+

JP3975246B2 - Variable valve operating device for internal combustion engine - Google Patents

Variable valve operating device for internal combustion engine Download PDF

Info

Publication number
JP3975246B2
JP3975246B2 JP17716499A JP17716499A JP3975246B2 JP 3975246 B2 JP3975246 B2 JP 3975246B2 JP 17716499 A JP17716499 A JP 17716499A JP 17716499 A JP17716499 A JP 17716499A JP 3975246 B2 JP3975246 B2 JP 3975246B2
Authority
JP
Japan
Prior art keywords
control
cam
engine
angle
reaction force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17716499A
Other languages
Japanese (ja)
Other versions
JP2001012262A (en
Inventor
直樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17716499A priority Critical patent/JP3975246B2/en
Publication of JP2001012262A publication Critical patent/JP2001012262A/en
Application granted granted Critical
Publication of JP3975246B2 publication Critical patent/JP3975246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の吸・排気弁のリフト量(制御軸の作動角)を機関運転状態に応じて可変にできる内燃機関の可変動弁制御装置に関する。
【0002】
【従来の技術】
周知のように、機関低速低負荷時における燃費の改善や安定した運転性並びに高速高負荷時における吸気の充填効率の向上による十分な出力を確保する等のために、吸気・排気弁の開閉時期とバルブリフト量を機関運転状態に応じて可変制御する可変動弁制御装置は従来から種々提供されており、その一例として特開昭55−137305号公報等に記載されているものが知られている。
【0003】
図17に基づきその概略を説明すれば、シリンダヘッド1のアッパデッキの略中央近傍上方位置にカム軸2が設けられていると共に、該カム軸2の外周にカム2aが一体に設けられている。また、カム軸2の側部には制御軸3が平行に配置されており、この制御軸3に偏心カム4を介してロッカアーム5が揺動自在に軸支されている。
【0004】
一方、シリンダヘッド1に摺動自在に設けられた吸気弁6の上端部には、バルブリフター7を介して揺動カム8が配置されている。この揺動カム8は、バルブリフター7の上方にカム軸2と並行に配置された支軸9に揺動自在に軸支され、下端のカム面8aがバルブリフター7の上面に当接している。また、前記ロッカアーム5は、一端部5aがカム2aの外周面に当接していると共に、他端部5bが揺動カム8の上端面8bに当接して、カム2aのリフトを揺動カム8及びバルブリフター7を介して吸気弁6に伝達するようになっている。そして、この吸気弁6は、バルブスプリング6aにより閉弁方向に付勢されている。
【0005】
また、前記制御軸3は、図18に示すように、DCサーボモータ等の電磁アクチュエータにより、減速ギアを介して所定角度範囲で回転駆動されて、偏心カム4の回動位置を制御し、これによってロッカアーム5の揺動支点を変化させるようになっている。
【0006】
そして、図17において、偏心カム4が正逆の所定回動位置に制御されるとロッカアーム5の揺動支点が変化して、他端部5bの揺動カム8の上端面8bに対する当接位置が図中上下方向に変化し、これによって揺動カム8のカム面8aのバルブリフター7上面に対する当接位置の変化に伴い、揺動カム8の揺動軌跡が変化することにより、吸気弁6の開閉時期とバルブリフト量を制御軸3の作動角の変化に伴って可変制御するようになっている。なお、図中の符号10は、揺動カム8の上端面8bを常時ロッカアーム5の他端部5bに弾接付勢するスプリングを示す。
【0007】
また、上記のように、吸気弁6の開閉時期及びバルブリフト量を、ロッカアーム5の揺動支点を変化させることによって可変に制御する構成の可変動弁制御装置においては、一般的に、図10のシステム図に示すように、前記揺動支点を変化させるための制御軸3の作動角をポテンショメータ等の作動角センサによって検出し、この検出された作動角信号に基づき、制御装置では、位置サーボコントローラ(線形コントローラ)において、検出された作動角信号と目標制御軸作動角とを比較し、差が零になるように、PWM(パルスワイズモジュレーション)出力設定手段を介してDCサーボモータに駆動電流を出力することにより、制御軸3の作動角を目標のバルブ特性に対応する目標制御軸作動角に一致させるような作動角をベースとしたフィードバック制御が行われるようになっていた。
【0008】
【発明が解決しようとする課題】
しかしながら、上述の従来装置では、上述のように、位置サーボコントローラにおいて、目標制御軸作動角と検出作動角の情報のみを基に、作動角をベースとしたフィードバックバック制御を行うようにしたものであったため、以下に述べるような問題点があった。
【0009】
即ち、上述のように、制御軸3に偏心カム4を介してロッカアーム5が揺動自在に軸支され、このロッカアーム5は、一端部5aがカム2aの外周面に当接していると共に、他端部5bが揺動カム8の上端面8bに当接して、カム2aのリフトを揺動カム8及びバルブリフター7を介して吸気弁6に伝達するようになっていることから、バルブスプリング6aの反力等に起因する反力トルクが、バルブリフター7、揺動カム8およびロッカアーム5を介して制御軸3に外乱として伝達される。
【0010】
そして、制御軸作動角のフィードバック制御において、作動角をベースとした制御は、制御遅れが大きいため、作動角が所定角度位置に保持された状態にある定位置制御中において、図12に示すように、前記反力トルクに基づく制御偏差が発生するもので、特に、エンジン回転数が高回転数において反力トルクに基づく制御偏差が顕著に現れ、このため、可変動弁制御装置としての制御精度が損なわれ、十分なエンジン出力の向上効果や、燃費低減効果が得られなくなる。
【0011】
本発明は、上述の従来の問題点に着目してなされたもので、制御軸作動角の定位置制御中において、カムやロッカアーム等を通じて制御軸に伝わるバルブスプリング反力等に起因する非線形特性である反力トルク(エンジン回転数、作動角毎に変動)に基づいて発生する作動角変動を抑制することで、制御精度の低下を防止し、これにより、十分なエンジン出力向上効果および燃費低減効果が得られる内燃機関の可変動弁制御装置を提供することを目的とし、さらに、気筒毎に相違する反力トルクによる制御ずれを吸収することで、より安定した作動角変動抑制効果を得ることを追加の目的とするものである。
【0012】
【課題を解決するための手段】
上述の目的を達成するために、本発明請求項1記載の内燃機関の可変動弁制御装置では、カム軸の回転に応じて開閉される機関弁の作動特性を制御軸の作動角に相関して変更する可変動弁機構を制御する内燃機関の可変動弁制御装置において、前記制御軸の作動角を検出する作動角検出手段と、前記制御軸を目標制御軸作動角に回転駆動する電磁アクチュエータと、機関の回転数を検出する機関回転数検出手段と、該機関回転数検出手段で検出された機関の回転数から機関の運転状態に応じた目標制御軸作動角を演算する目標作動角演算手段と、該目標作動角演算手段で演算された目標制御軸作動角と前記作動角検出手段で検出された制御軸実作動角とを一致させるために必要な電流制御量を演算する電流制御量演算手段と、前記カム軸のカム角を演算するカム角演算手段と、該カム角演算手段で演算されたカム軸のカム角より機関側から前記制御軸に作用する反力トルク相当電流を演算する反力トルク相当電流演算手段と、該反力トルク相当電流演算手段で演算された反力トルク相当電流と前記電流制御量演算手段で演算された電流制御量に基づき前記電磁アクチュエータに対する駆動電流を設定出力する出力設定手段と、前記カム角演算手段で演算されたカム軸のカム角より現在機関弁が開作動している気筒を判別し各気筒別の反力トルク係数を演算する気筒別反力トルク係数演算手段と、を設け、前記出力設定手段では、前記気筒別反力トルク係数演算手段で判別された開作動気筒の反力トルク係数を前記反力トルク相当電流演算手段で演算された反力トルク相当電流に乗じた電流値と前記電流制御量演算手段で演算された電流制御量に基づき前記電磁アクチュエータに対する駆動電流を設定出力するように構成されている手段とした。
【0013】
請求項2記載の内燃機関の可変動弁制御装置では、請求項1記載の内燃機関の可変動弁制御装置において、機関の負荷を検出する機関負荷検出手段を備え、前記目標作動角演算手段が、前記機関回転数検出手段で検出された機関の回転数と、前記機関負荷検出手段で検出された機関の負荷から機関の運転状態に応じた目標制御軸作動角を演算するように構成されている手段とした。
【0014】
請求項3記載の内燃機関の可変動弁制御装置では、請求項1または2に記載の内燃機関の可変動弁制御装置において、前記可変動弁機構は、前記カム軸と略平行に配設された前記制御軸と、該制御軸の外周に偏心して固定された制御カムと、該制御カムに揺動自在に軸支されたロッカアームと、前記カム軸の回転に応じて前記ロッカアームの一端部を揺動駆動する揺動駆動手段と、前記ロッカアームの他端部に連係して揺動して機関弁を開作動させる揺動カムと、前記機関弁を閉じる方向に付勢するバルブスプリングと、を備えている手段とした。
【0015】
【作用】
本発明の内燃機関の可変動弁制御装置では、上述のように構成されるため、作動角検出手段で検出された制御軸の作動角信号に基づいて、目標作動角演算手段で演算された機関の運転状態に応じた目標制御軸作動角に回転駆動させるべく電磁アクチュエータへの駆動電流のフィードバック制御が行われる。
【0016】
そして、前記電流制御量演算手段では、目標制御軸作動角と制御軸実作動角とを一致させるために必要な電流制御量の演算が行われる一方で、反力トルク相当電流演算手段では、カム角演算手段で演算されたカム軸のカム角より機関側から制御軸に作用する反力トルク相当電流の演算が行われ、続く出力設定手段では、該反力トルク相当電流と前記電流制御量演算手段で演算された電流制御量に基づき前記電磁アクチュエータに対する駆動電流の設定出力が行われるもので、前記電流制御量演算手段においては、目標制御軸作動角変化に応じ作動角をベースとした制御軸作動角制御がなされ、反力トルク相当電流演算手段では、反力トルクによる影響をキャンセルする補正制御がなされることにより、制御軸作動角の定位置制御中において、カムやロッカアーム等を通じて制御軸に伝わるバルブスプリング反力等に起因する非線形特性である反力トルク(エンジン回転数、作動角毎に変動)に基づいて発生する作動角変動を抑制するように作用する。
