+

JP2006073930A - Method of changing magnetization state of magnetoresistive effect element using domain wall motion, magnetic memory element using the method, and solid-state magnetic memory - Google Patents

Method of changing magnetization state of magnetoresistive effect element using domain wall motion, magnetic memory element using the method, and solid-state magnetic memory Download PDF

Info

Publication number
JP2006073930A
JP2006073930A JP2004258220A JP2004258220A JP2006073930A JP 2006073930 A JP2006073930 A JP 2006073930A JP 2004258220 A JP2004258220 A JP 2004258220A JP 2004258220 A JP2004258220 A JP 2004258220A JP 2006073930 A JP2006073930 A JP 2006073930A
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetic layer
magnetic memory
memory element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004258220A
Other languages
Japanese (ja)
Inventor
Kazuhisa Okano
一久 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004258220A priority Critical patent/JP2006073930A/en
Publication of JP2006073930A publication Critical patent/JP2006073930A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0808Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】高アクセスが可能で、長期データ保存が可能な磁気固体メモリを提供する。
【解決手段】第一の磁性層と、中間層と、第二の磁性層を有し、情報を第一の磁性層と、第二の磁性層との磁化の方向で記録する磁気メモリ素子であって、少なくとも一方の磁性層内に互いに反平行磁化となる磁区とそれらの磁区を隔てる磁壁を定常的に形成し、前記磁壁を磁性層内で移動させることで、隣り合う磁区の位置を制御することで、情報記録を行う磁気メモリ素子。
【選択図】図1
A magnetic solid-state memory capable of high access and capable of long-term data storage is provided.
A magnetic memory element having a first magnetic layer, an intermediate layer, and a second magnetic layer, and recording information in the magnetization directions of the first magnetic layer and the second magnetic layer. In addition, magnetic domains that are antiparallel to each other and domain walls that separate the magnetic domains are constantly formed in at least one of the magnetic layers, and the positions of adjacent magnetic domains are controlled by moving the domain walls within the magnetic layer. Thus, a magnetic memory element that records information.
[Selection] Figure 1

Description

本発明は、磁気抵抗効果素子を用いた不揮発の固体磁気メモリ(MRAM:Magnetic Random Access Memory)及びその情報記録方法に関するものであり、特に、磁性膜として膜面垂直方向に磁化容易軸を有する磁気抵抗素子と該磁気抵抗素子を用いた固体磁気メモリに関するものである。   The present invention relates to a non-volatile solid-state magnetic memory (MRAM) using a magnetoresistive effect element and an information recording method thereof, and more particularly, to a magnetic film having a magnetization easy axis in a direction perpendicular to a film surface as a magnetic film. The present invention relates to a resistance element and a solid-state magnetic memory using the magnetoresistance element.

磁気抵抗効果は、磁性体に磁界を加えることによって電気抵抗が変化する現象であり、磁界センサや磁気ヘッドなどに利用されている。たとえば、強磁性体を用いた磁気抵抗効果素子は、温度安定性に優れ、かつ使用範囲が広いという特徴を有している。   The magnetoresistive effect is a phenomenon in which the electrical resistance is changed by applying a magnetic field to a magnetic material, and is used for a magnetic field sensor, a magnetic head, and the like. For example, a magnetoresistive element using a ferromagnetic material is characterized by excellent temperature stability and a wide range of use.

巨大磁気抵抗効果では、磁性層と非磁性層とを数nmの周期で交互に積層し、非磁性層を介して相対する磁性層の磁気モーメントを反平行状態で磁気的に結合させた積層膜、いわゆる人工格子膜で形成された交換結合膜が注目されている。たとえば、Fe/Crの人工格子膜や、Co/Cuの人工格子膜などが見出されている。   In the giant magnetoresistance effect, a laminated film in which magnetic layers and nonmagnetic layers are alternately laminated with a period of several nanometers, and the magnetic moments of the opposing magnetic layers are magnetically coupled in an antiparallel state via the nonmagnetic layers Attention has been focused on exchange coupling films formed of so-called artificial lattice films. For example, an artificial lattice film of Fe / Cr and an artificial lattice film of Co / Cu have been found.

これに対し、非磁性金属層を介して強磁性層を積層した強磁性層/非磁性層/強磁性層からなる金属サンドイッチ膜において、強磁性層間の交換結合がなくなる程度に非磁性金属層の膜厚を厚くし、かつ一方の強磁性層に接してFeMnなどの反強磁性層を配置して交換結合させることにより、強磁性層の磁気モーメントを固定し、他方の強磁性層のスピンのみを外部磁場で容易にスイッチできるようにした、いわゆるスピンバルブ膜が知られている。   On the other hand, in a metal sandwich film composed of a ferromagnetic layer / nonmagnetic layer / ferromagnetic layer in which a ferromagnetic layer is laminated via a nonmagnetic metal layer, the nonmagnetic metal layer has a degree of elimination of exchange coupling between the ferromagnetic layers. The magnetic moment of the ferromagnetic layer is fixed by increasing the film thickness and placing an antiferromagnetic layer such as FeMn in contact with one of the ferromagnetic layers to exchange-couple, and only the spin of the other ferromagnetic layer A so-called spin valve film is known which can be easily switched by an external magnetic field.

スピンバルブ膜では、2つの強磁性層間に交換結合がないため、小さな磁場でスピンをスイッチできるので、交換結合膜に比べて感度の高い磁気抵抗効果素子を提供でき、高密度磁気記録用再生ヘッドとして、現在実用化されている。更に、MRAMのメモリ素子としても開発がなされている。(特許文献1)
以上は膜面内に電流を流した場合の磁気抵抗効果であるが、膜面に垂直方向に電流を流す、いわゆる垂直磁気抵抗効果を利用すると、さらに大きな磁気抵抗効果が得られることも知られている。(特許文献2)
さらには、強磁性層/絶縁体層/強磁性層からなる3層膜において、外部磁場によって2つの強磁性層のスピンを互いに平行または反平行にすることにより、膜面垂直方向のトンネル電流の大きさが互いに異なることを利用した、強磁性トンネル接合による巨大磁気抵抗効果(TMR)も知られている。
Since the spin valve film has no exchange coupling between the two ferromagnetic layers, the spin can be switched with a small magnetic field, so that a magnetoresistive effect element having higher sensitivity than the exchange coupling film can be provided, and a read head for high-density magnetic recording As it is currently in practical use. Further, it has been developed as a memory element of MRAM. (Patent Document 1)
The above is the magnetoresistive effect when a current is passed through the film surface. However, it is also known that a larger magnetoresistive effect can be obtained by using a so-called perpendicular magnetoresistive effect in which a current is passed in the direction perpendicular to the film surface. ing. (Patent Document 2)
Furthermore, in a three-layer film consisting of a ferromagnetic layer / insulator layer / ferromagnetic layer, the spin current of the two ferromagnetic layers is made parallel or antiparallel to each other by an external magnetic field, so that the tunnel current in the direction perpendicular to the film surface is reduced. A giant magnetoresistive effect (TMR) by a ferromagnetic tunnel junction utilizing the fact that the sizes are different from each other is also known.

最近では、巨大磁気抵抗効果素子や、強磁性トンネル効果素子を磁気メモリ素子に利用することも研究されている。これらの素子を磁気メモリ装置に利用する場合には、これらの素子をマトリックス状に配置し、別に設けた配線に電流を流して磁界を印加し、各素子を構成する2つの磁性層を互いに平行または反平行に制御することにより、"1"、"0"を記録させる。読み出しはGMR効果またはTMR効果を利用して行う。(特許文献3)
また、電流パルスによる磁壁移動現象が報告されており、これは次のように考えられる。電流パルスを磁性体中に流すと、磁性体中の磁区の影響でスピン偏極電子が生成される。このスピン偏極電子が磁性体に注入されると、電子スピンが蓄積される効果と電子スピンが移動する効果が生じる。この2つの効果のためにスピン注入された磁性体中の電子スピンはスピン分極する。この分極したスピンが、磁壁まで移動されると磁壁で内部磁場が発生する。この内部磁場の効果により、磁壁移動が誘起されると考えられている。(非特許文献1)
特開平09−091951号公報 特開2000−228002号公報 特開2001−237472号公報 産業技術総合研究所ワークショップ(2003年6/3〜6/4)"スピントロニクスの新しい潮流"p20
Recently, the use of giant magnetoresistive elements and ferromagnetic tunnel effect elements as magnetic memory elements has also been studied. When these elements are used in a magnetic memory device, these elements are arranged in a matrix, and a magnetic field is applied by passing a current through a separately provided wiring, so that the two magnetic layers constituting each element are parallel to each other. Alternatively, “1” and “0” are recorded by controlling in antiparallel. Reading is performed using the GMR effect or the TMR effect. (Patent Document 3)
Moreover, the domain wall motion phenomenon by the current pulse has been reported, and this is considered as follows. When a current pulse is passed through the magnetic material, spin-polarized electrons are generated due to the influence of magnetic domains in the magnetic material. When the spin-polarized electrons are injected into the magnetic material, an effect of accumulating electron spin and an effect of moving electron spin are produced. Due to these two effects, the electron spin in the magnetic material spin-injected is spin-polarized. When this polarized spin is moved to the domain wall, an internal magnetic field is generated at the domain wall. It is considered that domain wall motion is induced by the effect of the internal magnetic field. (Non-Patent Document 1)
Japanese Patent Laid-Open No. 09-095151 JP 2000-228002 A JP 2001-237472 A National Institute of Advanced Industrial Science and Technology (June 3-6/4, 2003) "New trends in spintronics" p20

しかし、従来の磁気メモリ装置は、高密度記録化のために素子サイズを小さくすると膜面内方向の反磁界が大きくなる。このため、その反磁界に打ち勝って記録状態を安定化するためには、記録層の膜面内磁気異方性を大きくする必要がある。この場合、記録に要する電流磁界が大きくなり、配線に大きな電流を流す必要性が生じる。その結果、パワーの大きい電源を要するうえに、電流密度が大きくなりエレクトロマイグレーションが生じて配線が破断する場合が生じる等の問題があった。このような電流密度増大の傾向は、原理的に素子サイズが小さくなるほど大きくなる。このように、電流磁界誘起のみで選択的に記録を行なう方法では、微細化限界が生じることは避けることができない。   However, in the conventional magnetic memory device, the demagnetizing field in the in-film direction increases when the element size is reduced for high density recording. Therefore, in order to overcome the demagnetizing field and stabilize the recording state, it is necessary to increase the in-plane magnetic anisotropy of the recording layer. In this case, the current magnetic field required for recording becomes large, and it becomes necessary to flow a large current through the wiring. As a result, there is a problem that, in addition to requiring a power source with high power, the current density increases, electromigration occurs, and the wiring breaks. Such a tendency of increasing the current density increases in principle as the element size decreases. As described above, it is inevitable that the limit of miniaturization occurs in the method of selectively recording only by the induction of the current magnetic field.

本発明は、従来の方法とは異なる磁化反転方法であり、更にこの磁化反転方法を実現する磁気抵抗効果素子を提供することを目的とするものである。この磁気抵抗効果素子を用いた磁気メモリ装置は、情報記録に要するパワーを低減し、更に、素子サイズに依存しない情報記録方法を提供するものである。   The present invention is a magnetization reversal method different from the conventional method, and an object thereof is to provide a magnetoresistive effect element that realizes this magnetization reversal method. The magnetic memory device using this magnetoresistive effect element reduces the power required for information recording and further provides an information recording method independent of the element size.

