+

JP2787771B2 - Core-sheath plastic optical fiber - Google Patents

Core-sheath plastic optical fiber

Info

Publication number
JP2787771B2
JP2787771B2 JP62232043A JP23204387A JP2787771B2 JP 2787771 B2 JP2787771 B2 JP 2787771B2 JP 62232043 A JP62232043 A JP 62232043A JP 23204387 A JP23204387 A JP 23204387A JP 2787771 B2 JP2787771 B2 JP 2787771B2
Authority
JP
Japan
Prior art keywords
optical fiber
sheath
polymer
core
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62232043A
Other languages
Japanese (ja)
Other versions
JPS6476003A (en
Inventor
鶴義 松本
勝彦 島田
吉弘 魚津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP62232043A priority Critical patent/JP2787771B2/en
Priority to CA000573338A priority patent/CA1335022C/en
Priority to US07/225,734 priority patent/US4836642A/en
Priority to KR1019880009687A priority patent/KR920001247B1/en
Priority to DE3885530T priority patent/DE3885530T2/en
Priority to EP88307076A priority patent/EP0301912B1/en
Publication of JPS6476003A publication Critical patent/JPS6476003A/en
Application granted granted Critical
Publication of JP2787771B2 publication Critical patent/JP2787771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラスチツク光フアイバに関するものであ
り、とくに加工特性に優れたプラスチツク光フアイバに
関する。 〔従来の技術〕 芯がプラスチツクから成る光フアイバは無機ガラス系
のものに比べて光伝送損失、耐熱性に劣る一方で、大口
径で開口数が大きく軽量であつて、かつ可撓性に極めて
優れている。中でもポリメチルメタクリレート系樹脂を
芯成分とした光フアイバは短距離の光通信用途に使用さ
れはじめている。芯−鞘構造を有する光フアイバにおい
て、これら芯成分の特性を生かす鞘成分の選択が重要で
ある。 特公昭53−21660号公報には、鞘が弗化ビニリデンと
テトラフルオロエチレンの共重合体から成る光フアイバ
が記載されている。弗化ビニリデン系共重合体は芯材と
の密着性は良好であり、本質的に結晶性高分子であり、
加熱又は冷却により容易に結晶化して、球晶を生長せし
め、その結果、芯材を通過する光はその鞘の結晶化状態
による散乱を受け、光伝送性能が低下するという欠点が
ある。一方、例えば特公昭56−8321号公報に示されるよ
うな弗化アルキルメタクリレートを主成分とする重合体
は、本質的に非晶性高分子であり、光フアイバの鞘材と
して用いたとき良好な透明性を保持するが、芯材との密
着性及び屈曲性が劣り、加工性も劣るという欠点があ
る。 〔発明が解決しようとする問題点〕 従来開発されてきたプラスチツク系光フアイバはほゞ
直線状で使用する際には何等問題ないのであるが、デー
タリンクやOA機器接続用光フアイバの如く、曲げて使用
されたり、その接合時に可成り激しい折り曲げを必要と
する用途に利用する場合にはその光伝送特性が急激に低
下し、その回復性が悪いという難点がある。 〔問題点を解決するための手段〕 そこで本発明者等は上述した如き難点のないプラスチ
ツク系光フアイバを開発することを目的として検討した
結果本発明を完成したものであり、その要旨とするとこ
ろは、芯がポリメチルメタクリレート系樹脂、鞘が下記
の重合体にて構成される芯−鞘型プラスチック光ファイ
バであり、その平均直径を1000μmとし、波長650nmの
平行光線をその一端から入射し、他端から出射せしめた
ときの光の透過光量をI0、この光ファイバを直径10mmの
マンドレルに100回巻付けた状態で同様にして透過光量
を測定したときの巻付け透過光量Ia、この巻付けをほど
き同様にして透過光量を測定したときの巻付け光回復量
Ibとしたとき、I0、Ia、Ibが次式[I]、[II]の関係
を満足していることを特徴とする芯−鞘型プラスチック
光ファイバ、にある。 [鞘形成用重合体] 一般式(イ) (式中nは5〜11の整数を示す) で表される長鎖フルオロアルキルメタクリレート10〜48
重量%、 一般式(ロ)(式中Xは水素原子又は弗素原子、mは1〜4の整数を
示す) で表される短鎖フルオロアルキルメタクリレート52〜90
重量%及び他の共重合可能なモノマー0〜38重量%の共
重合体から実質的に成り、230℃で荷重5kgの条件で直径
2mm、長さ8mmのノズルから10分間に吐出される重合体の
量を示すメルトフローインデックス値が30以下である共
重合体。 本発明で好しく用いる光フアイバ鞘材用重合体は、従
来用いられてきた鞘用重合体であるフルオロアルキルメ
タクリレート系重合体の特色である良好な透明性及び耐
熱性を有し、しかも従来のフルオロメタクリレート系重
合体に欠けていた良好な屈曲性及び加工性が付与されて
いる。 上記鞘用重合体を作るのに用いられる長鎖フルオロア
ルキルメタクリレートとしては、1,1,2,2−テトラハイ
ドロパーフルオロオクチルメタクリレート、1,1,2,2−
テトラハイドロパーフルオロデカニルメタクリレート、
1,1,2,2−テトラハイドロパーフルオロドデカニルメタ
クリレート、1,1,2,2−テトラハイドロパーフルオロテ
トラデカニルメタクリレート等が挙げられる。これら化
合物な単独で用いてもよく、また2種以上を混合して用
いてもよい。 長鎖フルオロアルキルメタクリレートは10〜48重量%
好ましくは10〜29.95重量%の範囲で用いられる。この
量が10重量%未満である場合は、十分な機械的特性を有
する重合体が得られない。また48重量%を超える場合
は、重合体のガラス転移温度が低くなり、十分な耐熱性
が得られない。 短鎖フルオロアルキルメタクリレートとしては、トリ
フルオロエチルメタクリレート、2,2,3,3−テトラフル
オロプロピルメタクリレート、2,2,3,3,3−ペンタフル
オロプロピルメタクリレート、2,2,3,3,4,4,5,5−オク
タフルオロペンチルメタクリレート等が好ましい。これ
ら化合物は単独で用いてもよく、また2種以上を混合し
て用いてもよい。 短鎖フルオロアルキルメタクリレートは52〜90重量%
の範囲で用いられる。この量が52重量%より低くなる
と、重合体中の長鎖フルオロアルキルメタクリレートの
割合が増え、ガラス転移温度が下がり、十分な耐熱性が
