EP1273455B1 - Improved ink jet recording element - Google Patents
Improved ink jet recording element Download PDFInfo
- Publication number
- EP1273455B1 EP1273455B1 EP20010000266 EP01000266A EP1273455B1 EP 1273455 B1 EP1273455 B1 EP 1273455B1 EP 20010000266 EP20010000266 EP 20010000266 EP 01000266 A EP01000266 A EP 01000266A EP 1273455 B1 EP1273455 B1 EP 1273455B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ink
- ink jet
- jet recording
- recording element
- receiving layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- -1 poly(diallyldimethylammonium chloride) Polymers 0.000 claims description 34
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 22
- 239000000049 pigment Substances 0.000 claims description 18
- 229910000391 tricalcium phosphate Inorganic materials 0.000 claims description 12
- 239000013078 crystal Substances 0.000 claims description 11
- CVPJXKJISAFJDU-UHFFFAOYSA-A nonacalcium;magnesium;hydrogen phosphate;iron(2+);hexaphosphate Chemical compound [Mg+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Fe+2].OP([O-])([O-])=O.OP([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O CVPJXKJISAFJDU-UHFFFAOYSA-A 0.000 claims description 11
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 10
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 10
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 10
- 229910052591 whitlockite Inorganic materials 0.000 claims description 10
- 239000011230 binding agent Substances 0.000 claims description 8
- 125000002091 cationic group Chemical group 0.000 claims description 8
- 239000004971 Cross linker Substances 0.000 claims description 3
- 239000004327 boric acid Substances 0.000 claims description 3
- 229920000371 poly(diallyldimethylammonium chloride) polymer Polymers 0.000 claims description 2
- 125000005619 boric acid group Chemical group 0.000 claims 1
- 239000010410 layer Substances 0.000 description 42
- 239000002253 acid Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 17
- 150000003839 salts Chemical class 0.000 description 15
- 238000007639 printing Methods 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 12
- 238000000576 coating method Methods 0.000 description 12
- 238000001035 drying Methods 0.000 description 11
- 229920001577 copolymer Polymers 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000001506 calcium phosphate Substances 0.000 description 8
- 235000011010 calcium phosphates Nutrition 0.000 description 8
- 238000007641 inkjet printing Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 229910000389 calcium phosphate Inorganic materials 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 125000000217 alkyl group Chemical group 0.000 description 6
- 230000000740 bleeding effect Effects 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- 108010010803 Gelatin Proteins 0.000 description 5
- 229920002678 cellulose Polymers 0.000 description 5
- 239000001913 cellulose Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 229920000159 gelatin Polymers 0.000 description 5
- 239000008273 gelatin Substances 0.000 description 5
- 235000019322 gelatine Nutrition 0.000 description 5
- 235000011852 gelatine desserts Nutrition 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical class CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 4
- 230000009102 absorption Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920000056 polyoxyethylene ether Polymers 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 229920002873 Polyethylenimine Polymers 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 229910001593 boehmite Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000012948 isocyanate Substances 0.000 description 3
- 150000002513 isocyanates Chemical class 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000004848 polyfunctional curative Substances 0.000 description 3
- 229940051841 polyoxyethylene ether Drugs 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229920003171 Poly (ethylene oxide) Chemical class 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000002998 adhesive polymer Substances 0.000 description 2
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 244000309464 bull Species 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 150000001767 cationic compounds Chemical class 0.000 description 2
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000011049 pearl Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002635 polyurethane Chemical class 0.000 description 2
