+

EP1632298B1 - Method and device for manufacturing a bent lever wire - Google Patents

Method and device for manufacturing a bent lever wire Download PDF

Info

Publication number
EP1632298B1
EP1632298B1 EP20050107173 EP05107173A EP1632298B1 EP 1632298 B1 EP1632298 B1 EP 1632298B1 EP 20050107173 EP20050107173 EP 20050107173 EP 05107173 A EP05107173 A EP 05107173A EP 1632298 B1 EP1632298 B1 EP 1632298B1
Authority
EP
European Patent Office
Prior art keywords
wire
bending
case
bending process
lever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20050107173
Other languages
German (de)
French (fr)
Other versions
EP1632298A1 (en
Inventor
Bernd Pauer
Daniela Sasse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP1632298A1 publication Critical patent/EP1632298A1/en
Application granted granted Critical
Publication of EP1632298B1 publication Critical patent/EP1632298B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F1/00Bending wire other than coiling; Straightening wire

Definitions

  • Devices according to the preamble of claim 6 are for example from the WO-A-96/21529 or the DE-C-19835521 known.
  • the invention relates to a method for producing a lever wire of a provided for arrangement in a fuel tank of a motor vehicle level sensor by a wire feed to a previously entered setpoint and a subsequent bending operation of the wire by a predetermined angle. Furthermore, the invention relates to a device for producing a bent lever wire of a provided for arrangement in a fuel tank of a motor vehicle level sensor with a feed device and with a bending device.
  • Level sensors for detecting a level of fuel in today's fuel tanks usually have a arranged on a support potentiometer, which detects the inclination angle of a lever wire mounted in the carrier.
  • the lever wire holds at its end facing away from the carrier a float following the fuel level.
  • the carrier usually has an angling as storage in the carrier and further bends, which allow unhindered pivoting of the lever wire in the most twisted fuel tanks.
  • the invention is based on the problem, a method of the type mentioned in such a way that a recalibration of the lever wire is avoided. Furthermore, a device for the simplest and most accurate manufacture of the lever wire to be created.
  • the first problem is solved according to the invention by a method according to claim 1.
  • the actual value is preferably determined after each individual bending operation or even before the bending process after the wire feed and compared with the intended target value. This allows early detection of a possible deviation in the bending of the lever wire and, if necessary, corrected. As a result, the manufacture of the lever wire is particularly simple and economical. A complex recalibration can be avoided thereby.
  • the detection of the measured value requires according to an advantageous development of the invention, a particularly low cost when the measured value is optically determined.
  • the method according to the invention makes it possible to produce a multiply bent lever wire if, after a first bending operation has taken place, a further wire feed and a further bending operation take place.
  • the measured value could, for example, be determined after each bending process at a new location on the lever wire.
  • the total tolerance between the two ends of the lever wire according to the invention can be kept particularly low if the measured value is determined in each case at the free end of the lever wire.
  • the lever wire according to another advantageous embodiment of the invention has a particularly high dimensional accuracy, if after a determination of a deviation above a predetermined tolerance in the setpoint / actual value comparison, a renewed bending process or a renewed wire feed takes place.
  • This design corrects each individual bend for a detected deviation.
  • individual tolerances are compensated in the bends of the lever wire, so that a tight overall tolerance of the finished bent lever wire can be maintained.
  • the tolerances of the lever wire depend very much on its material properties or the temperature prevailing during bending. After changing the material or changing the temperature, at least the second lever wire can be finished with a particularly small number of corrections if a correction value for the bending process is determined from the desired value and the deviation determined in the desired / actual value comparison and for the bending process of the following lever wire is stored.
  • each bending process can be detected in the manufacture of the lever wire and thus early adjust the bending device and / or the feed device so that the lever wire is bent as intended.
  • This allows a particularly close overall tolerance of the lever wire reach after production.
  • the device according to the invention therefore enables a particularly simple production of the lever wire.
  • tolerances of the bends can be easily compensated if the computing device is designed to calculate a correction value for actuating the feed device and / or the bending device.
  • the measuring point can be detected with particularly low constructional outlay if the monitoring device has at least one visual detection device which is longitudinally displaceable in provided spatial axes.
  • the monitoring device has at least one visual detection device which is longitudinally displaceable in provided spatial axes.
  • one detection device each is used on the three spatial axes.
  • a single detection device in the space axes provided for detecting the measuring point can be moved.
  • the inventive device designed according to another advantageous embodiment of the invention structurally particularly simple when the detection device or the detection devices is designed as a camera / are.
  • FIG. 1 shows a partially filled with fuel fuel tank 1 with a flange 3 used in a mounting opening 2.
  • a biased against the bottom of the fuel tank 1 swirl pot 4 is supported on the flange 3 from.
  • the swirl pot 4 holds a level sensor 5 with a lever wire 7 carrying a float 6.
  • the lever wire 7 has a bearing 8 in a carrier 9 fastened to the swirl pot 4.
  • the level sensor 5 has a potentiometer 10 for detecting the deflection of the lever wire 7.
  • the lever wire 7 has a plurality of bends 11. For assembly, the lever wire 7 is advanced with the float 6 through the mounting hole 2 in the fuel tank 1.
  • the bends 11 of the lever wire 7 allow the introduction of the level sensor 5 in particularly twisted fuel tank 1 and also the unimpeded movement of the float 6 over the entire height of the fuel tank. 1
  • FIG. 2 schematically shows a device for producing the lever wire 7 from FIG. 1 from a wire 12 wound on a roll.
  • the device has an electric feed device 13 and an electrical bending device 14.
  • the feed device 13 conveys the wire 12 into a measuring and bending space 19.
  • the feed device 13 stops the wire 12 and clamps it firmly.
  • the wire 12 from the bending device 14 bent.
  • a measuring point 15 is defined, which is detected by a monitoring device 16.
  • the monitoring device 16 has two detection devices 17 which can be displaced longitudinally in a spatial axis.
  • the detection devices 17 are each designed as a camera. Exemplary are in FIG. 2 two detection devices 17 for detecting the measuring point 15 shown in a plane.
  • the feed device 13, the bending device 14 and the monitoring device 16 are connected to a computing device 18, which controls the feed device 13 and the bending device 14 as a function of input setpoint values of the measuring point 15.
  • the measuring point 15 of the wire 12 can detect in a plane.
  • the monitoring device 16 may include a non-illustrated, third arranged perpendicular to the plane detection device and detect the measuring point 15 in the third spatial axis.
  • a monitoring device with a single, movable in the space axes provided camera can be used.
  • FIG. 3 shows the device for producing the lever wire 7 after a first bending operation with one of the bends 11 to be generated and a second control of the feed device 13 before the generation of the next, in FIG. 1
  • the detection devices 17 designed as cameras were moved in order to follow the measuring point 15 defined at the free end of the wire 12.
  • FIG. 4 shows a flowchart for the manufacture of the lever wire 7 FIG. 1 with the device from the FIGS. 2 and 3 ,
  • the computing device 18 controls the feed device 13 in a step S2, so that the clamping of the wire 12 is released, the wire 12 is moved into the measuring and bending space 19 up to the desired coordinate and then tightened.
  • the detection devices 17 of the monitoring device 16 detect the actual value of the measuring point 15 defined at the free end of the wire 12 in a visual measurement S3.
  • the deviation of the actual value from the desired value is detected in a further step S4 and the feed device is exceeded when an intended tolerance is exceeded 13 again controlled via a correction loop S5.
  • the first bending process S6 is started. After the first bending operation S6, the actual value of the measuring point 15 at the tip of the wire 12 is again determined in a visual measurement S7 with the monitoring device 16. After a comparison S8 of the actual value with the desired value, the bending process S6 is again carried out in a correction loop S9 with a calculated correction factor in the case of a deviation outside a prescribed tolerance. However, if the actual value lies within the tolerance, it is checked in a further step S10 whether the program for producing the lever wire 7 from the wire 12 has been completely carried out. Subsequently, either another feed and bending operation of the wire 12 or the finished bent lever wire 7 is output.
  • FIG. 5 shows a control loop of the method FIG. 4 for producing the lever wire 7 FIG. 1 ,
  • a reference variable W (t) of the intended target angle or the intended nominal length of the wire 12 during the feed or bending process S6 and with a controlled variable x (t) of the actual angle or the actual length of the advanced or bent wire 12.
  • the monitoring device 16 detects the actual angle or the actual wire length from the controlled variable and supplies this measured value to the computing device 18, in which a control difference E (t) is determined. From this control difference, a manipulated variable Y (t) for the bending process S6 or the feed is determined.
  • the manipulated variable Y (t) is thus a correction factor with which a faulty bent wire 12 can be bent.
  • the parameters with which the bending device 14 and the feed device 13 are actuated for the production of a following lever wire 7 can be corrected with the correction factor.
  • disturbances Z (t) act on the wire 12 during the bending operation S6, such as the internal stress of the material or the temperature, which influence the actual length produced or the actual angle of the finished bent wire 7.
  • the influence of these disturbances Z (t) on the bend 11 of the wire 12 are detected by means of the monitoring device 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