得らえないか、又は第三成分のモノマーの割合が増え、
屈折率が高くなるおそれがある。 他の共重合可能なモノマーとしては、鎖状アルキル
(メタ)アクリレート、環式炭化水素基を有するメタク
リル酸エステル、親水性単独重合体を形成しうるビニル
単量体が用いられる。 鎖状アルキル(メタ)アクリレートとしては、(メ
タ)アクリル酸メチル、(メタ)アクリル酸エチル、
(メタ)アクリル酸−n−プロピル、(メタ)アクリル
酸イソプロピル、(メタ)アクリル酸−n−ブチル、
(メタ)アクリル酸二級ブチル等が挙げられる。メタク
リル酸メチルが好ましい。環状炭化水素基を有するメタ
クリル酸エステルとしては、フエニルメタクリレート、
シクロヘキシルメタクリレート、アダマンチルメタクリ
レート、(イソ)ボルニルメタクリレート、メタクリル
酸トリシクロ〔5.2.1.02.6〕−デカ−8−イル等が用い
られる。親水性単独重合体を形成しうるビニル単量体と
しては(メタ)アクリル酸、グリシジルメタクリレー
ト、メチルグリシジルメタクリレート、アクリルアミ
ド、2−ヒドロキシエチル(メタ)アクリレート、2−
ヒドロキシプロピル(メタ)アクリレート等が挙げられ
る。メタクリル酸が好ましい。 これらの共重合可能なモノマーは0〜38重量%、好ま
しくは0〜20重量%の範囲で用いられる。この量が38重
量%を超えると、重合体の屈折率が高くなるおそれがあ
る。 本発明で用いる鞘成分重合体は、懸濁重合法、塊状重
合法などの公知の方法で製造することができる。重合に
用いられるラジカル重合開始剤としては、例えば2,2′
−アゾビス(イソブチロニトリル)、1,1′−アゾビス
(シクロヘキサンカルボニトリル)、2,2′−アゾビス
(2,4−ジメチルパレロニトリル)、アゾビスイソブタ
ノールジアセテートアゾ−三級ブタン等のアゾ化合物な
らびにジ三級ブチルパーオキサイド、ジクミルパーオキ
サイド、ジ三級ブチルパーフタレート、ジ三級ブチルパ
ーアセテート、ジ三級アミルパーオキサイド等の有機過
酸化物が挙げられる。重合開始剤の添加割合は単量体に
対して0.001〜1モル%であることが好ましい。 本発明で用いる鞘用重合体は、メルトフローインデツ
クス値が30以下のものであることが必要である。メルト
フローインデツクス値が30を超える場合は、屈曲性及び
加工性が著しく低下する。メルトフローインデツクス値
が3〜25の重合体は形成性が優れている。なおメルトフ
ローインデツクス値は、重合体が230℃で5kgの力を受け
たとき、直径2mm、長さ8mmのノズルから10分間に吐出さ
れる量のg数で示した。 メルトフローインデツクス値が30以下の重合体は、重
合開始剤及び/又は連鎖移動剤の添加割合、重合反応温
度を調節することにより得られる。連鎖移動剤としては
例えばn−ブチルメルカプタン、三級ブチルメルカプタ
ン、n−オクチルメルカプタン、n−ドデシルメルカプ
タン等が用いられ、単量体に対して約1モル%以下の割
合で添加することが好ましい。 本発明で用いる鞘用重合体は、極限粘度(メチルエチ
ルケトン中、25℃)が0.4dl/g以上であることが好まし
い。また粘弾性測定のE″のピークより求めたガラス転
移温度(Tg)が75℃以上であることが好ましい。 本発明の光フアイバを製造する場合、芯成分としては
光伝送性能に優れたポリメチルメタクリレート系樹脂を
用いる。ポリメチルメタクリレート系樹脂としては、ポ
リメチルメタクリレート、メチルメタクリレート単位を
主成分とし、好ましくは少なくとも70重量%含有する共
重合体、あるいはこれらの重水素化した樹脂を用いるこ
とができる。メチルメタクリレートとの共重合成分とし
ては、例えばメチルアクリレート、エチルアクリレー
ト、プロピルアクリレート、ブチルアクリレート、2−
エチルヘキシルアクリレート等のアクリル酸エステル、
シクロヘキシルメタクリレート、ベンジルメタクリレー
ト、エチルメタクリレート、プロピルメタクリレート、
ブチルメタクリレート等のメタクリル酸エステルなどが
挙げられる。ポリメチルメタクリレート系樹脂として
は、例えば特公昭53−42260号公報に示されるような連
続塊状重合法により製造されたものを使用することが好
ましい。その他に、一般式 (式中Rは脂肪族又は脂環式炭化水素基を示す) で表わされる環構造単位2重量%以上とメタクリル酸メ
チルを主成分とする単量体単位98重量%とからなる重合
体を芯成分とすることもできる。 本発明の光フアイバ鞘材用重合体は、酢酸エチル、ジ
メチルホルムアミド、ジメチルアセトアミド等の溶媒に
溶解して有機重合体からなる芯成分の繊維表面にコーテ
イングする方法或いは、芯−鞘型複合紡糸法によつて芯
−鞘型プラスチツク系光フアイバとすることもできる。 上記の如くして作つた芯−鞘型プラスチツク光フアイ
バは次の如き特性を備えているものでなければならな
い。すなわち、その平均直径を1000μmとし、波長650n
mの平行光をその一端から入射し他端から出射せしめた
ときの光の透過光量をI0、この光フアイバを直径10mmの
マンドレルに100回巻付けた状態で同様にして測定した
光の透過光量Ia、この巻付けをほどき同様にして透過光
量を測定したとき式[I]及び[II]の条件を満足して
いることである。 Ib/I0×100の値が80%未満なるものはプラスチツク光
フアイバの屈曲性が良好でなく、このような光フアイバ
は加工特性良好なプラスチツク光フアイバとすることは
できない。又、Ia/I0×100が20%未満なるものは、その
屈曲時に光の透過性が著るしく低下することを示してお
り、この点からも取扱い性の良好な光フアイバとするこ
とができない。 〔作用〕 本発明の鞘−芯型プラスチツク光フアイバは上述した
如き優れた耐屈曲性、加工性を備えており、その信頼性
および光伝送特性は極めて良好なものである。 以下実施例により本発明を更に詳細に説明する。 実施例1 メタクリル酸−2,2,2−トリフルオロエチル63重量
%、メタクリル酸−1,1,2,2−テトラハイドロパーフル
オロデシル20重量%及びメタクリル酸メチル17重量%、
更にこれらの単量体に対してn−オクチルメルカプタン
0.05%及び2,2′−アゾビスイソブチロニトリル0.1%を
添加した単量体混合物を酸素不在下で調合し、70℃に維
持された反応槽で8時間重合させたのち、120℃で2時
間重合させた。得られたポリマーの屈折率は1.4195、直
径2mm、長さ8mmのノズルを用い、230℃で荷重5kgで10分
間に吐出されるポリマー量(メルトフローインデツクス
値)は5.4であり、メチルエチルケトン中、25℃におけ
る極限粘度は0.68であつた。またバイブロン測定のE″
のピークから求めたガラス転移温度(Tg)は95.4℃であ
つた。このポリマーを鞘とし、芯をポリメタクリル酸メ
チルとし、芯−鞘紡糸口金を有する複合溶融紡糸機によ
り、芯の直径980μm、鞘の厚さ10μmの光フアイバを
得た。 この光フアイバの光伝送損失は、590nmにおいて92dB/
km、650nmにおいて154dB/kmであつた。また85℃の空気
中に100時間放置したのちの光伝送損失は、590nmにおい
て95dB/km、650nmにおいて159dB/kmであつた。また屈曲
性を調べるため、直径10mmのマンドレルに15mの光フア
イバを繰り返し巻き付けたときの巻付光量保持率の評価
を行つた。その結果、100回巻き付けたときの光量保持
率は31.4%であつた。またその巻き付けをほどいたのち
の光量回復率は89.1%であつた。 実施例2〜5及び比較例1〜3 鞘成分のモノマー組成を変え、また重合開始剤および
連鎖移動剤の添加量、重合反応温度を調節し、実施例1