上記課題を解決するために、本発明の磁気メモリ素子は中間層を介した、第1の磁性層と第2の磁性層を有する磁気抵抗効果素子部分の第二の磁性層の中間層界面での磁区が、他方の磁性層と平行又は反平行の磁化の向きを持つ部分を有する構成を特徴としている。   In order to solve the above-described problems, the magnetic memory element of the present invention has an intermediate layer interface at the intermediate layer interface of the second magnetic layer of the magnetoresistive effect element portion having the first magnetic layer and the second magnetic layer. This magnetic domain has a configuration having a portion having a magnetization direction parallel or antiparallel to the other magnetic layer.

また、本発明の固体磁気メモリは、前記磁気メモリ素子の磁壁領域を、電流や熱的な相互作用で移動させることで、第一の磁性層と第二の磁性層の中間層領域界面の磁化の向きの平行、反平行状態を制御することによって、メモリ機能を生じさせることを特徴とする。   In the solid-state magnetic memory of the present invention, the domain wall region of the magnetic memory element is moved by current or thermal interaction so that the magnetization of the interface between the first magnetic layer and the second magnetic layer is intermediate. The memory function is produced by controlling the parallel and anti-parallel states of the direction of the.

尚、
強磁性トンネル磁気抵抗素子では、中間層界面での磁性体のスピン偏極度が大きく磁気抵抗効果に寄与するため、メモリの読み出し信号である磁気抵抗比には、中間層界面近傍の磁化状態が最も大きく影響する。
still,
In the ferromagnetic tunnel magnetoresistive element, the spin polarization degree of the magnetic substance at the interface of the intermediate layer is large and contributes to the magnetoresistance effect. Therefore, the magnetization state near the interface of the intermediate layer is the most in the magnetoresistive ratio that is the read signal of the memory. A big influence.

すなわち、本発明による磁気抵抗効果素子では、磁壁の移動により、中間層界面に接触している磁性層領域の磁区が移動し、固定磁化層である第1の磁性層の磁化の向きと平行、反平行状態を形成し、情報記録ができるような構成になっている。   That is, in the magnetoresistive effect element according to the present invention, due to the movement of the domain wall, the magnetic domain in the magnetic layer region that is in contact with the interface of the intermediate layer moves, and is parallel to the magnetization direction of the first magnetic layer that is the fixed magnetization layer. An antiparallel state is formed so that information can be recorded.

また、磁壁が形成される磁性層領域を磁性細線とすることで、複数個のメモリ素子が集積した固体磁気メモリを形成することができる。半導体基板上にビット線と、磁性細線を交差するように配置し、それらの交点に中間層と固定磁化層となる磁性層を形成して記憶素子とする。磁性細線中の磁壁を磁性細線中に流す電流パルスとビット線に流した電流から誘起された磁界の両方を同時に素子に印加することで、選択的に素子の情報を記録することができる。   In addition, a solid magnetic memory in which a plurality of memory elements are integrated can be formed by forming the magnetic layer region in which the domain wall is formed as a magnetic thin wire. A bit line and a magnetic thin line are arranged on a semiconductor substrate so as to intersect with each other, and a magnetic layer serving as an intermediate layer and a fixed magnetization layer is formed at the intersection to form a memory element. Information on the element can be selectively recorded by simultaneously applying to the element both a current pulse flowing through the magnetic wall in the magnetic thin line and a magnetic field induced from the current flowing in the bit line.

さらに、磁性層中の磁壁移動させる方法は、非特許文献1に記載されているパルス電流あるいはパルス電流と電流磁界の組み合わせだけでなく、ヒーター素子などを用いて、熱的に磁壁移動現象を誘起させることも可能である。   Furthermore, the method of moving the domain wall in the magnetic layer is not only the pulse current or the combination of the pulse current and the current magnetic field described in Non-Patent Document 1, but also induces the domain wall movement phenomenon thermally using a heater element or the like. It is also possible to make it.

本発明は、従来にない新しいデータの高速書き込み方法を提供するもので、この結果高速アクセスが可能で、長期データ保存が可能な磁気固体メモリが提供できる。   The present invention provides an unprecedented new method for writing data at high speed. As a result, it is possible to provide a magnetic solid-state memory capable of high-speed access and capable of storing long-term data.

電流誘起磁界をほとんど用いずに、情報書き込みができるため、微細化による消費電流の増大を低減させる効果があり、低消費電力の固体磁気メモリが提供できる。   Since information can be written with little use of a current-induced magnetic field, there is an effect of reducing an increase in current consumption due to miniaturization, and a solid-state magnetic memory with low power consumption can be provided.

本発明の磁気メモリ素子は、情報の記録の機能を有する磁性膜内に、定常的に(少なくとも情報記録再生を行なうことが可能な状況下において)磁壁を有しており、該磁壁を移動させることによって、各記録単位(ビット)の記録層内の、磁化方向成分を右、左(もしくは上、下)のいずれかが支配的になるようにすることによって情報の記録を行なうものである。   The magnetic memory element of the present invention has a domain wall in a magnetic film having a function of recording information (in a situation where at least information recording / reproduction can be performed) and moves the domain wall. Thus, information is recorded by making the magnetization direction component in the recording layer of each recording unit (bit) dominant in either the right or left (or upper or lower).

したがって、基本的に記録層の磁化は反転することなく、その面積が磁壁の移動によって制御されることになる。   Therefore, the magnetization of the recording layer is basically not reversed, and the area is controlled by the movement of the domain wall.

このような磁気メモリ素子を用いた固体磁気メモリにおいては、メモリ素子の1ビットが少なくとも、磁壁と磁区により構成される磁性膜から成り、前記メモリ素子が行列状に配置されている。さらに、メモリ素子を構成する磁性層が電流磁界誘起型メモリの書き込み線を兼ねているため、配線を削減することが可能となり、メモリの構造が単純となり、周辺回路も簡便なものとなる。   In a solid-state magnetic memory using such a magnetic memory element, one bit of the memory element is composed of at least a magnetic film composed of domain walls and magnetic domains, and the memory elements are arranged in a matrix. Further, since the magnetic layer constituting the memory element also serves as the write line of the current magnetic field induction type memory, the wiring can be reduced, the structure of the memory becomes simple, and the peripheral circuit becomes simple.

磁壁の移動は磁性層の平坦さに関係しているため、素子を微細化しても、磁壁を移動させるパルス電流値、もしくは加熱温度が増大することはなく、微細化による書き込み電流密度の増大を招くこともない。   Since the movement of the domain wall is related to the flatness of the magnetic layer, even if the element is miniaturized, the pulse current value for moving the domain wall or the heating temperature does not increase, and the write current density is increased by the miniaturization. There is no invitation.

本発明の固体磁気メモリは、上述の磁気メモリ素子を複数個ビット線に接続し、複数の磁気メモリ素子から少なくとも1以上の磁気メモリ素子を選択する選択手段を有し、選択手段により選択された磁気メモリ素子の第二の磁性層に少なくともパルス電流および/または熱を印加する手段を有し、パルス電流および/または熱により第二の磁性層に選択的に情報を記録することができる。   The solid-state magnetic memory according to the present invention includes a selection unit that connects the above-described magnetic memory elements to a plurality of bit lines and selects at least one or more magnetic memory elements from the plurality of magnetic memory elements. It has means for applying at least a pulse current and / or heat to the second magnetic layer of the magnetic memory element, and information can be selectively recorded on the second magnetic layer by the pulse current and / or heat.

以下、本発明を具体的な実施例に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on specific examples.

<第1の実施例>
まず、本発明のメモリの一実施例を図に基づいて説明する。図1は、本実施例の固体磁気メモリの概念を説明するための図であり、図2は図1の磁気メモリ素子領域の斜視図である。
<First embodiment>
First, an embodiment of a memory according to the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining the concept of the solid-state magnetic memory of this embodiment, and FIG. 2 is a perspective view of the magnetic memory element region of FIG.

図1に示す固体磁気メモリは、第1の実施例では、少なくとも固定磁化層となる第一の磁性層1、中間層2、磁壁と磁区を持つ第二の磁性層3、素子読み出し時の選択トランジスタ8と接合されているプラグ電極4、磁壁と磁区が形成されている磁性層3を主体として形成された配線5、ビット線6、選択トランジスタの駆動を制御するデータ線7とを含んでいる。   In the first embodiment, the solid-state magnetic memory shown in FIG. 1 has at least a first magnetic layer 1 and an intermediate layer 2, which are fixed magnetic layers, a second magnetic layer 3 having a domain wall and a magnetic domain, and selection at the time of reading an element. It includes a plug electrode 4 joined to the transistor 8, a wiring 5 formed mainly of a magnetic layer 3 in which a domain wall and a magnetic domain are formed, a bit line 6, and a data line 7 for controlling driving of the selection transistor. .

固体磁気メモリは、磁壁と磁区が形成されている磁性層3を主体として形成された配線5の磁性層3上に磁性層3よりも狭く、磁性層3の配線5と接続される両端が露出するように磁性層3上に形成された中間層2および上部磁性層1と磁性層3の該中間層が形成された面と対向する面に、中間層2と対向して形成されたプラグ電極4とを有している。更に、上部磁性層1はビット線6と接続され、プラグ電極4は素子読み出し選択トランジスタ8の電極の一端に接続され、素子読み出し選択トランジスタ8のゲート電極はデータ線7に接続されている。   The solid magnetic memory is narrower than the magnetic layer 3 on the magnetic layer 3 of the wiring 5 formed mainly of the magnetic layer 3 in which the domain wall and the magnetic domain are formed, and both ends connected to the wiring 5 of the magnetic layer 3 are exposed. Thus, the plug electrode formed on the surface of the intermediate layer 2 formed on the magnetic layer 3 and on the surface of the upper magnetic layer 1 and the magnetic layer 3 facing the surface on which the intermediate layer is formed, facing the intermediate layer 2. 4. Further, the upper magnetic layer 1 is connected to the bit line 6, the plug electrode 4 is connected to one end of the electrode of the element read selection transistor 8, and the gate electrode of the element read selection transistor 8 is connected to the data line 7.

図2は、図1のメモリ素子領域12の拡大斜視図で、第1の実施例では磁壁と磁区とをもつ磁性層3は、平行又は反平行に磁化の向きが揃った磁区領域10と磁区を隔てる磁壁領域9で構成されている。   FIG. 2 is an enlarged perspective view of the memory element region 12 of FIG. 1. In the first embodiment, the magnetic layer 3 having a domain wall and a magnetic domain has a magnetic domain region 10 and a magnetic domain in which the directions of magnetization are aligned in parallel or antiparallel. It is comprised by the domain wall area | region 9 which separates.