Verfahren und Vorrichtung zur Herstellung eines gebogenen Hebeldrahtes. Vorrichtungen gemäß dem Oberbegriff des Anspruchs 6 sind z.B. aus der WO-A-96/21529 oder der DE-C-19835521 bekannt.Method and device for producing a bent lever wire. Devices according to the preamble of claim 6 are for example from the WO-A-96/21529 or the DE-C-19835521 known.

Die Erfindung betrifft ein Verfahren zur Herstellung eines Hebeldrahtes eines zur Anordnung in einem Kraftstoffbehälters eines Kraftfahrzeuges vorgesehenen Füllstandssensors durch einen Drahtvorschub bis zu einem zuvor eingegebenen Sollwert und einem anschließenden Biegevorgang des Drahtes um einen vorgesehenen Winkel. Weiterhin betrifft die Erfindung eine Vorrichtung zur Herstellung eines gebogenen Hebeldrahtes eines zur Anordnung in einem Kraftstoffbehälter eines Kraftfahrzeuges vorgesehenen Füllstandssensors mit einer Vorschubeinrichtung und mit einer Biegeeinrichtung.The invention relates to a method for producing a lever wire of a provided for arrangement in a fuel tank of a motor vehicle level sensor by a wire feed to a previously entered setpoint and a subsequent bending operation of the wire by a predetermined angle. Furthermore, the invention relates to a device for producing a bent lever wire of a provided for arrangement in a fuel tank of a motor vehicle level sensor with a feed device and with a bending device.

