EP2252844B1 - Heat exchanger with a mixing chamber - Google Patents
Heat exchanger with a mixing chamber Download PDFInfo
- Publication number
- EP2252844B1 EP2252844B1 EP09710586A EP09710586A EP2252844B1 EP 2252844 B1 EP2252844 B1 EP 2252844B1 EP 09710586 A EP09710586 A EP 09710586A EP 09710586 A EP09710586 A EP 09710586A EP 2252844 B1 EP2252844 B1 EP 2252844B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- distribution
- heat exchanger
- manifold
- slots
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009826 distribution Methods 0.000 claims abstract description 71
- 239000012530 fluid Substances 0.000 claims abstract description 12
- 239000003507 refrigerant Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000005219 brazing Methods 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 238000013517 stratification Methods 0.000 description 2
- 239000003570 air Substances 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05391—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
- F25B39/028—Evaporators having distributing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/047—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
- F28D1/0475—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
- F28D1/0476—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend the conduits having a non-circular cross-section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/026—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
- F28F9/0278—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4935—Heat exchanger or boiler making
Definitions
- the present invention relates generally to heat exchanger for motor vehicles.
- the present invention relates more particularly to a heat exchanger according to the preamble of claim 1.
- Such a heat exchanger is known from EP 1798507 .
- the heat exchanger relates to multi layers collector box assemblies for two phases flow products with high pressure withstanding.
- An object of the invention is to provide a heat exchanger with a more uniform distribution of the first fluid to the tubes and a more pressure-stable construction.
- the heat exchanger should avoid flow stratification by improving the flow mixing in the collector box.
- a heat exchanger of the above mentioned type characterized in that said collecting aperture is arranged in a main recess provided in the bottom face of the cover plate in order to form with the upper face of the distribution plate a mixing chamber for the first fluid, said mixing chamber extending at least partially above said two adjacent distribution slots.
- the fluid distribution is better and there is no need to provide the distribution plate with a large and deep cutoff in order to create a mixing chamber.
- the advantage of avoiding cutoff in the distribution plate is to maximize the brazing surface between the distribution plate and the header plate which provides stronger attachment forces between the plates allowing the use of thinner plates, for example a thinner distribution plate.
- the present invention provides also a method for manufacturing a heat exchanger according to the above mentioned features, comprising the steps of:
- FIG. 1 and 2 show an evaporator 10 for a motor vehicle air-conditioning system which is operated with CO 2 as refrigerant according to a preferred embodiment of the present invention.
- This evaporator 10 is designed as a two rows flat-tube evaporator and has a multiplicity of flat tubes 12 arranged along two longitudinal rows R1, R2, a front row R1 on the front side of the evaporator 10 and a rear row R2 on the rear side of the evaporator 10.
- These flat tubes 12 can be designed as extruded multi-channel flat tubes, which have a multiplicity of flow passages 14. All the flat tubes 12 have the same length along a vertical axis V and the same depth D along a transverse axis T.
- the flat tubes 12 are multiport extruded flat tubes.
- corrugated fins 16 which are acted on by ambient air in the direction of the arrow F, i.e. along a transverse axis.
- the tubes 12 are fitted between an upper end member constituted of a collector box 18 and a lower end member constituted of a diverter box 20.
- the collector box 18 comprises a stack of individual plates bearing against one another and including successively a cover plate 22 at the top, an intermediate distribution plate 24, and a header plate 26 at the bottom.
- the collector box 18 comprises also an inlet manifold 28 and an outlet manifold 30 which extends along a longitudinal axis, in parallel to each other, and which are made of one piece with the cover plate 22, the cover plate 22 and the manifolds 28, 30 being extruded.
- cover plate 22 could be stamped and the manifolds 28, 30 could be made from rolled and welded process, and then these separates parts would be brazed together.
- the header plate 26, in which a front row and a rear row of mounting slots 32 are arranged, is illustrated above the flat tubes 12, the two parallel rows of mounting slots 32 corresponding to the two rows R1, R2 of flat tubes 12.
- the mounting slots 32 are located one behind the other in the transverse direction and in each case leave between them webs 34 which separate two adjacent flat tubes 12 in the transverse direction.
- the total number of mounting slots 32 matches with the total number of flat tubes 12, each flat tube upper end 33 being inserted into the header plate 26 through a mounting slot 32.
- the distribution plate 24, or diverter plate, is arranged above the header plate 26 and has distribution slots 36 for refrigerant passage similar to the mounting slots 32.
- the distribution plate 24 comprises, in alternation, two distribution slots 36 forming through passages which lie one behind the other in the transverse direction, leaving a web 40 between them, and a diverter passage 42 which continues through in the transverse direction.