メモリ素子領域12に形成される磁気メモリ素子は、図2に示されるように、磁壁と磁区が形成されている磁性層3を主体として形成された配線5の磁性層3上に磁性層3よりも狭く、磁性層3の配線5と接続される両端が露出するように磁性層3上に形成された中間層2および上部磁性層1と磁性層3の該中間層が形成された面と対向する面に、中間層2と対向して形成されたプラグ電極4とを有し、磁性層3は、平行又は反平行に磁化の向きが揃った磁区領域10と磁区を隔てる磁壁領域9で構成されている。尚、本実施例では、上部磁性層1は、中間層2と対向する面でビット線6と接しているが、ビット線6と上部磁性層1とは接続プラグを介して接続されていても良いことはいうまでもない。   As shown in FIG. 2, the magnetic memory element formed in the memory element region 12 is formed on the magnetic layer 3 of the wiring 5 formed mainly by the magnetic layer 3 in which the domain wall and the magnetic domain are formed. Also, the intermediate layer 2 formed on the magnetic layer 3 so that both ends connected to the wiring 5 of the magnetic layer 3 are exposed, and the surface of the upper magnetic layer 1 and the magnetic layer 3 on which the intermediate layer is formed are opposed to each other. The magnetic layer 3 has a domain wall region 9 that separates the magnetic domain from a magnetic domain region 10 having a parallel or anti-parallel magnetization direction, and a plug electrode 4 formed on the surface to be opposed to the intermediate layer 2. Has been. In this embodiment, the upper magnetic layer 1 is in contact with the bit line 6 on the surface facing the intermediate layer 2, but the bit line 6 and the upper magnetic layer 1 may be connected via a connection plug. It goes without saying that it is good.

図3は、磁気メモリ素子を行列状に配した5×5ビットの固体磁気メモリの構成を説明するための上面概念図である。   FIG. 3 is a top conceptual view for explaining the configuration of a 5 × 5 bit solid magnetic memory in which magnetic memory elements are arranged in a matrix.

図3に示されるように、本実施例の固体磁気メモリは、互いに直交する書き込み線5とビット線6との間に形成される磁気メモリ素子を含むメモリ素子領域12と書き込み線の両端に形成された選択する書き込み線選択トランジスタ11を含み、書き込み線5には磁区10が形成されている。   As shown in FIG. 3, the solid-state magnetic memory of this embodiment is formed at both ends of a memory element region 12 including a magnetic memory element formed between a write line 5 and a bit line 6 orthogonal to each other and the write line. A magnetic domain 10 is formed in the write line 5 including the selected write line selection transistor 11.

選択された書き込み線5にパルス電流を流すためのスイッチ素子である書き込み線選択トランジスタ11をオンにすることで電源(不図示)から書き込み線5にパルス電流を印加する。図示していないが、ビット線6の両端にもビット線を選択するスイッチング素子であるビット線選択トランジスタが形成され、ビット線6を選択する際にビット線選択トランジスタをオンにしてビット線に電流を印加している。   A pulse current is applied to the write line 5 from a power source (not shown) by turning on the write line selection transistor 11 which is a switch element for causing a pulse current to flow through the selected write line 5. Although not shown, a bit line selection transistor, which is a switching element for selecting a bit line, is formed at both ends of the bit line 6, and when the bit line 6 is selected, the bit line selection transistor is turned on to supply current to the bit line. Is applied.

図3では書き込み線5全体が磁壁と磁区とを持つ磁性層3で形成されているが、メモリ素子領域12にのみ磁性層3を形成し配線で磁性層3を接続することもできることはいうまでもない。   In FIG. 3, the entire write line 5 is formed of the magnetic layer 3 having domain walls and magnetic domains. However, it goes without saying that the magnetic layer 3 can be formed only in the memory element region 12 and the magnetic layer 3 can be connected by wiring. Nor.

図4は、図2の磁気メモリ素子の記録状態を示す図である。   FIG. 4 is a diagram showing a recording state of the magnetic memory element of FIG.

磁気メモリ素子の固定磁化層である上部磁性層1の磁化の向き13と、磁性層3の磁区領域の磁化の向き10とが平行の場合(図4(a))の状態を「0」、反平行の場合(図4(b))を「1」としている。   When the magnetization direction 13 of the upper magnetic layer 1 which is a fixed magnetization layer of the magnetic memory element and the magnetization direction 10 of the magnetic domain region of the magnetic layer 3 are parallel (FIG. 4A), the state is “0”. The antiparallel case (FIG. 4B) is set to “1”.

本実施例では、上部磁性層1および磁性層3を形成する磁性膜は、膜面垂直方向に異方性を有し、さらに情報記録の機能を有するメモリ領域となる磁性層3内には、磁壁と磁区が形成されている。外部より印加磁界がない場合、第一の磁性層の磁化の向き13及び、磁化の向きが揃った磁区領域10は、磁壁が静止状態となるため、図4(a)あるいは図4(b)に示された状態になる。   In the present embodiment, the magnetic film forming the upper magnetic layer 1 and the magnetic layer 3 has anisotropy in the direction perpendicular to the film surface, and further in the magnetic layer 3 serving as a memory region having an information recording function, Domain walls and magnetic domains are formed. When there is no externally applied magnetic field, the magnetization direction 13 of the first magnetic layer and the magnetic domain region 10 in which the magnetization directions are aligned are in a stationary state, and therefore FIG. 4A or FIG. It will be in the state shown in.

図4(a)の「0」の場合、上部磁性層1および磁性層3(第1、2の磁性層)の磁化方向が平行となり抵抗が低く、図4(b)の「1」の場合、上部磁性層1および磁性層3(第1、2の磁性層)の磁化方向が反平行となり抵抗が高い。本実施例の磁気メモリ素子は1素子が、図4(a)、(b)の2つの状態をもつために1素子で1ビットを記録することができる。なお、図4においては、磁性層3(第2の磁性層)は、全ての磁区が上向きもしくは下向きとなっているが、少なくとも、磁性層3の中間層2と接する領域の半分以上の磁区が、情報に対応する磁化の向きを有していればよい。   In the case of “0” in FIG. 4A, the magnetization directions of the upper magnetic layer 1 and the magnetic layer 3 (first and second magnetic layers) are parallel and the resistance is low, and in the case of “1” in FIG. The magnetization directions of the upper magnetic layer 1 and the magnetic layer 3 (first and second magnetic layers) are antiparallel and have high resistance. Since one element of the magnetic memory element of this embodiment has the two states shown in FIGS. 4A and 4B, one element can record 1 bit. In FIG. 4, the magnetic layer 3 (second magnetic layer) has all the magnetic domains facing upward or downward, but at least half of the magnetic domain 3 in the region in contact with the intermediate layer 2 is present. It is only necessary to have a magnetization direction corresponding to the information.

次に、磁気メモリ素子の記録動作について図5を用いて説明する。   Next, the recording operation of the magnetic memory element will be described with reference to FIG.

図5では初期状態が図4(b)に示す「1」の状態を「0」の状態に変化する場合について説明する。   FIG. 5 illustrates a case where the initial state changes from the state “1” shown in FIG. 4B to the state “0”.

初期状態は、図4(b)示したい状態である。図4(b)の状態の磁性層3に補助記録電流15をビット線16に、記録電流14を書き込み線5に印加し、中間層2と接する磁性層3の磁化を反転させる動作について説明する。図5に示すように、磁気メモリ素子の書き込み線5内の磁壁と磁区を持つ磁性層3に10MHz〜100MHz、1×10-3〜1×10-1mAの記録電流14を磁化方向が上向きになる方向に流すと、磁壁移動が発生する。電流値を、磁壁移動が発生する電流値よりもやや低めの8×10-4〜8×10-2mAに設定し、さらに、同時にビット線6に情報の記録の補助となる補助記録電流14を書き込み線5内の磁壁と磁区を持つ磁性層3に上向きの磁界が発生する方向に1×10-4〜1×10-3mA印加し、弱い電流誘起磁界をメモリ素子に印加させると、選択されたメモリ素子の磁壁だけが移動する。この結果、選択されたメモリ素子の初期状態で中間層界面に接していた磁壁と磁区を持つ磁性層内での磁区が、移動し、図4(a)に示す異なる磁化の方向を持つ磁区が中間層界面に接することになる。 The initial state is a state desired to be shown in FIG. The operation of reversing the magnetization of the magnetic layer 3 in contact with the intermediate layer 2 by applying the auxiliary recording current 15 to the bit line 16 and the recording current 14 to the write line 5 in the magnetic layer 3 in the state of FIG. . As shown in FIG. 5, a recording current 14 of 10 MHz to 100 MHz, 1 × 10 −3 to 1 × 10 −1 mA is applied upward to the magnetic layer 3 having a domain wall and a magnetic domain in the write line 5 of the magnetic memory element. When it is made to flow in the direction, the domain wall movement occurs. The current value is set to 8 × 10 −4 to 8 × 10 −2 mA, which is slightly lower than the current value at which the domain wall motion occurs, and at the same time, the auxiliary recording current 14 that assists the recording of information on the bit line 6. 1 × 10 −4 to 1 × 10 −3 mA is applied to the magnetic layer 3 having a domain wall and a magnetic domain in the write line 5 in a direction in which an upward magnetic field is generated, and a weak current-induced magnetic field is applied to the memory element. Only the domain wall of the selected memory element moves. As a result, the magnetic domain in the magnetic layer having the domain wall and the magnetic domain that was in contact with the interface of the intermediate layer in the initial state of the selected memory element moves, and the magnetic domain having different magnetization directions shown in FIG. It will be in contact with the interface of the intermediate layer.

記録電流14および補助記録電流15の方向は、記録状態をビット「1」から「0」にする場合と、「0」から「1」にする場合では逆方向に流す。電流の流した方向に磁壁移動が生じる。同図では、ビット「1」を「0」にする場合を示している。   The directions of the recording current 14 and the auxiliary recording current 15 flow in opposite directions when the recording state is changed from “1” to “0” and when “0” is changed to “1”. Domain wall movement occurs in the direction in which the current flows. In the figure, a case where bit “1” is set to “0” is shown.

尚、記録動作時は、選択したメモリ素子が接続しているビット線6及び磁区と磁壁が形成された磁性層3を含む書き込み線5に接続されている選択トランジスタ11及びビット線のオン/オフを制御する選択トランジスタ(不図示)はオン状態にする。   During the recording operation, the bit line 6 to which the selected memory element is connected and the selection transistor 11 and the bit line connected to the write line 5 including the magnetic layer 3 in which magnetic domains and domain walls are formed are turned on / off. A selection transistor (not shown) for controlling is turned on.

この記録過程は消去過程がない重ね書き記録である。   This recording process is an overwriting recording without an erasing process.

なお説明を簡単にするために、上記記録過程においてメモリ素子12に印加する補助記録電流15は直流電流を印加する説明になっているが、パルス電流を用いることができることはいうまでもない。補助記録電流15にパルス電流を用いる場合、図5(a)のA点での記録電流14と図5(a)のB点での補助記録電流15とのタイミングチャートを図5(b)に示す。図5(b)では、補助記録電流が先にB点に達するタイミングとなっているが、記録電流14により磁壁が移動するタイミングで補助記録電流15印加されていれば良く、記録電流14が先にA点に到達するタイミングであっても構わない。磁壁の移動を考慮すると、記録電流と補助記録電流のパルスが1ns以上オーバーラップしていれば良いが、同一タイミングで印加されることが好ましい。   In order to simplify the explanation, the auxiliary recording current 15 applied to the memory element 12 in the recording process is described as applying a direct current, but it goes without saying that a pulse current can be used. When a pulse current is used as the auxiliary recording current 15, a timing chart of the recording current 14 at the point A in FIG. 5A and the auxiliary recording current 15 at the point B in FIG. 5A is shown in FIG. Show. In FIG. 5B, the auxiliary recording current reaches the point B first. However, it is sufficient that the auxiliary recording current 15 is applied at the timing when the domain wall is moved by the recording current 14. It may be the timing when the point A is reached. Considering the movement of the domain wall, it is sufficient that the pulses of the recording current and the auxiliary recording current overlap by 1 ns or more, but it is preferable to apply them at the same timing.