Füllstandssensoren zur Erfassung eines Füllstandes an Kraftstoff in heutigen Kraftstoffbehältern weisen in der Regel einen an einem Träger angeordneten Potentiometer auf, welcher den Neigungswinkel eines in dem Träger gelagerten Hebeldrahtes erfasst. Der Hebeldraht hält an seinem dem Träger abgewandten Ende einen dem Kraftstoffspiegel folgenden Schwimmer. Dabei weist der Träger meist eine Abwinklung als Lagerung in dem Träger und weitere Biegungen auf, welche ein ungehindertes Verschwenken des Hebeldrahtes in den meist verwinkelten Kraftstoffbehältern ermöglichen.Level sensors for detecting a level of fuel in today's fuel tanks usually have a arranged on a support potentiometer, which detects the inclination angle of a lever wire mounted in the carrier. The lever wire holds at its end facing away from the carrier a float following the fuel level. In this case, the carrier usually has an angling as storage in the carrier and further bends, which allow unhindered pivoting of the lever wire in the most twisted fuel tanks.

Bei dem aus der Praxis bekannten Verfahren zur Herstellung von Hebeldrähten für Füllstandssensoren werden zunächst sämtliche Biegungen im Hebeldraht erzeugt. Hierbei addieren sich die Toleranzen der einzelnen Arbeitsgänge zu einer sehr großen Abweichung der Positionen der Drahtenden zueinander. In einem aufwändigen Nachkalibrierungsarbeitsgang erfolgt ein Nachbiegen des Hebeldrahtes von Hand. Hierdurch gestaltet sich die Fertigung des Hebeldrahtes jedoch sehr aufwändig und kostspielig.In the method known from practice for the production of lever wires for level sensors, all bends are initially generated in the lever wire. Here, the tolerances of the individual operations add up to a very large deviation of the positions of the wire ends to each other. In a complex recalibration operation, the lever wire is bent by hand. As a result, however, the manufacture of the lever wire is very complicated and costly.

Der Erfindung liegt das Problem zugrunde, ein Verfahren der eingangs genannten Art so weiterzubilden, dass eine Nachkalibrierung des Hebeldrahtes vermieden wird. Weiterhin soll eine Vorrichtung zur möglichst einfachen und genauen Fertigung des Hebeldrahtes geschaffen werden.The invention is based on the problem, a method of the type mentioned in such a way that a recalibration of the lever wire is avoided. Furthermore, a device for the simplest and most accurate manufacture of the lever wire to be created.

Das erstgenannte Problem wird erfindungsgemäß durch ein Verfahren gemäß Anspruch 1 gelöst.The first problem is solved according to the invention by a method according to claim 1.

Durch diese Gestaltung wird vorzugsweise nach jedem einzelnen Biegevorgang oder bereits vor dem Biegevorgang nach dem Drahtvorschub der Istwert ermittelt und mit dem vorgesehenen Sollwert verglichen. Damit kann frühzeitig eine mögliche Abweichung in der Biegung des Hebeldrahtes erfasst und gegebenenfalls korrigiert werden. Hierdurch gestaltet sich die Fertigung des Hebeldrahtes besonders einfach und wirtschaftlich. Eine aufwändige Nachkalibrierung lässt sich hierdurch vermeiden.By this design, the actual value is preferably determined after each individual bending operation or even before the bending process after the wire feed and compared with the intended target value. This allows early detection of a possible deviation in the bending of the lever wire and, if necessary, corrected. As a result, the manufacture of the lever wire is particularly simple and economical. A complex recalibration can be avoided thereby.

Die Erfassung des Messwertes erfordert gemäß einer vorteilhaften Weiterbildung der Erfindung einen besonders geringen Aufwand, wenn der Messwert optisch ermittelt wird.The detection of the measured value requires according to an advantageous development of the invention, a particularly low cost when the measured value is optically determined.

Das erfindungsgemäße Verfahren ermöglicht die Herstellung eines mehrfach gebogenen Hebeldrahtes, wenn nach einem erfolgten ersten Biegevorgang ein weiterer Drahtvorschub und ein weiterer Biegevorgang erfolgen.The method according to the invention makes it possible to produce a multiply bent lever wire if, after a first bending operation has taken place, a further wire feed and a further bending operation take place.

Der Messwert könnte beispielsweise nach jedem Biegevorgang an einer neuen Stelle am Hebeldraht ermittelt werden. Jedoch lässt sich die Gesamttoleranz zwischen den beiden Enden des Hebeldrahtes gemäß der Erfindung besonders gering halten, wenn der Messwert jeweils an dem freien Ende des Hebeldrahtes ermittelt wird.The measured value could, for example, be determined after each bending process at a new location on the lever wire. However, the total tolerance between the two ends of the lever wire according to the invention can be kept particularly low if the measured value is determined in each case at the free end of the lever wire.

Bei mehreren, aufeinander folgenden Biegevorgängen könnte beispielsweise bei einer Abweichung im ersten Biegevorgang die Abweichung im zweiten Biegevorgang ausgeglichen werden. Der Hebeldraht weist jedoch gemäß einer anderen vorteilhaften Weiterbildung der Erfindung eine besonders hohe Formgenauigkeit auf, wenn nach einer Feststellung einer Abweichung über einer vorgesehenen Toleranz im Soll/Istwertvergleich ein erneuter Biegevorgang oder ein erneuter Drahtvorschub erfolgt. Durch diese Gestaltung wird jede einzelne Biegung bei einer festgestellten Abweichung korrigiert. Hierdurch werden Einzeltoleranzen in den Biegungen des Hebeldrahtes ausgeglichen, so dass eine enge Gesamttoleranz des fertig gebogenen Hebeldrahtes eingehalten werden kann.In the case of a plurality of successive bending processes, for example, in the case of a deviation in the first bending process, the deviation in the second bending process could be compensated. However, the lever wire according to another advantageous embodiment of the invention has a particularly high dimensional accuracy, if after a determination of a deviation above a predetermined tolerance in the setpoint / actual value comparison, a renewed bending process or a renewed wire feed takes place. This design corrects each individual bend for a detected deviation. As a result, individual tolerances are compensated in the bends of the lever wire, so that a tight overall tolerance of the finished bent lever wire can be maintained.