【0017】
そして、気筒別反力トルク係数演算手段において、前記カム角演算手段で演算されたカム軸のカム角より現在機関弁が開作動している気筒を判別し各気筒別の反力トルク係数の演算が行われ、出力設定手段では、判別された開作動気筒の反力トルク係数を前記反力トルク相当電流演算手段で演算された反力トルク相当電流に乗じた電流値と前記電流制御量演算手段で演算された電流制御量に基づき前記電磁アクチュエータに対する駆動電流の設定が行われるもので、これにより、反力トルクが機関の気筒毎に相違することによる各気筒間の制御ずれが吸収され、より安定した作動角変動抑制がなされる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
参考例)図1〜図3は、本発明の参考例における内燃機関(エンジン)の可変動弁制御装置を示すものであり、1気筒あたり2つ備えられる吸気弁の可変動弁機構VEL(以下、VEL機構という)として以下に説明する。但し、機関弁を吸気弁に限定するものではなく、また、吸気弁の数を限定するものでないことは明らかである。
【0019】
図1〜図3に示すVEL機構は、シリンダヘッド11にバルブガイド(図示省略)を介して摺動自在に設けられた一対の吸気弁12,12と、シリンダヘッド11上部のカム軸受14に回転自在に支持された中空状のカム軸13と、該カム軸13に、圧入等により固設された回転カムである2つの偏心カム15,15と、前記カム軸13の上方位置に同じカム軸受14に回転自在に支持された制御軸16と、該制御軸16に制御カム17を介して揺動自在に支持された一対のロッカアーム18,18と、各吸気弁12,12の上端部にバルブリフター19,19を介して配置された一対のそれぞれ独立した揺動カム20,20と、各吸気弁12,12を閉弁方向に付勢するバルブスプリング33,33とを備えている。
【0020】
また、前記偏心カム15,15とロッカアーム18,18とはリンクアーム25,25によって連係される一方、ロッカアーム18,18と揺動カム20,20とはリンク部材26,26によって連係されている。
前記カム軸13は、機関前後方向(シリンダ列方向)に沿って配置されていると共に、一端部に設けられた従動スプロケット(図示省略)や該従動スプロケットに巻装されたタイミングチェーン等を介して機関のクランク軸から回転力が伝達される。
【0021】
前記カム軸受14は、シリンダヘッド11の上端部に設けられてカム軸13の上部を支持するメインブラケット14aと、該メインブラケット14aの上端部に設けられて制御軸16を回転自在に支持するサブブラケット14bとを有し、両ブラケット14a,14bが一対のボルト14c,14cによって上方から共締め固定されている。
【0022】
前記両偏心カム15は、図4にも示すように、略リング状を呈し、小径なカム本体15aと、該カム本体15aの外端面に一体に設けられたフランジ部15bとからなり、内部軸方向にカム軸挿通孔15cが貫通形成されていると共に、カム本体15aの軸心Xがカム軸13の軸心Yから径方向へ所定量だけ偏心している。
【0023】
また、この各偏心カム15は、カム軸13に対し前記両バルブリフター19,19に干渉しない両外側にカム軸挿通孔15cを介して圧入固定されていると共に、両方のカム本体15a,15aの外周面15d,15dが同一のカムプロフィールに形成されている。
【0024】
前記各ロッカアーム18は、図3に示すように、平面からみて略クランク状に折曲形成され、中央に有する基部18aが制御カム17に回転自在に支持されている。また、各基部18aの各外端部に突設された一端部18bには、リンクアーム25の先端部と連結するピン21が圧入されるピン孔18dが貫通形成されている一方、各筒状基部18aの各内端部に夫々突設された他端部18cには、各リンク部材26の後述する一端部26aと連結するピン28が圧入されるピン孔18eが形成されている。
【0025】
前記各制御カム17は、夫々円筒状を呈し、制御軸16外周に固定されていると共に、図1に示すように軸心P1位置が制御軸16の軸心P2からαだけ偏心している。
【0026】
前記揺動カム20は、図1及び図6,図7に示すように略横U字形状を呈し、略円環状の基端部22にカム軸13が嵌挿されて回転自在に支持される支持孔22aが貫通形成されていると共に、ロッカアーム18の他端部18c側に位置する端部23にピン孔23aが貫通形成されている。
【0027】
また、揺動カム20の下面には、基端部22側の基円面24aと該基円面24aから端部23端縁側に円弧状に延びるカム面24bとが形成されており、該基円面24aとカム面24bとが、揺動カム20の揺動位置に応じて各バルブリフター19の上面所定位置に当接するようになっている。
【0028】
すなわち、図5に示すバルブリフト特性からみると、図1に示すように基円面24aの所定角度範囲θ1がべースサークル区間になり、カム面24bの前記べースサークル区間θ1から所定角度範囲θ2がいわゆるランプ区間となり、さらにカム面24bのランプ区間θ2から所定角度範囲θ3がリフト区間になるように設定されている。
【0029】
また、前記リンクアーム25は、比較的大径な円環状の基部25aと、該基部25aの外周面所定位置に突設された突出端25bとを備え、基部25aの中央位置には、前記偏心カム15のカム本体15aの外周面に回転自在に嵌合する嵌合穴25cが形成されている一方、突出端25bには、前記ピン21が回転自在に挿通するピン孔25dが貫通形成されている。
なお、前記リンクアーム25と偏心カム15とによって揺動駆動手段が構成される。
【0030】
さらに、前記リンク部材26は、図1にも示すように所定長さの直線状に形成され、円形状の両端部26a,26bには前記ロッカアーム18の他端部18cと揺動カム20の端部23の各ピン孔18d,23aに圧入した各ピン28,29の端部が回転自在に挿通するピン挿通孔26c,26dが貫通形成されている。なお、各ピン21,28,29の一端部には、リンクアーム25やリンク部材26の軸方向の移動を規制するスナップリング30,31,32が設けられている。
【0031】
前記制御軸16は、一端部に設けられた電磁アクチュエータを構成するDCサーボモータ101によって所定回転角度範囲内で回転駆動されるようになっており、図9に示すように、前記DCサーボモータ101は、制御軸作動角制御手段としての制御装置CPUからの駆動電流によって制御されるようになっている。前記制御装置CPUは、機関(エンジン)回転数を検出する機関(エンジン)回転数センサ103、機関(エンジン)の負荷を検出する機関(エンジン)負荷センサ104等の各種のセンサからの検出信号に基づいて現在の機関運転状態を検出して、該検出された機関運転状態に応じて目標のバルブ特性を決定し、該目標のバルブ特性に対応する角度位置に制御軸16を駆動すべく、作動角センサ102で検出された制御軸実作動角に基づき、前記DCサーボモータ101に駆動信号(駆動電流)を出力する。なお、制御装置CPUの構成内容については、後述する。
【0032】
以下、上記可変動弁制御装置の作用を説明すれば、まず、機関の低速低負荷時には、制御装置CPUからの制御信号(駆動電流)によってDCサーボモータ101が一方に回転駆動される。このため、制御カム17は、軸心P1が図6A,Bに示すように制御軸16の軸心P2から左上方の回動位置に保持され、厚肉部17aがカム軸13から上方向に離間移動する。このため、ロッカアーム18は、全体がカム軸13に対して上方向へ移動し、これにより、各揺動カム20は、リンク部材26を介して端部23が強制的に若干引き上げられて全体が左方向へ回動する。
【0033】
従って、図6A,Bに示すように偏心カム15が回転してリンクアーム25を介してロッカアーム18の一端部18bを押し上げると、そのリフト量がリンク部材26を介して揺動カム20及びバルブリフター19に伝達されるが、そのリフト量L1は図6Bに示すように比較的小さくなる。
【0034】
よって、かかる低速低負荷域では、図8の破線で示すようにバルブリフト量が小さくなると共に、各吸気弁12の開時期が遅くなり(作動角が小さくなり)、排気弁とのバルブオーバラップが小さくなる。このため、燃費の向上と機関の安定した回転が得られる。
【0035】
一方、機関の高速高負荷時に移行した揚合は、制御装置CPUからの制御信号によってDCサーボモータ101が反対方向に回転駆動される。従って、図7A,Bに示すように制御軸16が、制御カム17を図6に示す位置から時計方向に回転させ、軸心P1(厚肉部17a)を下方向へ移動させる。このため、ロッカアーム18は、今度は全体がカム軸13方向(下方向)に移動して、他端部18cが揺動カム20の上端部23をリンク部材26を介して下方へ押圧して該揺動カム20全体を所定量だけ時計方向へ回動させる。
【0036】
従って、揺動カム20のバルブリフター19上面に対する下面の当接位置が図7A,Bに示すように左方向位置に移動する。このため、図7に示すように偏心カム15が回転してロッカアーム18の一端部18bをリンクアーム25を介して押し上げると、バルブリフター19に対するそのリフト量L2は図7Bに示すように大きくなる。
【0037】
よって、かかる高速高負荷域では、カムリフト特性が低速低負荷域に比較して大きくなり、図8に実線で示すようにバルブリフト量(作動角)も大きくなると共に、各吸気弁12の開時期が早く、閉時期が遅くなる。この結果、吸気充填効率が向上し、十分な出力が確保できる。
【0038】
ところで、上記可変動弁制御装置においては、目標のバルブ特性に対応する角度位置に制御軸16を駆動し、実際のバルブ特性を前記目標のバルブ特性に制御するが、前記制御軸16の駆動精度や、前記制御軸16の角度位置とバルブ特性との関係にばらつきがあると、目標のバルブ特性に精度よく実際のバルブ特性を制御することができなくなる。
【0039】
そこで、従来例として示したように、図10のシステム図、および、図11のブロック図に示すように、前記揺動支点を変化させるための制御軸3の作動角(回転位置)をポテンショメータ等の作動角センサによって検出し、この検出された作動角信号に基づき、制御装置に備えた位置サーボコントローラ(線形コントローラ)において、検出結果としての作動角と目標制御軸作動角とを比較し、制御軸3の作動角(回転位置)を目標のバルブ特性に対応する目標制御軸作動角(回転位置)となるようにDCサーボモータに対する駆動制御信号を、作動角をベースとしてフィードバック制御するようになっている。なお、前記DCサーボモータと制御軸3との間には減速ギアが介装されている。
【0040】
ところが、可変動弁制御装置においては、図1に示すように、ロッカアーム18,18と揺動カム20,20とはリンク部材26,26によって連係されていることから各バルブスプリング33,33の反力や燃焼圧等に起因する反力トルクが、バルブリフター19、揺動カム20,20、リンク部材26,26およびロッカアーム18を介し、DCサーボモータ101の発生トルクが伝達される機械機構の制御軸16に伝達される。
【0041】
そして、制御軸作動角のフィードバック制御において、作動角をベースとした制御は、制御遅れが大きいため、作動角が所定角度位置に保持された状態にある定位置制御中において、図12に示すように、前記反力トルクに基づく制御偏差が発生するもので、特に、エンジン回転数が高回転数において反力トルクに基づく制御偏差が顕著に現れ、このため、可変動弁制御装置としての制御精度が損なわれ、十分なエンジン出力の向上効果や、燃費低減効果が得られなくなる。