- 239000004814 polyurethane Chemical class 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- ZENZJGDPWWLORF-UHFFFAOYSA-N (Z)-9-Octadecenal Natural products CCCCCCCCC=CCCCCCCCC=O ZENZJGDPWWLORF-UHFFFAOYSA-N 0.000 description 1
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical class CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 1
- SSTHBHCRNGPPAI-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-n,n-bis(2-hydroxyethyl)octane-1-sulfonamide Chemical compound OCCN(CCO)S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SSTHBHCRNGPPAI-UHFFFAOYSA-N 0.000 description 1
- NSAFUDAPGVUPIP-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-n-(2-hydroxyethyl)-n-propyloctane-1-sulfonamide Chemical compound CCCN(CCO)S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F NSAFUDAPGVUPIP-UHFFFAOYSA-N 0.000 description 1
- KRAHAGWQEMMUGK-UHFFFAOYSA-M 1,1-dimethyl-3,5-dimethylidenepiperidin-1-ium;chloride Chemical class [Cl-].C[N+]1(C)CC(=C)CC(=C)C1 KRAHAGWQEMMUGK-UHFFFAOYSA-M 0.000 description 1
- JIHQDMXYYFUGFV-UHFFFAOYSA-N 1,3,5-triazine Chemical class C1=NC=NC=N1 JIHQDMXYYFUGFV-UHFFFAOYSA-N 0.000 description 1
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 1
- GKQHIYSTBXDYNQ-UHFFFAOYSA-M 1-dodecylpyridin-1-ium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+]1=CC=CC=C1 GKQHIYSTBXDYNQ-UHFFFAOYSA-M 0.000 description 1
- ZIQRJGXRRBOCEI-UHFFFAOYSA-M 1-ethenyl-3-methylimidazol-3-ium;1-ethenylpyrrolidin-2-one;chloride Chemical compound [Cl-].CN1C=C[N+](C=C)=C1.C=CN1CCCC1=O ZIQRJGXRRBOCEI-UHFFFAOYSA-M 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- RPZANUYHRMRTTE-UHFFFAOYSA-N 2,3,4-trimethoxy-6-(methoxymethyl)-5-[3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxyoxane;1-[[3,4,5-tris(2-hydroxybutoxy)-6-[4,5,6-tris(2-hydroxybutoxy)-2-(2-hydroxybutoxymethyl)oxan-3-yl]oxyoxan-2-yl]methoxy]butan-2-ol Chemical compound COC1C(OC)C(OC)C(COC)OC1OC1C(OC)C(OC)C(OC)OC1COC.CCC(O)COC1C(OCC(O)CC)C(OCC(O)CC)C(COCC(O)CC)OC1OC1C(OCC(O)CC)C(OCC(O)CC)C(OCC(O)CC)OC1COCC(O)CC RPZANUYHRMRTTE-UHFFFAOYSA-N 0.000 description 1
- QJEBJKXTNSYBGE-UHFFFAOYSA-N 2-(2-heptadecyl-4,5-dihydroimidazol-1-yl)ethanol Chemical compound CCCCCCCCCCCCCCCCCC1=NCCN1CCO QJEBJKXTNSYBGE-UHFFFAOYSA-N 0.000 description 1
- FKOKUHFZNIUSLW-UHFFFAOYSA-N 2-Hydroxypropyl stearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(C)O FKOKUHFZNIUSLW-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- WGTDLPBPQKAPMN-KTKRTIGZSA-N 2-[2-[(z)-heptadec-8-enyl]-4,5-dihydroimidazol-1-yl]ethanol Chemical compound CCCCCCCC\C=C/CCCCCCCC1=NCCN1CCO WGTDLPBPQKAPMN-KTKRTIGZSA-N 0.000 description 1
- PSJBSUHYCGQTHZ-UHFFFAOYSA-N 3-Methoxy-1,2-propanediol Chemical compound COCC(O)CO PSJBSUHYCGQTHZ-UHFFFAOYSA-N 0.000 description 1
- SSZWWUDQMAHNAQ-UHFFFAOYSA-N 3-chloropropane-1,2-diol Chemical compound OCC(O)CCl SSZWWUDQMAHNAQ-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 108010088751 Albumins Chemical class 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 108010035532 Collagen Chemical class 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- 229920002307 Dextran Chemical class 0.000 description 1
- 229920002085 Dialdehyde starch Polymers 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 229920000896 Ethulose Polymers 0.000 description 1
- 239000001859 Ethyl hydroxyethyl cellulose Substances 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 241000206672 Gelidium Species 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 229920000084 Gum arabic Chemical class 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 229920000877 Melamine resin Chemical class 0.000 description 1
- 229920000707 Poly(2-dimethylamino)ethyl methacrylate) methyl chloride Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- PCSMJKASWLYICJ-UHFFFAOYSA-N Succinic aldehyde Chemical compound O=CCCC=O PCSMJKASWLYICJ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- QHWKHLYUUZGSCW-UHFFFAOYSA-N Tetrabromophthalic anhydride Chemical compound BrC1=C(Br)C(Br)=C2C(=O)OC(=O)C2=C1Br QHWKHLYUUZGSCW-UHFFFAOYSA-N 0.000 description 1
- 229920000690 Tyvek Polymers 0.000 description 1