また、ビット線6に補助記録電流15を流さなくても記録電流だけで記録は可能である。ただし、行列状に配置されたメモリ素子の中から、1つのメモリを選択するときは、記録電流と、ビット線を併用した方が好ましいが、ビット線に流す補助記録電流15の電流値は読み出し時の電流値と同程度で良く、電流磁界誘起のみで情報の記録を行なう場合に比べて大幅に消費電流を削減することが可能となる。   Further, even if the auxiliary recording current 15 is not supplied to the bit line 6, recording can be performed only with the recording current. However, when one memory is selected from the memory elements arranged in a matrix, it is preferable to use a recording current and a bit line together. However, the current value of the auxiliary recording current 15 flowing through the bit line is read out. The current value may be approximately the same as the current value at the time, and the current consumption can be significantly reduced as compared with the case where information recording is performed only by induction of the current magnetic field.

つぎに磁気メモリ素子に記録された記録状態の読出し方法について説明する。   Next, a method for reading the recorded state recorded in the magnetic memory element will be described.

図6は、読み出し過程を説明するための磁気メモリの回路構成の概念を示す回路図である。   FIG. 6 is a circuit diagram showing the concept of the circuit configuration of the magnetic memory for explaining the reading process.

図6(a)は、磁気メモリ素子構成とそれに対応する記号を示す図で、図6(b)は2×2ビットの固体磁気メモリの回路図を示している。   FIG. 6A is a diagram showing a magnetic memory element configuration and a symbol corresponding thereto, and FIG. 6B is a circuit diagram of a 2 × 2 bit solid magnetic memory.

磁気メモリ素子は、磁壁と磁区とを持つ磁性薄膜3に対向して形成されたプラグ電極4と中間層2と上部磁性層1とからなり、上部磁性層に上部端子30が形成され、磁壁と磁区とを持つ磁性薄膜3に第1の端子、第2の端子が形成され、プラグ電極4にプラグ端子33が形成されている。   The magnetic memory element includes a plug electrode 4 formed opposite to a magnetic thin film 3 having a domain wall and a magnetic domain, an intermediate layer 2 and an upper magnetic layer 1, and an upper terminal 30 is formed on the upper magnetic layer. A first terminal and a second terminal are formed on the magnetic thin film 3 having magnetic domains, and a plug terminal 33 is formed on the plug electrode 4.

図6(b)は単位セルが2×2ビットの固体磁気メモリの回路図は、ビット線6及びビット線6の両端に形成されたビット線選択トランジスタ19、書き込み線5及び書き込み線5の両端に形成された書き込み線選択トランジスタ11、読み出し素子選択線26と読み出し素子選択線26にゲートが接続され一端が磁気メモリ素子のプラグ端子33に接続され他端がワード線18に接続された読み出し素子選択トランジスタ及びメモリ素子とからなっている。メモリ素子は、書き込み線5の両端に形成された書き込み線選択トランジスタに第1の端子32および第2の端子書33を介して直列に接続されている。   FIG. 6B is a circuit diagram of a solid-state magnetic memory having a unit cell of 2 × 2 bits. A bit line selection transistor 19 formed at both ends of the bit line 6 and the bit line 6, a write line 5, and both ends of the write line 5 are shown in FIG. A read element in which a gate is connected to the write line selection transistor 11, the read element selection line 26, and the read element selection line 26, one end is connected to the plug terminal 33 of the magnetic memory element, and the other end is connected to the word line 18. It consists of a selection transistor and a memory element. The memory element is connected in series to the write line selection transistors formed at both ends of the write line 5 via the first terminal 32 and the second terminal book 33.

ビット線選択トランジスタ19は図示しないビット線選択回路とゲートで接続し、一端が書き込み線5と接続している。ビット線選択トランジスタ19の他端は、図示しない隣接する他の単位セルのビット線6と接続している。   The bit line selection transistor 19 is connected to a bit line selection circuit (not shown) through a gate, and one end is connected to the write line 5. The other end of the bit line selection transistor 19 is connected to the bit line 6 of another adjacent unit cell (not shown).

書き込み線選択トランジスタ11は図示しない書き込み線選択回路とゲートで接続され、一端が書き込み線5と接続されている。書き込み線選択トランジスタ11の他端は、図示しない隣接する他の単位セルの書き込み線5と接続されている。   The write line selection transistor 11 is connected to a write line selection circuit (not shown) through a gate, and one end is connected to the write line 5. The other end of the write line selection transistor 11 is connected to a write line 5 of another adjacent unit cell (not shown).

磁気メモリ素子に記録された記録状態の読出し方法は、選択された磁気素子が接続されているビット線の両端のビット線選択トランジスタ19と選択された磁気メモリ素子に接続された読み出し素子選択トランジスタ11とをオンにし、他の選択トランジスタを全てオフにする。   The method for reading the recorded state recorded in the magnetic memory element is as follows: the bit line selection transistor 19 at both ends of the bit line to which the selected magnetic element is connected and the read element selection transistor 11 connected to the selected magnetic memory element. Are turned on and all other selection transistors are turned off.

この結果、選択された磁気メモリ素子の上部端子30とプラグ端子33の間に電流が流れる。メモリ素子の上部磁性層1と該上部磁性層1に対向する磁壁と磁区とを持つ磁性薄膜3との磁化が平行であれば、トンネル電流は小さく、反平行であれば、大きくなるような磁気抵抗効果を示すため、読み出しを選択したメモリ素子の記録状態を読み出すことができる。実際は、ビット線に接続された図示していないセンスアンプと、参照素子の抵抗値を比較して「0」、「1」を判別することができる。   As a result, a current flows between the upper terminal 30 and the plug terminal 33 of the selected magnetic memory element. If the magnetization of the upper magnetic layer 1 of the memory element and the magnetic thin film 3 having a domain wall and a magnetic domain facing the upper magnetic layer 1 are parallel, the tunnel current is small, and if the magnetization is antiparallel, the magnetic field is large. Since the resistance effect is shown, the recording state of the memory element selected to be read can be read. Actually, it is possible to determine “0” or “1” by comparing the resistance value of the reference element with a sense amplifier (not shown) connected to the bit line.

本実施例の固体磁気メモリは、スイッチング素子は、シリコン基板であれば通常のCMOSプロセスを用い、基板がガラス基板であれば、高温ポリシリコンプロセスあるいは低温ポリシリコンプロセスを適用することで製造することができ、磁気メモリ素子の磁性薄膜は、希土類金属、遷移金属合金などの磁性薄膜を、10〜500nmの膜厚でスパッタ成膜したものであり、中間層は、Al23等の絶縁膜を0.5nm〜5nm程度に成膜し、酸化処理を施すことで製造することができる。 The solid-state magnetic memory of this embodiment is manufactured by applying a normal CMOS process if the switching element is a silicon substrate, and applying a high-temperature polysilicon process or a low-temperature polysilicon process if the substrate is a glass substrate. The magnetic thin film of the magnetic memory element is formed by sputtering a thin magnetic film of rare earth metal, transition metal alloy or the like with a thickness of 10 to 500 nm, and the intermediate layer is an insulating film such as Al 2 O 3 Can be manufactured by forming a film of approximately 0.5 nm to 5 nm and subjecting it to an oxidation treatment.

尚、上部磁性層(TbFe)、中間層(Al23)の寸法は、0.1×0.1μm、プラグ電極は、アルミ合金で寸法が0.1×0.1μm、厚さ200nm、磁壁と磁区とを持つ磁性薄膜3(GdFe)は、寸法0.1×20μmであり、ビット線・ワード線等の配線はアルミ合金で、幅0.1μm、厚さ1μmで製造した。 The dimensions of the upper magnetic layer (TbFe) and the intermediate layer (Al 2 O 3 ) are 0.1 × 0.1 μm, the plug electrode is an aluminum alloy, the dimensions are 0.1 × 0.1 μm, the thickness is 200 nm The magnetic thin film 3 (GdFe) having a domain wall and a magnetic domain has a size of 0.1 × 20 μm, and wirings such as bit lines and word lines are made of an aluminum alloy with a width of 0.1 μm and a thickness of 1 μm.

本実施例では、磁性膜として、希土類金属と遷移金属の合金膜をスパッタ成膜したものを用いているが、この磁性膜の機能として、磁壁と磁区を形成できることが必要であって、それを満たす磁性膜であれば、いかなる材料でも良い。また、中間層として、Al23膜を用いているが、この絶縁膜の機能として、トンネル効果が生じる必要があって、それを満たす絶縁膜であれば、いかなる絶縁膜でも良い。 In this embodiment, a magnetic film formed by sputtering an alloy film of a rare earth metal and a transition metal is used. However, as a function of this magnetic film, it is necessary to be able to form a domain wall and a magnetic domain. Any material may be used as long as it satisfies the magnetic film. Further, although an Al 2 O 3 film is used as the intermediate layer, any insulating film may be used as long as a tunnel effect needs to be generated as a function of the insulating film and the insulating film satisfies the tunnel effect.

したがって、本発明では、Tb,Gd、Dy、などの希土類金属とFe,Co,Mn等の磁性薄膜をスパッタ成膜させて、例えば、10nm〜1μm程度の厚さの膜とするか、または蒸着等で、磁気異方性を誘発させるなどして、前記条件を満足させる磁性膜として用いることができる。成膜方法については、スパッタなどの物理的蒸着方法、CVDなどの化学的蒸着方法のいずれの方法も用いることができる。   Therefore, in the present invention, a rare earth metal such as Tb, Gd, and Dy and a magnetic thin film such as Fe, Co, and Mn are formed by sputtering to form a film having a thickness of, for example, about 10 nm to 1 μm, or vapor deposition. The magnetic film can be used as a magnetic film that satisfies the above conditions by, for example, inducing magnetic anisotropy. As the film forming method, any of a physical vapor deposition method such as sputtering and a chemical vapor deposition method such as CVD can be used.

前述の説明では、メモリセルの構成を5×5ビットあるいは2×2ビットとした例を用いて説明したが、ビット構成は全くの任意であり、ビット数もメガビット、ギガビットのレベルであったほうが好ましい。   In the above description, the configuration of the memory cell is described using an example in which the configuration is 5 × 5 bits or 2 × 2 bits. However, the bit configuration is completely arbitrary, and the number of bits should be a megabit or gigabit level. preferable.

また、比較電圧の発生回路であるセンスアンプの動作は、比較用メモリ素子より発生する電圧等により行うことができるし、抵抗間電圧を用いるなど、他の方法であっても同様の効果を得ることができる。
<実施例2>
実施例2は、熱勾配を形成することで磁壁移動する固体磁気メモリを実現したものである。
In addition, the operation of the sense amplifier, which is a circuit for generating a comparison voltage, can be performed by a voltage generated from a comparison memory element or the like, and the same effect can be obtained by other methods such as using a voltage between resistors. be able to.
<Example 2>
The second embodiment realizes a solid-state magnetic memory that moves a domain wall by forming a thermal gradient.