と同様に操作して光フアイバを得た。この光フアイバを
用いて実施例1と同じ特性評価を行つた。その結果を下
記表に示す。 表中の記号は下記の化合物を意味する。
Description: TECHNICAL FIELD The present invention relates to a plastic optical fiber, and more particularly to a plastic optical fiber having excellent processing characteristics. [Prior art] An optical fiber whose core is made of plastic is inferior in light transmission loss and heat resistance as compared with inorganic glass-based ones, but has a large diameter, a large numerical aperture, a light weight, and is extremely flexible. Are better. Among them, optical fibers using a polymethyl methacrylate-based resin as a core component have begun to be used for short-distance optical communication applications. In an optical fiber having a core-sheath structure, it is important to select a sheath component that makes use of the characteristics of these core components. Japanese Patent Publication No. 53-21660 describes an optical fiber whose sheath is made of a copolymer of vinylidene fluoride and tetrafluoroethylene. The vinylidene fluoride copolymer has good adhesion to the core material and is essentially a crystalline polymer,
It is easily crystallized by heating or cooling to grow spherulites. As a result, the light passing through the core material is scattered by the crystallization state of its sheath, which has a disadvantage that the light transmission performance is reduced. On the other hand, for example, a polymer mainly containing an alkyl fluoride methacrylate as shown in JP-B-56-8321 is essentially an amorphous polymer, and has a good property when used as a sheath material of an optical fiber. While maintaining transparency, there is a drawback that adhesion and flexibility with the core material are poor, and workability is also poor. [Problems to be Solved by the Invention] The plastic optical fiber that has been conventionally developed has no problem when used in a substantially linear shape, but it is bent like a data link or an optical fiber for connecting OA equipment. When used in applications that require considerable bending during joining, there is a disadvantage that the optical transmission characteristics are rapidly reduced and the recoverability is poor. [Means for Solving the Problems] Accordingly, the present inventors have studied the purpose of developing a plastic optical fiber which does not have the above-mentioned difficulties, and as a result, have completed the present invention. The core is a polymethyl methacrylate-based resin, the sheath is a core-sheath type plastic optical fiber composed of the following polymer, the average diameter of which is 1000 μm, parallel light having a wavelength of 650 nm is incident from one end thereof, The transmitted light amount of light when emitted from the other end is I 0 , the wound transmitted light amount Ia when the transmitted light amount is measured in the same manner with the optical fiber wound 100 times around a 10 mm diameter mandrel, Unwrapping light recovery when measuring the amount of transmitted light in the same way
A core-sheath type plastic optical fiber characterized in that when Ib, I 0 , Ia, and Ib satisfy the relations of the following formulas [I] and [II]. [Polymer for forming sheath] General formula (A) (Wherein n represents an integer of 5 to 11).