- distribution slots 36 and diverter passages 42 adopts a pattern which repeats itself after four longitudinally adjacent tubes 12, said pattern corresponding to two flow paths 44 through the heat exchanger 10.
- two adjacent flow paths 44 are arranged mirror-symmetrically with respect to one another along the longitudinal axis L. This means that either the distribution slots 36 of a flow path 44 come to lie next to the distribution slots 36 of an adjacent flow path 44, or a diverter passage 42 of a flow path 44 comes to lie next to a diverter passage 42 of an adjacent flow path 44.
- the diverter passages 42 have a cross-over function, allowing the refrigerant to transfer from one row R1 to the next R2 within air stream direction F.
- a flow path 44 of the refrigerant follows the direction of the arrows along the dashed-line 44, i.e. the refrigerant enters the front tube 12 at A passing into the distribution slot 36, initially flows downward, is diverted at the bottom B, then flows upward through a longitudinally adjacent front tube 12 and passes into the diverter passage 42 at C, where it is diverted, before then flowing downward on the rear side of the evaporator 10, where it is diverted at D and then flows upward again in order to pass through the distribution slot 36 of the adjacent rear tube 12 as indicated by arrow E.
- the supply and discharge of the refrigerant is described on the basis of figure 2 .
- each flow path 44 is diverted at the bottom part of the evaporator 10 thanks to the diverter box 20 which is aimed to redirect (at B and D) the flow coming downward through a flat tube 12 towards the longitudinally adjacent flat tube 12 in the upward direction as if the evaporator was formed from individual U-tubes.
- the diverter box 20 is aimed to redirect (at B and D) the flow coming downward through a flat tube 12 towards the longitudinally adjacent flat tube 12 in the upward direction as if the evaporator was formed from individual U-tubes.
- An example of a similar diverter box 20 is disclosed in US 2005/0039901 in connection with figure 1 where it is used for diverting the flow from the front row of tubes towards the rear row of tubes (paragraphs [74] and [75]).
- the diverter box 20 could be omitted by providing the heat exchanger 10 with U-tubes 21, as shown on figure 5 , instead of straight flat tubes 12.
- the U-tube 21 comprises two vertical portions linked at the bottom by a bended portion extending longitudinally.
- the collecting apertures 46, 48 comprise a first row of refrigerant inlet apertures 46 connecting the distribution slots 36 underneath to the inlet manifold 28 and a second row of refrigerant outlet apertures 48 connecting the distribution slots 36 underneath to the outlet manifold 30.
- each collecting aperture 46, 48 is arranged above and between two longitudinally adjacent distribution slots 36 in order to connect jointly said two adjacent distribution slots 36 to the corresponding manifold 28, 30.
- the above-described individual parts of the evaporator 10 are assembled in the following way.
- the header plate 26 is fitted onto the flat-tube ends 33.
- the distribution plate 24 and the cover plate 22 with the manifolds 28, 30 are stacked on top of the header plate 8.
- the different plates constituting the diverter box 20 at the bottom of the evaporator are assembled in a similar way.
- the distribution plate 24 could be integrated into the header plate 26 to save one plate.
- the evaporator 10 After the evaporator 10 has therefore been assembled, it is soldered to form a fixed block in a soldering furnace. During the soldering process, the plates 22, 24, 26 are held in position with respect to one another by a positive or non positive clamping action. However, it is also possible firstly to assemble the end member comprising header plate 26, distribution plate 24, and cover plate 22, and then to connect it to flat tubes 12.
- each collecting aperture 46, 48 is arranged in a main recess 50 provided in the bottom face 52 of the cover plate 22 in order to form, with the upper face 54 of the distribution plate 24, a mixing chamber 56 for the refrigerant.
- said mixing chamber 56 extends partially above the two adjacent distribution slots 36 and said main recess 50 is made longitudinally larger than the collecting aperture 46, 48.
- the recess 50 is made by stamping process into the bottom face 52 of the cover plate 22 which provides the corresponding manifold 28, 30 with a bump 58 on its inner surface 60.
- the bump 58 is delimited transversally by the inner transversal dimension of the manifold 28, 30. More particularly, the bump 58 is delimited transversally by the longitudinal tubular wall 62 of the manifold 28, 30, at the location 63 where the tubular wall 62 is linked to the cover plate 22.
- the vertical depth of the main recess 50 may be approximately the thickness of the metal plate constituting the cover plate 22.
- the main recess 50 has a dome shape which allows an optimized distribution.
- the main recess 50 is of longitudinal oblong shape so that it extends longitudinally from the middle of one distribution slot 36 to the middle of the adjacent distribution slot 36.
- the collecting apertures 46, 48 are preferably designed as bores of transversal oblong shape with dimensions matched to the desired refrigerant distribution and quantitative flow.
- the oblong shape extends transversally which allows a better distribution/collection of the refrigerant into all the channels 14.