【0042】
そこで、この参考例の可変動弁制御装置では、VEL機構におけるDCサーボモータ101にモータ駆動信号を出力する制御装置CPUの内容として、目標制御軸作動角と制御軸実作動角とを一致させるために必要な電流制御量を反力トルク相当電流値で補正するようにしたものであり、以下、その制御内容を図13のシステムブロック図に基づいて説明する。
【0043】
即ち、この制御装置CPUには、エンジン回転数センサ103からの信号に基づきエンジン回転数を検出するエンジン回転数検出手段B1と、エンジン負荷センサ104からの信号に基づきエンジン負荷を検出するエンジン負荷検出手段B2と、エンジン回転数検出手段B1で検出されたエンジン回転数と、エンジン負荷検出手段B2で検出されたエンジン負荷から目標制御軸作動角を決定する目標作動角演算手段B3と、作動角センサ102からの信号に基づき制御軸16の実作動角を検出する作動角検出手段B4と、目標作動角演算手段B3で演算された目標制御軸作動角と作動角検出手段B4で検出された制御軸実作動角とを一致させるために必要な電流制御量を演算する電流制御量演算手段B5と、エンジン回転数検出手段B1で検出されたエンジンの回転数からカム軸13のカム角を演算するカム角演算手段B6と、カム角演算手段B6で演算されたカム軸のカム角より機関側から制御軸16に作用する反力トルク相当電流を演算する反力トルク相当電流演算手段B7と、反力トルク相当電流演算手段B7で演算された反力トルク相当電流と電流制御量演算手段B5で演算された電流制御量に基づきDCサーボモータ101に対する駆動電流を設定出力するPWM出力設定手段B8と、を備えている。
【0044】
さらに詳述すると、前記反力トルク相当電流演算手段B7における反力トルク相当電流値の演算方法は、図14に示すように、反力トルクは、カム軸13のカム角に同期していることから、予めカム角に対する反力トルクの計算値を反力トルク相当電流演算手段B7に記憶させておくもので、これにより、カム軸13のカム角検出値から、直ちにその時の反力トルクがわかり、それに対応した反力トルク相当電流を出力することができる。この反力トルクから、反力トルク相当電流への変換方法の一例を以下に示す。
反力トルク相当電流=反力トルク/ギャ比/モータトルク定数×ギャ効率
即ち、「ギャ比/モータトルク定数×ギャ効率」を固定値として設定しておくことにより、反力トルクから反力トルク相当電流が容易に求められる。
【0045】
なお、前記図14は、カム軸13のカム角に対する反力トルクの実測値(なお、♯1〜4は、4気筒エンジンにおける各気筒別反力トルクを示す。)であり、図15は、カム軸13のカム角に対する反力トルクの計算値であり、両図から明らかなように、実測値と、計算値には大きな差異がないため、反力トルク相当電流の演算に用いられる値は、各気筒別反力トルクの実測値の代表値(反力トルクの値は各気筒別に多少ばらつきがあるため、その代表値)または計算値のいずれの値を用いてもかまわない。
【0046】
以上のように、この参考例の内燃機関の可変動弁制御装置では、VEL機構におけるDCサーボモータ101にモータ駆動信号を出力する制御装置CPUの内容として、目標制御軸作動角と制御軸実作動角とを一致させるために必要な電流制御量を反力トルク相当電流値で補正するようにしたことにより、図12に示すように、制御軸作動角の定位置制御中において、揺動カム20やロッカアーム18等を通じて機関側から制御軸16に伝わるバルブスプリング反力等に起因する非線形特性である反力トルク(エンジン回転数、作動角毎に変動)に基づいて発生する作動角変動を抑制することができ、これにより、制御精度の低下が防止され、十分なエンジン出力向上効果および燃費低減効果が得られるようになるという効果が得られる。
【0047】
(発明の実施の形態)次に、発明の実施の形態の内燃機関の可変動弁制御装置について説明する。なお、この発明の実施の形態の内燃機関の可変動弁制御装置は、前記参考例とは、制御装置CPUの内容が一部相違(追加)するのみであるため、その説明に当たっては、前記参考例と同様の構成部分は図示およびその説明を省略し、もしくは、同一の符号を付けてその説明を省略する。
【0048】
この発明の実施の形態の内燃機関の可変動弁制御装置は、図16のシステムブロック図に示すように、前記カム角演算手段B6で演算されたカム軸13のカム角より現在吸気弁12が開作動している気筒を判別し各気筒別の反力トルク係数を演算する気筒別反力トルク係数演算手段B9を備え、前記PWM出力設定手段B8では、前記気筒別反力トルク係数演算手段B9で判別された開作動気筒の反力トルク係数を前記反力トルク相当電流演算手段B7で演算された反力トルク相当電流に乗じた電流値と前記電流制御量演算手段B5で演算された電流制御量に基づき前記DCサーボモータ101に対する駆動電流を設定出力するように構成されている点が、前記参考例とは相違したものである。
【0049】
即ち、制御軸16に外乱として伝わる反力トルクは、図14の実測値と図15の計算値に示すように、実測値と計算値との間で気筒毎に多少の誤差(ずれ)があるため、そのずれを補正するために、前記気筒別反力トルク係数演算手段B9で各気筒毎に求められた反力トルク係数を、反力トルク相当電流演算手段B7で演算された反力トルク相当電流に乗じることにより、反力トルク相当電流の各気筒毎の誤差(ずれ)を個別に補正することができる。
【0050】
従って、この発明の実施の形態の内燃機関の可変動弁制御装置では、前記参考例の効果に加え、反力トルクが機関の気筒毎に相違することによる各気筒間の制御ずれが吸収され、より安定した作動角変動抑制がなされるようになるという効果が得られる。
【0051】
以上、本発明の実施の形態を説明してきたが、具体的な構成はこの発明の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても本発明に含まれる。
【0052】
例えば、発明の実施の形態では、機関弁として吸気弁を例にとったが、排気弁についても適用することができる。
また、本発明が適用される可変動弁機構としては、この発明の実施の形態で例示した構造のものに限定されるものではなく、従来例に示した構造のものや、その他の可変動弁機構にも全て本発明を適用することができる。
【0053】
【発明の効果】
以上詳細に説明してきたように、本発明請求項1記載の内燃機関の可変動弁制御装置では、上述のように、機関の運転状態に応じた目標制御軸作動角を演算する目標作動角演算手段と、該目標作動角演算手段で演算された目標制御軸作動角と作動角検出手段で検出された制御軸実作動角とを一致させるために必要な電流制御量を演算する電流制御量演算手段と、カム軸のカム角を演算するカム角演算手段と、該カム角演算手段で演算されたカム軸のカム角より機関側から制御軸に作用する反力トルク相当電流を演算する反力トルク相当電流演算手段と、該反力トルク相当電流演算手段で演算された反力トルク相当電流と前記電流制御量演算手段で演算された電流制御量に基づき電磁アクチュエータに対する駆動電流を設定出力する出力設定手段と、を備えた構成としたことで、制御軸作動角の定位置制御中において、カムやロッカアーム等を通じて制御軸に伝わるバルブスプリング反力等に起因する非線形特性である反力トルク(エンジン回転数、作動角毎に変動)に基づいて発生する作動角変動を抑制することができ、これにより、制御精度の低下が防止され、十分なエンジン出力向上効果および燃費低減効果が得られるようになる。
【0054】
そして、前記カム角演算手段で演算されたカム軸のカム角より現在機関弁が開作動している気筒を判別し各気筒別の反力トルク係数を演算する気筒別反力トルク係数演算手段を備え、前記出力設定手段では、前記気筒別反力トルク係数演算手段で判別された開作動気筒の反力トルク係数を前記反力トルク相当電流演算手段で演算された反力トルク相当電流に乗じた電流値と前記電流制御量演算手段で演算された電流制御量に基づき前記電磁アクチュエータに対する駆動電流を設定出力するように構成されたことで、反力トルクが機関の気筒毎に相違することによる各気筒間の制御ずれが吸収され、より安定した作動角変動抑制がなされるようになるという追加の効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態における内燃機関の可変動弁制御装置を示す断面図(図2のA−A線断面図)。
【図2】上記可変動弁制御装置の側面図。
【図3】上記可変動弁制御装置の平面図。
【図4】上記可変動弁制御装置に使用される偏心カムを示す斜視図。
【図5】上記可変動弁制御装置における揺動カムの基端面とカム面に対応したバルブリフト特性図。
【図6】上記可変動弁制御装置の低速低負荷時の作用を示す断面図(図2のB−B線断面図)。
【図7】上記可変動弁制御装置の高速高負荷時の作用を示す断面図(図2のB−B線断面図)。
【図8】上記可変動弁制御装置のバルブタイミングとバルブリフトの特性図。
【図9】上記可変動弁制御装置の作動角制御システムを示すブロック図。
【図10】従来例の可変動弁制御装置の作動角制御回路の内容を示すシステム図。
【図11】従来例の可変動弁制御装置の作動角制御回路の内容を示すブロック図。
【図12】上記可変動弁制御装置における制御軸作動角変動を示すタイムチャート。
【図13】上記可変動弁制御装置のシステムブロック図。
【図14】上記可変動弁制御装置におけるカム軸のカム角に対する反力トルクの実測値を示す図。
【図15】上記可変動弁制御装置におけるカム軸のカム角に対する反力トルクの計算値を示す図。
【図16】発明の実施の形態の内燃機関の上記可変動弁制御装置のシステムブロック図。
【図17】従来例の可変動弁制御装置を示す断面図。
【図18】従来例の可変動弁制御装置の作動角制御システムを示すブロック図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a variable valve control apparatus for an internal combustion engine that can vary a lift amount (an operating angle of a control shaft) of an intake / exhaust valve of the internal combustion engine in accordance with an engine operating state.
[0002]
[Prior art]
As is well known, the intake / exhaust valve opening / closing timing is used to improve fuel efficiency at low engine speeds and low loads, to ensure stable operation, and to ensure sufficient output by improving intake charge efficiency at high speeds and high loads. Various variable valve control devices that variably control the valve lift amount in accordance with the engine operating state have been conventionally provided. For example, those described in JP-A-55-137305 are known. Yes.