Die Toleranzen des Hebeldrahtes hängen sehr stark von dessen Materialeigenschaften oder der beim Biegen herrschenden Temperatur ab. Nach einem Wechsel des Materials oder einer Änderung der Temperatur lässt sich zumindest der zweite Hebeldraht mit einer besonders geringen Anzahl an Korrekturen fertigen, wenn aus dem Sollwert und der im Soll/Istwertvergleich ermittelten Abweichung ein Korrekturwert für den Biegevorgang ermittelt und für den Biegevorgang des folgenden Hebeldrahtes abgespeichert wird.The tolerances of the lever wire depend very much on its material properties or the temperature prevailing during bending. After changing the material or changing the temperature, at least the second lever wire can be finished with a particularly small number of corrections if a correction value for the bending process is determined from the desired value and the deviation determined in the desired / actual value comparison and for the bending process of the following lever wire is stored.

Das zweitgenannte Problem, nämlich die Schaffung einer Vorrichtung zur möglichst einfachen Fertigung des Hebeldrahtes wird erfindungsgemäß durch eine Vorrichtung mit den Merkmalen des Anspruchs 6 gelöst.The second-mentioned problem, namely the creation of a device for the simplest possible manufacture of the lever wire is achieved by a device having the features of claim 6.

Durch diese Gestaltung lässt sich jeder Biegevorgang bei der Fertigung des Hebeldrahtes erfassen und damit frühzeitig die Biegeeinrichtung und/oder die Vorschubeinrichtung so einstellen, dass der Hebeldraht wie vorgesehen gebogen wird. Damit lässt sich eine besonders enge Gesamttoleranz des Hebeldrahtes nach der Fertigung erreichen. Die erfindungsgemäße Vorrichtung ermöglicht daher eine besonders einfache Fertigung des Hebeldrahtes.By this design, each bending process can be detected in the manufacture of the lever wire and thus early adjust the bending device and / or the feed device so that the lever wire is bent as intended. This allows a particularly close overall tolerance of the lever wire reach after production. The device according to the invention therefore enables a particularly simple production of the lever wire.

Nach der Eingabe der vorgesehenen Sollwerte der Biegungen lassen sich Toleranzen der Biegungen einfach ausgleichen, wenn die Recheneinrichtung zur Berechnung eines Korrekturwertes zum Ansteuern der Vorschubeinrichtung und/oder der Biegeeinrichtung ausgebildet ist.After entering the intended setpoint values of the bends, tolerances of the bends can be easily compensated if the computing device is designed to calculate a correction value for actuating the feed device and / or the bending device.

Der Messpunkt lässt sich gemäß einer vorteilhaften Weiterbildung der Erfindung mit besonders geringem baulichen Aufwand erfassen, wenn die Überwachungseinrichtung zumindest ein in vorgesehenen Raumachsen längsverschiebliches, visuelles Erfassungsgerät aufweist. Bei einer räumlichen Biegung des Hebeldrahtes werden vorzugsweise jeweils ein Erfassungsgerät auf den drei Raumachsen eingesetzt. Alternativ dazu kann auch ein einziges Erfassungsgerät in den vorgesehenen Raumachsen zur Erfassung des Messpunktes verfahrbar sein.According to an advantageous development of the invention, the measuring point can be detected with particularly low constructional outlay if the monitoring device has at least one visual detection device which is longitudinally displaceable in provided spatial axes. In the case of a spatial bending of the lever wire, preferably one detection device each is used on the three spatial axes. Alternatively, a single detection device in the space axes provided for detecting the measuring point can be moved.

Die erfindungsgemäße Vorrichtung gestaltet sich gemäß einer anderen vorteilhaften Weiterbildung der Erfindung konstruktiv besonders einfach, wenn das Erfassungsgerät oder die Erfassungsgeräte als Kamera ausgebildet ist/sind.The inventive device designed according to another advantageous embodiment of the invention structurally particularly simple when the detection device or the detection devices is designed as a camera / are.

Die Erfindung lässt zahlreiche Ausführungsformen zu. Zur weiteren Verdeutlichung ihres Grundprinzips ist eine davon in der Zeichnung dargestellt und wird nachfolgend beschrieben. Diese zeigt in

Fig. 1
schematisch eine Schnittdarstellung durch einen Kraftstoffbehälter mit einem einen Hebeldraht aufweisenden Füllstandssensor,
Fig. 2
schematisch eine erfindungsgemäße Vorrichtung zur Herstellung des Hebeldrahtes aus Figur 1 in einem ersten Arbeitsgang,
Fig. 3
schematisch die erfindungsgemäße Vorrichtung aus Figur 2 in einem zweiten Arbeitsgang,
Fig. 4
ein Flussdiagramm eines erfindungsgemäßen Verfahrens zur Herstellung des Hebeldrahtes aus Figur 1,
Fig. 5
einen Regelkreis des erfindungsgemäßen Verfahrens zur Herstellung des Hebeldrahtes aus Figur 1.
The invention allows numerous embodiments. To further clarify its basic principle, one of them is shown in the drawing and will be described below. This shows in
Fig. 1
FIG. 2 schematically a sectional view through a fuel tank with a fill level sensor having a lever wire, FIG.
Fig. 2
schematically an inventive device for producing the lever wire from FIG. 1 in a first step,
Fig. 3
schematically the device of the invention FIG. 2 in a second step,
Fig. 4
a flowchart of a method according to the invention for the production of the lever wire from FIG. 1 .
Fig. 5
a control loop of the inventive method for producing the lever wire from FIG. 1 ,

