EP4025587A1 - Self-assembling protein nanostructures displaying paramyxovirus and/or pneumovirus f proteins and their use - Google Patents
Self-assembling protein nanostructures displaying paramyxovirus and/or pneumovirus f proteins and their useInfo
- Publication number
- EP4025587A1 EP4025587A1 EP20772512.8A EP20772512A EP4025587A1 EP 4025587 A1 EP4025587 A1 EP 4025587A1 EP 20772512 A EP20772512 A EP 20772512A EP 4025587 A1 EP4025587 A1 EP 4025587A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nanostructure
- polypeptides
- amino acid
- proteins
- assemblies
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
- C07K14/08—RNA viruses
- C07K14/115—Paramyxoviridae, e.g. parainfluenza virus
- C07K14/135—Respiratory syncytial virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/155—Paramyxoviridae, e.g. parainfluenza virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55555—Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/70—Fusion polypeptide containing domain for protein-protein interaction
- C07K2319/735—Fusion polypeptide containing domain for protein-protein interaction containing a domain for self-assembly, e.g. a viral coat protein (includes phage display)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18022—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18034—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18311—Metapneumovirus, e.g. avian pneumovirus
- C12N2760/18322—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18311—Metapneumovirus, e.g. avian pneumovirus
- C12N2760/18334—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18511—Pneumovirus, e.g. human respiratory syncytial virus
- C12N2760/18522—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18511—Pneumovirus, e.g. human respiratory syncytial virus
- C12N2760/18534—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
Definitions
- Vaccination is a treatment modality used to prevent or decrease the severity of infection with various infectious agents, including bacteria, viruses, and parasites. Development of new vaccines has important commercial and public health implications. In particular, improved vaccines for respiratory syncytial virus (RSV) would be desirable.
- RSV respiratory syncytial virus
- Subunit vaccines are vaccines made from isolated antigens, usually proteins expressed recombinantly in bacterial, insect, or mammalian cell hosts.
- the antigenic component of a subunit vaccine is selected from among the proteins of an infectious agent observed to elicit a natural immune response upon infection, although in some cases other components of the infectious agent can be used.
- Typical antigens for use in subunit vaccines include protein expressed on the surface of the target infectious agent, as such surface- expressed envelope glycoproteins of viruses.
- Subunit vaccines have various advantages including that they contain no live pathogen, which eliminates concerns about infection of the patient by the vaccine; they may be designed using standard genetic engineering techniques; they are more homogenous than other forms of vaccine; and they can be manufactured in standardized recombinant protein expression production systems using well-characterized expression systems.
- the antigen may be genetically engineered to favor generation of desirable antibodies, such as neutralizing or broadly neutralizing antibodies.
- structural information about an antigen of interest obtained by X-ray crystallography, electron microscopy, or nuclear magnetic resonance experiments, can be used to guide rational design of subunit vaccines.
- a known limitation of subunit vaccines is that the immune response elicited may sometimes be weaker than the immune response to other types of vaccines, such as whole virus, live, or live attenuated vaccines.
- the present inventors have recognized that nanostructure-based vaccines have the potential to harness the advantages of subunit vaccines while increasing the potency and breadth of the vaccine-induced immune response through multivalent display of the antigen in symmetrically ordered arrays.
- the disclosure provides nanostructures, comprising:
- each first assembly comprising a plurality of identical first polypeptides, wherein the first polypeptides comprise an amino acid sequence having at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence selected from the group consisting of SEQ ID NOS:2-4, wherein residues in parentheses are optional:
- each second assembly comprising a plurality of identical second polypeptides, wherein the second polypeptides comprise an amino acid sequence having at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%,
- the one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof comprise an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence selected from the group consisting of SEQ ID NOS: 21-29 and 37.
- the one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof comprise an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to an RSV F protein or mutant thereof comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 21-
- polypeptide includes one or more of the following residues: 671,
- the one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof comprise an amino acid sequence having at least 75%, 80%, 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to an hMPV F protein or mutant thereof comprising an amino acid sequence selected from the group consisting of SEQ ID NO:25-29, wherein the polypeptide includes one or more of the following residues: 113C, 120C, 339C, 160F, 177L, 185P, and 426C relative to the reference sequence.
- the one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof are expressed as a fusion protein with the first polypeptides and/or the second polypeptides.
- the plurality of first assemblies each comprise identical fusion proteins and/or wherein the plurality of second assemblies each comprise identical fusion proteins.
- the one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof are expressed as a fusion protein with the first polypeptides.
- the plurality of first assemblies each comprise identical fusion proteins.
- the plurality of first and/or second assemblies in total comprise two or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof expressed as a fusion protein with the first polypeptides and/or the second polypeptides.
- only a subset of the first polypeptides and/or second polypeptides comprise a fusion protein with an F protein or antigenic fragment thereof.
- each first assembly comprises a homotrimer of the first polypeptide.
- each second assembly comprises a homopentamer of the second polypeptide.
- the one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence to the amino acid sequence the amino acid sequence of DS-Cavl (SEQ ID NO:37).
- each fusion protein comprises an amino acid linker positioned between the first polypeptide and the one or more paramyxovirus and/or pneumovirus F proteins or antigenic fragment thereof, and/or an amino acid linker positioned between the second polypeptide and the one or more paramyxovirus and/or pneumovirus F proteins or antigenic fragment thereof.
- the amino acid linker sequence comprises one or more trimerization domain.
- the amino acid linker sequence comprises the amino acid sequence GYIPEAPRDGQAYVRKDGEWVLLSTFL (SEQ ID NO:38), a GCN4 coiled-coil domain, including but not limited to the amino acid sequence IEDKIEEILSKIYHIENEIARIKKLI (SEQ ID NO: 19), or a a Gly-Ser linker or a linker selected from the group consisting of A, AGGA (SEQ ID NO:33), AGGAM (SEQ ID NO:34), GGS, GSG, and SGG.
- the fusion protein comprises an amino acid sequence having at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence selected from the group consisting of SEQ ID NOS: 5-11.
- the nanostructure in another embodiment, the nanostructure:
- (b) forms a symmetrical structure, including but not limited to an icosahedral structure
- the disclosure also provides nucleic acids encoding the fusion of any embodiment herein, expression vectors comprising a nucleic acid of the disclosure, and host cells comprising the nucleic acid or expression vectors of the disclosure.