実施例1は、パルス電流と、電流誘起磁界により磁壁移動を生じさせる例について示したが、本実施例は、ヒーター素子からの熱勾配による磁壁移動によるメモリを実現したものである。   Although Example 1 showed about the example which produces a domain wall movement by a pulse current and a current induced magnetic field, this Example implement | achieves the memory by the domain wall movement by the thermal gradient from a heater element.

本実施例の磁気メモリ素子の構成は、図4で説明した磁気メモリ素子のプラグ電極を挟んで対向するようにヒーターを設けたものである。   The configuration of the magnetic memory element of this embodiment is such that a heater is provided so as to face each other with the plug electrode of the magnetic memory element described with reference to FIG.

本実施例の磁気メモリ素子の概略構成を、図7を用いて説明する。   A schematic configuration of the magnetic memory element of this embodiment will be described with reference to FIG.

磁壁と磁区とを持つ磁性薄膜3上に中間層2と上部磁性層1との積層膜が形成され、磁壁と磁区とを持つ磁性薄膜3の該積層層が形成されている面と対向する面にプラグ電極4が形成されている。磁壁と磁区とを持つ磁性薄膜3のプラグ電極4が形成されている面に、プラグ電極4を挟んで磁壁移動を制御するためのヒーター素子20が2個所形成されている。ヒーター素子20は、磁壁と磁区とを持つ磁性薄膜3上に絶縁膜(不図示)を介して形成されている。固体磁気メモリは、少なくともこの磁気メモリ素子の上部磁性層と接続するビット線6を有し、ヒーター素子20は、ヒーター素子20に一端が接続され、ゲート端子がヒーター素子選択線22に接続され、他端が電源回路に接続されたヒーター素子選択トランジスタを有している。ヒーター材としては、TaSiN等の金属窒化珪化物が熱効率も高く好ましい。   A laminated film of the intermediate layer 2 and the upper magnetic layer 1 is formed on the magnetic thin film 3 having a domain wall and a magnetic domain, and a surface facing the surface on which the laminated layer of the magnetic thin film 3 having a domain wall and a magnetic domain is formed. A plug electrode 4 is formed on the surface. Two heater elements 20 for controlling the domain wall movement are formed on the surface of the magnetic thin film 3 having the domain wall and the magnetic domain 3 on which the plug electrode 4 is formed. The heater element 20 is formed on the magnetic thin film 3 having a domain wall and a magnetic domain via an insulating film (not shown). The solid-state magnetic memory has at least a bit line 6 connected to the upper magnetic layer of the magnetic memory element. The heater element 20 has one end connected to the heater element 20 and a gate terminal connected to the heater element selection line 22. A heater element selection transistor having the other end connected to the power supply circuit is provided. As the heater material, a metal nitride silicide such as TaSiN is preferable because of its high thermal efficiency.

2つのヒーター素子20のどちらか一方のヒーター素子に電流を流して、磁性細線を部分的に昇温させることにより、磁壁と磁区とを持つ磁性薄膜3に温度勾配を設けることで磁壁移動を誘起して、情報記録を行う。   By causing a current to flow through one of the two heater elements 20 to partially raise the temperature of the magnetic thin wire, a magnetic gradient is induced in the magnetic thin film 3 having domain walls and magnetic domains, thereby inducing domain wall movement. Then, information recording is performed.

磁壁移動を誘起させる磁性膜は、磁壁が移動しないように磁壁抗磁力の高いTb系材料と、交換結合を生じさせる反強磁性層と磁壁移動を行うためにTb系材料に比べ磁壁抗磁力の低いGd系材料との3層構造になっている。ヒーターからの温度がTb系材料のCurie温度Tc以下の領域において、Tb系材料の磁壁がGd系材料に転写されている.これら3層は交換結合しているため磁壁は移動できない。ヒーターからの温度がTcに差し掛かったとき、3層間の交換結合が切断される。磁壁移動する磁性層内では、ヒーター加熱により温度勾配が生じており、高温の方が、磁壁エネルギーが低いため、高温側へGd系材料の磁壁が移動する。その後、ヒーターをオフにし、Tc以下に温度が下がると、交換結合により、磁壁が固定される。情報を書き換える場合は、反対側のヒーターを同様に加熱、冷却させると、情報の書き換えを行うことができる。   The magnetic film that induces the domain wall movement has a domain wall coercive force that is higher than that of a Tb-based material in order to perform domain wall movement with a Tb-based material having a high domain wall coercive force so that the domain wall does not move and an antiferromagnetic layer that causes exchange coupling. It has a three-layer structure with a low Gd-based material. In the region where the temperature from the heater is equal to or lower than the Curie temperature Tc of the Tb material, the domain wall of the Tb material is transferred to the Gd material. Since these three layers are exchange coupled, the domain wall cannot move. When the temperature from the heater reaches Tc, the exchange coupling between the three layers is broken. In the magnetic layer that moves the domain wall, a temperature gradient is generated by heating the heater, and the magnetic wall energy of the Gd-based material moves to the higher temperature side because the domain wall energy is lower at higher temperatures. Thereafter, when the heater is turned off and the temperature falls below Tc, the domain wall is fixed by exchange coupling. In the case of rewriting information, the information can be rewritten by heating and cooling the heater on the opposite side in the same manner.

なお、ヒーター加熱による温度勾配は、ヒーター直上で最高温度を持てば良く、隣接する素子のTcを超えない程度まで昇温可能である。   In addition, the temperature gradient by heater heating should just have the maximum temperature just above a heater, and can raise temperature to the grade which does not exceed Tc of an adjacent element.

以下に書き込み動作を説明する。   The write operation will be described below.

ヒーター素子選択トランジスタ21は、ヒーター素子20に通電、遮電するためのトランジスタで、ヒーター素子選択線22信号によりオン/オフが制御される。第二の磁性層3は、第一の磁性層1と中間層界面を介して接触し、またヒーター素子20とは熱的に結合している。   The heater element selection transistor 21 is a transistor for energizing and interrupting the heater element 20 and is controlled to be turned on / off by a heater element selection line 22 signal. The second magnetic layer 3 is in contact with the first magnetic layer 1 via the intermediate layer interface, and is thermally coupled to the heater element 20.

ヒーター素子選択トランジスタ21のゲート端子に接続されたヒーター素子選択線22の信号(電圧)により、ヒーター素子20に通電され、磁壁と磁区を持つ磁性薄膜3が部分的に加熱される。   The heater element 20 is energized by the signal (voltage) of the heater element selection line 22 connected to the gate terminal of the heater element selection transistor 21, and the magnetic thin film 3 having a domain wall and a magnetic domain is partially heated.

第二の磁性層3は、初期状態として、膜面に垂直方向に一様に磁化されている磁区により構成されている。図7に示すメモリセル領域には、情報"0"、"1"が記録される。記録状態は、図4で説明したように、第一の磁性層1の磁化方向と、第二の磁性層3内の中間層界面と接触している磁区部分の磁化の方向とが、平行か、反平行かによって判別され、本実施例も実施例1と同様に、平行状態を「0」、反平行状態を「1」とした。データを書き込む場合、いずれかのいずれかのヒーター素子選択線22に信号を入力し、一方のヒーター素子選択トランジスタ21をオン状態にする。これにより、該ヒーター素子選択トランジスタに接続されたヒーター素子20が加熱され、加熱されたヒーター素子20と熱的に結合している第二の磁性層3の一部分の温度が上昇し、加熱された第二の磁性層3近傍の磁壁が、磁壁のエネルギーが小さくなる高い温度領域に移動することで、中間層2の界面上の磁性の磁区領域を移動させることができる。具体的にはヒーター素子を200〜600℃まで上昇させ図7(b)に示す温度勾配を設ける。   As an initial state, the second magnetic layer 3 is composed of magnetic domains that are uniformly magnetized in the direction perpendicular to the film surface. Information “0” and “1” are recorded in the memory cell area shown in FIG. As described with reference to FIG. 4, the recording state is that the magnetization direction of the first magnetic layer 1 is parallel to the magnetization direction of the magnetic domain portion in contact with the intermediate layer interface in the second magnetic layer 3. In this embodiment, the parallel state is set to “0” and the anti-parallel state is set to “1”. When writing data, a signal is input to any one of the heater element selection lines 22, and one heater element selection transistor 21 is turned on. As a result, the heater element 20 connected to the heater element selection transistor is heated, and the temperature of a part of the second magnetic layer 3 thermally coupled to the heated heater element 20 is increased and heated. The magnetic domain region on the interface of the intermediate layer 2 can be moved by moving the domain wall near the second magnetic layer 3 to a high temperature region where the energy of the domain wall is small. Specifically, the heater element is raised to 200 to 600 ° C. to provide a temperature gradient shown in FIG.

上記説明と逆の方向に磁化させる場合は、逆のヒーター素子を選択することで記録することができる。   When magnetizing in the direction opposite to that described above, recording can be performed by selecting the reverse heater element.

この記録過程は、消去過程がない重ね書き記録である。   This recording process is an overwriting recording without an erasing process.

磁性メモリ素子・配線等の寸法や材料は実施例1と同様である。   The dimensions and materials of the magnetic memory element and wiring are the same as those in the first embodiment.

つぎに読み出し方法について説明する。図8に図6の記録状態のメモリ素子のワード線24に読出し電流を流したときの再生過程の図を示す。   Next, a reading method will be described. FIG. 8 shows a reproduction process when a read current is supplied to the word line 24 of the memory element in the recording state shown in FIG.

図8は、読み出し過程を説明するための固体磁気メモリの回路構成の概念を示す回路図である。   FIG. 8 is a circuit diagram showing the concept of the circuit configuration of the solid-state magnetic memory for explaining the reading process.

図8(a)は、磁気メモリ素子構成とそれに対応する記号を示す図で、図8(b)は2×2ビットの固体磁気メモリの回路図を示している。   FIG. 8A is a diagram showing a magnetic memory element configuration and symbols corresponding thereto, and FIG. 8B is a circuit diagram of a 2 × 2 bit solid magnetic memory.

磁気メモリ素子は、磁壁と磁区とを持つ磁性薄膜3に対向して形成されたプラグ電極4と中間層2と上部磁性層1とからなり、上部磁性層に上部端子30が形成され、磁壁と磁区とを持つ磁性薄膜3に第1の端子、第2の端子が形成され、プラグ電極4にプラグ端子33が形成されている。   The magnetic memory element includes a plug electrode 4 formed opposite to a magnetic thin film 3 having a domain wall and a magnetic domain, an intermediate layer 2 and an upper magnetic layer 1, and an upper terminal 30 is formed on the upper magnetic layer. A first terminal and a second terminal are formed on the magnetic thin film 3 having magnetic domains, and a plug terminal 33 is formed on the plug electrode 4.

図8(b)は単位セルが2×2ビットの固体磁気メモリの回路図は、ビット線6及びビット線6の両端に形成されたビット線選択トランジスタ19、書き込み線5及び書き込み線5の両端に形成された書き込み線選択トランジスタ11、読み出し素子選択線26と読み出し素子選択線26にゲートが接続され一端が磁気メモリ素子のプラグ端子33に接続され他端がワード線18に接続された読み出し素子選択トランジスタ17及びメモリ素子とからなっている。   FIG. 8B is a circuit diagram of a solid-state magnetic memory having a unit cell of 2 × 2 bits. A read element in which a gate is connected to the write line selection transistor 11, the read element selection line 26, and the read element selection line 26, one end is connected to the plug terminal 33 of the magnetic memory element, and the other end is connected to the word line 18. It consists of a selection transistor 17 and a memory element.