Figur 1 zeigt einen teilweise mit Kraftstoff gefüllten Kraftstoffbehälter 1 mit einem in einer Montageöffnung 2 eingesetzten Flansch 3. Ein gegen den Boden des Kraftstoffbehälters 1 vorgespannter Schwalltopf 4 stützt sich an dem Flansch 3 ab. Der Schwalltopf 4 haltert einen Füllstandssensor 5 mit einem einen Schwimmer 6 tragenden Hebeldraht 7. Der Hebeldraht 7 weist eine Lagerung 8 in einem an dem Schwalltopf 4 befestigten Träger 9 auf. Weiterhin hat der Füllstandssensor 5 ein Potentiometer 10 zur Erfassung der Auslenkung des Hebeldrahtes 7. Der Hebeldraht 7 weist mehrere Biegungen 11 auf. Zur Montage wird der Hebeldraht 7 mit dem Schwimmer 6 voran durch die Montageöffnung 2 in den Kraftstoffbehälter 1 eingeführt. Die Biegungen 11 des Hebeldrahtes 7 ermöglichen die Einführung des Füllstandssensors 5 in besonders verwinkelte Kraftstoffbehälter 1 und zudem die ungehinderte Bewegung des Schwimmers 6 über die gesamte Höhe des Kraftstoffbehälters 1. FIG. 1 shows a partially filled with fuel fuel tank 1 with a flange 3 used in a mounting opening 2. A biased against the bottom of the fuel tank 1 swirl pot 4 is supported on the flange 3 from. The swirl pot 4 holds a level sensor 5 with a lever wire 7 carrying a float 6. The lever wire 7 has a bearing 8 in a carrier 9 fastened to the swirl pot 4. Furthermore, the level sensor 5 has a potentiometer 10 for detecting the deflection of the lever wire 7. The lever wire 7 has a plurality of bends 11. For assembly, the lever wire 7 is advanced with the float 6 through the mounting hole 2 in the fuel tank 1. The bends 11 of the lever wire 7 allow the introduction of the level sensor 5 in particularly twisted fuel tank 1 and also the unimpeded movement of the float 6 over the entire height of the fuel tank. 1

Figur 2 zeigt schematisch eine Vorrichtung zur Herstellung des Hebeldrahtes 7 aus Figur 1 aus einem auf einer Rolle aufgewickelten Draht 12. Die Vorrichtung weist eine elektrische Vorschubeinrichtung 13 und eine elektrische Biegeeinrichtung 14 auf. Die Vorschubeinrichtung 13 fördert den Draht 12 in einen Mess- und Biegeraum 19 hinein. An einer vorgesehenen Stelle stoppt die Vorschubseinrichtung 13 den Draht 12 und spannt ihn fest. Anschließend wird der Draht 12 von der Biegeeinrichtung 14 gebogen. An dem freien Ende des Drahtes 12 ist ein Messpunkt 15 definiert, der von einer Überwachungseinrichtung 16 erfasst wird. Die Überwachungseinrichtung 16 weist zwei, jeweils in einer Raumachse längsverschieblich verfahrbare Erfassungsgeräte 17 auf. Die Erfassungsgeräte 17 sind jeweils als Kamera ausgebildet. Beispielhaft sind in Figur 2 zwei Erfassungsgeräte 17 zur Erfassung des Messpunktes 15 in einer Ebene dargestellt. Die Vorschubeinrichtung 13, die Biegeeinrichtung 14 und die Überwachungseinrichtung 16 sind mit einer Recheneinrichtung 18 verbunden, welche die Vorschubeinrichtung 13 und die Biegeeinrichtung 14 in Abhängigkeit von eingegebenen Sollwerten des Messpunktes 15 ansteuert. FIG. 2 schematically shows a device for producing the lever wire 7 from FIG. 1 from a wire 12 wound on a roll. The device has an electric feed device 13 and an electrical bending device 14. The feed device 13 conveys the wire 12 into a measuring and bending space 19. At a designated location, the feed device 13 stops the wire 12 and clamps it firmly. Subsequently, the wire 12 from the bending device 14 bent. At the free end of the wire 12, a measuring point 15 is defined, which is detected by a monitoring device 16. The monitoring device 16 has two detection devices 17 which can be displaced longitudinally in a spatial axis. The detection devices 17 are each designed as a camera. Exemplary are in FIG. 2 two detection devices 17 for detecting the measuring point 15 shown in a plane. The feed device 13, the bending device 14 and the monitoring device 16 are connected to a computing device 18, which controls the feed device 13 and the bending device 14 as a function of input setpoint values of the measuring point 15.