- the disclosure also provides immunogenic compositions comprising the nanostructure of embodiment herein, and a pharmaceutically acceptable carrier. In one embodiment, the immunogenic composition further comprises an adjuvant.
- the disclosure further provides methods for generating an immune response to paramyxovirus and/or pneumovirus F protein in a subject, and methods treating or limiting a paramyxovirus and/or pneumovirus infection in a subject comprising administering to the subject in need thereof an effective amount of the nanostructure or immunogenic composition of any embodiment herein to generate the immune response, or treat or prevent paramyxovirus and/or pneumovirus infection in the subject.
- FIG. 1 shows schematics drawings of illustrative embodiments of RSV nanostructure vaccines of the present disclosure.
- the F protein of RSV (slanted pattern) is fused to I53_dn5B nanostructure component (horizontal pattern).
- an intervening Foldon trimerization domain is included between the F protein and I53_dn5B (solid black).
- Linkers of different length are included between these domains (lines). Cleavable N-terminal secretion signals and cleavable C-terminal purification tags are not shown.
- FIG. 2 shows a graph of expression levels of illustrative constructs RSV_F-dn5B_04 through RSV_F-dn5B_07 determined by enzyme-linked immunoabsorbance assay (ELISA).
- ELISA enzyme-linked immunoabsorbance assay
- FIG. 3 shows a graph of bio-layer interferometry of construct RSV_F-dn5B_07 (387) on an Octet® system using antibodies specific for RSV F protein epitopes: Pali, RSV F protein-specific antibody (pre- and post-fusion); AM14, pre-fusion trimer conformation- specific antibody; 4D7, post-fusion conformation-specific antibody.
- FIG. 4A shows a graph of bio-layer interferometry of RSV_F-dn5B_07 (387) compared to RSV_F-50A (309) on an Octet ® system using an antibody specific for RSV F protein in the pre-fusion conformation, D25.
- FIG. 4B shows a bar graph of the fractional reactivity of each construct, derived from the data shown in FIG. 4B.
- FIG. 5 shows graphs depicting dynamic light scattering measurements performed on RSV_F-dn5B_07 assembled into a nanostructure with companion component I53_dn5A. Data from three runs of the experiment are shown.
- the nanostructures have a hydrodynamic radius (Rh) of 23 nm and a polydispersity (Pd) of 17%.
- amino acid residues are abbreviated as follows: alanine (Ala; A), asparagine (Asn; N), aspartic acid (Asp; D), arginine (Arg; R), cysteine (Cys; C), glutamic acid (Glu; E), glutamine (Gin; Q), glycine (Gly; G), histidine (His; H), isoleucine (He; I), leucine (Leu; L), lysine (Lys; K), methionine (Met; M), phenylalanine (Phe; F), proline (Pro; P), serine (Ser; S), threonine (Thr; T), tryptophan (Trp; W), tyrosine (Tyr; Y), and valine (Val; V).
- the disclosure provides nanostructures, comprising:
- each first assembly comprising a plurality of identical first polypeptides, wherein the first polypeptides comprise an amino acid sequence having at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence selected from the group consisting of SEQ ID NOS:2-4, wherein residues in parentheses are optional: (b) a plurality of second assemblies, each second assembly comprising a plurality of identical second polypeptides, wherein the second polypeptides comprise an amino acid sequence having at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%,
- Self-assembling polypeptide nanostructures are disclosed herein that multivalently display paramyxovirus and/or pneumovirus F proteins on the nanostructure exteriors.
- nanostructures such as icosahedral nanostructures.
- the nanostructures include symmetrically repeated, non-natural, non-covalent polypeptide-polypeptide interfaces that orient a first assembly and a second assembly into a nanostructure, such as one with an icosahedral symmetry.
- the nanostructures of the disclosure are synthetic, in that they are not naturally occurring.
- the first polypeptides and the second polypeptides are non-naturally occurring proteins that can be produced by any suitable means, including recombinant production or chemical synthesis.
- Each member of the plurality of first polypeptides is identical to each other, and each member of the plurality of second polypeptides is identical to each other (though when the first or second polypeptide is present as a fusion polypeptide with one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof, the F protein or antigenic fragment thereof may differ from one first or second polypeptide to another).
- the first proteins and the second proteins are different.
- a plurality (2, 3, 4, 5, 6, or more) of first polypeptides self-assemble to form a first assembly
- a plurality (2, 3, 4, 5, 6, or more) of second polypeptides self-assemble to form a second assembly.
- a plurality of these first and second assemblies then self-assemble non- covalently via the designed interfaces to produce the nanostructures.
- the number of first polypeptides in the first assemblies may be the same or different than the number of second polypeptides in the second assemblies.
- the first assembly comprises trimers of the first polypeptides
- the second assembly comprises pentamers of the second polypeptides.
- the first and second polypeptides may be of any suitable length for a given purpose of the resulting nanostructure.
- the isolated polypeptides of SEQ ID NOS: 1 and 2-4 have the ability to self-assemble in pairs to form nanostructures, such as icosahcdral nanostructures. Design of such pairs involves design of suitable interface residues for each member of the polypeptide pair that can be assembled to form the nanostructure.
- the nanostructures so formed include symmetrically repeated, non-natural, non-covalent polypeptide-polypeptide interfaces that orient a first assembly and a second assembly into a nanostructure, such as one with an icosahcdral symmetry.
- the polypeptides are expected to tolerate some variation in the designed sequences without disrupting subsequent assembly into nanostructures: particularly when such variation comprises conservative amino acid substitutions.
- conservative amino acid substitution means that: hydrophobic amino acids (Ala, Cys, Gly, Pro, Met, See, Sme, Val, He, Leu) can only be substituted with other hydrophobic amino acids; hydrophobic amino acids with bulky side chains (Phe, Tyr, Trp) can only be substituted with other hydrophobic amino acids with bulky side chains; amino acids with positively charged side chains (Arg, His, Lys) can only be substituted with other amino acids with positively charged side chains; amino acids with negatively charged side chains (Asp, Glu) can only be substituted with other amino acids with negatively charged side chains; and amino acids with polar uncharged side chains (Ser, Thr, Asn, Gin) can only be substituted with other amino acids with polar uncharged side chains.