書き込み線5の両端に形成された書き込み線選択トランジスタの間に、2個のメモリ素子が、第1の端子31および第2の端子32を介して直列に接続され、さらに、メモリ素子の下面にはヒーター素子1が形成されている。尚、図7で説明した、ヒーター素子と接続されているヒ−ター素子選択トランジスタおよびヒーター素子選択線は省略している。   Two memory elements are connected in series via the first terminal 31 and the second terminal 32 between the write line selection transistors formed at both ends of the write line 5, and further on the lower surface of the memory element. The heater element 1 is formed. Note that the heater element selection transistor and the heater element selection line connected to the heater element described in FIG. 7 are omitted.

ビット線選択トランジスタ19は図示しないビット線選択回路とゲートで接続し、一端が書き込み線5と接続している。ビット線選択トランジスタ19の他端は、図示しない隣接する他の単位セルのビット線6と接続している。   The bit line selection transistor 19 is connected to a bit line selection circuit (not shown) through a gate, and one end is connected to the write line 5. The other end of the bit line selection transistor 19 is connected to the bit line 6 of another adjacent unit cell (not shown).

書き込み線選択トランジスタ11は図示しない書き込み線選択回路とゲートで接続され、一端が書き込み線5と接続されている。書き込み線選択トランジスタ11の他端は、図示しない隣接する他の単位セルの書き込み線5と接続されている。   The write line selection transistor 11 is connected to a write line selection circuit (not shown) through a gate, and one end is connected to the write line 5. The other end of the write line selection transistor 11 is connected to a write line 5 of another adjacent unit cell (not shown).

このとき、選択された磁気メモリ素子が接続されているビット線19と読み出し素子選択線26を活性化することで選択された磁気メモリ素子の中間層に電流が流れる。中間層界面上下両側の磁区領域の磁化の向きが平行であれば、トンネル電流は小さく、反平行であれば、大きくなる磁気抵抗効果を示すため、読み出しを選択したメモリ素子の記録状態を読み出すことができる。   At this time, a current flows through an intermediate layer of the selected magnetic memory element by activating the bit line 19 and the read element selection line 26 to which the selected magnetic memory element is connected. If the direction of magnetization of the magnetic domain regions on the upper and lower sides of the intermediate layer interface is parallel, the tunnel current is small, and if it is antiparallel, the magnetoresistive effect is increased. Can do.

実際は、ビット線に接続された図示していないセンスアンプと、参照素子の抵抗値を比較して「0」、「1」を判別する。   Actually, the resistance value of the reference element is compared with a sense amplifier (not shown) connected to the bit line to determine “0” or “1”.

本発明のメモリにおけるメモリ素子の一実施例の構成を示す図。The figure which shows the structure of one Example of the memory element in the memory of this invention. 実施例1におけるメモリ素子の斜視図。1 is a perspective view of a memory element in Embodiment 1. FIG. 実施例1のメモリ素子を行列状に配置した複数ビットのメモリの構成を示す図。FIG. 3 is a diagram illustrating a configuration of a multi-bit memory in which the memory elements according to the first embodiment are arranged in a matrix. 本発明の記録状態を示す図。The figure which shows the recording state of this invention. 本発明の記録過程を示す図。The figure which shows the recording process of this invention. 本発明のメモリ素子の再生過程を示す図。The figure which shows the reproduction | regeneration process of the memory element of this invention. 本発明のメモリ素子の実施例2の記録過程を示す図。The figure which shows the recording process of Example 2 of the memory element of this invention. 本発明のメモリ素子の実施例2の再生過程を示す図。The figure which shows the reproduction | regeneration process of Example 2 of the memory element of this invention.

符号の説明Explanation of symbols

1 上部磁性層
2 中間層
3 磁壁と磁区を持つ磁性層
4 プラグ電極
5 書き込み線
6 ビット線
7 データ線
8 素子読み出し選択トランジスタ
9 磁壁
10 磁化の向きが揃った磁区領域
11 書き込み線選択トランジスタ
12 メモリ素子領域
13 上部磁性層の磁化の向き
14 記録電流
15 補助記録電流
16 磁区内の磁化の向き
17 読み出し素子選択トランジスタ
18 ワード線
19 ビット線選択トランジスタ
20 ヒーター素子
21 ヒーター素子選択トランジスタ
22 書き込み選択用データ線
23 素子読み出し選択トランジスタ
24 データ線
25 ビット線選択トランジスタ
26 読み出し素子選択線
DESCRIPTION OF SYMBOLS 1 Upper magnetic layer 2 Intermediate | middle layer 3 Magnetic layer which has a magnetic wall and a magnetic domain 4 Plug electrode 5 Write line 6 Bit line 7 Data line 8 Element read selection transistor 9 Domain wall 10 Magnetic domain area | region where the direction of magnetization aligned 11 Write line selection transistor 12 Memory Element area 13 Direction of magnetization of upper magnetic layer 14 Recording current 15 Auxiliary recording current 16 Direction of magnetization in magnetic domain 17 Read element selection transistor 18 Word line 19 Bit line selection transistor 20 Heater element 21 Heater element selection transistor 22 Write selection data Line 23 Element read selection transistor 24 Data line 25 Bit line selection transistor 26 Read element selection line

Claims (6)

第一の磁性層と中間層と第二の磁性層とを有し、情報を第一の磁性層と、第二の磁性層との磁化の方向で記録する磁気メモリ素子であって、少なくとも一方の磁性層内に互いに反平行磁化となる磁区とそれらの磁区を隔てる磁壁を定常的に形成し、前記磁壁を磁性層内で移動させることで、隣り合う磁区の位置を制御して情報記録を行うことを特徴とする磁気メモリ素子。   A magnetic memory element having a first magnetic layer, an intermediate layer, and a second magnetic layer, wherein information is recorded in the direction of magnetization of the first magnetic layer and the second magnetic layer, and at least one of them In the magnetic layer, magnetic domains that are antiparallel to each other and domain walls separating the magnetic domains are constantly formed, and by moving the domain wall in the magnetic layer, the position of adjacent magnetic domains is controlled to record information. A magnetic memory element characterized in that: 少なくとも第一の磁性層と中間層と第二の磁性層とが積層され、情報を第一の磁性層と、第二の磁性層との磁化の方向で記録する磁気メモリ素子であって、
第二の磁性層は、磁性層内に互いに反平行磁化となる磁区とそれらの磁区を隔てる磁壁を定常的に形成し、
前記第二の磁性層が、前記第二の磁性層を流れる電流方向で前記中間層から露出した面を有することを特徴とする磁気メモリ素子。
A magnetic memory element in which at least a first magnetic layer, an intermediate layer, and a second magnetic layer are stacked, and information is recorded in the magnetization direction of the first magnetic layer and the second magnetic layer,
The second magnetic layer steadily forms magnetic domains that are antiparallel to each other in the magnetic layer and domain walls that separate the magnetic domains,
The magnetic memory element, wherein the second magnetic layer has a surface exposed from the intermediate layer in a direction of current flowing through the second magnetic layer.
前記第二の磁性層は膜面垂直方向に磁気異方性を有することを特徴とする請求項1または2に記載の磁気メモリ素子。   3. The magnetic memory element according to claim 1, wherein the second magnetic layer has magnetic anisotropy in a direction perpendicular to the film surface. 請求項1から3のいずれか1項に記載の磁気メモリ素子の、前記第二の磁性層内にあらかじめ形成した磁壁を、電流および/または熱を用いて移動させる手段を有することを特徴とする固体磁気メモリ。   4. The magnetic memory element according to claim 1, further comprising means for moving a domain wall formed in advance in the second magnetic layer by using an electric current and / or heat. 5. Solid magnetic memory. 請求項1から3のいずれか1項に記載の磁気メモリ素子に接続されたビット線を有し、前記第二の磁性層は、複数個の前記磁気メモリ素子に共通に設けられており、前記磁壁は、前記磁気メモリ素子の各々に設けられ、前記第二の磁性層内に電流を流すと共に、前記ビット線に電流を流すことで得られる電流磁界の両方を用いることで、選択的に情報記録することを特徴とする固体磁気メモリ。   A bit line connected to the magnetic memory element according to claim 1, wherein the second magnetic layer is provided in common to a plurality of the magnetic memory elements, A domain wall is provided in each of the magnetic memory elements, and selectively uses the current magnetic field obtained by flowing a current in the second magnetic layer and flowing a current in the bit line, thereby selectively providing information. A solid-state magnetic memory characterized by recording. 請求項1から3のいずれか1項に記載の磁気メモリ素子近傍に配置された加熱手段を有し、前記第二の磁性層は、複数個の前記磁気メモリ素子に共通に設けられ、前記磁壁は、前記磁気メモリ素子の各々に設けられ、前記第二の磁性層内にパルス電流を流すと共に、前記加熱手段により特定の磁気メモリ素子近傍の温度を上昇させることによって、選択的に情報記録することを特徴とする固体磁気メモリ。   4. A heating unit disposed in the vicinity of the magnetic memory element according to claim 1, wherein the second magnetic layer is provided in common to the plurality of magnetic memory elements, and the domain wall is provided. Is provided in each of the magnetic memory elements, and selectively records information by passing a pulse current through the second magnetic layer and increasing the temperature in the vicinity of the specific magnetic memory element by the heating means. A solid-state magnetic memory characterized by that.
JP2004258220A 2004-09-06 2004-09-06 Method of changing magnetization state of magnetoresistive effect element using domain wall motion, magnetic memory element using the method, and solid-state magnetic memory Pending JP2006073930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004258220A JP2006073930A (en) 2004-09-06 2004-09-06 Method of changing magnetization state of magnetoresistive effect element using domain wall motion, magnetic memory element using the method, and solid-state magnetic memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004258220A JP2006073930A (en) 2004-09-06 2004-09-06 Method of changing magnetization state of magnetoresistive effect element using domain wall motion, magnetic memory element using the method, and solid-state magnetic memory

Publications (1)

Publication Number Publication Date
JP2006073930A true JP2006073930A (en) 2006-03-16

Family

ID=36154189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004258220A Pending JP2006073930A (en) 2004-09-06 2004-09-06 Method of changing magnetization state of magnetoresistive effect element using domain wall motion, magnetic memory element using the method, and solid-state magnetic memory

Country Status (1)