Mit einer in Figur 2 dargestellten Vorrichtung mit zwei längsverschieblich verfahrbaren Erfassungsgeräten 17 lässt sich der Messpunkt 15 des Drahtes 12 in einer Ebene erfassen. Selbstverständlich kann die Überwachungseinrichtung 16 ein nicht dargestelltes, drittes senkrecht zur Zeichenebene angeordnetes Erfassungsgerät aufweisen und den Messpunkt 15 in der dritten Raumachse erfassen. In einer alternativen, nicht dargestellten Ausführungsform kann selbstverständlich auch eine Überwachungseinrichtung mit einer einzelnen, in den vorgesehenen Raumachsen verfahrbaren Kamera eingesetzt werden.With an in FIG. 2 shown device with two longitudinally movable detection devices 17, the measuring point 15 of the wire 12 can detect in a plane. Of course, the monitoring device 16 may include a non-illustrated, third arranged perpendicular to the plane detection device and detect the measuring point 15 in the third spatial axis. In an alternative, not shown embodiment, of course, a monitoring device with a single, movable in the space axes provided camera can be used.

Figur 3 zeigt die Vorrichtung zur Herstellung des Hebeldrahtes 7 nach einem ersten Biegevorgang mit einer der zu erzeugenden Biegungen 11 und einer zweiten Ansteuerung der Vorschubeinrichtung 13 vor der Erzeugung der nächsten, in Figur 1 dargestellten Biegung 11. Hierbei ist zu erkennen, dass die als Kamera ausgebildeten Erfassungsgeräte 17 verfahren wurden, um dem an dem freien Ende des Drahtes 12 definierten Messpunkt 15 zu folgen. FIG. 3 shows the device for producing the lever wire 7 after a first bending operation with one of the bends 11 to be generated and a second control of the feed device 13 before the generation of the next, in FIG. 1 In this case, it can be seen that the detection devices 17 designed as cameras were moved in order to follow the measuring point 15 defined at the free end of the wire 12.

Figur 4 zeigt ein Flussdiagramm zur Fertigung des Hebeldrahtes 7 aus Figur 1 mit der Vorrichtung aus den Figuren 2 und 3. Zunächst werden in einem ersten Schritt S1 in die in Figur 2 dargestellte Recheneinrichtung 18 in Abhängigkeit von den vorgesehenen Abmessungen des zu erzeugenden Hebeldrahtes 7 entsprechende Solldaten des an dem freien Ende des Drahtes 12 definierten Messpunktes 15 eingegeben. Die Recheneinrichtung 18 steuert anschließend in einem Schritt S2 die Vorschubeinrichtung 13 an, so dass die Einspannung des Drahtes 12 gelöst, der Draht 12 bis zu der Sollkoordinate in den Mess- und Biegeraum 19 hinein bewegt und anschließend festgespannt wird. Anschließend erfassen die Erfassungsgeräte 17 der Überwachungseinrichtung 16 in einer visuellen Messung S3 den Istwert des an dem freien Ende des Drahtes 12 definierten Messpunktes 15. Anschließend wird in einem weiteren Schritt S4 die Abweichung des Istwertes von dem Sollwert erfasst und bei Überschreitung einer vorgesehenen Toleranz die Vorschubeinrichtung 13 über eine Korrekturschleife S5 erneut angesteuert. FIG. 4 shows a flowchart for the manufacture of the lever wire 7 FIG. 1 with the device from the FIGS. 2 and 3 , First, in a first step S1 in the in figure 2 illustrated computing device 18 depending on the intended dimensions of the lever wire to be generated 7 corresponding setpoint data of the defined at the free end of the wire 12 measuring point 15 entered. The computing device 18 then controls the feed device 13 in a step S2, so that the clamping of the wire 12 is released, the wire 12 is moved into the measuring and bending space 19 up to the desired coordinate and then tightened. Subsequently, the detection devices 17 of the monitoring device 16 detect the actual value of the measuring point 15 defined at the free end of the wire 12 in a visual measurement S3. Subsequently, the deviation of the actual value from the desired value is detected in a further step S4 and the feed device is exceeded when an intended tolerance is exceeded 13 again controlled via a correction loop S5.

Liegt die Abweichung des Istwertes von dem Sollwert innerhalb der Toleranz, wird der erste Biegevorgang S6 gestartet. Nach dem ersten Biegevorgang S6 wird in einer visuellen Messung S7 mit der Überwachungseinrichtung 16 erneut der Istwert des Messpunktes 15 an der Spitze des Drahtes 12 ermittelt. Nach einem Vergleich S8 des Istwertes mit dem Sollwert wird bei einer Abweichung außerhalb einer vorgesehenen Toleranz der Biegevorgang S6 in einer Korrekturschleife S9 mit einem berechneten Korrekturfaktor erneut durchgeführt. Liegt der Istwert jedoch innerhalb der Toleranz, wird in einem weiteren Schritt S10 überprüft, ob das Programm zur Herstellung des Hebeldrahtes 7 aus dem Draht 12 vollständig durchgeführt wurde. Anschließend erfolgt entweder ein weiterer Vorschub und Biegevorgang des Drahtes 12 oder der fertig gebogene Hebeldraht 7 wird ausgegeben.If the deviation of the actual value from the desired value lies within the tolerance, the first bending process S6 is started. After the first bending operation S6, the actual value of the measuring point 15 at the tip of the wire 12 is again determined in a visual measurement S7 with the monitoring device 16. After a comparison S8 of the actual value with the desired value, the bending process S6 is again carried out in a correction loop S9 with a calculated correction factor in the case of a deviation outside a prescribed tolerance. However, if the actual value lies within the tolerance, it is checked in a further step S10 whether the program for producing the lever wire 7 from the wire 12 has been completely carried out. Subsequently, either another feed and bending operation of the wire 12 or the finished bent lever wire 7 is output.

