A及び図5Bに示すように、n電極54及びp電極53が半導体層構造52を上下から挟んだ構造の半導体発光素子の場合は、光取り出し側の表面に光透過部材を形成することで、効果的に光出力を向上させることができる。また、窒化物半導体においては、p型層よりn型層の方が電流が広がりやすいため、本実施の形態のようにn型半導体層を光取り出し側とすることにより、光取り出し側に設けられる電極の面積を小さくできる。このように、III族元素含有領域表面の電極面積を小さくすることで、より広範囲に光透過部材を形成することができ、効率的に光出力を向上させることができる。   As shown in FIGS. 5A and 5B, when the n-electrode 54 and the p-electrode 53 are a semiconductor light emitting device having a semiconductor layer structure 52 sandwiched from above and below, a light transmitting member is formed on the surface on the light extraction side. , Can effectively improve the light output. Further, in a nitride semiconductor, the current is more easily spread in the n-type layer than in the p-type layer, so that the n-type semiconductor layer is provided on the light extraction side as in the present embodiment. The area of the electrode can be reduced. Thus, by reducing the electrode area on the surface of the group III element-containing region, the light transmitting member can be formed in a wider range, and the light output can be improved efficiently.

このように、上記実施の形態1〜3と異なり、光取り出し側表面に第2導電型半導体層の電極形成露出部を有していないため、半導体層構造のほぼ全面を発光領域とする構造となっている。他方、この例では、光取り出し側表面の第1導電型半導体層の電極は、遮光性電極で、電流拡散性の高い半導体層であることで、電極露出の窓部領域を、電極形成領域より広くでき、その窓部領域を好適に被覆領域とすることができる。   As described above, unlike the first to third embodiments, the light extraction side surface does not have the electrode formation exposed portion of the second conductivity type semiconductor layer, so that the entire surface of the semiconductor layer structure is a light emitting region. It has become. On the other hand, in this example, the electrode of the first conductivity type semiconductor layer on the light extraction side surface is a light-shielding electrode and a semiconductor layer having high current diffusivity, so that the window region of the electrode exposure is more than the electrode formation region. The window area can be suitably used as a covering area.

本実施の形態の半導体発光素子は、例えば以下のようにして得ることができる。
まず、成長用基板の表面に、n型半導体層、発光層、p型半導体層を順に積層し、半導体層構造52を形成し、p型半導体層上にp電極53を形成する。p電極53の周囲にはSiO等の絶縁膜12を形成し、p電極53及び絶縁膜12を覆うように第1導電層を形成する。
次に、第2導電層を表面に形成したCuW等の導電性の支持基板11を準備して、第1導電層と第2導電層とが対向するように、半導体層構造52の上に支持基板11を加熱圧接、例えば150℃〜350℃、して接着部を導電層13とする。
次に、成長用基板を剥離して、半導体層構造52のn側の表面を研磨し、III族元素含有領域58として機能するn型半導体層を露出させた後、n電極54を形成する。次に、ダイシングにより発光素子をチップ状に分離する。これにより、支持基板11上に半導体層構造52が積層され、n電極54及びp電極53が半導体層構造52を上下から挟んだ構造の半導体発光素子を得ることができる。
The semiconductor light emitting device of this embodiment can be obtained, for example, as follows.
First, an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer are sequentially stacked on the surface of the growth substrate to form a semiconductor layer structure 52, and a p-electrode 53 is formed on the p-type semiconductor layer. An insulating film 12 such as SiO 2 is formed around the p electrode 53, and a first conductive layer is formed so as to cover the p electrode 53 and the insulating film 12.
Next, a conductive support substrate 11 made of CuW or the like having a second conductive layer formed on the surface is prepared, and is supported on the semiconductor layer structure 52 so that the first conductive layer and the second conductive layer face each other. The substrate 11 is heated and pressed, for example, 150 ° C. to 350 ° C., and the bonded portion is used as the conductive layer 13.
Next, the growth substrate is peeled off, the n-side surface of the semiconductor layer structure 52 is polished to expose the n-type semiconductor layer functioning as the group III element-containing region 58, and then the n-electrode 54 is formed. Next, the light emitting element is separated into chips by dicing. Thereby, the semiconductor layer structure 52 is laminated on the support substrate 11, and a semiconductor light emitting device having a structure in which the n electrode 54 and the p electrode 53 sandwich the semiconductor layer structure 52 from above and below can be obtained.