- the section of the collecting apertures 46, 48 is preferably ranged between 30% and 60% of the total open area of the tubes 12 to feed. This restriction is done by purpose to make sure the refrigerant flow is more or less constant up to the far end of the manifolds 28, 30.
- the section restriction is adjusted longitudinally, from one collecting aperture 46, 48 to the others, depending on the manifold 28, 30 length and/or depending on refrigerant flow length in the tubes 12.
- the evaporator 10 is designed for obtaining good performances at some predefmed operating points which help to define the final value for the section of those collecting apertures 46,48.
- the refrigerant is able to mix before flowing into the two connected tubes 12 which makes the refrigerant more homogenous, in terms of pressure and in terms of fluid consistency, all along the evaporator 10 and all along each flow path 44, thus avoiding risks of flow stratification.
- Flow homogeneity contributes for an optimized distribution in the evaporator 10.
- the refrigerant flow impacts on the portion of the distribution plate 24 which faces the collecting aperture 46, thus contributing to mixing.
- the portion of the distribution plate 24 which faces the collecting aperture 46, 48 is provided with an additional recess 64 for enlarging vertically the mixing chamber 56.
- the additional recess 64 is delimited longitudinally by two adjacent distribution slots 36 and transversally by two lateral surfaces 66, 68 which are facing each other.
- the greater transversal dimension of said additional recess 64 is inferior to the transversal depth of the corresponding through-passages 38.
- each lateral surface 66, 68 defines an increasing flow section towards each of the two adjacent distribution slots 36, the distance between said lateral surfaces 66, 68 increasing towards each of the distribution slots 36.
- each lateral surface 66, 68 has a triangular profile from an elevation view.
- the vertical thickness of the additional recess 64 is inferior to the thickness of the main recess 50.
- the mixing chamber 56 is enlarged backwards and allows better distribution in the tubes 12 of the front row R1, and better collection from the tubes 12 of the rear row R2.
- the invention could be implemented without additional recesses 64.
- the flow restriction provided in the manifolds 28, 30 by the bumps 58 promotes flow turbulences in the manifold 28, 30 which ensure that the refrigerant remain biphasic with an improved flow homogeneity versus stratified one.
- the bumps 58 provide some kind of diaphragm which improves the flow mixing in the manifolds 28, 30.
- the main recesses 50, the bumps 58, and the additional recesses 64 have been described mainly in connection with the inlet manifold 28 and the inlet apertures 46, i.e. in connection with the inlet side or front side of the evaporator 10.
- the main recesses 50, the bumps 58, and the additional recesses 64 can be provided, all together or selectively, on the outlet side or rear side of the evaporator 10, in connection with the outlet manifold 28 and the outlet apertures 48.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
- The present invention relates generally to heat exchanger for motor vehicles.
- The present invention relates more particularly to a heat exchanger according to the preamble of claim 1.
- Such a heat exchanger is known from
EP 1798507 . - The heat exchanger relates to multi layers collector box assemblies for two phases flow products with high pressure withstanding.
- Such a heat exchanger is disclosed for example in
US 2005/0039901 . Nonetheless, the fluid circulation in the collector box is not optimized. More particularly, the two phases flow is not homogeneously mixed creating pressure drops and efficiency loss in the heat exchanger. - It is known, for example from figure 8, reference 545, in
US 2005/0039901 , to provide the distribution plate with a cutoff portion between two adjacent distribution slots in order to connect the two distribution slots. However, such a cutoff portion tends to weaken the collector box assembly and to decreases its high pressure withstanding capability. - An object of the invention is to provide a heat exchanger with a more uniform distribution of the first fluid to the tubes and a more pressure-stable construction. The heat exchanger should avoid flow stratification by improving the flow mixing in the collector box.
- This object is achieved by a heat exchanger of the above mentioned type characterized in that said collecting aperture is arranged in a main recess provided in the bottom face of the cover plate in order to form with the upper face of the distribution plate a mixing chamber for the first fluid, said mixing chamber extending at least partially above said two adjacent distribution slots.
- Thanks to the main recess forming the mixing chamber, the fluid distribution is better and there is no need to provide the distribution plate with a large and deep cutoff in order to create a mixing chamber. The advantage of avoiding cutoff in the distribution plate is to maximize the brazing surface between the distribution plate and the header plate which provides stronger attachment forces between the plates allowing the use of thinner plates, for example a thinner distribution plate.