Weight%, general formula (b) (Wherein X represents a hydrogen atom or a fluorine atom, and m represents an integer of 1 to 4).
Consisting essentially of a copolymer of 0% to 38% by weight and other copolymerizable monomers and having a diameter of 5 kg at 230 ° C. under a load of 5 kg.
A copolymer having a melt flow index value of 30 or less indicating the amount of the polymer discharged from a nozzle having a length of 2 mm and a length of 8 mm in 10 minutes. The optical fiber sheath material polymer preferably used in the present invention has good transparency and heat resistance, which are characteristics of a fluoroalkyl methacrylate polymer which is a conventionally used sheath polymer. Good flexibility and processability lacking in the fluoromethacrylate polymer are provided. As the long-chain fluoroalkyl methacrylate used to make the sheath polymer, 1,1,2,2-tetrahydroperfluorooctyl methacrylate, 1,1,2,2-
Tetrahydroperfluorodecanyl methacrylate,
Examples thereof include 1,1,2,2-tetrahydroperfluorododecanyl methacrylate and 1,1,2,2-tetrahydroperfluorotetradecanyl methacrylate. These compounds may be used alone or as a mixture of two or more. 10 to 48% by weight of long-chain fluoroalkyl methacrylate
Preferably, it is used in the range of 10 to 29.95% by weight. If this amount is less than 10% by weight, a polymer having sufficient mechanical properties cannot be obtained. On the other hand, if it exceeds 48% by weight, the glass transition temperature of the polymer becomes low and sufficient heat resistance cannot be obtained. As the short-chain fluoroalkyl methacrylate, trifluoroethyl methacrylate, 2,2,3,3-tetrafluoropropyl methacrylate, 2,2,3,3,3-pentafluoropropyl methacrylate, 2,2,3,3,4 , 4,5,5-octafluoropentyl methacrylate and the like are preferred. These compounds may be used alone or as a mixture of two or more. 52 to 90% by weight of short-chain fluoroalkyl methacrylate
Used in the range. When this amount is lower than 52% by weight, the proportion of long-chain fluoroalkyl methacrylate in the polymer increases, the glass transition temperature decreases, and sufficient heat resistance cannot be obtained, or the proportion of the monomer of the third component decreases. Increase
The refractive index may increase. As other copolymerizable monomers, chain alkyl (meth) acrylates, methacrylates having a cyclic hydrocarbon group, and vinyl monomers capable of forming a hydrophilic homopolymer are used. Examples of the chain alkyl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate,
N-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate,
Secondary butyl (meth) acrylate and the like can be mentioned. Methyl methacrylate is preferred. Examples of the methacrylate having a cyclic hydrocarbon group include phenyl methacrylate,
Cyclohexyl methacrylate, adamantyl methacrylate, (iso) bornyl methacrylate, tricyclo [5.2.1.0 2.6 ] -dec-8-yl methacrylate and the like are used. Vinyl monomers capable of forming a hydrophilic homopolymer include (meth) acrylic acid, glycidyl methacrylate, methyl glycidyl methacrylate, acrylamide, 2-hydroxyethyl (meth) acrylate,