- all oligomerizing positions in bold and underlined font in SEQ ID NO: 1-4 are invariant in the first polypeptides and the second polypeptides.
- the one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof are expressed as a fusion protein with the first and/or second polypeptides.
- This preference for the presence of the paramyxovirus and/or pneumovirus F protein at the N terminus of the fusion protein derives from the location of the C terminus of the paramyxovirus and/or pneumovirus F proteins at one extreme (the “bottom”) of the F protein trimer; by locating the genetic fusion at this point, the majority of the F protein structure will be displayed and accessible on the nanostructure exterior.
- the nanostructures comprise one or more copies of a fusion protein comprising at least two domains — a paramyxovirus and/or pneumovirus F protein, or an antigenic fragment thereof, and a trimeric assembly domain (i.e.: each first assembly is a homotrimcr of the first polypeptide) — and one or more copies of a second oligomeric block (i.e., each second assembly is an oligomer of two or more copies of the second polypeptide).
- the first and or second polypeptides may be modified to permit the one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof, to be covalently linked to the first and/or second polypeptides.
- first and/or second polypeptides can be modified, such as by introduction of various cysteine residues at defined positions to facilitate linkage one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof.
- the one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof arc attached to the first or second polypeptides via any suitable technique, including but not limited to covalent chemical cross-linking (via any suitable cross-linking technique) and non-covalent attachment including engineered electrostatic interactions.
- a trimeric assembly that comprises a trimeric paramyxovirus and/or pneumovirus F protein, or antigenic fragments thereof
- the paramyxovirus and/or pneumovirus F protein, or antigenic fragment thereof is genetically fused to the first polypeptides that self-assemble into the trimeric assembly.
- the trimeric assembly comprises a protein-protein interface that induces three copies of the first polypeptides to self-associate to form trimeric building blocks.
- Each copy of the first polypeptides further comprises a surface-exposed interface that interacts with a complementary surface-exposed interface on a second assembly domain.
- the complementary protein-protein interface between the trimeric assembly domain and second assembly domain drives the assembly of multiple copies of the trimeric assembly domain and second assembly domain to a target nanostructure.
- each copy of the trimeric assembly domains of the nanostructure bears a paramyxovirus and/or pneumovirus F proteins, or antigenic fragment thereof, as a genetic fusion; these nanostructures display the F proteins at full valency.
- the nanostructures of the disclosure comprise one or more copies of trimeric assembly domains bearing paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof as genetic fusions as well as one or more trimeric assembly domains that do not bear F proteins as genetic fusions; these nanostructures display the F proteins at partial valency.
- the trimeric assembly domain can be any polypeptide sequence that forms a trimer and interacts with a second assembly domain to drive assembly to a target nanostructure.
- the nanostructures of the disclosure display multiple copies (i.e.: 2, 3, or more) of one or more paramyxovirus and/or pneumovims F proteins, or antigenic fragments thereof, on an exterior of the nanostructure.
- exemplary paramyxovirus and/or pneumovirus include, but are not limited to, respiratory syncytial virus (RSV) and Human metapneumovirus (hMPV).(C.
- nanostructure on an exterior of the nanostructure means that an antigenic portion of the one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof, are accessible for binding by B cell receptors, antibodies, or antibody fragments and not buried within the nanostructure.
- the one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof may comprise any suitable native F proteins, post-fusion, or pre-fusion (preF) antigens, or mutants thereof capable of inducing an immune response that will generate antibodies that bind to paramyxovirus and/or pneumovirus F proteins.
- a nanostructure may display more than one F protein; thus, in some embodiments the one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof comprise 1, 2, 3, 4, or more F proteins or antigenic fragments thereof.
- the one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof may be as defined in patent publication number US 2016/0046675 Al.
- the one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof are selected from the group consisting of SEQ ID NOS: 1-350, 370-382, 389-693, 698-1026, 1429-1442, 1456-1468, and 1474-1478 as disclosed in US published patent application 2016/0046675.
- the one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof may be as defined in WO2012158613, US 20160102123, US20140141037, WO2014079842, WO2014160463, US20140271699, EP2970393, W02014174018, US20140271699, US20160176932, US20160122398, WO2017040387, WO2017109629, WO2017172890, WO2017207477, Krarup et al. (2015) Nature Communications 6:8143, and WO2017207480.
- the one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof comprise an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of DS-Cavl shown below (in each case, the protein may be expressed with a suitable secretion signal N-terminal to the sequence disclosed herein-in some cases a cleavable secretion signal, e.g.
- DS-Cavl comprises a prefusion- stabilized form of the fusion (F) glycoprotein, which elicits improved protective responses against respiratory syncytial virus (RSV) in mice and macaques compared to postfusion RSV F (McLellan et al. (2013) Science 342:592-8).
- RSV respiratory syncytial virus
- the F protein may comprise an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence selected from the group consisting of SEQ ID NOS:21-22.
- SEQ ID NO:21-22 represent second-generation stabilized DS-Cavl immunogens; mutations relative to DS-Cavl are noted and it should be noted that the present disclosure contemplates the use of DS-Cav 1 mutants that differ by a single one of the noted amino acid substitutions in SEQ ID NO:21 or 22 above, or two or more of the amino acid substitutions noted.
- the F protein may comprise one or more of the following, each of which may additionally include 1 , 2, or more of the noted amino acid substitutions in SEQ ID NO:21 or 22 above:
- the one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof may comprise an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to an RSV F protein or mutant thereof, comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 21-24 and 37, wherein the polypeptide includes one or more of the following residues: 671, 149C, 458C, 46G, 465Q, 215P, 92D, and 487Q relative to the reference sequence.
- the one or more paramyxovirus and/or pneumovirus F proteins, or antigenic fragments thereof may comprise an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to an MPV F protein or mutant thereof comprising the amino acid sequence selected from the group consisting of SEQ ID NO:25-29, wherein the polypeptide includes one or more of the following residues: 113C, 120C, 339C, 160F, 177L, 185P, and 426C relative to the reference sequence.
- the F protein and the trimeric assembly domain may be genetically fused such that they are both present in a single polypeptide.
- the linkage between the F protein and the trimeric assembly domain allows the F protein, or antigenic fragment thereof, to be displayed on the exterior of the nanostructures of the disclosure.