- According to other features of the invention:
- said collector box includes a header plate with at least one row of mounting slots receiving an end portion of each tube portion, said distribution plate being arranged between said header plate and said cover plate,
- said collecting aperture is of oblong shape along an axis parallel to the distribution slots,
- said main recess is of oblong shape along the manifold axis,
- said manifold is made of one piece with said cover plate,
- said main recess is stamped in the bottom face of the cover plate such as to form a bump on the inner surface of the manifold which creates a section reduction in the manifold,
- it comprises two rows of tubes and it comprises an inlet manifold and an outlet manifold,
- the portion of the distribution plate which faces said collecting aperture is provided with an additional recess for enlarging said mixing chamber towards the distribution plate,
- said additional recess is delimited transversally by two lateral surfaces which are facing each other, said lateral surfaces defming an increasing flow section towards each of the two adjacent distribution slots;
- The present invention provides also a method for manufacturing a heat exchanger according to the above mentioned features, comprising the steps of:
- extruding the cover plate,
- forming the main recesses in the bottom face of the cover plate by stamping process,
- piercing the collecting apertures in the main recesses.
- The present invention is now described by way of example with reference to the accompanying drawings in which:
-
figure 1 is an exploded perspective view showing an evaporator according to a preferred embodiment of the invention; -
figure 2 is a perspective view including partial cross-section and longitudinal-section along 2-2 showing a portion of the evaporator offigure 1 ; -
figure 3 is a perspective view including a cross-section along 3-3 showing the evaporator offigure 1 ; -
figure 4 is a perspective view showing the cover plate of the evaporator offigure 1 provided with recesses; -
figure 5 is a view similar tofigure 1 showing an alternative embodiment of the evaporator including U-tubes. -
FIG. 1 and2 show anevaporator 10 for a motor vehicle air-conditioning system which is operated with CO2 as refrigerant according to a preferred embodiment of the present invention. Thisevaporator 10 is designed as a two rows flat-tube evaporator and has a multiplicity offlat tubes 12 arranged along two longitudinal rows R1, R2, a front row R1 on the front side of theevaporator 10 and a rear row R2 on the rear side of theevaporator 10. Theseflat tubes 12 can be designed as extruded multi-channel flat tubes, which have a multiplicity offlow passages 14. All theflat tubes 12 have the same length along a vertical axis V and the same depth D along a transverse axis T. - In the following description, for the purpose of better understanding, we will use an orientation along the vertical axis V, the longitudinal axis L, and the transverse axis T, as can be seen on
figure 1 . - Preferably, the
flat tubes 12 are multiport extruded flat tubes. - Between the individual
flat tubes 12 there arecorrugated fins 16, which are acted on by ambient air in the direction of the arrow F, i.e. along a transverse axis. - The
tubes 12 are fitted between an upper end member constituted of acollector box 18 and a lower end member constituted of adiverter box 20. - The
collector box 18 comprises a stack of individual plates bearing against one another and including successively acover plate 22 at the top, anintermediate distribution plate 24, and aheader plate 26 at the bottom. Thecollector box 18 comprises also aninlet manifold 28 and anoutlet manifold 30 which extends along a longitudinal axis, in parallel to each other, and which are made of one piece with thecover plate 22, thecover plate 22 and themanifolds - As an alternative embodiment, the
cover plate 22 could be stamped and themanifolds - In the drawings, the
header plate 26, in which a front row and a rear row ofmounting slots 32 are arranged, is illustrated above theflat tubes 12, the two parallel rows ofmounting slots 32 corresponding to the two rows R1, R2 offlat tubes 12. Themounting slots 32 are located one behind the other in the transverse direction and in each case leave between themwebs 34 which separate two adjacentflat tubes 12 in the transverse direction. The total number ofmounting slots 32 matches with the total number offlat tubes 12, each flat tubeupper end 33 being inserted into theheader plate 26 through amounting slot 32. - The
distribution plate 24, or diverter plate, is arranged above theheader plate 26 and hasdistribution slots 36 for refrigerant passage similar to themounting slots 32. Thedistribution plate 24 comprises, in alternation, twodistribution slots 36 forming through passages which lie one behind the other in the transverse direction, leaving aweb 40 between them, and adiverter passage 42 which continues through in the transverse direction. - The configuration of
distribution slots 36 anddiverter passages 42 adopts a pattern which repeats itself after four longitudinallyadjacent tubes 12, said pattern corresponding to twoflow paths 44 through theheat exchanger 10. In each case twoadjacent flow paths 44 are arranged mirror-symmetrically with respect to one another along the longitudinal axis L. This means that either thedistribution slots 36 of aflow path 44 come to lie next to thedistribution slots 36 of anadjacent flow path 44, or adiverter passage 42 of aflow path 44 comes to lie next to adiverter passage 42 of anadjacent flow path 44. Thediverter passages 42 have a cross-over function, allowing the refrigerant to transfer from one row R1 to the next R2 within air stream direction F. - A