Hydroxypropyl (meth) acrylate and the like can be mentioned. Methacrylic acid is preferred. These copolymerizable monomers are used in the range of 0 to 38% by weight, preferably 0 to 20% by weight. If this amount exceeds 38% by weight, the refractive index of the polymer may increase. The sheath component polymer used in the present invention can be produced by a known method such as a suspension polymerization method or a bulk polymerization method. As the radical polymerization initiator used for the polymerization, for example, 2,2 '
-Azobis (isobutyronitrile), 1,1'-azobis (cyclohexanecarbonitrile), 2,2'-azobis (2,4-dimethylpareronitrile), azobisisobutanol diacetateazo-tertiary butane, etc. And organic peroxides such as ditertiary butyl peroxide, dicumyl peroxide, ditertiary butyl perphthalate, ditertiary butylperacetate, and ditertiary amylperoxide. The proportion of the polymerization initiator to be added is preferably 0.001 to 1 mol% with respect to the monomer. It is necessary that the sheath polymer used in the present invention has a melt flow index value of 30 or less. When the melt flow index value exceeds 30, the flexibility and workability are significantly reduced. Polymers having a melt flow index value of 3 to 25 have excellent formability. The melt flow index value was represented by the number of grams discharged from a nozzle having a diameter of 2 mm and a length of 8 mm in 10 minutes when the polymer was subjected to a force of 5 kg at 230 ° C. A polymer having a melt flow index value of 30 or less can be obtained by adjusting the addition ratio of a polymerization initiator and / or a chain transfer agent and the polymerization reaction temperature. As the chain transfer agent, for example, n-butyl mercaptan, tertiary butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan and the like are used, and it is preferable to add them at a ratio of about 1 mol% or less based on the monomer. The sheath polymer used in the present invention preferably has an intrinsic viscosity (in methyl ethyl ketone at 25 ° C.) of 0.4 dl / g or more. Further, the glass transition temperature (Tg) determined from the peak of E ″ in viscoelasticity measurement is preferably 75 ° C. or more. When producing the optical fiber of the present invention, polymethyl having excellent optical transmission performance is used as a core component. As the polymethyl methacrylate resin, polymethyl methacrylate, a copolymer containing methyl methacrylate units as a main component, preferably containing at least 70% by weight, or a deuterated resin thereof is used. Examples of the copolymerizable component with methyl methacrylate include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-
Acrylic acid esters such as ethylhexyl acrylate,
Cyclohexyl methacrylate, benzyl methacrylate, ethyl methacrylate, propyl methacrylate,
And methacrylic acid esters such as butyl methacrylate. As the polymethyl methacrylate-based resin, for example, a resin produced by a continuous bulk polymerization method as disclosed in JP-B-53-42260 is preferably used. In addition, the general formula (Wherein R represents an aliphatic or alicyclic hydrocarbon group) a polymer comprising 2% by weight or more of a ring structural unit represented by the following formula and 98% by weight of a monomer unit mainly composed of methyl methacrylate. It can also be a component. The polymer for an optical fiber sheath material of the present invention is obtained by dissolving in a solvent such as ethyl acetate, dimethylformamide, or dimethylacetamide and coating the surface of the fiber of the core component made of an organic polymer, or a core-sheath composite spinning method. Accordingly, a core-sheath type plastic optical fiber can be obtained. The core-sheath plastic optical fiber made as described above must have the following characteristics. That is, the average diameter is 1000 μm, and the wavelength is 650 n