[0003]
The outline will be described with reference to FIG. 17. A cam shaft 2 is provided at a position near the upper center of the upper deck of the cylinder head 1, and a cam 2 a is integrally provided on the outer periphery of the cam shaft 2. A control shaft 3 is arranged in parallel on the side of the cam shaft 2, and a rocker arm 5 is pivotally supported on the control shaft 3 via an eccentric cam 4.
[0004]
On the other hand, a swing cam 8 is disposed at the upper end of an intake valve 6 slidably provided on the cylinder head 1 via a valve lifter 7. The swing cam 8 is pivotally supported on a support shaft 9 disposed above the valve lifter 7 in parallel with the camshaft 2, and a lower cam surface 8 a is in contact with the upper surface of the valve lifter 7. . The rocker arm 5 has one end 5a abutting on the outer peripheral surface of the cam 2a and the other end 5b abutting on the upper end surface 8b of the swing cam 8, thereby lifting the cam 2a. And it is transmitted to the intake valve 6 via the valve lifter 7. The intake valve 6 is urged in the valve closing direction by a valve spring 6a.
[0005]
Further, as shown in FIG. 18, the control shaft 3 is rotationally driven in a predetermined angle range via a reduction gear by an electromagnetic actuator such as a DC servo motor, and controls the rotational position of the eccentric cam 4. Thus, the rocking fulcrum of the rocker arm 5 is changed.
[0006]
In FIG. 17, when the eccentric cam 4 is controlled to a predetermined forward / reverse rotation position, the rocking fulcrum of the rocker arm 5 changes, and the contact position of the other end 5b with the upper end surface 8b of the rocking cam 8 is changed. Changes in the vertical direction in the figure, and as a result, the swing locus of the swing cam 8 changes with the change in the contact position of the cam surface 8a of the swing cam 8 with respect to the upper surface of the valve lifter 7. The valve opening / closing timing and the valve lift amount are variably controlled as the operating angle of the control shaft 3 changes. Reference numeral 10 in the drawing denotes a spring that elastically biases the upper end surface 8 b of the swing cam 8 against the other end portion 5 b of the rocker arm 5 at all times.
[0007]
Further, as described above, in the variable valve control apparatus configured to variably control the opening / closing timing and the valve lift amount of the intake valve 6 by changing the rocking fulcrum of the rocker arm 5, generally, FIG. As shown in the system diagram, the operating angle of the control shaft 3 for changing the swing fulcrum is detected by an operating angle sensor such as a potentiometer, and based on the detected operating angle signal, the control device uses a position servo. In the controller (linear controller), the detected operating angle signal is compared with the target control shaft operating angle, and the drive current is supplied to the DC servo motor via the PWM (pulse width modulation) output setting means so that the difference becomes zero. Is output based on the operating angle that makes the operating angle of the control shaft 3 coincide with the target control shaft operating angle corresponding to the target valve characteristic. Feedback control had come to be carried out.
[0008]
[Problems to be solved by the invention]
However, in the above-described conventional device, as described above, the position servo controller performs feedback back control based on the operating angle based only on the information on the target control shaft operating angle and the detected operating angle. Therefore, there were problems as described below.
[0009]
That is, as described above, the rocker arm 5 is pivotally supported on the control shaft 3 via the eccentric cam 4, and the rocker arm 5 has one end portion 5a in contact with the outer peripheral surface of the cam 2a and the like. Since the end 5b abuts on the upper end surface 8b of the swing cam 8 and the lift of the cam 2a is transmitted to the intake valve 6 via the swing cam 8 and the valve lifter 7, the valve spring 6a The reaction torque resulting from the reaction force of the motor is transmitted as disturbance to the control shaft 3 via the valve lifter 7, the swing cam 8 and the rocker arm 5.
[0010]
In the feedback control of the control shaft operating angle, since the control based on the operating angle has a large control delay, during the fixed position control in which the operating angle is held at a predetermined angular position, as shown in FIG. in the intended control deviation based on the reaction torque is generated, in particular, control deviation the engine speed based on the reaction torque at high speed is conspicuous, Therefore, the control accuracy of the variable valve control device As a result, the sufficient engine output improvement effect and the fuel consumption reduction effect cannot be obtained.