flow path 44 of the refrigerant follows the direction of the arrows along the dashed-line 44, i.e. the refrigerant enters thefront tube 12 at A passing into thedistribution slot 36, initially flows downward, is diverted at the bottom B, then flows upward through a longitudinallyadjacent front tube 12 and passes into thediverter passage 42 at C, where it is diverted, before then flowing downward on the rear side of theevaporator 10, where it is diverted at D and then flows upward again in order to pass through thedistribution slot 36 of the adjacentrear tube 12 as indicated by arrow E. The supply and discharge of the refrigerant is described on the basis offigure 2 . - According to the present embodiment, each
flow path 44 is diverted at the bottom part of theevaporator 10 thanks to thediverter box 20 which is aimed to redirect (at B and D) the flow coming downward through aflat tube 12 towards the longitudinally adjacentflat tube 12 in the upward direction as if the evaporator was formed from individual U-tubes. An example of asimilar diverter box 20 is disclosed inUS 2005/0039901 in connection withfigure 1 where it is used for diverting the flow from the front row of tubes towards the rear row of tubes (paragraphs [74] and [75]). - According to an alternative embodiment, the
diverter box 20 could be omitted by providing theheat exchanger 10 withU-tubes 21, as shown onfigure 5 , instead of straightflat tubes 12. The U-tube 21 comprises two vertical portions linked at the bottom by a bended portion extending longitudinally. - What is referred to as a
cover plate 22, which includes two parallel rows of collectingapertures distribution plate 24. The collectingapertures refrigerant inlet apertures 46 connecting thedistribution slots 36 underneath to theinlet manifold 28 and a second row ofrefrigerant outlet apertures 48 connecting thedistribution slots 36 underneath to theoutlet manifold 30. - According to the present embodiment, each collecting
aperture adjacent distribution slots 36 in order to connect jointly said twoadjacent distribution slots 36 to the correspondingmanifold - The above-described individual parts of the
evaporator 10 are assembled in the following way. Theheader plate 26 is fitted onto the flat-tube ends 33. Then, thedistribution plate 24 and thecover plate 22 with themanifolds - The different plates constituting the
diverter box 20 at the bottom of the evaporator are assembled in a similar way. - As an alternative embodiment, the
distribution plate 24 could be integrated into theheader plate 26 to save one plate. - After the
evaporator 10 has therefore been assembled, it is soldered to form a fixed block in a soldering furnace. During the soldering process, theplates header plate 26,distribution plate 24, and coverplate 22, and then to connect it toflat tubes 12. - According to the invention, each collecting
aperture main recess 50 provided in thebottom face 52 of thecover plate 22 in order to form, with theupper face 54 of thedistribution plate 24, a mixingchamber 56 for the refrigerant. As can be seen onfigure 2 , said mixingchamber 56 extends partially above the twoadjacent distribution slots 36 and saidmain recess 50 is made longitudinally larger than the collectingaperture - Preferably, the
recess 50 is made by stamping process into thebottom face 52 of thecover plate 22 which provides thecorresponding manifold bump 58 on itsinner surface 60. Thebump 58 is delimited transversally by the inner transversal dimension of the manifold 28, 30. More particularly, thebump 58 is delimited transversally by the longitudinaltubular wall 62 of the manifold 28, 30, at thelocation 63 where thetubular wall 62 is linked to thecover plate 22. The vertical depth of themain recess 50 may be approximately the thickness of the metal plate constituting thecover plate 22. - Advantageously, the
main recess 50 has a dome shape which allows an optimized distribution. - According to the embodiment shown, the
main recess 50 is of longitudinal oblong shape so that it extends longitudinally from the middle of onedistribution slot 36 to the middle of theadjacent distribution slot 36. - The collecting
apertures channels 14. - The section of the collecting
apertures tubes 12 to feed. This restriction is done by purpose to make sure the refrigerant flow is more or less constant up to the far end of themanifolds aperture tubes 12. - In addition to the
preferred range 30% - 60%, theevaporator 10 is designed for obtaining good performances at some predefmed operating points which help to define the final value for the section of those collectingapertures - Thanks to the mixing
chambers 56 connected to theinlet manifold 28, the refrigerant is able to mix before flowing into the twoconnected tubes 12 which makes the refrigerant more homogenous, in terms of pressure and in terms of fluid consistency, all along theevaporator 10 and all along eachflow path 44, thus avoiding risks of flow stratification. Flow homogeneity contributes for an optimized distribution in theevaporator 10. - After entering into the collecting
aperture 46 and before entering into the correspondingflat tubes 12, the refrigerant flow impacts on the portion of thedistribution plate 24 which faces the collectingaperture 46, thus contributing to mixing. - According to a preferred embodiment, the portion of the