When the parallel light of m is incident from one end and emitted from the other end, the transmitted light amount is I 0 , and the light transmission is measured in the same manner with this optical fiber wound 100 times around a 10 mm diameter mandrel. When the amount of transmitted light is measured in the same manner as in the case of unwinding the light amount Ia , the conditions of the formulas [I] and [II] are satisfied. If the value of I b / I 0 × 100 is less than 80%, the flexibility of the plastic optical fiber is not good, and such an optical fiber cannot be a plastic optical fiber having good processing characteristics. In addition, when I a / I 0 × 100 is less than 20%, it indicates that the light transmittance is remarkably reduced at the time of bending, and from this point, an optical fiber having good handleability is required. Can not. [Effect] The sheath-core type plastic optical fiber of the present invention has excellent bending resistance and workability as described above, and its reliability and light transmission characteristics are extremely good. Hereinafter, the present invention will be described in more detail by way of examples. Example 1 63% by weight of 2,2,2-trifluoroethyl methacrylate, 20% by weight of 1,1,2,2-tetrahydroperfluorodecyl methacrylate and 17% by weight of methyl methacrylate,
Further, n-octyl mercaptan is used for these monomers.
A monomer mixture containing 0.05% and 0.1% of 2,2'-azobisisobutyronitrile was prepared in the absence of oxygen, polymerized in a reactor maintained at 70 ° C for 8 hours, and then heated at 120 ° C. The polymerization was carried out for 2 hours. The obtained polymer had a refractive index of 1.4195, a diameter of 2 mm, and a length of 8 mm. The amount of polymer discharged at 230 ° C. under a load of 5 kg for 10 minutes (melt flow index value) was 5.4. The intrinsic viscosity at 25 ° C. was 0.68. Also E ″ of vibron measurement
The glass transition temperature (Tg) determined from the peak was 95.4 ° C. An optical fiber having a core diameter of 980 μm and a sheath thickness of 10 μm was obtained by a composite melt spinning machine having this polymer as a sheath, a core of polymethyl methacrylate, and a core-sheath spinneret. The optical transmission loss of this optical fiber is 92 dB /
It was 154 dB / km at km and 650 nm. The optical transmission loss after standing in air at 85 ° C for 100 hours was 95 dB / km at 590 nm and 159 dB / km at 650 nm. In addition, in order to examine the flexibility, the winding light amount retention rate when a 15 m optical fiber was repeatedly wound around a 10 mm diameter mandrel was evaluated. As a result, the light intensity retention after winding 100 times was 31.4%. The light recovery rate after unwrapping was 89.1%. Examples 2-5 and Comparative Examples 1-3 The monomer composition of the sheath component was changed, and the amounts of the polymerization initiator and the chain transfer agent added and the polymerization reaction temperature were adjusted.