[0011]
The present invention has been made paying attention to the above-mentioned conventional problems, and has a non-linear characteristic caused by a valve spring reaction force transmitted to the control shaft through a cam, a rocker arm, etc. during the fixed position control of the control shaft operating angle. By suppressing the operating angle fluctuation that occurs based on a certain reaction force torque (engine speed, fluctuation for each operating angle), the control accuracy is prevented from being lowered, thereby achieving a sufficient engine output improvement effect and fuel consumption reduction effect. the purpose is to provide a variable valve controller for an internal combustion engine is obtained, further, by absorbing the control deviation due to the reaction force torque difference in each cylinder, to obtain a more stable operating angle variation suppressing effect For additional purposes.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, in the variable valve control apparatus for an internal combustion engine according to claim 1 of the present invention, the operating characteristic of the engine valve that is opened and closed according to the rotation of the camshaft is correlated with the operating angle of the control shaft. In a variable valve control apparatus for an internal combustion engine that controls a variable valve mechanism to be changed, an operating angle detecting means for detecting an operating angle of the control shaft, and an electromagnetic actuator for rotationally driving the control shaft to a target control shaft operating angle Engine speed detecting means for detecting the engine speed, and target operating angle calculation for calculating a target control shaft operating angle according to the operating state of the engine from the engine speed detected by the engine speed detecting means And a current control amount for calculating a current control amount necessary for making the target control axis operating angle calculated by the target operating angle calculating unit and the control axis actual operating angle detected by the operating angle detecting unit coincide with each other calculating means, mosquitoes before Symbol camshaft A cam angle calculating means for calculating a square, a reaction torque corresponding current calculation means for calculating a reaction force torque equivalent current acting on the control shaft from the engine side of the cam angle of the cam shaft, which is calculated by the cam angle calculating means and output setting means for setting a driving current output to the electromagnetic actuator based on the current control amount calculated by the reaction force torque equivalent current and the current control amount calculation means calculated by the reaction force torque equivalent current calculation unit, wherein A cylinder-specific reaction force torque coefficient calculation means for determining the cylinder in which the engine valve is currently opened from the cam angle of the cam shaft calculated by the cam angle calculation means and calculating a reaction torque coefficient for each cylinder; The output setting means multiplies the reaction force torque coefficient of the open cylinder determined by the cylinder reaction force torque coefficient calculation means by the reaction force torque equivalent current calculated by the reaction torque equivalent current calculation means. And a means configured to set outputs a driving current to said electromagnetic actuator based on the current control amount calculated by the current control amount calculation means and the current value.
[0013]
In the variable valve control apparatus for an internal combustion engine according to claim 2, wherein, in the variable valve control apparatus for an internal combustion engine according to claim 1, comprising engine load detecting means for detecting a load of the engine, said target operating angle calculating means , is configured to calculate the detected rotational speed of the engine by said engine speed detecting means, the target control shaft operating angle in accordance with the operating state of the engine and a load of the detected engine by the engine load detecting means As a means.
[0014]
In the variable valve control apparatus for an internal combustion engine according to claim 3, wherein, in the variable valve control apparatus for an internal combustion engine according to claim 1 or 2, wherein the variable valve mechanism is substantially arranged parallel to said cam shaft The control shaft, a control cam eccentrically fixed to the outer periphery of the control shaft, a rocker arm pivotally supported by the control cam, and one end portion of the rocker arm according to the rotation of the cam shaft. A swing drive means for swinging, a swing cam that swings in linkage with the other end of the rocker arm and opens the engine valve, and a valve spring that biases the engine valve in the closing direction. Means provided .
[0015]
[Action]
Since the variable valve control apparatus for an internal combustion engine according to the present invention is configured as described above, the engine calculated by the target operating angle calculating means based on the operating angle signal of the control shaft detected by the operating angle detecting means. The feedback control of the drive current to the electromagnetic actuator is performed so as to drive the rotation to the target control shaft operating angle corresponding to the operating state.
[0016]
The current control amount calculation means calculates a current control amount necessary for making the target control shaft operating angle and the control shaft actual operation angle coincide with each other, while the reaction force torque equivalent current calculation means calculates the cam. The reaction torque equivalent current acting on the control shaft from the engine side is calculated from the cam angle of the cam shaft calculated by the angle calculation means, and the subsequent output setting means calculates the reaction torque equivalent current and the current control amount calculation. The drive current setting output for the electromagnetic actuator is performed based on the current control amount calculated by the means. In the current control amount calculation means, the control shaft based on the operating angle according to the target control shaft operating angle change. The operating angle control is performed, and the reaction force torque equivalent current calculation means performs correction control to cancel the influence of the reaction force torque, so that during the fixed position control of the control shaft operating angle, Acts to suppress fluctuations in the operating angle generated based on reaction force torque (variation at each engine speed and operating angle), which is a non-linear characteristic caused by the valve spring reaction force transmitted to the control shaft through a cylinder, rocker arm, etc. .
[0017]
Then , in the cylinder reaction force torque coefficient calculation means, the cylinder in which the engine valve is currently open is determined from the cam angle of the cam shaft calculated by the cam angle calculation means, and the reaction torque coefficient calculation for each cylinder is performed. In the output setting means, the current value obtained by multiplying the reaction force torque coefficient of the determined open cylinder by the reaction torque equivalent current calculated by the reaction torque equivalent current calculation means and the current control amount calculation means The drive current for the electromagnetic actuator is set on the basis of the current control amount calculated in step (b), whereby the control deviation between the cylinders due to the difference in reaction torque between the cylinders of the engine is absorbed. Stable operation angle fluctuation suppression is achieved.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
( Reference Example ) FIGS. 1 to 3 show a variable valve control apparatus for an internal combustion engine (engine) in a reference example of the present invention. Hereinafter, this will be described as “VEL mechanism”. However, it is obvious that the engine valve is not limited to the intake valve, and the number of intake valves is not limited.
[0019]
The VEL mechanism shown in FIGS. 1 to 3 is rotated by a pair of intake valves 12 and 12 slidably provided on a cylinder head 11 via a valve guide (not shown) and a cam bearing 14 above the cylinder head 11. A hollow camshaft 13 that is freely supported, two eccentric cams 15 and 15 that are rotational cams fixed to the camshaft 13 by press-fitting or the like, and the same cam bearing at a position above the camshaft 13 14, a control shaft 16 that is rotatably supported by the control shaft 14, a pair of rocker arms 18 and 18 that are swingably supported by the control shaft 16 via a control cam 17, and valves at the upper ends of the intake valves 12 and 12. A pair of independent swing cams 20 and 20 disposed via lifters 19 and 19 and valve springs 33 and 33 for urging each intake valve 12 and 12 in the valve closing direction are provided.
[0020]
The eccentric cams 15 and 15 and the rocker arms 18 and 18 are linked by link arms 25 and 25, while the rocker arms 18 and 18 and the swing cams 20 and 20 are linked by link members 26 and 26.
The camshaft 13 is disposed along the engine longitudinal direction (cylinder row direction), and via a driven sprocket (not shown) provided at one end, a timing chain wound around the driven sprocket, and the like. A rotational force is transmitted from the crankshaft of the engine.
[0021]
The cam bearing 14 is provided at the upper end portion of the cylinder head 11 to support the upper portion of the cam shaft 13, and the sub shaft is provided at the upper end portion of the main bracket 14a to rotatably support the control shaft 16. Bracket 14b, and both brackets 14a, 14b are fastened together from above by a pair of bolts 14c, 14c.
[0022]
As shown in FIG. 4, both the eccentric cams 15 have a substantially ring shape and include a small-diameter cam main body 15 a and a flange portion 15 b integrally provided on the outer end surface of the cam main body 15 a. A cam shaft insertion hole 15c is formed penetrating in the direction, and the axis X of the cam body 15a is eccentric from the axis Y of the cam shaft 13 by a predetermined amount in the radial direction.
[0023]
The eccentric cams 15 are press-fitted and fixed to the camshaft 13 via camshaft insertion holes 15c on both outer sides that do not interfere with the valve lifters 19 and 19, and the cam bodies 15a and 15a have both The outer peripheral surfaces 15d and 15d are formed in the same cam profile.
[0024]
As shown in FIG. 3, each of the rocker arms 18 is bent in a substantially crank shape when viewed from above, and a base portion 18 a at the center is rotatably supported by the control cam 17. Further, one end portion 18b protruding from each outer end portion of each base portion 18a is formed with a pin hole 18d through which a pin 21 connected to the distal end portion of the link arm 25 is press-fitted. A pin hole 18e into which a pin 28 to be connected to a later-described one end portion 26a of each link member 26 is press-fitted is formed at the other end portion 18c projecting from each inner end portion of the base portion 18a.
[0025]
Each of the control cams 17 has a cylindrical shape, is fixed to the outer periphery of the control shaft 16, and the position of the axis P1 is eccentric from the axis P2 of the control shaft 16 by α as shown in FIG.
[0026]
As shown in FIGS. 1, 6, and 7, the rocking cam 20 has a substantially horizontal U shape, and a cam shaft 13 is fitted into a substantially annular base end portion 22 so as to be rotatably supported. A support hole 22a is formed through, and a pin hole 23a is formed through the end 23 located on the other end 18c side of the rocker arm 18.
[0027]
Further, a base circle surface 24a on the base end portion 22 side and a cam surface 24b extending in an arc shape from the base circle surface 24a toward the end edge side of the end portion 23 are formed on the lower surface of the swing cam 20. The circular surface 24 a and the cam surface 24 b come into contact with predetermined positions on the upper surfaces of the valve lifters 19 in accordance with the swing position of the swing cam 20.