Country Link
JP (1) JP2006073930A (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090656A1 (en) * 2005-02-23 2006-08-31 Osaka University Magnetoresistive element based on magnetic domain wall shift by pulse current and high-speed magnetic recording device
JP2006303159A (en) * 2005-04-20 2006-11-02 Fuji Electric Holdings Co Ltd Spin injection magnetic domain moving element and apparatus using the same
WO2006115275A1 (en) * 2005-04-26 2006-11-02 Kyoto University Mram and method for writing in mram
WO2007020823A1 (en) * 2005-08-15 2007-02-22 Nec Corporation Magnetic memory cell, magnetic random access memory and method for reading/writing data in magnetic random access memory
JP2007096119A (en) * 2005-09-29 2007-04-12 Sharp Corp Magnetic memory, driving circuit therefor, wiring method therefor and driving method therefor
JP2007201465A (en) * 2006-01-26 2007-08-09 Samsung Electronics Co Ltd Magnetic element unit using magnetic domain dragging and operation method thereof
JP2007221131A (en) * 2006-02-17 2007-08-30 Samsung Electronics Co Ltd Magnetic memory using magnetic domain transfer
JP2007288162A (en) * 2006-03-20 2007-11-01 Fuji Electric Device Technology Co Ltd Domain wall displacement type magnetic recording element having domain wall displacement detection terminal
JP2008034808A (en) * 2006-07-25 2008-02-14 Samsung Electronics Co Ltd Semiconductor device using domain wall motion
WO2008047536A1 (en) * 2006-10-16 2008-04-24 Nec Corporation Magnetic memory cell and magnetic random access memory
EP1923891A1 (en) * 2006-11-20 2008-05-21 Samsung Electronics Co., Ltd. Data storage device having magnetic domain wall motion and method of forming the same
WO2008068967A1 (en) * 2006-12-06 2008-06-12 Nec Corporation Magnetic random access memory, and its manufacturing method
JP2008153653A (en) * 2006-12-06 2008-07-03 Samsung Electronics Co Ltd Information storage device using domain wall motion, manufacturing method thereof and operation method thereof
JP2008166787A (en) * 2006-12-29 2008-07-17 Samsung Electronics Co Ltd Information storage device using domain wall motion and manufacturing method thereof
DE102008008361A1 (en) 2007-02-27 2008-08-28 Fujitsu Limited, Kawasaki Magnetic resistance effect element and magnetic storage device
WO2008120482A1 (en) * 2007-03-29 2008-10-09 Nec Corporation Magnetic random access memory
WO2009001706A1 (en) * 2007-06-25 2008-12-31 Nec Corporation Magnetoresistive element and magnetic random access memory
WO2009019948A1 (en) * 2007-08-08 2009-02-12 Nec Corporation Magnetic recorder and magnetization fixing method
WO2009019947A1 (en) * 2007-08-03 2009-02-12 Nec Corporation Magnetic wall random access memory
JP2009054715A (en) * 2007-08-24 2009-03-12 Nec Corp Magnetic wall random access memory
WO2009037910A1 (en) * 2007-09-19 2009-03-26 Nec Corporation Magnetic random access memory, its writing method, and magnetoresistive effect element
WO2009044644A1 (en) * 2007-10-04 2009-04-09 Nec Corporation Magnetoresistive effect element, and magnetic random access memory, and its initialization method
WO2009057504A1 (en) * 2007-11-02 2009-05-07 Nec Corporation Magnetoresistive element, magnetic random access memory, and initialization method thereof
JP2009099625A (en) * 2007-10-12 2009-05-07 Nec Corp Magnetic random access memory and method of initializing the same
WO2009060749A1 (en) * 2007-11-05 2009-05-14 Nec Corporation Magnetoresistive element and magnetic random access memory
WO2009078244A1 (en) * 2007-12-18 2009-06-25 Nec Corporation Magnetic random access memory and magnetic random access memory initialization method
WO2009093387A1 (en) * 2008-01-25 2009-07-30 Nec Corporation Magnetic random access memory and method for initializing the same
WO2009104427A1 (en) * 2008-02-19 2009-08-27 日本電気株式会社 Magnetic random access memory
WO2009104428A1 (en) * 2008-02-19 2009-08-27 日本電気株式会社 Magnetic random access memory
WO2009110532A1 (en) * 2008-03-07 2009-09-11 日本電気株式会社 Semiconductor device
WO2009122990A1 (en) * 2008-04-02 2009-10-08 日本電気株式会社 Magnetoresistive effect element and magnetic random access memory
JP2009252909A (en) * 2008-04-03 2009-10-29 Nec Corp Magneto-resistive element, and magnetic random access memory
WO2009133744A1 (en) * 2008-04-28 2009-11-05 日本電気株式会社 Magnetic storage element and magnetic memory
WO2010007893A1 (en) * 2008-07-15 2010-01-21 日本電気株式会社 Magnetic random access memory and method for initializing thereof
WO2010013566A1 (en) * 2008-07-31 2010-02-04 日本電気株式会社 Magnetoresistive element, magnetic random access memory, and initialization method thereof
WO2010026861A1 (en) * 2008-09-02 2010-03-11 日本電気株式会社 Magnetic memory and method for manufacturing same
JP2010098245A (en) * 2008-10-20 2010-04-30 Sony Corp Information storage element, and method of writing/reading information into/from information storage element
JP2010098096A (en) * 2008-10-16 2010-04-30 Sony Corp Information storage element, and method of writing/reading information into/from information storage element
WO2010053039A1 (en) * 2008-11-07 2010-05-14 日本電気株式会社 Initialization method for a magnetic storage element
JP2010114261A (en) * 2008-11-06 2010-05-20 Sharp Corp Magnetic memory and method for recording information to the magnetic memory
WO2010074130A1 (en) * 2008-12-25 2010-07-01 日本電気株式会社 Magnetic memory element and magnetic random access memory
WO2010074132A1 (en) * 2008-12-25 2010-07-01 日本電気株式会社 Magnetic memory element and magnetic random access memory
WO2010087389A1 (en) * 2009-01-30 2010-08-05 日本電気株式会社 Magnetic memory element and magnetic memory
US7848137B2 (en) 2006-03-24 2010-12-07 Nec Corporation MRAM and data read/write method for MRAM
JP2011096734A (en) * 2009-10-27 2011-05-12 Sony Corp Information storage element and method for driving the same
US8009466B2 (en) 2007-02-21 2011-08-30 Nec Corporation Semiconductor storage device
US8238135B2 (en) 2007-03-07 2012-08-07 Nec Corporation MRAM utilizing free layer having fixed magnetization regions with larger damping coefficient than the switching region
US8351249B2 (en) 2006-04-11 2013-01-08 Nec Corporation Magnetic random access memory
US8363461B2 (en) 2008-07-10 2013-01-29 Nec Corporation Magnetic random access memory, method of initializing magnetic random access memory and method of writing magnetic random access memory
US8481339B2 (en) 2011-02-22 2013-07-09 Renesas Electronics Corporation Magnetic memory and manufacturing method thereof
US8514616B2 (en) 2009-02-17 2013-08-20 Nec Corporation Magnetic memory element and magnetic memory
JP5360596B2 (en) * 2007-08-03 2013-12-04 日本電気株式会社 Magnetic random access memory and manufacturing method thereof
US8693238B2 (en) 2006-08-07 2014-04-08 Nec Corporation MRAM having variable word line drive potential
KR20190094641A (en) * 2018-02-05 2019-08-14 포항공과대학교 산학협력단 Spin based neuron circuit
CN110268515A (en) * 2018-01-12 2019-09-20 Tdk株式会社 Magnetic wall moving type magnetic recording element and magnetic recording array
CN111696601A (en) * 2020-06-10 2020-09-22 苏州思立特尔半导体科技有限公司 Bit structure based on magnetic tunnel junction
CN111724845A (en) * 2019-03-20 2020-09-29 铠侠股份有限公司 Magnetic storage device