An optical fiber was obtained in the same manner as described above. The same characteristic evaluation as in Example 1 was performed using this optical fiber. The results are shown in the table below. The symbols in the table mean the following compounds.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 魚津 吉弘 広島県大竹市御幸町20番1号 三菱レイ ヨン株式会社内 (56)参考文献 特開 昭62−265606(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Yoshihiro Uozu               Mitsubishi Ray, 20-1, Miyukicho, Otake City, Hiroshima Prefecture               Yeon Co., Ltd.                (56) References JP-A-62-265606 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.芯がポリメチルメタクリレート系樹脂、鞘が下記の
重合体にて構成される芯−鞘型プラスチック光ファイバ
であり、その平均直径を1000μmとし、波長650nmの平
行光線をその一端から入射し、他端から出射せしめたと
きの光の透過光量をI0、この光ファイバを直径10mmのマ
ンドレルに100回巻付けた状態で同様にして透過光量を
測定したときの巻付け透過光量Ia、この巻付けをほどき
同様にして透過光量を測定したときの巻付け光回復量Ib
としたとき、I0、Ia、Ibが次式[I]、[II]の関係を
満足していることを特徴とする芯−鞘型プラスチック光
ファイバ。 [鞘形成用重合体] 一般式(イ)(式中nは5〜11の整数を示す) で表される長鎖フルオロアルキルメタクリレート10〜48
重量%、 一般式(ロ) (式中Xは水素原子又は弗素原子、mは1〜4の整数を
示す) で表される短鎖フルオロアルキルメタクリレート52〜90
重量%及び他の共重合可能なモノマー0〜38重量%の共
重合体から実質的に成り、230℃で荷重5kgの条件で直径
2mm、長さ8mmのノズルから10分間に吐出される重合体の
量を示すメルトフローインデックス値が30以下である共
重合体。
(57) [Claims] The core is a polymethyl methacrylate-based resin, the sheath is a core-sheath type plastic optical fiber composed of the following polymer, the average diameter of which is 1000 μm, a parallel light beam having a wavelength of 650 nm is incident from one end, and the other end. I 0 the transmitted amount of light when allowed emitted from the winding amount of transmitted light Ia when the quantity of transmitted light was measured in the same manner in the state of the optical fiber wound 100 times diameter mandrel 10 mm, the winding Unwrapping light recovery amount Ib when measuring the amount of transmitted light in the same way as unwinding
Wherein I 0 , Ia, and Ib satisfy the following formulas [I] and [II]. [Polymer for forming sheath] General formula (A) (Wherein n represents an integer of 5 to 11).
Weight%, general formula (b) (Wherein X represents a hydrogen atom or a fluorine atom, and m represents an integer of 1 to 4).
Consisting essentially of a copolymer of 0% to 38% by weight and other copolymerizable monomers and having a diameter of 5 kg at 230 ° C. under a load of 5 kg.
A copolymer having a melt flow index value of 30 or less indicating the amount of the polymer discharged from a nozzle having a length of 2 mm and a length of 8 mm in 10 minutes.
JP62232043A 1987-07-30 1987-09-18 Core-sheath plastic optical fiber Expired - Fee Related JP2787771B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62232043A JP2787771B2 (en) 1987-09-18 1987-09-18 Core-sheath plastic optical fiber
CA000573338A CA1335022C (en) 1987-07-30 1988-07-28 Cladding material for optical fiber
US07/225,734 US4836642A (en) 1987-07-30 1988-07-29 Cladding material for optical fiber
KR1019880009687A KR920001247B1 (en) 1987-07-30 1988-07-30 Cladding material for optical fiber
DE3885530T DE3885530T2 (en) 1987-07-30 1988-08-01 Sheath material for optical fibers.
EP88307076A EP0301912B1 (en) 1987-07-30 1988-08-01 Cladding material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62232043A JP2787771B2 (en) 1987-09-18 1987-09-18 Core-sheath plastic optical fiber