[0028]
That is, when viewed from the valve lift characteristics shown in FIG. 5, as shown in FIG. 1, the predetermined angle range θ1 of the base circle surface 24a is a base circle section, and the predetermined angle range θ2 is from the base circle section θ1 of the cam surface 24b. A so-called ramp section is set, and a predetermined angle range θ3 is set to be a lift section from the ramp section θ2 of the cam surface 24b.
[0029]
The link arm 25 includes an annular base portion 25a having a relatively large diameter and a projecting end 25b projecting at a predetermined position on the outer peripheral surface of the base portion 25a. A fitting hole 25c is formed on the outer peripheral surface of the cam body 15a of the cam 15 so as to be freely rotatable. On the protruding end 25b, a pin hole 25d through which the pin 21 is rotatably inserted is formed. Yes.
The link arm 25 and the eccentric cam 15 constitute swing driving means.
[0030]
Further, as shown in FIG. 1, the link member 26 is formed in a straight line having a predetermined length, and circular end portions 26 a and 26 b are connected to the other end portion 18 c of the rocker arm 18 and the end of the swing cam 20. Pin insertion holes 26c and 26d through which end portions of the pins 28 and 29 press-fitted into the pin holes 18d and 23a of the portion 23 are rotatably inserted are formed. Note that snap rings 30, 31, and 32 that restrict the axial movement of the link arm 25 and the link member 26 are provided at one end of each pin 21, 28, and 29.
[0031]
The control shaft 16 is rotationally driven within a predetermined rotational angle range by a DC servo motor 101 constituting an electromagnetic actuator provided at one end, and as shown in FIG. Is controlled by a drive current from a control device CPU as a control shaft operating angle control means. The control device CPU receives detection signals from various sensors such as an engine (engine) speed sensor 103 for detecting the engine (engine) speed and an engine (engine) load sensor 104 for detecting the load of the engine (engine). Based on the current engine operating condition, the target valve characteristic is determined according to the detected engine operating condition, and the control shaft 16 is driven to an angular position corresponding to the target valve characteristic. Based on the actual operating angle of the control axis detected by the angle sensor 102, a drive signal (drive current) is output to the DC servo motor 101. The configuration content of the control device CPU will be described later.
[0032]
Hereinafter, the operation of the variable valve control apparatus will be described. First, when the engine is running at a low speed and a low load, the DC servo motor 101 is rotationally driven in one direction by a control signal (drive current) from the control apparatus CPU. For this reason, the control cam 17 has the shaft center P1 held in the upper left rotation position from the shaft center P2 of the control shaft 16 as shown in FIGS. 6A and 6B, and the thick wall portion 17a extends upward from the cam shaft 13. Move away. For this reason, the entire rocker arm 18 moves upward with respect to the camshaft 13, whereby each rocking cam 20 is forcibly pulled up slightly by the end portion 23 via the link member 26. Rotate left.
[0033]
6A and 6B, when the eccentric cam 15 rotates and pushes up the one end portion 18b of the rocker arm 18 via the link arm 25, the lift amount of the rocker cam 20 and the valve lifter is increased via the link member 26. The lift amount L1 is relatively small as shown in FIG. 6B.
[0034]
Therefore, in such a low-speed and low-load region, as shown by the broken line in FIG. 8, the valve lift amount is reduced, the opening timing of each intake valve 12 is delayed (the operating angle is reduced), and the valve overlaps with the exhaust valve. Becomes smaller. For this reason, improvement in fuel consumption and stable rotation of the engine can be obtained.
[0035]
On the other hand, when the engine shifts to a high speed and a high load, the DC servo motor 101 is rotationally driven in the opposite direction by a control signal from the control device CPU. Therefore, as shown in FIGS. 7A and 7B, the control shaft 16 rotates the control cam 17 clockwise from the position shown in FIG. 6 to move the shaft center P1 (thick portion 17a) downward. For this reason, the entire rocker arm 18 moves in the direction of the camshaft 13 (downward), and the other end 18c presses the upper end 23 of the swing cam 20 downward via the link member 26. The entire swing cam 20 is rotated clockwise by a predetermined amount.
[0036]
Therefore, the contact position of the lower surface of the swing cam 20 with respect to the upper surface of the valve lifter 19 is moved to the left position as shown in FIGS. Therefore, when the eccentric cam 15 rotates as shown in FIG. 7 and the one end 18b of the rocker arm 18 is pushed up via the link arm 25, the lift amount L2 with respect to the valve lifter 19 increases as shown in FIG. 7B.
[0037]
Therefore, in such a high-speed and high-load region, the cam lift characteristic is larger than that in the low-speed and low-load region, the valve lift amount (operating angle) is increased as shown by the solid line in FIG. Is early and the closing time is delayed. As a result, the intake charging efficiency is improved and a sufficient output can be secured.
[0038]
By the way, in the above variable valve control apparatus, the control shaft 16 is driven to an angular position corresponding to the target valve characteristic, and the actual valve characteristic is controlled to the target valve characteristic. If there is variation in the relationship between the angular position of the control shaft 16 and the valve characteristic, the actual valve characteristic cannot be accurately controlled to the target valve characteristic.
[0039]
Therefore, as shown in the prior art, as shown in the system diagram of FIG. 10 and the block diagram of FIG. 11, the operating angle (rotational position) of the control shaft 3 for changing the swing fulcrum is set to a potentiometer or the like. Based on this detected operating angle signal, the position servo controller (linear controller) provided in the control device compares the detected operating angle with the target control shaft operating angle based on the detected operating angle signal, and performs control. The drive control signal for the DC servo motor is feedback-controlled based on the operating angle so that the operating angle (rotating position) of the shaft 3 becomes the target control shaft operating angle (rotating position) corresponding to the target valve characteristic. ing. A reduction gear is interposed between the DC servo motor and the control shaft 3.
[0040]
However, in the variable valve control device, as shown in FIG. 1, since the rocker arm 18 and the swing cam 20, 20 are linked by link members 26, 26 of each valve spring 33 and 33 The reaction force torque caused by the reaction force, the combustion pressure, etc. is transmitted through the valve lifter 19, the swing cams 20, 20, the link members 26, 26, and the rocker arm 18. It is transmitted to the control shaft 16.
[0041]
In the feedback control of the control shaft operating angle, since the control based on the operating angle has a large control delay, during the fixed position control in which the operating angle is held at a predetermined angular position, as shown in FIG. in the intended control deviation based on the reaction torque is generated, in particular, control deviation the engine speed based on the reaction torque at high speed is conspicuous, Therefore, the control accuracy of the variable valve control device As a result, the sufficient engine output improvement effect and the fuel consumption reduction effect cannot be obtained.
[0042]
Therefore, in the variable valve control apparatus of this reference example , in order to make the target control axis operating angle and the control axis actual operating angle coincide with each other as the contents of the control apparatus CPU that outputs a motor drive signal to the DC servo motor 101 in the VEL mechanism. The amount of current control necessary for the control is corrected with the reaction torque equivalent current value. The control content will be described below with reference to the system block diagram of FIG.
[0043]
That is, the control device CPU includes an engine speed detection means B1 for detecting the engine speed based on a signal from the engine speed sensor 103, and an engine load detection for detecting the engine load based on a signal from the engine load sensor 104. Means B2, engine speed detected by engine speed detection means B1, target operating angle calculating means B3 for determining a target control shaft operating angle from engine load detected by engine load detecting means B2, and operating angle sensor An operating angle detecting means B4 for detecting the actual operating angle of the control shaft 16 based on a signal from 102, a target control axis operating angle calculated by the target operating angle calculating means B3, and a control axis detected by the operating angle detecting means B4 A current control amount calculation means B5 for calculating a current control amount necessary to make the actual operating angle coincide with the engine speed detection means B1. Cam angle calculating means B6 for calculating the cam angle of the camshaft 13 from the engine speed and the reaction torque acting on the control shaft 16 from the engine side based on the camshaft cam angle calculated by the cam angle calculating means B6. DC servo based on the reaction force equivalent current calculation means B7 for calculating the equivalent current, the reaction force torque equivalent current calculated by the reaction force torque equivalent current calculation means B7, and the current control amount calculated by the current control amount calculation means B5. PWM output setting means B8 for setting and outputting a drive current for the motor 101.
[0044]
More specifically, as shown in FIG. 14, the method for calculating the reaction force torque equivalent current value in the reaction force torque equivalent current calculation means B 7 is that the reaction force torque is synchronized with the cam angle of the cam shaft 13. Thus, the reaction force torque calculated value for the cam angle is stored in advance in the reaction torque equivalent current calculation means B7, so that the reaction force torque at that time can be immediately determined from the cam angle detection value of the cam shaft 13. The corresponding reaction torque equivalent current can be output. An example of a method for converting the reaction force torque into a reaction force torque equivalent current is shown below.
Reaction torque equivalent current = reaction force torque / gear ratio / motor torque constant x gear efficiency, that is, by setting "gear ratio / motor torque constant x gear efficiency" as a fixed value, reaction force torque is changed to reaction force torque. Equivalent current is easily obtained.