Figur 5 zeigt einen Regelkreis des Verfahrens aus Figur 4 zur Herstellung des Hebeldrahtes 7 aus Figur 1. Hierbei ist mit einer Führungsgröße W(t) der vorgesehene Sollwinkel oder die vorgesehene Solllänge des Drahtes 12 beim Vorschub oder Biegevorgang S6 und mit einer Regelgröße x(t) der Istwinkel oder die Istlänge des vorgeschobenen oder gebogenen Drahtes 12 gekennzeichnet. Die Überwachungseinrichtung 16 erfasst aus der Regelgröße den tatsächlichen Winkel oder die tatsächliche Drahtlänge und führt diesen Messwert der Recheneinrichtung 18 zu, in welcher eine Regeldifferenz E(t) ermittelt wird. Aus dieser Regeldifferenz wird eine Stellgröße Y(t) für den Biegevorgang S6 oder den Vorschub ermittelt. Die Stellgröße Y(t) ist damit ein Korrekturfaktor, mit dem ein fehlerhaft gebogener Draht 12 nachgebogen werden kann. Gleichzeitig lassen sich mit dem Korrekturfaktor die Parameter, mit denen die Biegeeinrichtung 14 und die Vorschubeinrichtung 13 für die Herstellung eines folgenden Hebeldrahtes 7 angesteuert werden, korrigieren. In dem Mess- und Biegeraum 19 wirken während des Biegevorganges S6 Störgrößen Z(t) auf den Draht 12, wie beispielsweise die Eigenspannung des Materials oder die Temperatur ein, welche auf die erzeugte Istlänge oder den Istwinkel des fertigt gebogenen Hebeldrahtes 7 Einfluss haben. Der Einfluss dieser Störgrößen Z(t) auf die Biegung 11 des Drahtes 12 werden mittels der Überwachungseinrichtung 16 erfasst. FIG. 5 shows a control loop of the method FIG. 4 for producing the lever wire 7 FIG. 1 , Here, with a reference variable W (t) of the intended target angle or the intended nominal length of the wire 12 during the feed or bending process S6 and with a controlled variable x (t) of the actual angle or the actual length of the advanced or bent wire 12. The monitoring device 16 detects the actual angle or the actual wire length from the controlled variable and supplies this measured value to the computing device 18, in which a control difference E (t) is determined. From this control difference, a manipulated variable Y (t) for the bending process S6 or the feed is determined. The manipulated variable Y (t) is thus a correction factor with which a faulty bent wire 12 can be bent. At the same time, the parameters with which the bending device 14 and the feed device 13 are actuated for the production of a following lever wire 7 can be corrected with the correction factor. In the measuring and bending space 19, disturbances Z (t) act on the wire 12 during the bending operation S6, such as the internal stress of the material or the temperature, which influence the actual length produced or the actual angle of the finished bent wire 7. The influence of these disturbances Z (t) on the bend 11 of the wire 12 are detected by means of the monitoring device 16.

Claims (9)

  1. Method for manufacturing a lever wire, having a plurality of bends, of a filling level sensor which is provided for arrangement in a fuel container of a motor vehicle, by means of in each case an advancing process for the wire up to in each case a previously entered setpoint value and in each case a subsequent bending process of the wire by an angle which is provided, wherein, directly after the respectively occurring bending process and/or after the respectively occurring advancing process of the wire the measured value is acquired and the setpoint/actual value comparison is carried out and the measured value is respectively determined at the free end of the lever wire.
  2. Method according to Claim 1, characterized in that the measured value is determined visually.
  3. Method according to Claim 1 or 2, characterized in that after the first bending process has taken place a further advancing process of the wire and a further bending process are carried out.
  4. Method according to one of the preceding claims, characterized in that after a deviation above a tolerance which is provided has been detected in the setpoint/actual value comparison a new bending process or a new advancing process of the wire is carried out.
  5. Method according to one of the preceding claims, characterized in that a correction value for the bending process is determined from the setpoint value and the deviation determined in the setpoint/actual value comparison and is stored for the bending process of the following lever wire.
  6. Device for manufacturing a lever wire, having a plurality of bends, of a filling level sensor which is provided for arrangement in a fuel container of a motor vehicle and which has an advancing device and a bending device, characterized by a monitoring device (16) for acquiring in each case an actual value of a measuring point (15) after in each case a bending process and/or after in each case an advancing process and by means of a computing device (18) for comparing the actual value of the measuring point (15) with a setpoint value, wherein the monitoring device (16) is designed to sense the actual value in each case at the free end of the lever wire.
  7. Device according to Claim 6, characterized in that the computing device (18) is designed to calculate a correction value for actuating the advancing device (13) and/or the bending device (14).
  8. Device according to Claim 6 or 7, characterized in that the monitoring device (16) has at least one visual detection device (17) which is longitudinally displaceable in the spatial axes which are provided.
  9. Device according to one of Claims 6 to 8, characterized in that the detection device (17) or detection device (17) is/are embodied as a camera.
EP20050107173 2004-09-03 2005-08-04 Method and device for manufacturing a bent lever wire Expired - Lifetime EP1632298B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200410043174 DE102004043174A1 (en) 2004-09-03 2004-09-03 Method and device for producing a bent lever wire

Publications (2)

Publication Number Publication Date
EP1632298A1 EP1632298A1 (en) 2006-03-08
EP1632298B1 true EP1632298B1 (en) 2008-10-29