- the point of connection to the trimeric assembly domain should be on the exterior of the nanostructure formed by the trimeric assembly domain and the second assembly domain in the absence of any F protein.
- linkers Any suitable linker can be used; there is no amino acid sequence requirement to serve as an appropriate linker. There is no requirement that the linker impose a rigid relative orientation of the F protein or antigenic fragment thereof to the trimeric assembly domain beyond enabling the F protein or antigenic fragment thereof to be displayed on the exterior of the nanostructures of the disclosure.
- the linker includes additional trimerization domains (e.g., the foldon domain of T4 fibritin or the GCN4 coiled-coil domain) that assist in stabilizing the trimeric form of the F protein.
- the linker may comprise a Gly-Ser linker (i.e . : a linker consisting of glycine and serine residues) of any suitable length.
- the Gly-Ser linker may be 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more amino acids in length.
- the Gly-Ser linker may comprise or consist of the amino acid sequence of GSGGSGSGSGGSGSG (SEQ ID NO:30), GGSGGSGS (SEQ ID NO:31), GSGGSGSG (SEQ ID NO:32), AGGA (SEQ ID NO:33), G, AGGAM (SEQ ID NO: 34), GS, or GSGS (SEQ ID NO:35).
- the F protein-linker sequence may comprise the following (exemplified by DS-Cavl as the F protein in these non-limiting embodiments). Residues in parentheses are optional.
- the proteins may optionally be expressed with the amino acid sequence MELLILKANAITTILTAVTFCFASG (SEQ ID NO:20) as the N-terminal DS-Cavl signal peptide, cleaved during processing (not shown):
- the first polypeptides comprise or consist of fusion polypeptides of first polypeptides fused to an F protein, where the fusion protein comprises an amino acid sequence having at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence selected from the group consisting of SEQ ID NO NOS: 5-11 (optional residues in parentheses).
- Residues in parentheses are optional
- the nanostructures of the disclosure may comprise multiple copies of a trimeric first assembly and multiple copies of a second assembly.
- the second assembly comprises a protein-protein interface that induces multiple copies of the second polypeptide to selfassociate to form the second assemblies.
- Multiple oligomeric states of the second assembly may be compatible with nanostructure formation, including dimeric (two copies), trimeric (three copies), tetrameric (four copies), pentameric (five copies), hexameric (six copies), or higher oligomeric states.
- Each copy of the second assembly further comprises a surface- exposed interface that interacts with a complementary surface-exposed interface on a trimeric assembly domain. The complementary interface between the trimeric assembly domain and second assembly domain drives the assembly of multiple copies of the trimeric assembly domain and second assembly domain to a target nanostructure.
- each trimeric first assembly of the nanostructure bears an identical F protein as a genetic fusion; these nanostructures display the F protein at full (100%) valency.
- Such nanostructures are produced from purified first polypeptides and second polypeptides in a process called in vitro assembly. Purified trimeric first polypeptides comprising an F protein, are mixed with appropriate second polypeptides in an approximately 1:1 molar ratio in aqueous conditions. The second assembly interacts with the trimeric first assembly in order to drive assembly of the target nanostructure.
- Successful assembly of the target nanostructure can be confirmed by analyzing the in vitro assembly reaction by common biochemical or biophysical methods used to assess the physical size of proteins or protein assemblies, including but not limited to size exclusion chromatography, native (nondenaturing) gel electrophoresis, dynamic light scattering, multi-angle light scattering, analytical ultracentrifugation, negative stain electron microscopy, cryo-electron microscopy, or X-ray crystallography. If necessary, the assembled nanostructure can be purified from other species or molecules present in the in vitro assembly reaction using preparative techniques commonly used to isolate proteins by their physical size, including but not limited to size exclusion chromatography, preparative ultracentrifugation, tangential flow filtration, or preparative gel electrophoresis.
- the presence of the F protein in the nanostructure can be assessed by techniques commonly used to determine the identity of protein molecules in aqueous solutions, including but not limited to SDS-PAGE, mass spectrometry, protein sequencing, or amino acid analysis.
- the accessibility of the F protein on the exterior of the particle, as well as its conformation or antigenicity, can be assessed by techniques commonly used to detect the presence and conformation of an antigen, including but not limited to binding by monoclonal antibodies, conformation-specific monoclonal antibodies, or anti-sera specific to the antigen.
- the nanostructures of the disclosure comprise one or more copies of trimeric first assemblies bearing F proteins as genetic fusions as well as one or more trimeric first assemblies that do not bear F proteins as genetic fusions; these nanostructures display the F proteins at partial valency.
- These partial valency nanostructures are produced by performing in vitro assembly with mixtures of first polypeptides in which the fraction of trimeric first assemblies bearing an F protein as a genetic fusion is equal to the desired valency of the antigen in the resulting nanostructure.
- the in vitro assembly reaction typically contains an approximately 1 : 1 molar ratio of total first polypeptides to total second polypeptides.
- performing an in vitro assembly reaction with a mixture of trimeric assemblies in which one half of the first polypeptides bear an F protein as a genetic fusion would yield an assembled nanostructure with an F protein valency of 50%. That is, 50% of the possible sites for F protein display on the nanostructure would be occupied.
- the nanostructure is a 120-subunit assembly with icosahedral symmetry, the nanostructure comprises 20 total trimeric building blocks, and a 50% valency nanostructure displays 10 of the possible 20 F protein trimers.
- the ratio of F protein-bearing first polypeptides to first polypeptides lacking F proteins in an in vitro assembly reaction can be used to precisely tune the F protein valency of the resulting nanostructures. It will be understood by those of skill in the art that it is the average valency that can be tuned in this manner; the valency of individual nanostructures in the mixture will be a distribution centered around the average. Successful assembly of such partial valency nanostructures can be assessed using the techniques described above for evaluating full- valency nanostructures, and, if necessary, the partial valency nanostructures can be purified using the methods described for purifying full-valency nanostructures.
- the average valency of F protein-bearing first polypeptides in a given sample can be assessed by quantitative analysis using the techniques described above for evaluating the presence of F proteins in full-valency nanostructures. In vitro assembly of nanostructures co-displaying multiple F proteins
- the nanostructures of the disclosure comprise two or more distinct first polypeptides bearing different F proteins as genetic fusions; these nanostructures co-display multiple different F proteins on the same nanostructure.