distribution plate 24 which faces the collectingaperture additional recess 64 for enlarging vertically the mixingchamber 56. Theadditional recess 64 is delimited longitudinally by twoadjacent distribution slots 36 and transversally by twolateral surfaces additional recess 64 is inferior to the transversal depth of the corresponding through-passages 38. - Said
lateral surfaces adjacent distribution slots 36, the distance between saidlateral surfaces distribution slots 36. As can be seen onfigure 2 , eachlateral surface additional recess 64 is inferior to the thickness of themain recess 50. - Thanks to the
additional recess 64, the mixingchamber 56 is enlarged backwards and allows better distribution in thetubes 12 of the front row R1, and better collection from thetubes 12 of the rear row R2. However, the invention could be implemented withoutadditional recesses 64. - The use of an
additional recess 64 and amain recess 50 instead of providing thedistribution plate 24 with a cut-off or aperture between the twoadjacent distribution slots 36 allows a more strong attachment between thedistribution plate 24 and theheader plate 26 since thecontact surface 70 for brazing is maximized. - The flow restriction provided in the
manifolds bumps 58 promotes flow turbulences in the manifold 28, 30 which ensure that the refrigerant remain biphasic with an improved flow homogeneity versus stratified one. Thebumps 58 provide some kind of diaphragm which improves the flow mixing in themanifolds - The use of a
bump 58 of oblong shape along the axis of themanifolds manifolds - The main recesses 50, the
bumps 58, and theadditional recesses 64 have been described mainly in connection with theinlet manifold 28 and theinlet apertures 46, i.e. in connection with the inlet side or front side of theevaporator 10. Symmetrically, themain recesses 50, thebumps 58, and theadditional recesses 64 can be provided, all together or selectively, on the outlet side or rear side of theevaporator 10, in connection with theoutlet manifold 28 and theoutlet apertures 48. - The present invention has been described in part on the basis of the example of an
evaporator 10. However, it should be noted that the heat exchanger according to the invention is also suitable for other uses.
Claims (10)
- Heat exchanger (10), in particular for a motor vehicle, comprising a collector box (18) and at least one longitudinal row (R1, R2) of multi-channel flat tube portions (12) through which a first fluid such as a refrigerant fluid can flow and around which a second fluid such as air can flow, said tube portions (12) being flat along a transverse direction and being connected to the bottom face of the collector box (18), wherein the collector box (18) is made up of stacked plates (22, 24, 26) including:a distribution plate (24) comprising at least one row of distribution slots (36) which distribute the first fluid in the collector box (18),a cover plate (22) comprising at least one row of collecting apertures (46, 48) which connect at least some of the distribution slots (36) to a manifold (28, 30), at least one collecting aperture (46, 48) being arranged between two adjacent distribution slots (36) in order to connect jointly said two adjacent distribution slots (36) to the manifold (28, 30),characterized in that said collecting aperture (46, 48) is arranged in a main recess (50) provided in the bottom face (52) of the cover plate (22) in order to form with the upper face (54) of the distribution plate (24) a mixing chamber (56) for the first fluid, said mixing chamber (56) extending at least partially above said two adjacent distribution slots (36).
- Heat exchanger (10) according to claim 1, characterized in that said collector box (18) includes a header plate (26) with at least one row of mounting slots (32) receiving an end portion of each tube portion (12), said distribution plate (24) being arranged between said header plate (26) and said cover plate (22).
- Heat exchanger (10) according to claim 1 or 2, characterized in that said collecting aperture (46, 48) is of oblong shape along an axis parallel to the distribution slots (36).
- Heat exchanger (10) according to any of the preceding claims, characterized in that said main recess (50) is of oblong shape along the manifold axis.
- Heat exchanger (10) according to anyone of the preceding claims, characterized in that said manifold (28, 30) is made of one piece with said cover plate (22).
- Heat exchanger (10) according to claim 5, characterized in that said main recess (50) is stamped in the bottom face (52) of the cover plate (22) such as to form a bump (58) on the inner surface (60) of the manifold (28, 30) which generates a section reduction in the manifold (28, 30).
- Heat exchanger (10) according to anyone of the preceding claims, characterized in that it comprises two rows (R1, R2) of tubes (12) and in that it comprises an inlet manifold (28) and an outlet manifold (30).
- Heat exchanger (10) according to anyone of the preceding claims, characterized in that the portion of the distribution plate (24) which faces said collecting aperture (46, 48) is provided with an additional recess (64) for enlarging said mixing chamber (56) towards the distribution plate (24).
- Heat exchanger (10) according to claim 8, characterized in that said additional recess (50) is delimited transversally by two lateral surfaces (66, 68) which are facing each other, said lateral surfaces (66, 68) defining an increasing flow section towards each of the two adjacent distribution slots (36).