そして、n電極54から露出したIII族元素含有領域58表面に光透過部材55を形成し、光透過部材55の表面の凸部と、光透過部材55とIII族元素含有領域58との界面の凹部とが、半導体層構造52面内において重なるように配置されることで、図5A及び図5Bに示すような半導体発光素子を得ることができる。
また、このような方法によれば、半導体層構造52と支持基板11を、第1導電層及び第2導電層を形成して加熱圧接することで接着しているため、光透過部材55形成時の温度は、加熱圧接の温度よりも低い温度とすることが好ましく、例えば350℃以下、更には150℃以下とすることが好ましい。これにより、半導体層構造52と支持基板11との密着性を高く保つことができる。
Then, a light transmitting member 55 is formed on the surface of the group III element-containing region 58 exposed from the n-electrode 54, and the convex portion on the surface of the light transmitting member 55 and the interface between the light transmitting member 55 and the group III element containing region 58 are formed. A semiconductor light emitting device as shown in FIGS. 5A and 5B can be obtained by disposing the recess so as to overlap in the plane of the semiconductor layer structure 52.
In addition, according to such a method, the semiconductor layer structure 52 and the support substrate 11 are bonded by forming the first conductive layer and the second conductive layer and performing heat-pressure contact. The temperature is preferably lower than the temperature of the heating and pressure welding, for example, 350 ° C. or lower, more preferably 150 ° C. or lower. Thereby, the adhesiveness of the semiconductor layer structure 52 and the support substrate 11 can be kept high.

以下に、本発明に係る実施例を示す。ただし、本発明は以下の実施例に限定されるものではない。実施例1では、図1A〜Cに基づいて説明する。   Examples according to the present invention are shown below. However, the present invention is not limited to the following examples. The first embodiment will be described with reference to FIGS.

実施例1に係る半導体発光素子は、サファイア基板1の上にGaNよりなるバッファ層、ノンドープGaN層を積層し(図示せず)、その上に、n型半導体層6として、SiドープGaNよりなるn型コンタクト層、GaNとInGaNとを交互に10回積層したn型超格子層、と、発光領域7としてGaNとInGaNを交互に3〜6回積層させた多重量子井戸構造の発光層、III族元素含有領域8、p型半導体層として、AlGaNとInGaN層とを交互に10回積層したMgドープのp型超格子層、MgドープGaNのp型コンタクト層、とがこの順に積層されている。
n型コンタクト層の一部が除去されて露出し、そこにW、Pt、Auを含むn電極4が形成され、p型コンタクト層には、p電極として、ITOよりなるp側オーミック電極31と、W、Pt、Auを含むp側パッド電極32が形成され、p側オーミック電極から露出した表面には、ガリウム酸化物を含む光透過部材5が形成される。光透過部材5の表面に凸部5a、光透過部材5とp型コンタクト層との界面には凹部5bが設けられており、凸部5aと凹部5bとは、半導体層構造2面内において、重なるように配置されている。
In the semiconductor light emitting device according to Example 1, a buffer layer made of GaN and a non-doped GaN layer are stacked on a sapphire substrate 1 (not shown), and an n-type semiconductor layer 6 is made of Si-doped GaN thereon. an n-type contact layer, an n-type superlattice layer in which GaN and InGaN are alternately stacked 10 times, and a light emitting layer 7 having a multiple quantum well structure in which GaN and InGaN are alternately stacked 3 to 6 times as a light emitting region 7 Group-element-containing region 8, as a p-type semiconductor layer, an Mg-doped p-type superlattice layer in which AlGaN and InGaN layers are alternately laminated 10 times, and an Mg-doped GaN p-type contact layer are laminated in this order. .
A part of the n-type contact layer is removed and exposed, and an n-electrode 4 containing W, Pt, and Au is formed there. The p-type contact layer has a p-side ohmic electrode 31 made of ITO as a p-electrode. , W, Pt, and Au are formed, and the light transmission member 5 containing gallium oxide is formed on the surface exposed from the p-side ohmic electrode. A convex portion 5a is provided on the surface of the light transmissive member 5, and a concave portion 5b is provided at the interface between the light transmissive member 5 and the p-type contact layer. The convex portion 5a and the concave portion 5b are provided in the plane of the semiconductor layer structure 2. They are arranged so as to overlap.

このような実施例1に係る半導体発光素子と、p型コンタクト層表面に光透過部材を設けない他は実施例1と同様の比較例1の半導体発光素子とを、共に発光させ、光出力を比較すると、実施例1は比較例1よりも高い光出力とできる。n型コンタクト層表面に設ける他は同様にして、図3A及び図3Bに示すような半導体発光素子の光出力は、実施例1とp側ITO電極が同一面積の場合はそれよりはやや低く、比較例1よりも高くでき、またp側ITO電極面積を大きくすると更に高くできる。p型コンタクト層及びn型コンタクト層の両方の表面に設ける他は同様にして、図4に示すような半導体発光素子の光出力は、比較例1より高く、また、p側ITO電極同一面積の場合に、図1の例及び図3の例よりも高くできる。   The semiconductor light emitting device according to Example 1 and the semiconductor light emitting device of Comparative Example 1 similar to Example 1 except that no light transmitting member is provided on the surface of the p-type contact layer are allowed to emit light, and light output is improved. In comparison, Example 1 can achieve higher light output than Comparative Example 1. Similarly, the light output of the semiconductor light emitting device as shown in FIG. 3A and FIG. 3B is slightly lower than that in Example 1 and the p-side ITO electrode having the same area except that it is provided on the n-type contact layer surface. It can be higher than that of Comparative Example 1, and can be further increased by increasing the p-side ITO electrode area. Similarly, the light output of the semiconductor light emitting device as shown in FIG. 4 is higher than that of Comparative Example 1 except that it is provided on the surfaces of both the p-type contact layer and the n-type contact layer, and the p-side ITO electrode has the same area. In some cases, it can be higher than the example of FIG. 1 and the example of FIG.