- These multi-antigen nanostructures are produced by performing in vitro assembly with mixtures of first polypeptides in which each first polypeptide bears one of two or more distinct F proteins as a genetic fusion. The fraction of each first polypeptide in the mixture determines the average valency of each F protein in the resulting nanostructures.
- the in vitro assembly reaction typically contains an approximately 1 : 1 molar ratio of total trimeric first polypeptides to total second polypeptides.
- the presence and average valency of each F protein-bearing first polypeptides in a given sample can be assessed by quantitative analysis using the techniques described above for evaluating the presence of F proteins in full-valency nanostructures.
- the nanostructures are between about 20 nanometers (nm) to about 40 nm in diameter, with interior lumens between about 15 nm to about 32 nm across and pore sizes in the protein shells between about 1 nm to about 14 nm in their longest dimensions.
- the nanostructure has icosahedral symmetry.
- the nanostructure may comprise 60 copies of the first polypeptide and 60 copies of the second polypeptide.
- the number of identical first polypeptides in each first assembly is different than the number of identical second polypeptides in each second assembly.
- the nanostructure comprises twelve first assemblies and twenty second assemblies; in this embodiment, each first assembly may, for example, comprise five copies of the identical first polypeptide, and each second assembly may, for example, comprise three copies of the identical second polypeptide.
- the nanostructure comprises twelve first assemblies and thirty second assemblies; in this embodiment, each first assembly may, for example, comprise five copies of the identical first polypeptide, and each second assembly may, for example, comprise two copies of the identical second polypeptide.
- the nanostructure comprises twenty first assemblies and thirty second assemblies; in this embodiment, each first assembly may, for example, comprise three copies of the identical first polypeptide, and each second assembly may, for example, comprise two copies of the identical second polypeptide. All of these embodiments are capable of forming synthetic nanomaterials with regular icosahedral symmetry.
- the nanostructure of any embodiment or combination of embodiments of the disclosure has one or more of the following characteristics, each as demonstrated in the examples that follow:
- (b) forms a symmetrical structure, including but not limited to an icosahedral structure
- the present disclosure provides nucleic acids encoding a fusion protein of the present disclosure.
- the nucleic acid sequence may comprise RNA or DNA.
- Such nucleic acid sequences may comprise additional sequences useful for promoting expression and/or purification of the encoded protein, including but not limited to polyA sequences, modified Kozak sequences, and sequences encoding epitope tags, export signals, and secretory signals, nuclear localization signals, and plasma membrane localization signals. It will be apparent to those of skill in the art, based on the teachings herein, what nucleic acid sequences will encode the proteins of the disclosure.
- the present disclosure provides expression vectors comprising the isolated nucleic acid of any embodiment or combination of embodiments of the disclosure operatively linked to a suitable control sequence.
- Expression vectors includes vectors that operatively link a nucleic acid coding region or gene to any control sequences capable of effecting expression of the gene product.
- Control sequences operably linked to the nucleic acid sequences of the disclosure are nucleic acid sequences capable of effecting the expression of the nucleic acid molecules. The control sequences need not be contiguous with the nucleic acid sequences, so long as they function to direct the expression thereof.
- intervening untranslated yet transcribed sequences can be present between a promoter sequence and the nucleic acid sequences and the promoter sequence can still be considered “operably linked” to the coding sequence.
- Other such control sequences include, but are not limited to, polyadeny!ation signals, termination signals, and ribosome binding sites.
- Such expression vectors can be of any type known in the art, including but not limited to plasmid and viral-based expression vectors.
- control sequence used to drive expression of the disclosed nucleic acid sequences in a mammalian system may be constitutive (driven by any of a variety of promoters, including but not limited to, CMV, SV40, RSV, actin, EF) or inducible (driven by any of a number of inducible promoters including, but not limited to, tetracycline, ecdysone, steroid-responsive).
- inducible promoters including, but not limited to, tetracycline, ecdysone, steroid-responsive.
- the construction of expression vectors for use in transfecting prokaryotic cells is also well known in the art, and thus can be accomplished via standard techniques. (See, for example, Sambrook, Fritsch, and Maniatis, in: Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1989; Gene Transfer and Expression Protocols, pp.
- the expression vector must be replicable in the host organisms either as an episome or by integration into host chromosomal DNA.
- the expression vector comprises a plasmid.
- the disclosure is intended to include other expression vectors that serve equivalent functions, such as viral vectors.
- the present disclosure provides host cells that have been transfected with the nucleic acids or expression vectors disclosed herein, wherein the host cells can be either prokaryotic or eukaryotic, such as mammalian cells.
- the cells can be transiently or stably transfected.
- transfection of expression vectors into prokaryotic and eukaryotic cells can be accomplished via any technique known in the art, including but not limited to standard bacterial transformations, calcium phosphate co-precipitation, electroporation, or liposome mediated-, DEAE dextran mediated-, polycationic mediated-, or viral mediated transfection. (See, for example.
- a method of producing a polypeptide according to the disclosure is an additional part of the disclosure.
- the method comprises the steps of (a) culturing a host according to this aspect of the disclosure under conditions conducive to the expression of the polypeptide, and (b) optionally, recovering the expressed polypeptide.
- the disclosure provides an immunogenic composition comprising an effective amount of the nanostructure of any embodiment or combination of embodiments of the disclosure and a pharmaceutically acceptable carrier.
- the composition may comprise (a) a lyoprotectant; (b) a surfactant; (c) a bulking agent; (d) a tonicity adjusting agent; (e) a stabilizer; (f) a preservative and/or (g) a buffer.
- the buffer in the pharmaceutical composition is a Tris buffer, a histidine buffer, a phosphate buffer, a citrate buffer or an acetate buffer.
- the composition may also include a lyoprotectant, e.g. sucrose, sorbitol or trehalose.
- the composition includes a preservative e.g.
- the composition includes a bulking agent, like glycine.
- the composition includes a surfactant e.g., polysorbate-20, polysorbate-40, polysorbate- 60, polysorbate-65, polysorbate-80 polysorbate- 85, poloxamer-188, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trilaurate, sorbitan tristearate, sorbitan trioleaste, or a combination thereof.
- the composition may also include a tonicity adjusting agent, e.g., a compound that renders the formulation substantially isotonic or isoosmotic with human blood.