- Method for manufacturing a heat exchanger (10) according to anyone of claims 1 to 9, comprising the steps of:- providing a collector box (18) made up of stacked plates made as following,- providing a distribution plate comprising at least one row of distribution slots (36) which distribute the first fluid in the collector box,- extruding a cover plate (22) comprising at least one row of collecting apertures (46, 48) which connect at least some of the distribution slots to a manifold, the cover plate further comprising at least a collecting aperture (46, 48) being arranged between two adjacent distribution slots in order to connect jointly said two adjacent distribution slots to the manifold,- forming the main recesses (50) in the bottom face (52) of the cover plate (22) by stamping process,- piercing the collecting apertures (46, 48) in the main recesses (50).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09710586A EP2252844B1 (en) | 2008-02-15 | 2009-02-06 | Heat exchanger with a mixing chamber |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08151505A EP2090851A1 (en) | 2008-02-15 | 2008-02-15 | Heat exchanger with a mixing chamber |
EP09710586A EP2252844B1 (en) | 2008-02-15 | 2009-02-06 | Heat exchanger with a mixing chamber |
PCT/EP2009/051417 WO2009101035A1 (en) | 2008-02-15 | 2009-02-06 | Heat exchanger with a mixing chamber |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2252844A1 EP2252844A1 (en) | 2010-11-24 |
EP2252844B1 true EP2252844B1 (en) | 2011-09-07 |
Family
ID=39789586
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08151505A Withdrawn EP2090851A1 (en) | 2008-02-15 | 2008-02-15 | Heat exchanger with a mixing chamber |
EP09710586A Active EP2252844B1 (en) | 2008-02-15 | 2009-02-06 | Heat exchanger with a mixing chamber |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08151505A Withdrawn EP2090851A1 (en) | 2008-02-15 | 2008-02-15 | Heat exchanger with a mixing chamber |
Country Status (4)
Country | Link |
---|---|
US (1) | US20100319894A1 (en) |
EP (2) | EP2090851A1 (en) |
AT (1) | ATE523741T1 (en) |
WO (1) | WO2009101035A1 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009023954A1 (en) * | 2009-06-04 | 2010-12-09 | Behr Gmbh & Co. Kg | Collecting tube for a condenser |
US9151540B2 (en) | 2010-06-29 | 2015-10-06 | Johnson Controls Technology Company | Multichannel heat exchanger tubes with flow path inlet sections |
US9267737B2 (en) | 2010-06-29 | 2016-02-23 | Johnson Controls Technology Company | Multichannel heat exchangers employing flow distribution manifolds |
JP4983998B2 (en) * | 2010-09-29 | 2012-07-25 | ダイキン工業株式会社 | Heat exchanger |
DE102010043000A1 (en) * | 2010-10-27 | 2012-05-03 | Behr Gmbh & Co. Kg | Automotive air conditioning system |
JP5287949B2 (en) * | 2011-07-28 | 2013-09-11 | ダイキン工業株式会社 | Heat exchanger |
JP5796563B2 (en) | 2011-11-29 | 2015-10-21 | 株式会社デンソー | Heat exchanger |
JP5796564B2 (en) * | 2011-11-30 | 2015-10-21 | 株式会社デンソー | Heat exchanger |
CA2909985A1 (en) | 2013-04-24 | 2014-10-30 | Dana Canada Corporation | Fin support structures for charge air coolers |
FR3006432B1 (en) * | 2013-05-28 | 2017-12-08 | Delphi Automotive Systems Lux | HEAT EXCHANGER |
EP3064881B1 (en) * | 2013-10-29 | 2019-09-11 | Mitsubishi Electric Corporation | Heat exchanger and air conditioner |
DK201570883A1 (en) * | 2015-12-29 | 2017-04-18 | Dantherm Cooling As | Heat Transfer System or Element with Fewer or No Headers |
CN107687727B (en) * | 2016-08-04 | 2020-03-27 | 丹佛斯微通道换热器(嘉兴)有限公司 | Distributor for parallel flow heat exchanger and parallel flow heat exchanger |
EP3457070B1 (en) * | 2017-09-19 | 2020-08-19 | VALEO AUTOSYSTEMY Sp. Z. o.o. | Manifold for a heat exchanger assembly and method for manufacturing such a manifold |
CN112888910B (en) * | 2018-10-29 | 2022-06-24 | 三菱电机株式会社 | Heat exchanger and refrigeration cycle device |
JP7086264B2 (en) * | 2018-10-29 | 2022-06-17 | 三菱電機株式会社 | Heat exchanger, outdoor unit, and refrigeration cycle device |
US20200158388A1 (en) * | 2018-11-16 | 2020-05-21 | Mahle International Gmbh | Evaporator unit |
FR3089611B1 (en) * | 2018-12-10 | 2021-03-05 | Valeo Systemes Thermiques | COLLECTOR BOX FOR HEAT EXCHANGER AND HEAT EXCHANGER INCLUDING SUCH COLLECTOR BOX |
EP3907459A1 (en) * | 2020-05-04 | 2021-11-10 | Valeo Autosystemy SP. Z.O.O. | A heat exchanger |
WO2022244091A1 (en) * | 2021-05-18 | 2022-11-24 | 東芝キヤリア株式会社 | Heat exchanger and refrigeration cycle device |
CN113758056B (en) * | 2021-09-28 | 2022-12-09 | 西安交通大学 | A shell-and-tube heat exchanger with a refrigerant distribution device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5241839A (en) * | 1991-04-24 | 1993-09-07 | Modine Manufacturing Company | Evaporator for a refrigerant |
EP2026028B1 (en) * | 2001-12-21 | 2018-07-18 | MAHLE Behr GmbH & Co. KG | Heat exchanger, more particularly for automotive vehicle |