実施例2では、発光波長が365nmの半導体発光素子に本件発明を適用し、図5A及び図5Bに示す構造の半導体発光素子を作製する。   In Example 2, the present invention is applied to a semiconductor light emitting device having an emission wavelength of 365 nm, and a semiconductor light emitting device having a structure shown in FIGS. 5A and 5B is manufactured.

まず、成長用基板として、サファイア(C面)よりなる基板を用いて、基板上にGaNよりなるバッファ層を約200Å、アンドープGaNよりなる高温成長の窒化物半導体を4μmの膜厚で成長させる。一部がIII族元素含有領域58となるn型層として、Siドープのn型Al0.07Ga0.93Nのn型コンタクト層を1.8μm、発光領域としてSiドープのAl0.1Ga0.9Nの障壁層(200Å)、その上のIn0.02Ga0.98Nの井戸層(150Å)を複数積層して、多重量子井戸構造(MQW)の発光層、p型半導体層56としてMgドープのAl0.3Ga0.7Nのp型クラッド層を200Å、Al0.07Ga0.93Nの層を0.1μm、MgドープのAl0.07Ga0.93Nのp型コンタクト層を0.02μmで、各層を積層、成長させる。成長終了後、窒素雰囲中、ウェハを反応容器内においてアニーリングを行い、p型半導体層56をさらに低抵抗化し、p型コンタクト層の上にRh−Ir−Ptから成る多層のp電極53形成後、アニール処理した後、p電極53露出面に絶縁膜12のSiOを膜厚0.4μmで形成、その上に第1金属層としてTi−Pt−Au−Sn−Au(膜厚200nm−300nm−300nm−3000nm−100nm)で形成し、導電性の支持基板11にCuとWの複合体の基板を用い、その支持基板11の表面に、第2金属層としてTi−Pt−Pd(膜厚200nm−300nm−1200nm)で形成する。次に、第1金属層と第2金属層とを対向させた状態で、ヒータ温度を280℃でプレス加圧して加熱圧接し、互いに拡散させて導電層13を形成する。次に、レーザ照射によってサファイア基板を除去した後、露出したバッファ層及び高温成長層を研磨して、さらにn型コンタクト層まで研磨して、n型コンタクト層のAlGaN層を露出させる。次に、n型コンタクト層上に、Ti−Al−Ni−Auから成る多層電極を形成して、n電極54とする。その後、支持基板11の裏面に、パッケージと接合するための電極を形成し、ダイシングにより素子を分離する。 First, using a substrate made of sapphire (C-plane) as a growth substrate, a buffer layer made of GaN is grown on the substrate to a thickness of about 200 mm, and a high-temperature grown nitride semiconductor made of undoped GaN is grown to a thickness of 4 μm. As an n-type layer that partially becomes a group III element-containing region 58, an Si-doped n-type Al 0.07 Ga 0.93 N n-type contact layer is 1.8 μm, and a light-emitting region is Si-doped Al 0.1. A Ga 0.9 N barrier layer (200 Å) and a plurality of In 0.02 Ga 0.98 N well layers (150 Å) thereon are stacked to form a light emitting layer having a multiple quantum well structure (MQW), a p-type semiconductor As the layer 56, a Mg-doped Al 0.3 Ga 0.7 N p-type cladding layer of 200 μm, an Al 0.07 Ga 0.93 N layer of 0.1 μm, and an Mg-doped Al 0.07 Ga 0.93 Each p-type contact layer of N is stacked at 0.02 μm and grown. After completion of the growth, the wafer is annealed in a reaction vessel in a nitrogen atmosphere, the resistance of the p-type semiconductor layer 56 is further reduced, and a multilayer p-electrode 53 made of Rh—Ir—Pt is formed on the p-type contact layer. Thereafter, after annealing, SiO 2 of the insulating film 12 is formed to a thickness of 0.4 μm on the exposed surface of the p-electrode 53, and Ti—Pt—Au—Sn—Au (thickness 200 nm−) is formed thereon as a first metal layer. 300 nm-300 nm-3000 nm-100 nm), a conductive support substrate 11 made of a composite of Cu and W is used, and Ti—Pt—Pd (film) is formed on the surface of the support substrate 11 as a second metal layer. (Thickness 200 nm-300 nm-1200 nm). Next, in a state where the first metal layer and the second metal layer are opposed to each other, the heater temperature is press-pressed at 280 ° C. to be heat-pressed and diffused to form the conductive layer 13. Next, after removing the sapphire substrate by laser irradiation, the exposed buffer layer and high-temperature growth layer are polished, and further polished to the n-type contact layer to expose the AlGaN layer of the n-type contact layer. Next, a multilayer electrode made of Ti—Al—Ni—Au is formed on the n-type contact layer to form an n electrode 54. Thereafter, an electrode for bonding to the package is formed on the back surface of the support substrate 11, and the elements are separated by dicing.