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10086366A Division JP3015814B2 (en) 1998-03-31 1998-03-31 Sheath material for optical fiber

Publications (2)

Publication Number Publication Date
JPS6476003A JPS6476003A (en) 1989-03-22
JP2787771B2 true JP2787771B2 (en) 1998-08-20

Family

ID=16933068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62232043A Expired - Fee Related JP2787771B2 (en) 1987-07-30 1987-09-18 Core-sheath plastic optical fiber

Country Status (1)

Country Link
JP (1) JP2787771B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014951A (en) * 2001-06-27 2003-01-15 Mitsubishi Rayon Co Ltd Plastic optical fiber cladding material, plastic optical fiber and plastic optical fiber cable
JP2003014950A (en) * 2001-06-27 2003-01-15 Mitsubishi Rayon Co Ltd Plastic optical fiber cladding material, plastic optical fiber and plastic optical fiber cable

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711604B2 (en) * 1984-09-10 1995-02-08 旭化成工業株式会社 Optical fiber sheath material polymer

Also Published As

Publication number Publication date
JPS6476003A (en) 1989-03-22

Similar Documents

Publication Publication Date Title
KR920001247B1 (en) Cladding material for optical fiber
JPH0215041B2 (en)
JPH0220081B2 (en)
JP2602242B2 (en) Sheath material for plastic optical fiber and plastic optical fiber using the same
US7142754B2 (en) Plastic optical fiber, plastic optical fiber cables, optical fiber cables with plugs with copolymer
JP2787771B2 (en) Core-sheath plastic optical fiber
JPH0223843B2 (en)
JP2696521B2 (en) Polymer for optical fiber sheath material
JP3015814B2 (en) Sheath material for optical fiber
JP4875255B2 (en) Plastic optical fiber, plastic optical fiber cable and plastic optical fiber cable with plug
JPH0451206A (en) Plastic optical fiber
JP4245521B2 (en) Sheath material for plastic optical fiber
JPH01105205A (en) Clad material for optical fiber
JP2002148451A (en) Plastic optical fiber
JP2003139972A (en) Plastic optical fiber, plastic optical fiber cable and plastic optical fiber cable with plug
JPS63180907A (en) optical fiber
JP2003139971A (en) Plastic optical fiber
JP2003014951A (en) Plastic optical fiber cladding material, plastic optical fiber and plastic optical fiber cable
JP2000231024A (en) Sheath material for plastic optical fiber, plastic optical fiber and plastic optical fiber cable
JPH10221543A (en) Broadband plastic optical fiber
JP2003084148A (en) Plastic optical fiber, plastic optical fiber cable and plastic optical fiber cable with plug
JP3559295B2 (en) Plastic optical fiber and its manufacturing method
JPH0560924A (en) Soft composite light transmitter
JP2003014950A (en) Plastic optical fiber cladding material, plastic optical fiber and plastic optical fiber cable
JPH01106002A (en) Optical fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载