- Exemplary tonicity adjusting agents include sucrose, sorbitol, glycine, methionine, mannitol, dextrose, inositol, sodium chloride, arginine and arginine hydrochloride.
- the composition additionally includes a stabilizer, e.g., a molecule which substantially prevents or reduces chemical and/or physical instability of the nanostructure, in lyophilized or liquid form.
- Exemplary stabilizers include sucrose, sorbitol, glycine, inositol, sodium chloride, methionine, arginine, and arginine hydrochloride.
- the nanostructure may be the sole active agent in the composition, or the composition may further comprise one or more other agents suitable for an intended use, including but not limited to adjuvants to stimulate the immune system generally and improve immune responses overall. Any suitable adjuvant can be used.
- adjuvant refers to a compound or mixture that enhances the immune response to an antigen.
- Exemplary adjuvants include, but are not limited to, Adju-PhosTM, AdjumerTM, albumin-heparin microparticles, Algal Glucan, Algammulin, Alum, Antigen Formulation, AS-2 adjuvant, autologous dendritic cells, autologous PBMC, AvridineTM, B7-2, BAK, BAY R1005, Bupivacaine, Bupivacaine- HC1, BWZL, Calcitriol, Calcium Phosphate Gel, CCR5 peptides, CFA, Cholera holotoxin (CT) and Cholera toxin B subunit (CTB), Cholera toxin A 1 -subunit-Protein A D- fragment fusion protein, CpG, CRL1005, Cytokine-containing Liposomes, D-Murapalmitine, DDA, DHEA, Diphtheria toxoid, DL-PGL, DMPC, DMPG, DOC/Alum Complex, Fo
- the disclosure provides methods for generating an immune response to paramyxovirus and/or pneumovirus F protein in a subject, comprising administering to the subject an effective amount of the immunogenic composition of any embodiment or combination of embodiments of the disclosure to generate the immune response.
- the disclosure provides methods for treating or preventing a paramyxovirus and/or pneumovirus infection in a subject, comprising administering to the subject an effective amount of the immunogenic composition of any embodiment or combination of embodiments of the disclosure, thereby treating or preventing paramyxovirus and/or pneumovirus infection in the subject
- the paramyxovirus and/or pneumovirus comprises respiratory syncytial virus.
- “Respiratory Syncytial Virus” and “RSV” refer to a negative-sense, single- stranded RNA virus that causes a respiratory disease, especially in children.
- the immunogenic compositions are administered to a subject that has already been infected with the RSV, and/or who is suffering from symptoms (including but not limited to lower respiratory tract infections, upper respiratory tract infections, bronchiolitis, pneumonia, fever, listlessness, diminished appetite, recurrent wheezing, and asthma) indicating that the subject is likely to have been infected with the RSV.
- “treat” or “treating” includes, but is not limited to accomplishing one or more of the following: (a) reducing paramyxovirus and/or pneumovirus titer in the subject; (b) limiting any increase of paramyxovirus and/or pneumovirus titer in the subject; (c) reducing the severity of paramyxovirus and/or pneumovirus symptoms; (d) limiting or preventing development of paramyxovirus and/or pneumovirus symptoms after infection; (e) inhibiting worsening of paramyxovirus and/or pneumovirus symptoms; (f) limiting or preventing recurrence of paramyxovirus and/or pneumovirus symptoms in subjects that were previously symptomatic for paramyxovirus and/or pneumovirus infection; and/or promoting maternal transmission of paramyxovirus and/or pneumovirus antibodies to infants (after maternal immunization).
- the immunogenic compositions are administered prophylactically to a subject that is not known to be infected, but may be at risk of exposure to the paramyxovirus and/or pneumovirus.
- “limiting” means to limit RSV infection in subjects at risk of RSV infection. Groups at particularly high risk include children under age 18 (particularly infants 3 years or younger), adults over the age of 65, and individuals suffering from any type of immunodeficiency.
- an “effective amount” refers to an amount of the immunogenic composition that is effective for treating and/or limiting RSV infection.
- the immunogenic compositions are typically formulated as a pharmaceutical composition, such as those disclosed above, and can be administered via any suitable route, including orally, parentally, by inhalation spray, rectally, or topically in dosage unit formulations containing conventional pharmaceutically acceptable carriers, adjuvants, and vehicles.
- parenteral as used herein includes, subcutaneous, intravenous, intra-arterial, intramuscular, intrastemal, intratendinous, intraspinal, intracranial, intrathoracic, infusion techniques or intraperitoneally.
- Polypeptide compositions may also be administered via microspheres, liposomes, immune- stimulating complexes (ISCOMs), or other microparticulate delivery systems or sustained release formulations introduced into suitable tissues (such as blood). Dosage regimens can be adjusted to provide the optimum desired response ⁇ e.g., a therapeutic or prophylactic response).
- a suitable dosage range may, for instance, be 0.1 ug/kg-100 mg/kg body weight of the F protein or antigenic fragment thereof.
- the composition can be delivered in a single bolus, or may be administered more than once ⁇ e.g., 2, 3, 4, 5, or more times) as determined by attending medical personnel.
- the administering results in production of paramyxovirus and/or pneumovirus neutralizing antibodies in the subject.
- the neutralizing antibodies are present in sera of the subject at a titer (1/ID 50 ) of at least 1,000; in other embodiments, the neutralizing antibodies are present in sera of the subject at a titer of 2,000 or 5,000.
- the construct included an N-terminal secretion signal (SEQ ID NO: 20) and a C -terminal purification tag including a TEV cleavage site, a Myc Tag, and a His Tag.
- SEQ ID NO: 20 N-terminal secretion signal
- C -terminal purification tag including a TEV cleavage site, a Myc Tag, and a His Tag.
- HEK293F cell culture 1 mL was transiently transfected with 1 mg/mL plasmid DNA on day 0 and incubated at 37 °C with 125 rpm shaking, 8% CO 2 , and 70% humidity.
- wash buffer including 4% nonfat milk (block buffer) (200 mL per well) (Bio Rad, blotting grade blocker) and incubated for 1 hour with shaking at room temperature. The plate was washed with wash buffer six times.
- D25 monoclonal antibody (mAb) was diluted with block buffer to 0.2 mg/mL and 200 mL was plated into each sample well and incubated for 1 hour with shaking at room temperature. The plate was again washed with wash buffer six times.