Cited By (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090656A1 (en) * 2005-02-23 2006-08-31 Osaka University Magnetoresistive element based on magnetic domain wall shift by pulse current and high-speed magnetic recording device
JP2006303159A (en) * 2005-04-20 2006-11-02 Fuji Electric Holdings Co Ltd Spin injection magnetic domain moving element and apparatus using the same
WO2006115275A1 (en) * 2005-04-26 2006-11-02 Kyoto University Mram and method for writing in mram
JPWO2006115275A1 (en) * 2005-04-26 2008-12-18 国立大学法人京都大学 MRAM and writing method thereof
US7929342B2 (en) 2005-08-15 2011-04-19 Nec Corporation Magnetic memory cell, magnetic random access memory, and data read/write method for magnetic random access memory
WO2007020823A1 (en) * 2005-08-15 2007-02-22 Nec Corporation Magnetic memory cell, magnetic random access memory and method for reading/writing data in magnetic random access memory
JP5062481B2 (en) * 2005-08-15 2012-10-31 日本電気株式会社 Magnetic memory cell, magnetic random access memory, and data read / write method to magnetic random access memory
JP2007096119A (en) * 2005-09-29 2007-04-12 Sharp Corp Magnetic memory, driving circuit therefor, wiring method therefor and driving method therefor
JP2007201465A (en) * 2006-01-26 2007-08-09 Samsung Electronics Co Ltd Magnetic element unit using magnetic domain dragging and operation method thereof
JP2007221131A (en) * 2006-02-17 2007-08-30 Samsung Electronics Co Ltd Magnetic memory using magnetic domain transfer
JP2007288162A (en) * 2006-03-20 2007-11-01 Fuji Electric Device Technology Co Ltd Domain wall displacement type magnetic recording element having domain wall displacement detection terminal
US7848137B2 (en) 2006-03-24 2010-12-07 Nec Corporation MRAM and data read/write method for MRAM
US8351249B2 (en) 2006-04-11 2013-01-08 Nec Corporation Magnetic random access memory
US8526222B2 (en) 2006-04-11 2013-09-03 Nec Corporation Magnetic random access memory
US8547733B2 (en) 2006-04-11 2013-10-01 Nec Corporation Magnetic random access memory
US8923042B2 (en) 2006-04-11 2014-12-30 Nec Corporation Magnetic random access memory
JP2008034808A (en) * 2006-07-25 2008-02-14 Samsung Electronics Co Ltd Semiconductor device using domain wall motion
US8693238B2 (en) 2006-08-07 2014-04-08 Nec Corporation MRAM having variable word line drive potential
US8477528B2 (en) 2006-10-16 2013-07-02 Nec Corporation Magnetic memory cell and magnetic random access memory
JP5206414B2 (en) * 2006-10-16 2013-06-12 日本電気株式会社 Magnetic memory cell and magnetic random access memory
US8737119B2 (en) 2006-10-16 2014-05-27 Nec Corporation Magnetic memory cell and magnetic random access memory
WO2008047536A1 (en) * 2006-10-16 2008-04-24 Nec Corporation Magnetic memory cell and magnetic random access memory
EP1923891A1 (en) * 2006-11-20 2008-05-21 Samsung Electronics Co., Ltd. Data storage device having magnetic domain wall motion and method of forming the same
JP2008130227A (en) * 2006-11-20 2008-06-05 Samsung Electronics Co Ltd Information recording medium using magnetic domain wall movement
US8559279B2 (en) 2006-11-20 2013-10-15 Samsung Electronics Co., Ltd. Data storage device having magnetic domain wall motion and method of forming the same
US8300456B2 (en) 2006-12-06 2012-10-30 Nec Corporation Magnetic random access memory and method of manufacturing the same
JP5146836B2 (en) * 2006-12-06 2013-02-20 日本電気株式会社 Magnetic random access memory and manufacturing method thereof
WO2008068967A1 (en) * 2006-12-06 2008-06-12 Nec Corporation Magnetic random access memory, and its manufacturing method
JP2008153653A (en) * 2006-12-06 2008-07-03 Samsung Electronics Co Ltd Information storage device using domain wall motion, manufacturing method thereof and operation method thereof
JP2008166787A (en) * 2006-12-29 2008-07-17 Samsung Electronics Co Ltd Information storage device using domain wall motion and manufacturing method thereof
US8009466B2 (en) 2007-02-21 2011-08-30 Nec Corporation Semiconductor storage device
DE102008008361A1 (en) 2007-02-27 2008-08-28 Fujitsu Limited, Kawasaki Magnetic resistance effect element and magnetic storage device
US8238135B2 (en) 2007-03-07 2012-08-07 Nec Corporation MRAM utilizing free layer having fixed magnetization regions with larger damping coefficient than the switching region
WO2008120482A1 (en) * 2007-03-29 2008-10-09 Nec Corporation Magnetic random access memory
US8315087B2 (en) 2007-03-29 2012-11-20 Nec Corporation Magnetic random access memory
JP5598697B2 (en) * 2007-06-25 2014-10-01 日本電気株式会社 Magnetoresistive element and magnetic random access memory
WO2009001706A1 (en) * 2007-06-25 2008-12-31 Nec Corporation Magnetoresistive element and magnetic random access memory
US8416611B2 (en) 2007-06-25 2013-04-09 Nec Corporation Magnetoresistance effect element and magnetic random access memory
US8040724B2 (en) 2007-08-03 2011-10-18 Nec Corporation Magnetic domain wall random access memory
JP5338666B2 (en) * 2007-08-03 2013-11-13 日本電気株式会社 Domain wall random access memory
JP5360596B2 (en) * 2007-08-03 2013-12-04 日本電気株式会社 Magnetic random access memory and manufacturing method thereof
WO2009019947A1 (en) * 2007-08-03 2009-02-12 Nec Corporation Magnetic wall random access memory
JP5278769B2 (en) * 2007-08-08 2013-09-04 日本電気株式会社 Magnetic recording apparatus and magnetization fixing method
WO2009019948A1 (en) * 2007-08-08 2009-02-12 Nec Corporation Magnetic recorder and magnetization fixing method
JP2009054715A (en) * 2007-08-24 2009-03-12 Nec Corp Magnetic wall random access memory
US8194436B2 (en) 2007-09-19 2012-06-05 Nec Corporation Magnetic random access memory, write method therefor, and magnetoresistance effect element
JP5445133B2 (en) * 2007-09-19 2014-03-19 日本電気株式会社 Magnetic random access memory, writing method thereof, and magnetoresistive element
WO2009037910A1 (en) * 2007-09-19 2009-03-26 Nec Corporation Magnetic random access memory, its writing method, and magnetoresistive effect element
WO2009044644A1 (en) * 2007-10-04 2009-04-09 Nec Corporation Magnetoresistive effect element, and magnetic random access memory, and its initialization method
JP5397224B2 (en) * 2007-10-04 2014-01-22 日本電気株式会社 Magnetoresistive element, magnetic random access memory, and initialization method thereof
JP2009099625A (en) * 2007-10-12 2009-05-07 Nec Corp Magnetic random access memory and method of initializing the same
JP5370773B2 (en) * 2007-11-02 2013-12-18 日本電気株式会社 Magnetoresistive element, magnetic random access memory, and initialization method thereof
WO2009057504A1 (en) * 2007-11-02 2009-05-07 Nec Corporation Magnetoresistive element, magnetic random access memory, and initialization method thereof
JP5382348B2 (en) * 2007-11-05 2014-01-08 日本電気株式会社 Magnetoresistive element and magnetic random access memory
US8174086B2 (en) 2007-11-05 2012-05-08 Nec Corporation Magnetoresistive element, and magnetic random access memory
WO2009060749A1 (en) * 2007-11-05 2009-05-14 Nec Corporation Magnetoresistive element and magnetic random access memory
WO2009078244A1 (en) * 2007-12-18 2009-06-25 Nec Corporation Magnetic random access memory and magnetic random access memory initialization method
JP5360600B2 (en) * 2007-12-18 2013-12-04 日本電気株式会社 Magnetic random access memory and initialization method of magnetic random access memory
US8174873B2 (en) 2008-01-25 2012-05-08 Nec Corporation Magnetic random access memory and initializing method for the same
WO2009093387A1 (en) * 2008-01-25 2009-07-30 Nec Corporation Magnetic random access memory and method for initializing the same
JP5366014B2 (en) * 2008-01-25 2013-12-11 日本電気株式会社 Magnetic random access memory and initialization method thereof
JP5299642B2 (en) * 2008-02-19 2013-09-25 日本電気株式会社 Magnetic random access memory
WO2009104427A1 (en) * 2008-02-19 2009-08-27 日本電気株式会社 Magnetic random access memory
US8159872B2 (en) 2008-02-19 2012-04-17 Nec Corporation Magnetic random access memory
WO2009104428A1 (en) * 2008-02-19 2009-08-27 日本電気株式会社 Magnetic random access memory
US8149615B2 (en) 2008-02-19 2012-04-03 Nec Corporation Magnetic random access memory
JP5299643B2 (en) * 2008-02-19 2013-09-25 日本電気株式会社 Magnetic random access memory
WO2009110532A1 (en) * 2008-03-07 2009-09-11 日本電気株式会社 Semiconductor device
US8120950B2 (en) 2008-03-07 2012-02-21 Nec Corporation Semiconductor device
JP5435299B2 (en) * 2008-03-07 2014-03-05 日本電気株式会社 Semiconductor device
WO2009122990A1 (en) * 2008-04-02 2009-10-08 日本電気株式会社 Magnetoresistive effect element and magnetic random access memory
JP5445970B2 (en) * 2008-04-02 2014-03-19 日本電気株式会社 Magnetoresistive element and magnetic random access memory
JP2009252909A (en) * 2008-04-03 2009-10-29 Nec Corp Magneto-resistive element, and magnetic random access memory
JP5435412B2 (en) * 2008-04-28 2014-03-05 日本電気株式会社 Magnetic storage element and magnetic memory
WO2009133744A1 (en) * 2008-04-28 2009-11-05 日本電気株式会社 Magnetic storage element and magnetic memory
US8363461B2 (en) 2008-07-10 2013-01-29 Nec Corporation Magnetic random access memory, method of initializing magnetic random access memory and method of writing magnetic random access memory
JP5545213B2 (en) * 2008-07-15 2014-07-09 日本電気株式会社 Magnetic random access memory and initialization method thereof
US8625327B2 (en) 2008-07-15 2014-01-07 Nec Corporation Magnetic random access memory and initializing method for the same
WO2010007893A1 (en) * 2008-07-15 2010-01-21 日本電気株式会社 Magnetic random access memory and method for initializing thereof
WO2010013566A1 (en) * 2008-07-31 2010-02-04 日本電気株式会社 Magnetoresistive element, magnetic random access memory, and initialization method thereof
US8787076B2 (en) 2008-09-02 2014-07-22 Nec Corporation Magnetic memory and method of manufacturing the same
WO2010026861A1 (en) * 2008-09-02 2010-03-11 日本電気株式会社 Magnetic memory and method for manufacturing same
CN101727967B (en) * 2008-10-16 2012-11-14 索尼株式会社 Information storage element and method of writing/reading information into/from information storage element
JP2010098096A (en) * 2008-10-16 2010-04-30 Sony Corp Information storage element, and method of writing/reading information into/from information storage element
US8159865B2 (en) 2008-10-16 2012-04-17 Sony Corporation Information storage element and method of writing/reading information into/from information storage element
JP2010098245A (en) * 2008-10-20 2010-04-30 Sony Corp Information storage element, and method of writing/reading information into/from information storage element
CN101727966B (en) * 2008-10-20 2012-08-22 索尼株式会社 Information storage element and method of writing/reading information into/from information storage element
US8238150B2 (en) 2008-10-20 2012-08-07 Sony Corporation Information storage element and method of writing/reading information into/from information storage element
JP2010114261A (en) * 2008-11-06 2010-05-20 Sharp Corp Magnetic memory and method for recording information to the magnetic memory
JP5397384B2 (en) * 2008-11-07 2014-01-22 日本電気株式会社 Initialization method of magnetic memory element
US8565011B2 (en) 2008-11-07 2013-10-22 Nec Corporation Method of initializing magnetic memory element
WO2010053039A1 (en) * 2008-11-07 2010-05-14 日本電気株式会社 Initialization method for a magnetic storage element
WO2010074130A1 (en) * 2008-12-25 2010-07-01 日本電気株式会社 Magnetic memory element and magnetic random access memory
WO2010074132A1 (en) * 2008-12-25 2010-07-01 日本電気株式会社 Magnetic memory element and magnetic random access memory
US8559214B2 (en) 2008-12-25 2013-10-15 Nec Corporation Magnetic memory device and magnetic random access memory
US8687414B2 (en) 2008-12-25 2014-04-01 Nec Corporation Magnetic memory element and magnetic random access memory
JP5459227B2 (en) * 2008-12-25 2014-04-02 日本電気株式会社 Magnetic memory device and magnetic random access memory
WO2010087389A1 (en) * 2009-01-30 2010-08-05 日本電気株式会社 Magnetic memory element and magnetic memory
US8994130B2 (en) 2009-01-30 2015-03-31 Nec Corporation Magnetic memory element and magnetic memory
US8514616B2 (en) 2009-02-17 2013-08-20 Nec Corporation Magnetic memory element and magnetic memory
JP2011096734A (en) * 2009-10-27 2011-05-12 Sony Corp Information storage element and method for driving the same
US8481339B2 (en) 2011-02-22 2013-07-09 Renesas Electronics Corporation Magnetic memory and manufacturing method thereof
CN110268515A (en) * 2018-01-12 2019-09-20 Tdk株式会社 Magnetic wall moving type magnetic recording element and magnetic recording array
CN110268515B (en) * 2018-01-12 2023-10-17 Tdk株式会社 Magnetic wall moving type magnetic recording element and magnetic recording array
KR20190094641A (en) * 2018-02-05 2019-08-14 포항공과대학교 산학협력단 Spin based neuron circuit
KR102023836B1 (en) 2018-02-05 2019-11-04 포항공과대학교 산학협력단 Spin based neuron circuit
CN111724845A (en) * 2019-03-20 2020-09-29 铠侠股份有限公司 Magnetic storage device
CN111724845B (en) * 2019-03-20 2023-11-03 铠侠股份有限公司 magnetic storage device
CN111696601A (en) * 2020-06-10 2020-09-22 苏州思立特尔半导体科技有限公司 Bit structure based on magnetic tunnel junction

Similar Documents

Publication Publication Date Title
JP2006073930A (en) Method of changing magnetization state of magnetoresistive effect element using domain wall motion, magnetic memory element using the method, and solid-state magnetic memory
EP2242097B1 (en) Magnetic memory element, method for driving same, and nonvolatile storage
CN1519856A (en) Heat-Assisted Magnetic Writing Using Oxide Layer and Current-Induced Heating
CN103151455A (en) Memory element and memory apparatus
WO2011152281A1 (en) Magnetoresistance effect element and magnetic memory
JP5709329B2 (en) Nonvolatile storage device
JPWO2009078202A1 (en) Magnetic memory element, driving method thereof, and nonvolatile memory device
JP5316967B2 (en) Magnetic memory element and nonvolatile memory device
JP5356377B2 (en) Magnetic memory cell and magnetic random access memory
JP4091328B2 (en) Magnetic storage
US8709617B2 (en) Magnetic memory element, driving method for same, and nonvolatile storage device
CN103137854A (en) Memory element and memory apparatus
JP2011119537A (en) Memory cell, and magnetic random access memory
JP2006080241A (en) Solid state memory device
Kim et al. Switching and reliability issues of magnetic tunnel junctions for high-density memory device
JP2013012756A (en) Magnetoresistance effect element and nonvolatile magnetic memory equipped with the same
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载