n型コンタクト層の表面を露出させたまま、酸素を含む窒素雰囲気中、室温で、半導体発光素子に700mAの電流を流して発光層を発光させ、光透過部材55を形成する。発光層からはピーク波長365nmの光が発光され、180時間経過後に観察すると、n電極54から露出したn型コンタクト層表面に、ガリウム酸化物を含む光透過部材55が形成されているのが確認できる。光透過部材55はその表面に凸部を有し、n型コンタクト層は光透過部材55との界面に凹部を有し、光透過部材55表面の凸部と、光透過部材55とn型コンタクト層との界面の凹部とが、半導体層構造52面内において重なるように配置されている。更に、800時間経過後に観察すると、n型コンタクト層の露出表面のほぼ全面を覆うように成長した光透過部材55が確認でき、2000時間経過時のものと、800時間経過時のものとを比較すると、半導体発光素子の発光状態を光透過部材55側からの観察では、800時間経過時よりも、2000時間経過時の方が明るくなる。これは、時間経過に従って光透過部材55が成長したためと考えられる。   With the surface of the n-type contact layer exposed, a current of 700 mA is passed through the semiconductor light emitting element in a nitrogen atmosphere containing oxygen at room temperature to cause the light emitting layer to emit light, thereby forming the light transmitting member 55. The light emitting layer emits light having a peak wavelength of 365 nm, and when observed after 180 hours, it is confirmed that the light transmitting member 55 containing gallium oxide is formed on the surface of the n-type contact layer exposed from the n-electrode 54. it can. The light transmitting member 55 has a convex portion on the surface thereof, the n-type contact layer has a concave portion at the interface with the light transmitting member 55, the convex portion on the surface of the light transmitting member 55, the light transmitting member 55 and the n-type contact. The concave portion at the interface with the layer is arranged so as to overlap in the plane of the semiconductor layer structure 52. Further, when observing after 800 hours, the light transmissive member 55 grown so as to cover almost the entire exposed surface of the n-type contact layer can be confirmed, and the result after 2000 hours is compared with that after 800 hours. Then, in the observation of the light emitting state of the semiconductor light emitting element from the light transmitting member 55 side, the light is brighter after 2000 hours than when 800 hours have passed. This is presumably because the light transmitting member 55 has grown over time.

また、比較例2として、素子分離した後、n型コンタクト層の露出表面に保護膜としてSiOを形成する他は実施例2と同様にして半導体発光素子を作製し、その後で発光させる。つまり、実施例2と比較例2は、発光開始時に、n型コンタクト層の表面が露出しているか、SiOが設けられているかという点で異なる。
実施例2と比較例2の半導体発光素子の、時間経過に伴う光出力の推移を、図6に示す。図6は、横軸が時間、縦軸が光出力を示し、黒四角が実施例2を、黒三角が比較例2を示しており、0時間、100時間、180時間、300時間における光出力をそれぞれ示している。光出力は、0時間は初期出力を示しており、100時間以降は、初期出力を100としたときの相対値をそれぞれ初期出力にかけた値で示している。図6に示すように、比較例2の半導体発光素子の光出力は、時間が経過するに従って低下しているが、一方、実施例2の半導体発光素子の場合は、0時間では比較例2よりも低い光出力を示すが、時間経過に従って光透過部材55が成長するため、光出力は増加し、180時間経過時には比較例2よりも高い値を示す。さらに、300時間経過時には、実施例2の半導体発光素子の光出力は、比較例2よりも約7%高くなる。
このように、実施例2の半導体発光素子のように光透過部材55を形成することで、SiO保護膜を形成した比較例2よりも高出力の素子とすることができる。
Further, as Comparative Example 2, a semiconductor light emitting device is fabricated in the same manner as in Example 2 except that after the device is separated and SiO 2 is formed as a protective film on the exposed surface of the n-type contact layer, light is emitted thereafter. That is, Example 2 and Comparative Example 2 differ in that the surface of the n-type contact layer is exposed or SiO 2 is provided at the start of light emission.
FIG. 6 shows the transition of the light output of the semiconductor light emitting devices of Example 2 and Comparative Example 2 over time. In FIG. 6, the horizontal axis represents time, the vertical axis represents light output, the black square represents Example 2, and the black triangle represents Comparative Example 2. Light output at 0 hours, 100 hours, 180 hours, and 300 hours. Respectively. The optical output shows the initial output at 0 hours, and after 100 hours, the relative values when the initial output is 100 are shown as values multiplied by the initial output. As shown in FIG. 6, the light output of the semiconductor light emitting device of Comparative Example 2 decreases as time passes. On the other hand, in the case of the semiconductor light emitting device of Example 2, the light output from Comparative Example 2 is 0 hours. However, since the light transmission member 55 grows as time passes, the light output increases, and shows a higher value than that of Comparative Example 2 after 180 hours. Furthermore, when 300 hours have elapsed, the light output of the semiconductor light emitting device of Example 2 is about 7% higher than that of Comparative Example 2.
Thus, by forming the light transmission member 55 as in the semiconductor light emitting element of Example 2, it is possible to obtain a higher output element than Comparative Example 2 in which the SiO 2 protective film is formed.