[0045]
14 is an actual measurement value of the reaction torque with respect to the cam angle of the camshaft 13 (# 1 to 4 indicate the reaction force torque for each cylinder in the four-cylinder engine), and FIG. This is a calculated value of the reaction force torque with respect to the cam angle of the camshaft 13 and, as is apparent from both figures, there is no significant difference between the measured value and the calculated value. A representative value of the actually measured value of the reaction force torque for each cylinder (the value of the reaction force torque varies slightly for each cylinder, and thus a representative value) or a calculated value may be used.
[0046]
As described above, in the variable valve controller for an internal combustion engine of this reference example , the target control shaft operating angle and the actual control shaft operation are included as the contents of the control device CPU that outputs a motor drive signal to the DC servo motor 101 in the VEL mechanism. By correcting the current control amount required to match the angle with the reaction torque equivalent current value, as shown in FIG. 12, during the fixed position control of the control shaft operating angle, the swing cam 20 Suppresses fluctuations in the operating angle that occur based on reaction torque (variation at each engine speed and operating angle) that is a non-linear characteristic caused by a valve spring reaction force transmitted from the engine side to the control shaft 16 through the rocker arm 18 or the like. As a result, a reduction in control accuracy is prevented, and a sufficient engine output improvement effect and fuel consumption reduction effect can be obtained.
[0047]
(Embodiment 1 ) Next, a variable valve control apparatus for an internal combustion engine according to Embodiment 1 of the invention will be described. Note that the variable valve control apparatus for an internal combustion engine according to the first embodiment of the present invention differs from the reference example only in part (addition) of the contents of the control unit CPU. Constituent parts similar to those of the reference example are not shown and described, or are given the same reference numerals and description thereof is omitted.
[0048]
As shown in the system block diagram of FIG. 16, the variable valve control apparatus for an internal combustion engine according to the first embodiment of the present invention uses the cam angle of the camshaft 13 calculated by the cam angle calculation means B6 as the current intake valve 12. Is provided with cylinder-by-cylinder reaction force torque coefficient calculation means B9 for determining the cylinder in which the cylinder is opened and calculating the reaction force torque coefficient for each cylinder. The PWM output setting means B8 has the cylinder reaction force torque coefficient calculation means. A current value obtained by multiplying the reaction force torque coefficient of the open operation cylinder determined in B9 by the reaction force torque equivalent current calculated by the reaction force torque equivalent current calculation means B7 and the current calculated by the current control amount calculation means B5 This is different from the reference example in that the driving current for the DC servo motor 101 is set and output based on the control amount.
[0049]
That is, the reaction force torque transmitted as disturbance to the control shaft 16 has a slight error (deviation) for each cylinder between the measured value and the calculated value as shown in the measured value in FIG. 14 and the calculated value in FIG. Therefore, in order to correct the deviation, the reaction force torque coefficient obtained for each cylinder by the cylinder-specific reaction force torque coefficient calculation means B9 is used as the reaction force torque equivalent calculated by the reaction force torque equivalent current calculation means B7. By multiplying the current, the error (deviation) for each cylinder of the reaction torque equivalent current can be individually corrected.
[0050]
Therefore, in the variable valve control apparatus for an internal combustion engine according to the first embodiment of the present invention, in addition to the effects of the reference example , the control deviation between the cylinders due to the reaction torque being different for each cylinder of the engine is absorbed. Thus, it is possible to obtain an effect that the operation angle fluctuation is more stably suppressed.
[0051]
Although the embodiment of the present invention has been described above, the specific configuration is not limited to the embodiment of the present invention, and the present invention is not limited even if there is a design change or the like without departing from the gist of the present invention. Included in the invention.
[0052]
For example, in the embodiment of the invention, the intake valve is taken as an example of the engine valve, but the present invention can also be applied to an exhaust valve.
In addition, the variable valve mechanism to which the present invention is applied is not limited to the structure illustrated in the embodiment of the present invention, but the structure shown in the conventional example and other variable valve mechanisms. The present invention can be applied to all mechanisms.
[0053]
【The invention's effect】
As described above in detail, in the variable valve control apparatus for an internal combustion engine according to claim 1 of the present invention, as described above, the target operating angle calculation for calculating the target control shaft operating angle according to the operating state of the engine. Current control amount calculation for calculating a current control amount required to match the control means and the target control axis operating angle calculated by the target operating angle calculating means and the control axis actual operating angle detected by the operating angle detecting means means and a cam angle calculating means for calculating the cam angle of cams axis, anti for calculating a reaction force torque equivalent current acting on the control shaft from the engine side of the cam angle of the cam shaft, which is calculated by the cam angle calculating means Force torque equivalent current calculation means, and setting and outputting a drive current for the electromagnetic actuator based on the reaction force torque equivalent current calculated by the reaction force torque equivalent current calculation means and the current control amount calculated by the current control amount calculation means. Output setting hand In the fixed position control of the control shaft operating angle, the reaction torque (engine speed), which is a non-linear characteristic due to the valve spring reaction force transmitted to the control shaft through the cam, rocker arm, etc. The fluctuation of the operating angle generated based on the fluctuation for each operating angle) can be suppressed, thereby preventing a decrease in control accuracy and obtaining a sufficient engine output improving effect and a fuel consumption reducing effect.
[0054]
And a cylinder-specific reaction force torque coefficient calculation means for determining the cylinder in which the engine valve is currently opened from the cam angle of the cam shaft calculated by the cam angle calculation means and calculating a reaction force torque coefficient for each cylinder. The output setting means multiplies the reaction force torque coefficient of the open cylinder determined by the cylinder-specific reaction force torque coefficient calculation means by the reaction force torque equivalent current calculated by the reaction force torque equivalent current calculation means. Since the drive current for the electromagnetic actuator is set and output based on the current value and the current control amount calculated by the current control amount calculating means, each reaction force torque differs for each cylinder of the engine. An additional effect is obtained in that the control deviation between the cylinders is absorbed, and the operation angle fluctuation is more stably suppressed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a variable valve control apparatus for an internal combustion engine according to an embodiment of the present invention (a cross-sectional view taken along line AA in FIG. 2).
FIG. 2 is a side view of the variable valve control apparatus.
FIG. 3 is a plan view of the variable valve control apparatus.
FIG. 4 is a perspective view showing an eccentric cam used in the variable valve control apparatus.
FIG. 5 is a valve lift characteristic diagram corresponding to the base end face and the cam face of the swing cam in the variable valve control apparatus.
6 is a cross-sectional view showing the operation of the variable valve control device at low speed and low load (cross-sectional view taken along line BB in FIG. 2).
FIG. 7 is a cross-sectional view showing the operation of the variable valve control device at high speed and high load (cross-sectional view taken along line BB in FIG. 2).
FIG. 8 is a characteristic diagram of valve timing and valve lift of the variable valve controller .
FIG. 9 is a block diagram showing an operating angle control system of the variable valve control apparatus.
FIG. 10 is a system diagram showing the contents of an operating angle control circuit of a variable valve control device of a conventional example.
FIG. 11 is a block diagram showing the contents of an operating angle control circuit of a conventional variable valve control apparatus.
FIG. 12 is a time chart showing control shaft operating angle fluctuations in the variable valve control apparatus.
FIG. 13 is a system block diagram of the variable valve controller .
FIG. 14 is a diagram showing measured values of reaction torque with respect to the cam angle of the cam shaft in the variable valve control apparatus.
FIG. 15 is a view showing a calculated value of reaction torque with respect to the cam angle of the cam shaft in the variable valve control apparatus.
FIG. 16 is a system block diagram of the variable valve control apparatus for the internal combustion engine according to the first embodiment of the invention.
FIG. 17 is a cross-sectional view showing a conventional variable valve controller .
FIG. 18 is a block diagram showing an operating angle control system of a variable valve control apparatus of a conventional example.