- Anti-human secondary antibody conjugated to Horseradish Peroxidase (HRP) (Abeam) was diluted 1 :20,000 in block buffer and 200 mL was plated into each sample well. The plate was again incubated for 1 hour with shaking at room temperature. The plate was washed again as described above.
- ABTS HRP substrate (Fisher Scientific) was equilibrated to room temperature and 150 mL was plated into each sample well and incubated for approximately 15 minutes at room temperature.
- FIG. 2 shows the average absorbance at 405 nm for biological triplicate measurements obtained from supernatants of cultures expressing RSV_F-dn5B_04, RSV_F-dn5B_05, RSV_F- dn5B_06, and RSV_F-dn5B_07.
- RSV_F-dn5B_07 yielded approximately 3-fold more protein in the supernatant than the other constructs.
- RSV_F-dn5B_07 for purification was performed as in the above expression screen, but 200 mL of media was transfected instead of 1 mL for scaled up cultures.
- IMAC immobilized metal affinity chromatography
- 1 mL Ni-Excel resin (GE Healthcare) was first equilibrated with 25 mM Tris pH 8.0, 250 mM NaCl, 5% glycerol, 20 mM imidazole (wash buffer), then resuspended in 1 mL of wash buffer for a total of 2 mL of resin slurry.
- the 2 mL of resin slurry was then added to the cell supernatant resulting from expression harvested and incubated with gentle rocking for 1 hour at 4 °C.
- the cell supernatant-resin mixture was applied to an empty I MACTM gravity column (Bio Rad, catalog #7321010) and unbound host cell contaminant allowed to flow through.
- the component was further purified using size exclusion chromatography (SEC) as follows.
- SEC size exclusion chromatography
- a SupcrdcxTM 200 Increase 10/300 GL SEC column (GE Healthcare) was first equilibrated with 1.2 column volumes of elution buffer (25 mM Tris pH 8.0, 250 mM NaCl, 5% glycerol) on an AKTA PureTM FPLC (GE Healthcare).
- elution buffer 25 mM Tris pH 8.0, 250 mM NaCl, 5% glycerol
- the IMAC elution was concentrated to 1 mL, then sterilized using a 0.22 mm filter.
- the sample was applied to the SEC column and the component was eluted by running 1.2 column volumes of elution buffer over the column using the FPLC, maintaining a flow rate of 0.75 mL/min.
- the protein of interest eluted around 15 mL.
- Purified RSV_F-dn5B_07 (387) was diluted to 200 nM in HPS-EP+ buffer (ForteBio) with 0.5% nonfat milk (Bio Rad, blotting grade blocker) and then 200 mL was plated into 3 wells of a black 96 well plate (Grenier).
- Palivizumab (Pali), AM 14, and 4D7 monoclonal antibodies (mAbs) were diluted to 10 ⁇ g/mL in the HPS-EP+ buffer with 0.5% milk, and 200 mL of each mAb was plated into a well of the black 96 well plate.
- FIG.3A shows the binding and dissociation curves for palivizumab, AM 14, and 4D7 binding to RSV_F-dn5B_07 (387).
- Palivizumab and AM 14 both bind RSV_F-dn5B_07 (387), while 4D7 fails to bind the antigen.
- AM 14 is a prefusion- and trimer-specific mAb (Gilman et al., PLoS Pathog. 2015 Jul 10; 11(7):el 005035. doi: 10.1371/joumal.ppat.l005035. eCollection 2015), while 4D7 is specific to a conformation of RSV F that is mutually exclusive with the prefusion structure (Flynn et al., 2016, PLoS One. 2016 Oct 20; 11 (10):e0164789. doi:
- FIG.4A shows the association and dissociation curves for each sample.
- FIG.4B shows a bar graph depicting fractional reactivity at each elevated temperature.
- plasmid containing the following in order from 5’ to 3’ was transformed into BL21*(DE3) competent cells (New England Biolabs): Ndel restriction enzyme site, ORF, Xhol restriction enzyme site, 6xHis Tag in pET29b+ vector.
- Starter cultures were prepared in Terrific Broth (TB) with 50 ⁇ g/mL kanamycin by transferring a bacterial colony to the media. Starter cultures were incubated overnight (-16 hours) at 37 °C with 250 rpm shaking. We used TB for expression cultures, again including 50 ⁇ g/mL kanamycin.
- Egression cultures were incubated at 37 °C with 250 rpm shaking for ⁇ 2 hours until the optical density (OD600) reached 0.6-0.8, at which time 1 mM IPTG was added to induce expression.
- the cultures were incubated at 18 °C for another 18 hours.
- 500 mL expression cultures were produced in 2 L baffled shake flasks (yield ⁇ 0.1 g/L). Cells were harvested by centrifugation at 4000 g for 15 minutes. Media was decanted and cell pellet stored at -20 °C until purification.
- the cell pellets were first resuspended in 20 mL lysis buffer (25 mM Tris pH 8.0, 150 mM NaCl, 5% glycerol) and homogenized using a ThunderStickTM for 30 seconds at 10,000 rpm. Cells were lysed using a microfluidizcr at 18,000 psi. Lysate was clarified by centrifugation at 24,000 g for 30 minutes at 4 °C, then the supernatant was sterile filtered at 0.22 mm and the pellet discarded. The filtrate was purified using immobilized metal affinity chromatography (IMAC) as follows.
- IMAC immobilized metal affinity chromatography
- the clarified lysate was applied to a N ⁇ 2+-NTA column bed volume of 2 mL after equilibration of the resin into 25 mM Tris pH 8.0, 150 mM NaCl, 30 mM imidazole, 5% glycerol (wash buffer). Then, the column was cleared of host cell proteins by applying 12 column volumes of wash buffer to the resin bed. Finally, the component was eluted from the resin with 7 column volumes of elution buffer (25 mM Tris pH 8.0, 150 mM NaCl, 500 mM imidazole, 5% glycerol).
- SEC size exclusion chromatography
- Nanoparticles were assembled using purified RSV_F-dnSB_07 trimeric component and purified I53_dn5A pentameric component by mixing each component in a 1:1 molar ratio (calculated according to subunits, not oligomers) at 50 mM in a 1 mL reaction.