また、実施例2において、光透過部材55形成時の条件を、60℃、90%の高温高湿条件として、発光層を発光させ、180時間経過頃に発光状態を観察すると、室温で形成した場合の同時間経過頃のものよりも明るいことが確認できる。これは、高温高湿条件下で発光させることで、光透過部材55の形成が促進されたためと考えられる。
高温高湿条件下で、更に継続して発光させ、800時間経過頃に観察すると、n型コンタクト層の表面を覆うように膜状に成長した光透過部材55が確認できる。STEMを用いて光透過部材55の断面の一部を撮影すると、図7Aに示すようなSTEM像が得られる。図7Aにおいて、下側の黒色の層がn型コンタクト層、その上の層が光透過部材である。光透過部材表面の凸部、及び、光透過部材とn型コンタクト層との界面の凹部が、面内で重なるように配置されている。光透過部材の膜厚は30〜190nm程度であり、隣接する厚膜部分と薄膜部分の膜厚比は1/7〜5/6程度である。光透過部材をSTEM−EDSで分析するとGa、O、Alが検出され、n型コンタクト層と共通するIII族元素として、GaとAlを含む光透過部材が形成されていることが確認できる。また、図7Bに、本実施例に係る光透過部材75表面の凸部70の配置を、模式図で示す。図7Bに示すように、光透過部材75表面の凸部70は、大きさの異なるものが不規則に配置されており、その間隔は数μm程度である。凸部70が形成された部分の光透過部材75の膜厚は、隣接する他の部分よりも厚くなっている。
In Example 2, the light-transmitting member 55 was formed under the conditions of 60 ° C. and 90% high-temperature and high-humidity, and the light-emitting layer was allowed to emit light. It can be confirmed that the brightness is brighter than that at the same time. This is presumably because the formation of the light transmitting member 55 was promoted by emitting light under high temperature and high humidity conditions.
When light is continuously emitted under high-temperature and high-humidity conditions and observed around 800 hours, the light-transmitting member 55 grown in a film shape so as to cover the surface of the n-type contact layer can be confirmed. When a part of the cross section of the light transmission member 55 is photographed using the STEM, an STEM image as shown in FIG. 7A is obtained. In FIG. 7A, the lower black layer is an n-type contact layer, and the upper layer is a light transmitting member. The convex portion on the surface of the light transmitting member and the concave portion at the interface between the light transmitting member and the n-type contact layer are arranged so as to overlap in the plane. The film thickness of the light transmitting member is about 30 to 190 nm, and the film thickness ratio between the adjacent thick film portion and thin film portion is about 1/7 to 5/6. When the light transmission member is analyzed by STEM-EDS, Ga, O, and Al are detected, and it can be confirmed that a light transmission member containing Ga and Al is formed as a group III element common to the n-type contact layer. FIG. 7B schematically shows the arrangement of the convex portions 70 on the surface of the light transmitting member 75 according to the present embodiment. As shown in FIG. 7B, the convex portions 70 on the surface of the light transmitting member 75 are irregularly arranged with different sizes, and the interval is about several μm. The film thickness of the light transmission member 75 in the portion where the convex portion 70 is formed is thicker than other adjacent portions.

また、実施例2において、光透過部材55形成時の条件を環境温度−30℃として、発光層を発光させると、180時間経過頃には比較例2よりもやや低い光出力を示すが、1000時間経過頃には比較例2よりも高い光出力を示し、n型コンタクト層表面に光透過部材55の形成が確認できる。   Further, in Example 2, when the light-emitting layer was made to emit light at the environmental temperature of −30 ° C. when the light transmissive member 55 was formed, the light output is slightly lower than that of Comparative Example 2 after about 180 hours. Around the time, the light output is higher than that of Comparative Example 2, and the formation of the light transmitting member 55 can be confirmed on the surface of the n-type contact layer.