Claims (3)

カム軸の回転に応じて開閉される機関弁の作動特性を制御軸の作動角に相関して変更する可変動弁機構を制御する内燃機関の可変動弁制御装置において、
前記制御軸の作動角を検出する作動角検出手段と、
前記制御軸を目標制御軸作動角に回転駆動する電磁アクチュエータと、
機関の回転数を検出する機関回転数検出手段と、
該機関回転数検出手段で検出された機関の回転数から機関の運転状態に応じた目標制御軸作動角を演算する目標作動角演算手段と、
該目標作動角演算手段で演算された目標制御軸作動角と前記作動角検出手段で検出された制御軸実作動角とを一致させるために必要な電流制御量を演算する電流制御量演算手段と
記カム軸のカム角を演算するカム角演算手段と、
該カム角演算手段で演算されたカム軸のカム角より機関側から前記制御軸に作用する反力トルク相当電流を演算する反力トルク相当電流演算手段と、
該反力トルク相当電流演算手段で演算された反力トルク相当電流と前記電流制御量演算手段で演算された電流制御量に基づき前記電磁アクチュエータに対する駆動電流を設定出力する出力設定手段と、
前記カム角演算手段で演算されたカム軸のカム角より現在機関弁が開作動している気筒を判別し各気筒別の反力トルク係数を演算する気筒別反力トルク係数演算手段と、を設け、
前記出力設定手段では、前記気筒別反力トルク係数演算手段で判別された開作動気筒の反力トルク係数を前記反力トルク相当電流演算手段で演算された反力トルク相当電流に乗じた電流値と前記電流制御量演算手段で演算された電流制御量に基づき前記電磁アクチュエータに対する駆動電流を設定出力するように構成されていること
を特徴とする内燃機関の可変動弁制御装置。
In a variable valve control device for an internal combustion engine that controls a variable valve mechanism that changes an operation characteristic of an engine valve that is opened and closed according to rotation of a cam shaft in correlation with an operation angle of a control shaft,
An operating angle detecting means for detecting an operating angle of the control shaft;
An electromagnetic actuator that rotationally drives the control axis to a target control axis operating angle;
Engine speed detecting means for detecting the engine speed;
Target operating angle calculating means for calculating a target control shaft operating angle corresponding to the operating state of the engine from the engine speed detected by the engine speed detecting means ;
Current control amount calculation means for calculating a current control amount necessary for making the target control axis operation angle calculated by the target operation angle calculation means coincide with the control axis actual operation angle detected by the operation angle detection means; ,
A cam angle calculating means for calculating the cam angle before Symbol camshaft,
A reaction torque corresponding current calculation means for calculating a reaction force torque equivalent current acting on the control shaft from the engine side of the cam angle of the cam shaft, which is calculated by the cam angle calculating means,
Output setting means for setting and outputting a drive current for the electromagnetic actuator based on the reaction force torque equivalent current calculated by the reaction force torque equivalent current calculation means and the current control amount calculated by the current control amount calculation means;
Cylinder-specific reaction force torque coefficient calculation means for determining the cylinder in which the engine valve is currently opened from the cam angle of the cam shaft calculated by the cam angle calculation means and calculating the reaction force torque coefficient for each cylinder; Provided,
In the output setting means, a current value obtained by multiplying the reaction force torque coefficient of the open cylinder determined by the cylinder-by-cylinder reaction force torque coefficient calculation means by the reaction force torque equivalent current calculated by the reaction force torque equivalent current calculation means. A variable valve control apparatus for an internal combustion engine, wherein the drive current for the electromagnetic actuator is set and output based on the current control amount calculated by the current control amount calculation means .
機関の負荷を検出する機関負荷検出手段を備え、
前記目標作動角演算手段が、前記機関回転数検出手段で検出された機関の回転数と、前記機関負荷検出手段で検出された機関の負荷から機関の運転状態に応じた目標制御軸作動角を演算するように構成されていることを特徴とする請求項1に記載の内燃機関の可変動弁制御装置。
An engine load detecting means for detecting the load of the engine;
The target operating angle calculating means, and the detected rotational speed of the engine by said engine speed detecting means, the target control shaft operating angle in accordance with the operating state of the engine and a load of the detected engine by the engine load detecting means variable valve control apparatus for an internal combustion engine according to claim 1, characterized in that it is configured to calculate a.
前記可変動弁機構は、前記カム軸と略平行に配設された前記制御軸と、該制御軸の外周に偏心して固定された制御カムと、該制御カムに揺動自在に軸支されたロッカアームと、前記カム軸の回転に応じて前記ロッカアームの一端部を揺動駆動する揺動駆動手段と、前記ロッカアームの他端部に連係して揺動して機関弁を開作動させる揺動カムと、前記機関弁を閉じる方向に付勢するバルブスプリングと、を備えていることを特徴とする請求項1または2に記載の内燃機関の可変動弁制御装置。  The variable valve mechanism is supported on the control shaft disposed substantially parallel to the cam shaft, a control cam eccentrically fixed to the outer periphery of the control shaft, and pivotally supported by the control cam. A rocker arm, rocking drive means for rocking and driving one end of the rocker arm according to the rotation of the camshaft, and a rocking cam that swings in conjunction with the other end of the rocker arm and opens the engine valve. And a valve spring that urges the engine valve in a closing direction. The variable valve control apparatus for an internal combustion engine according to claim 1 or 2, further comprising:
JP17716499A 1999-06-23 1999-06-23 Variable valve operating device for internal combustion engine Expired - Lifetime JP3975246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17716499A JP3975246B2 (en) 1999-06-23 1999-06-23 Variable valve operating device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17716499A JP3975246B2 (en) 1999-06-23 1999-06-23 Variable valve operating device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001012262A JP2001012262A (en) 2001-01-16
JP3975246B2 true JP3975246B2 (en) 2007-09-12

Family

ID=16026311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17716499A Expired - Lifetime JP3975246B2 (en) 1999-06-23 1999-06-23 Variable valve operating device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3975246B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107503817A (en) * 2016-06-14 2017-12-22 现代凯菲克株式会杜 System for controlling continuously variable valve duration and method of operation thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4106201B2 (en) 2001-06-21 2008-06-25 株式会社日立製作所 Variable valve device for engine
JP4049557B2 (en) 2001-07-26 2008-02-20 株式会社日立製作所 Fail-safe control device for internal combustion engine
EP1302645A3 (en) 2001-10-12 2004-09-29 Hitachi Unisia Automotive Ltd. Apparatus and method for controlling the intake air amount of an internal combustion engine
JP2003129871A (en) 2001-10-23 2003-05-08 Hitachi Unisia Automotive Ltd Variable valve control device for internal combustion engine
JP4024032B2 (en) 2001-10-29 2007-12-19 株式会社日立製作所 Variable valve control device for internal combustion engine
JP2003138975A (en) 2001-11-02 2003-05-14 Hitachi Unisia Automotive Ltd Intake air flow measurement device for internal combustion engine
JP4108386B2 (en) 2002-06-28 2008-06-25 株式会社日立製作所 Engine fuel injector
US7013211B2 (en) 2002-12-02 2006-03-14 Hitachi, Ltd. Variable valve control apparatus for internal combustion engine and method thereof
JP4101625B2 (en) 2002-12-03 2008-06-18 株式会社日立製作所 Variable valve control device for internal combustion engine
JP2006144638A (en) 2004-11-18 2006-06-08 Hitachi Ltd Method for evaluating diagnostic function of variable valve mechanism and diagnostic device for variable valve mechanism
JP2006144637A (en) 2004-11-18 2006-06-08 Hitachi Ltd Method for evaluating diagnostic function of variable valve mechanism and diagnostic device for variable valve mechanism
JP4639161B2 (en) * 2006-03-31 2011-02-23 日立オートモティブシステムズ株式会社 Control device for variable valve timing mechanism
JP4849489B2 (en) * 2009-03-23 2012-01-11 日立オートモティブシステムズ株式会社 Control device for variable valve lift mechanism
KR101231267B1 (en) 2010-12-07 2013-02-07 현대자동차주식회사 Apparatus and method for motor control for variable valve lift

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107503817A (en) * 2016-06-14 2017-12-22 现代凯菲克株式会杜 System for controlling continuously variable valve duration and method of operation thereof
CN107503817B (en) * 2016-06-14 2019-11-26 现代凯菲克株式会杜 System for controlling continuously variable valve duration and method of operating the same

Also Published As

Publication number Publication date
JP2001012262A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
JP3975246B2 (en) Variable valve operating device for internal combustion engine
JP4827865B2 (en) Variable valve operating device for internal combustion engine
JP3933404B2 (en) Variable valve operating device for internal combustion engine
JP4268839B2 (en) Variable valve controller for internal combustion engine
US7243625B2 (en) Variable valve control system and method for internal combustion engine
JP4118575B2 (en) Variable valve operating apparatus for internal combustion engine and controller for variable valve operating apparatus for internal combustion engine
JP4027536B2 (en) Variable valve operating device for internal combustion engine
JP5316086B2 (en) Control device and control method for internal combustion engine
JP4192186B2 (en) Operating angle detection device for variable valve operating device of internal combustion engine
JP4489380B2 (en) Fail-safe control device for internal combustion engine with variable valve mechanism
JP3823675B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP3936818B2 (en) Operating angle sensor failure determination device for variable valve operating device of internal combustion engine
JP4878594B2 (en) Variable valve operating device for internal combustion engine
JP4483637B2 (en) Internal combustion engine
JP2002168105A (en) Variable valve train for internal combustion engines
JP3986212B2 (en) Variable valve control device for internal combustion engine
JP2000314329A (en) Processing device for operation sensor failure in variable valve train of internal combustion engine
JP3929656B2 (en) Control position detecting device in variable valve operating device of internal combustion engine
JP2008208779A (en) Variable valve operating device for internal combustion engine
JP4096449B2 (en) Variable valve operating device for internal combustion engine
JP4006158B2 (en) Variable valve operating device for internal combustion engine
JP4359672B2 (en) Variable valve controller for internal combustion engine
JP5119180B2 (en) Variable valve operating device for internal combustion engine
EP1275826A2 (en) Control apparatus and method of variable valve event and lift mechanism
JP3907370B2 (en) Control device for variable valve gear of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050831

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载