- the assembly reaction was set up as follows: First, the trimeric component was added to a 1.5 mL microcentrifuge tube, then buffer was added to the tube (25 mM Tris pH 8, 250 mM NaCl, 5% glycerol), followed by the pentameric component. The reaction was allowed to incubate for ⁇ 1 hour at 4 °C before collecting Dynamic Light Scattering (DLS) readings as follows.
- DLS Dynamic Light Scattering
- FIG. 5 shows that the unpurified in vitro assembly reaction contains a major product with the expected radius (23 nm) and low polydispersity, indicating successful assembly to the target icosahedral nanostructure.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Virology (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Pharmacology & Pharmacy (AREA)
- Communicable Diseases (AREA)
- Mycology (AREA)
- Gastroenterology & Hepatology (AREA)
- Microbiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Epidemiology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Pulmonology (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962895727P | 2019-09-04 | 2019-09-04 | |
PCT/US2020/049183 WO2021046207A1 (en) | 2019-09-04 | 2020-09-03 | Self-assembling protein nanostructures displaying paramyxovirus and/or pneumovirus f proteins and their use |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4025587A1 true EP4025587A1 (en) | 2022-07-13 |
Family
ID=72521748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20772512.8A Pending EP4025587A1 (en) | 2019-09-04 | 2020-09-03 | Self-assembling protein nanostructures displaying paramyxovirus and/or pneumovirus f proteins and their use |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220306697A1 (en) |
EP (1) | EP4025587A1 (en) |
JP (1) | JP2022546813A (en) |
CN (1) | CN114502572A (en) |
WO (1) | WO2021046207A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023133435A2 (en) * | 2022-01-07 | 2023-07-13 | University Of Washington | Novel immunogens for influenza virus vaccines |
KR20250025527A (en) * | 2022-05-17 | 2025-02-21 | 아이코사백스, 인크. | Multivalent vaccine for paramyxovirus and uses thereof |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK3275892T3 (en) | 2011-05-13 | 2020-04-06 | Glaxosmithkline Biologicals Sa | PRÆFUSIONS-RSV F ANTIGENS |
US20140141037A1 (en) | 2012-11-20 | 2014-05-22 | Novartis Ag | Rsv f prefusion trimers |
US20150329597A1 (en) | 2012-11-20 | 2015-11-19 | Andrea Carfi | Rsv f prefusion trimers |
CA2902877A1 (en) | 2013-03-13 | 2014-10-02 | Jeffrey Boyington | Prefusion rsv f proteins and their use |
US9738689B2 (en) | 2013-03-13 | 2017-08-22 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Prefusion RSV F proteins and their use |
US9060975B2 (en) | 2013-03-14 | 2015-06-23 | Mucosis Bv | Heat-stable respiratory syncytial virus F protein oligomers and their use in immunological compositions |
AP2015008815A0 (en) | 2013-04-25 | 2015-10-31 | Crucell Holland Bv | Stabilized soluble prefusion rsv f polypeptides |
CA2914792C (en) | 2013-06-17 | 2024-02-27 | Crucell Holland B.V. | Stabilized soluble pre-fusion rsv f polypeptides |
US20150166610A1 (en) | 2013-10-14 | 2015-06-18 | Glaxosmithkline Biologicals, S.A. | Recombinant rsv antigens |
CA2996762A1 (en) | 2015-08-31 | 2017-03-09 | Technovax, Inc. | Human respiratory syncytial virus (hrsv) virus-like particles (vlps) based vaccine |
KR102505354B1 (en) | 2015-12-23 | 2023-03-02 | 화이자 인코포레이티드 | Rsv f protein mutants |
CN109069611B (en) | 2016-03-29 | 2022-11-04 | 美国政府(由卫生和人类服务部的部长所代表) | Substitution-modified pre-fusion RSV F proteins and uses thereof |
BR112018074483A2 (en) | 2016-05-30 | 2019-03-19 | Janssen Vaccines & Prevention B.V. | stabilized pre-fusion rsv f proteins |
WO2017207477A1 (en) | 2016-05-30 | 2017-12-07 | Janssen Vaccines & Prevention B.V. | Stabilized pre-fusion rsv f proteins |
US10818377B2 (en) * | 2016-11-16 | 2020-10-27 | University Of Washington | Computational design of self-assembling cyclic protein homo-oligomers |
CN115947873A (en) * | 2017-04-04 | 2023-04-11 | 华盛顿大学 | Self-assembling protein nanostructures displaying paramyxovirus and/or pneumovirus F proteins and uses thereof |
-
2020
- 2020-09-03 EP EP20772512.8A patent/EP4025587A1/en active Pending
- 2020-09-03 US US17/639,442 patent/US20220306697A1/en active Pending
- 2020-09-03 CN CN202080068157.1A patent/CN114502572A/en active Pending
- 2020-09-03 WO PCT/US2020/049183 patent/WO2021046207A1/en unknown
- 2020-09-03 JP JP2022513855A patent/JP2022546813A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20220306697A1 (en) | 2022-09-29 |
JP2022546813A (en) | 2022-11-09 |
CN114502572A (en) | 2022-05-13 |
WO2021046207A1 (en) | 2021-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11732011B2 (en) | Self-assembling protein nanostructures displaying paramyxovirus and/or pneumovirus F proteins and their use | |
TWI756828B (en) | Rsv f protein mutants | |
US12343391B2 (en) | Protein-based nanoparticle vaccine for metapneumovirus | |
US20220306697A1 (en) | Self-Assembling Protein Nanostructures Displaying Paramyxovirus and/or Pneumovirus F Proteins and Their Use | |
US20250188131A1 (en) | Viral proteins and nanostructures and uses thereof | |
US20250090651A1 (en) | Respiratory syncytial virus f proteins and nanostructures and uses thereof | |
KR20250084945A (en) | Pan-Sarbecovirus Nanoparticle Vaccine | |
WO2024238311A1 (en) | Coronavirus spike glycoprotein receptor binding domains and uses thereof | |
TW202519539A (en) | Respiratory syncytial virus f proteins and nanostructures and uses thereof | |
WO2024249645A2 (en) | Glycoprotein antigens for hiv vaccines | |
CN118725052A (en) | Respiratory syncytial virus F protein in a stable prefusion conformation | |
HK1263007A1 (en) | Rsv f protein mutants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220311 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230516 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20231220 |