更に、素子分離した後、環境温度125℃で、半導体発光素子に電流を流さず保管する他は実施例2と同様にして、比較例3の半導体発光素子を作製する。保管したまま1000時間経過頃に観察すると、比較例3の半導体発光素子のn型コンタクト層表面には、光透過部材は確認できない。実施例2における光透過部材55形成時のn型コンタクト層表面の温度は、室温の場合で、比較例3の環境温度125℃と同程度かそれよりも低いと考えられることから、実施例2のように発光層を発光させることで、III族元素含有領域58表面の酸化を促進でき、光透過部材55を形成することができる。さらに1000時間経過後に、光透過部材55を覆うようにSiO保護膜を形成する他は同様の半導体発光素子を作製すると、保護膜に覆われた光透過部材55は、それ以上発光させても成長しないことがわかる。 Further, after separating the elements, the semiconductor light emitting element of Comparative Example 3 is manufactured in the same manner as in Example 2 except that the semiconductor light emitting element is stored at an environmental temperature of 125 ° C. without flowing current. When observed after 1000 hours with storage, no light transmitting member can be confirmed on the surface of the n-type contact layer of the semiconductor light emitting device of Comparative Example 3. Since the temperature of the surface of the n-type contact layer when forming the light transmitting member 55 in Example 2 is room temperature, it is considered that the temperature is about the same as or lower than the environmental temperature of 125 ° C. in Comparative Example 3. By making the light emitting layer emit light as described above, the oxidation of the surface of the group III element-containing region 58 can be promoted, and the light transmitting member 55 can be formed. Further, when a similar semiconductor light emitting device is manufactured except that an SiO 2 protective film is formed so as to cover the light transmitting member 55 after 1000 hours have elapsed, the light transmitting member 55 covered with the protective film may emit light further. You can see that it doesn't grow.

本発明の実施の形態1に係る半導体発光素子の一例、図1Bの矢印間の断面を示す概略断面図である。It is a schematic sectional drawing which shows the cross section between an example of the semiconductor light-emitting device which concerns on Embodiment 1 of this invention, and the arrow of FIG. 1B. 図1Aに示す半導体発光素子の概略平面図である。1B is a schematic plan view of the semiconductor light emitting device shown in FIG. 1A. FIG. 図1Aに示す半導体発光素子の光透過部材5近傍を拡大して説明する概略断面図である。It is a schematic sectional drawing which expands and demonstrates the light transmission member 5 vicinity of the semiconductor light-emitting device shown to FIG. 1A. 本発明の実施の形態1に係る別の半導体発光素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of another semiconductor light-emitting device concerning Embodiment 1 of this invention. 本発明の実施の形態2に係る半導体発光素子の一例、図3Bの矢印間の断面を示す概略断面図である。It is a schematic sectional drawing which shows the example of the semiconductor light-emitting device concerning Embodiment 2 of this invention, and the cross section between the arrows of FIG. 3B. 図3Aに示す半導体発光素子の概略平面図である。FIG. 3B is a schematic plan view of the semiconductor light emitting element shown in FIG. 3A. 本発明の実施の形態3に係る半導体発光素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the semiconductor light-emitting device concerning Embodiment 3 of this invention. 本発明の実施の形態4に係る半導体発光素子の一例、図5Bの矢印間の断面を示す概略断面図である。It is a schematic sectional drawing which shows the cross section between the arrows of FIG. 5B as an example of the semiconductor light emitting element according to Embodiment 4 of the present invention. 図5Aに示す半導体発光素子の概略平面図である。FIG. 5B is a schematic plan view of the semiconductor light emitting element shown in FIG. 5A. 実施例2と比較例2に係る半導体発光素子の時間と光出力との関係を示すグラフである。6 is a graph showing a relationship between time and light output of semiconductor light emitting devices according to Example 2 and Comparative Example 2. 実施例2に係る半導体発光素子の断面STEM像である。4 is a cross-sectional STEM image of a semiconductor light emitting element according to Example 2. 実施例2に係る光透過部材75表面の凸部70の配置を示す模式図である。FIG. 10 is a schematic diagram showing the arrangement of convex portions 70 on the surface of a light transmitting member 75 according to Example 2. 従来例の半導体発光素子を示す概略断面図である。It is a schematic sectional drawing which shows the semiconductor light-emitting device of a prior art example.

符号の説明Explanation of symbols

2、33、42、52 半導体層構造
31 p側オーミック電極、32 p側パッド電極
4、54 n電極
5、35、45 光透過部材
5a 凸部
5b 凹部
6 n型半導体層
7、37、47、57 発光領域
8、38、58 III族元素含有領域
11 支持基板
12 絶縁膜
13 導電層
20 保護膜
30、56 p型半導体層
401 第1のIII族元素含有領域、402 第2のIII族元素含有領域
53 p電極
81 基板、82 n型GaN層、83 InGaN発光層、84 p型GaN層、86 ボンディング電極、87 電流阻止層、88 p側透光性電極
2, 33, 42, 52 Semiconductor layer structure 31 p-side ohmic electrode, 32 p-side pad electrode 4, 54 n-electrode 5, 35, 45 Light transmissive member 5a Convex part 5b Concave part 6 n-type semiconductor layers 7, 37, 47, 57 Light emitting region 8, 38, 58 Group III element-containing region 11 Support substrate 12 Insulating film 13 Conductive layer 20 Protective film 30, 56 p-type semiconductor layer 401 First group III element-containing region 402 Second group III element-containing Region 53 p-electrode 81 substrate, 82 n-type GaN layer, 83 InGaN light-emitting layer, 84 p-type GaN layer, 86 bonding electrode, 87 current blocking layer, 88 p-side translucent electrode