Family

ID=35276153

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050107173 Expired - Lifetime EP1632298B1 (en) 2004-09-03 2005-08-04 Method and device for manufacturing a bent lever wire

Country Status (3)

Country Link
EP (1) EP1632298B1 (en)
DE (2) DE102004043174A1 (en)
ES (1) ES2317150T3 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2914203B1 (en) * 2007-04-02 2009-05-15 Jaubjaub Consulting Sarl BENDING UNIT OF A TUBE
DE102010014384A1 (en) * 2010-04-06 2011-10-06 Wafios Ag Straightening and cutting machine
US11027323B2 (en) * 2016-06-10 2021-06-08 Advanced Orthodontic Solutions Method and apparatus for auto-calibration of a wire bending machine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3028834A1 (en) * 1980-07-30 1982-02-25 Adolf 8962 Pfronten Wünsch Punch and bending press - uses signals from optical sensors to monitor tolerances to adjust feed and/or punch and/or bending operations
DE3322777A1 (en) * 1983-06-24 1985-01-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Method for straightening, in particular bending-straightening and/or twisting-straightening, of workpieces
DE4109795A1 (en) * 1991-03-26 1992-10-01 Georg Burger Metal part stamping, bending and/or pressing method - using machine with ram whose height can be applied during operation according to measurement of product by video camera and image analyser
BR9103814A (en) * 1991-08-30 1993-03-30 Brasil Compressores Sa PLASTICALLY DEFORMABLE BODY BENDING PROCESS
DE4137752A1 (en) * 1991-11-16 1993-05-19 Braun Federdraht Vertriebs Gmb Appts. for contactless measurement of objects - involves opto-electronic picture processing system with resolution of measurement object by matrix or line camera
US5477715A (en) * 1992-04-08 1995-12-26 Reell Precision Manufacturing Corporation Adaptive spring winding device and method
DE4330783A1 (en) * 1993-09-10 1995-03-16 Otto Bihler Actuator in a processing machine
WO1996021529A1 (en) * 1995-01-11 1996-07-18 British United Shoe Machinery Ltd. A profile definition system
DE19754521C2 (en) * 1997-12-09 2000-03-30 Mannesmann Vdo Ag Level sensor
DE19835521C1 (en) * 1998-08-06 2000-02-17 Schuessler Technik Bernd Schue Wire bending method for spectacles frame manufacture measures wire displacement in at least 2 wire layers to provide length correction factor for displacement and banding angle control
DE10304327A1 (en) * 2003-02-04 2004-08-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for bending slim workpieces uses a handling arrangement with six degrees of freedom to load a clamped workpiece with a bending moment at various sections of its longitudinal axis on interaction with a tool

Also Published As

Publication number Publication date
DE102004043174A1 (en) 2006-03-09
DE502005005788D1 (en) 2008-12-11
ES2317150T3 (en) 2009-04-16
EP1632298A1 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
EP2374551B1 (en) Method and device for producing coil springs by means of coiling machines
DE102010014386B4 (en) Method for producing coil springs by spring winches, and spring coiling machine
EP3240994B1 (en) Detecting geometric movement guidance deviations in a coordinate measuring device or a machine tool
DE2442157A1 (en) TEACHING WITH AT LEAST ONE ELECTRICAL POSITION CONVERTER TO MEASURE THE DIMENSIONS OF MECHANICAL WORKPIECES
EP4182101B1 (en) Method and spring winding machine for producing coil springs
WO2016177582A1 (en) Method for producing formed parts and forming machine for carrying out the method
DE102010017326B4 (en) learning device
CH666291A5 (en) METHOD AND DEVICE FOR DETERMINING THE BALE LIMITS AT THE BEGINNING AND END OF A BALE SHOW DURING THE OPERATION OF A BALE OPENER.
DE102006007786B3 (en) Fuel injection quantity control parameters estimating method for piezo injection system, involves finding injection control grid with grid points, finding test points and estimating parameters using limited linear regression between points
EP1632298B1 (en) Method and device for manufacturing a bent lever wire
DE3017175C2 (en)
EP1850089B1 (en) Device and method for spatial measurement of workpieces on a machine tool
DE4228566B4 (en) Method for bending deformable bodies
EP3093116B1 (en) Method of making sealing profiles
EP2791632B1 (en) Filling level sensor in a fuel tank of a motor vehicle, production method for such a filling level sensor, and method for operating such a filling level sensor
DE102013101931B4 (en) Method and device for measuring a workpiece
EP1709389A1 (en) Measuring system for geometrically measuring a workpiece
DE102010033244B4 (en) Method for indicating misalignment errors in a vehicle transmission
EP2634132B1 (en) Container treatment machine and method for calibration
DE102021130971A1 (en) Folding and measuring device and method for operating a folding and measuring device
DE102011013392A1 (en) Method for controlling an internal combustion engine
EP0483402A1 (en) Procedure and device to measure the geometry of bores
DE112020006417T5 (en) STEERING CONTROL DEVICE AND METHOD
DE102009056325A1 (en) welder
DE10339405B3 (en) Producing sensor characteristic for motor vehicle electromechanical component control units involves determining limited number supporting point pair as end points of sections for interpolation of reduced characteristic

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060908

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20061024

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502005005788

Country of ref document: DE

Date of ref document: 20081211

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2317150

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090730

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090804

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090805

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140831

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140821

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140822

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005005788

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150804

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载