DE10349150A1 (en) * | 2003-10-17 | 2005-05-19 | Behr Gmbh & Co. Kg | Heat exchanger, in particular for motor vehicles |
WO2005088225A1 (en) * | 2004-03-17 | 2005-09-22 | Showa Denko K.K. | Heat exchanger header tank and heat exchanger comprising same |
EP1798507A2 (en) * | 2005-12-13 | 2007-06-20 | Behr GmbH & Co. KG | Heat exchanger, more particularly evaporator |
-
2008
- 2008-02-15 EP EP08151505A patent/EP2090851A1/en not_active Withdrawn
-
2009
- 2009-02-06 US US12/867,064 patent/US20100319894A1/en not_active Abandoned
- 2009-02-06 WO PCT/EP2009/051417 patent/WO2009101035A1/en active Application Filing
- 2009-02-06 AT AT09710586T patent/ATE523741T1/en not_active IP Right Cessation
- 2009-02-06 EP EP09710586A patent/EP2252844B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2009101035A1 (en) | 2009-08-20 |
US20100319894A1 (en) | 2010-12-23 |
EP2090851A1 (en) | 2009-08-19 |
EP2252844A1 (en) | 2010-11-24 |
ATE523741T1 (en) | 2011-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2252844B1 (en) | Heat exchanger with a mixing chamber | |
US9759492B2 (en) | Heat exchanger having additional refrigerant channel | |
US8590607B2 (en) | Heat exchanger for a motor vehicle | |
EP2372283A1 (en) | Heat exchanger with a manifold plate | |
US7484555B2 (en) | Heat exchanger assembly | |
US7367203B2 (en) | Refrigerant evaporator | |
US8176750B2 (en) | Heat exchanger | |
US7571761B2 (en) | Heat exchanger | |
US8225853B2 (en) | Multi-pass heat exchangers having return manifolds with distributing inserts | |
US7886812B2 (en) | Heat exchanger having a tank partition wall | |
CN101713604B (en) | Evaporator | |
MX2007009256A (en) | Heat exchanger with perforated plate in header. | |
US7635019B2 (en) | Heat exchanger | |
EP3971508B1 (en) | Heat exchanger | |
US6467536B1 (en) | Evaporator and method of making same | |
EP2108909A1 (en) | Heat exchanger provided with a fitting block | |
WO2006004137A1 (en) | Evaporator | |
US20030070797A1 (en) | Stacked-type evaporator | |
KR20100018477A (en) | Cross-counterflow heat exchanger assembly | |
CZ337798A3 (en) | Heat-exchange apparatus | |
JP4164146B2 (en) | Heat exchanger and car air conditioner using the same | |
JP5674376B2 (en) | Evaporator | |
US20180149431A1 (en) | Evaporator | |
CN212457512U (en) | Heat exchange assembly and heat exchange system | |
CN212058426U (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100915 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: DAMOTTE, HERVE Inventor name: BIVER, PHILIPPE |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009002577 Country of ref document: DE Effective date: 20111110 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20110907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110907 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110907 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110907 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110907 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20110907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110907 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110907 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110907 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111208 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110907 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 523741 Country of ref document: AT Kind code of ref document: T Effective date: 20110907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110907 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120107 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110907 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110907 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120109 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110907 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110907 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110907 |
|
26N | No opposition filed |
Effective date: 20120611 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120229 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009002577 Country of ref document: DE Effective date: 20120611 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110907 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090206 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602009002577 Country of ref document: DE Owner name: MAHLE INTERNATIONAL GMBH, DE Free format text: FORMER OWNER: DELPHI TECHNOLOGIES, INC., TROY, MICH., US |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: MAHLE INTERNATIONAL GMBH, DE Effective date: 20180103 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20180227 Year of fee payment: 10 Ref country code: IT Payment date: 20180221 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190206 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240527 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20250218 Year of fee payment: 17 |