Claims (8)

導電性支持基板上にp電極を介して順に、p型半導体層と、発光層である発光領域n型半導体層であるIII族元素含有領域と、を有する半導体層構造と、
前記III族元素含有領域の光取り出し側表面に設けられるn電極と、
前記n電極から複数の窓部状に露出した前記III族元素含有領域の光取り出し側表面のほぼ全面に設けられ、前記III族元素含有領域よりも屈折率く、かつ膜厚が30〜190nm程度である膜状の光透過部材と、を具備し、
前記光透過部材は、前記III族元素含有領域と共通するIII族元素を含み、該光取り出し側表面に凸部を有し、
前記III族元素含有領域は、前記光透過部材との界面に凹部を有し、
前記凸部と凹部が、前記半導体層構造面内において重なるように配置されている半導体発光素子。
Sequentially through the p-electrode on a conductive support substrate, and a p-type semiconductor layer, a semiconductor layer structure having a light-emitting region is a light emitting layer, and the group III element-containing region is a n-type semiconductor layer, a
An n-electrode provided on the light extraction side surface of the group III element-containing region;
Provided substantially on the entire surface, the group III element-containing refractive index than region rather low, and 30 to the thickness of the light extraction side surface of the group III element-containing region exposed from the n-electrode into a plurality of windows-like A film-like light transmitting member having a thickness of about 190 nm ,
The light transmitting member includes a group III element common to the group III element-containing region, and has a convex portion on the light extraction side surface,
The group III element-containing region has a recess at the interface with the light transmitting member,
A semiconductor light emitting device in which the convex portion and the concave portion are arranged so as to overlap in the plane of the semiconductor layer structure.
前記光透過部材が、前記III族元素の酸化物の絶縁膜である請求項1記載の半導体発光素子。   The semiconductor light emitting element according to claim 1, wherein the light transmitting member is an insulating film of an oxide of the group III element. 前記半導体構造の凹部は、前記電極形成された前記III族元素含有領域の光取り出し側表面より発光領域側に湾入した形状である請求項1又は2記載の半導体発光素子。 The recess of the semiconductor structure, the n electrode than is formed the III light extraction side surface of the element-containing region, the semiconductor light emitting device according to claim 1 or 2, wherein a shape that is indented to the light emitting region side. 型半導体層の膜厚、前記光透過部材が形成された領域より前記電極形成された領域が大きい請求項記載の半導体発光素子。 Before Symbol thickness of the n-type semiconductor layer, from the light transmitting member is formed region, the semiconductor light emitting element of the n-electrode is formed region is large claim 3. 前記光透過部材は該光取り出し側表面に凹凸構造を備え、前記凸部の厚膜部分と、前記厚膜部分に隣接する前記凹凸構造における凹部の薄膜部分と、を複数有する請求項1〜のいずれか1項に記載の半導体発光素子。 The light transmitting member has a concavo-convex structure on the light extraction surface, according to claim 1-4 comprising more thick film portion of the convex portion, and the thin film portion of the recess in the convex-concave structure adjacent to the thick portion, the The semiconductor light-emitting device according to any one of the above. 前記光透過部材とIII族元素含有領域とに共通するIII族元素は、ガリウム、アルミニウム、又はインジウムからなる群から選択される請求項1〜のいずれか1項に記載の半導体発光素子。 The group III element common to the said light transmissive member and a group III element containing area | region is a semiconductor light-emitting device of any one of Claims 1-5 selected from the group which consists of gallium, aluminum, or indium. 前記半導体層構造は、窒化物半導体からなり、
前記光透過部材上に、前記光透過部材とは異なる材料を有する絶縁性保護膜が設けられた請求項1〜のいずれか1項に記載の半導体発光素子。
The semiconductor layer structure is made of a nitride semiconductor,
To the light transmitting member, the semiconductor light-emitting device according to any one of claims 1 to 6, the insulating protective film is provided with a material different from that of the light transmitting member.
前記光透過部材が該光取り出し側表面に前記凸部を複数有する凹凸構造を備え、前記保護膜は前記凹凸構造の凸部、凹部にそれぞれ対向配置され、前記光取り出し側表面に設けられた凸部、凹部を有する凹凸表面を備える請求項に記載の半導体発光素子。 The light transmitting member includes a concavo-convex structure having a plurality of the convex portions on the light extraction side surface, and the protective film is disposed to face the convex portions and the concave portions of the concavo-convex structure, and is provided on the light extraction side surface. The semiconductor light emitting element according to claim 7 , comprising an uneven surface having a portion and a recess.
JP2007020227A 2007-01-31 2007-01-31 Semiconductor light emitting device Active JP5151166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007020227A JP5151166B2 (en) 2007-01-31 2007-01-31 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007020227A JP5151166B2 (en) 2007-01-31 2007-01-31 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2008187059A JP2008187059A (en) 2008-08-14
JP5151166B2 true JP5151166B2 (en) 2013-02-27

Family

ID=39729893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007020227A Active JP5151166B2 (en) 2007-01-31 2007-01-31 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP5151166B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100030472A (en) * 2008-09-10 2010-03-18 삼성전자주식회사 Fabricating method of light emitting element and device, fabricated light emitting element and device using the same
JP5077224B2 (en) * 2008-12-26 2012-11-21 豊田合成株式会社 Group III nitride semiconductor light emitting device and method for manufacturing the same
KR101047720B1 (en) * 2010-04-23 2011-07-08 엘지이노텍 주식회사 Light emitting device, method of manufacturing light emitting device,
KR20120034910A (en) * 2010-10-04 2012-04-13 삼성엘이디 주식회사 Semiconductor light emitting device and preparing therof
US9012933B2 (en) * 2013-04-08 2015-04-21 Epistar Corporation Light-emitting diode having a roughened surface
KR102473891B1 (en) * 2018-07-12 2022-12-02 장시 자오 츠 세미컨덕터 컴퍼니 리미티드 A type of UV light emitting diode chip capable of improving light extraction efficiency and its manufacturing method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273650A (en) * 1988-09-08 1990-03-13 Oki Electric Ind Co Ltd Manufacture of semiconductor integrated circuit device
JPH1197742A (en) * 1997-09-22 1999-04-09 Nichia Chem Ind Ltd Nitride semiconductor element
JP2000036616A (en) * 1998-07-21 2000-02-02 Toshiba Corp Semiconductor light emitting element and its manufacture
JP2000101134A (en) * 1998-09-18 2000-04-07 Stanley Electric Co Ltd Method for manufacturing nitride semiconductor device and nitride semiconductor device
JP2000174339A (en) * 1998-12-04 2000-06-23 Mitsubishi Cable Ind Ltd GaN based semiconductor light emitting device and GaN based semiconductor light receiving device
JP4493153B2 (en) * 2000-04-19 2010-06-30 シャープ株式会社 Nitride-based semiconductor light emitting device
JP3786907B2 (en) * 2001-09-17 2006-06-21 松下電器産業株式会社 Semiconductor light emitting device and manufacturing method thereof
JP2003168822A (en) * 2001-11-30 2003-06-13 Shin Etsu Handotai Co Ltd Light emitting device and manufacturing method thereof
DE60329576D1 (en) * 2002-01-28 2009-11-19 Nichia Corp NITRID SEMICONDUCTOR COMPONENT WITH A SUPPORT SUBSTRATE AND METHOD FOR THE PRODUCTION THEREOF
JP4209136B2 (en) * 2002-05-30 2009-01-14 パナソニック株式会社 Semiconductor device and manufacturing method thereof
JP2004311986A (en) * 2003-03-25 2004-11-04 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP4814500B2 (en) * 2003-08-07 2011-11-16 パナソニック株式会社 Semiconductor device and manufacturing method thereof
JP2005142415A (en) * 2003-11-07 2005-06-02 Sony Corp METHOD FOR SELECTIVELY GROWING GaN-BASED GROUP III-V COMPOUND SEMICONDUCTOR LAYER, METHOD FOR MANUFACTURING SEMICONDUCTOR LIGHT-EMITTING ELEMENT, AND METHOD FOR MANUFACTURING IMAGE DISPLAY DEVICE
JP2005203765A (en) * 2003-12-17 2005-07-28 Showa Denko Kk Semiconductor light emitting element of gallium nitride compound and its negative electrode
KR100638666B1 (en) * 2005-01-03 2006-10-30 삼성전기주식회사 Nitride semiconductor light emitting device
JP2006228855A (en) * 2005-02-16 2006-08-31 Rohm Co Ltd Semiconductor light emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008187059A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
US11616172B2 (en) Semiconductor light emitting device with frosted semiconductor layer
JP4976849B2 (en) Semiconductor light emitting device
JP5082504B2 (en) Light emitting device and method for manufacturing light emitting device
US8039864B2 (en) Semiconductor light emitting device and fabrication method for the same
JP5176334B2 (en) Semiconductor light emitting device
US11404606B2 (en) Semiconductor light-emitting element
JP4997304B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP5661660B2 (en) Semiconductor light emitting device
TW201314960A (en) Nitride semiconductor device and method of manufacturing same
TWI529967B (en) Semiconductor light emitting device
US20070102692A1 (en) Semiconductor light emitting device
JP5151166B2 (en) Semiconductor light emitting device
JP2012124321A (en) Semiconductor light-emitting element, lamp and method of manufacturing semiconductor light-emitting element
JP2016134422A (en) Semiconductor light emitting element and manufacturing method of the same
JP2009238931A (en) Semiconductor light-emitting element and manufacturing method therefor, and luminaire using the element
JP2020123605A (en) Vertical resonator surface-emitting laser element
JP2008124411A (en) Nitride semiconductor light-emitting diode element
JP2012169667A (en) Semiconductor light-emitting device and method of manufacturing the same
CN118507620A (en) Light-emitting element and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121004

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5151166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载