- 239000004775 Tyvek Substances 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- DZHMRSPXDUUJER-UHFFFAOYSA-N [amino(hydroxy)methylidene]azanium;dihydrogen phosphate Chemical compound NC(N)=O.OP(O)(O)=O DZHMRSPXDUUJER-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000000205 acacia gum Chemical class 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 229920006322 acrylamide copolymer Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 239000001166 ammonium sulphate Substances 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- BUOSLGZEBFSUDD-BGPZCGNYSA-N bis[(1s,3s,4r,5r)-4-methoxycarbonyl-8-methyl-8-azabicyclo[3.2.1]octan-3-yl] 2,4-diphenylcyclobutane-1,3-dicarboxylate Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1C(C=2C=CC=CC=2)C(C(=O)O[C@@H]2[C@@H]([C@H]3CC[C@H](N3C)C2)C(=O)OC)C1C1=CC=CC=C1 BUOSLGZEBFSUDD-BGPZCGNYSA-N 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- HJGOHDIBOLULKU-UHFFFAOYSA-K calcium copper phosphate Chemical compound P(=O)([O-])([O-])[O-].[Ca+2].[Cu+2] HJGOHDIBOLULKU-UHFFFAOYSA-K 0.000 description 1
- 229910000394 calcium triphosphate Inorganic materials 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000000679 carrageenan Chemical class 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 229920001525 carrageenan Chemical class 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 239000005018 casein Chemical class 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical class NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 229940117583 cocamine Drugs 0.000 description 1
- 229920001436 collagen Chemical class 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000002508 contact lithography Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 150000004891 diazines Chemical class 0.000 description 1
- CGMRCMMOCQYHAD-UHFFFAOYSA-J dicalcium hydroxide phosphate Chemical compound [OH-].[Ca++].[Ca++].[O-]P([O-])([O-])=O CGMRCMMOCQYHAD-UHFFFAOYSA-J 0.000 description 1
- NTLIJZACUWTZFB-UHFFFAOYSA-N dimethyl-[3-(octadecanoylamino)propyl]azanium;2-hydroxypropanoate Chemical compound CC(O)C(O)=O.CCCCCCCCCCCCCCCCCC(=O)NCCCN(C)C NTLIJZACUWTZFB-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical class C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000019326 ethyl hydroxyethyl cellulose Nutrition 0.000 description 1
- HMRDXBSCGSGEFO-UHFFFAOYSA-N ethyl prop-2-enoate;2-hydroxyethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C=C.CC(=C)C(=O)OCCO HMRDXBSCGSGEFO-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 150000002193 fatty amides Chemical class 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 239000008241 heterogeneous mixture Substances 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical class C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 150000007974 melamines Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- TUFJPPAQOXUHRI-KTKRTIGZSA-N n'-[(z)-octadec-9-enyl]propane-1,3-diamine Chemical compound CCCCCCCC\C=C/CCCCCCCCNCCCN TUFJPPAQOXUHRI-KTKRTIGZSA-N 0.000 description 1
- YWFWDNVOPHGWMX-UHFFFAOYSA-N n,n-dimethyldodecan-1-amine Chemical compound CCCCCCCCCCCCN(C)C YWFWDNVOPHGWMX-UHFFFAOYSA-N 0.000 description 1
- SFBHPFQSSDCYSL-UHFFFAOYSA-N n,n-dimethyltetradecan-1-amine Chemical compound CCCCCCCCCCCCCCN(C)C SFBHPFQSSDCYSL-UHFFFAOYSA-N 0.000 description 1
- 230000000771 oncological effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 239000001814 pectin Chemical class 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Chemical class 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920002006 poly(N-vinylimidazole) polymer Polymers 0.000 description 1
- 229920000962 poly(amidoamine) Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000379 polypropylene carbonate Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920001290 polyvinyl ester Polymers 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 229940093625 propylene glycol monostearate Drugs 0.000 description 1
- UGZVCHWAXABBHR-UHFFFAOYSA-O pyridin-1-ium-1-carboxamide Chemical class NC(=O)[N+]1=CC=CC=C1 UGZVCHWAXABBHR-UHFFFAOYSA-O 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 125000001273 sulfonato group Chemical class [O-]S(*)(=O)=O 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- AUHHYELHRWCWEZ-UHFFFAOYSA-N tetrachlorophthalic anhydride Chemical compound ClC1=C(Cl)C(Cl)=C2C(=O)OC(=O)C2=C1Cl AUHHYELHRWCWEZ-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- RRHXZLALVWBDKH-UHFFFAOYSA-M trimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium;chloride Chemical compound [Cl-].CC(=C)C(=O)OCC[N+](C)(C)C RRHXZLALVWBDKH-UHFFFAOYSA-M 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical class [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5218—Macromolecular coatings characterised by inorganic additives, e.g. pigments, clays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5245—Macromolecular coatings characterised by the use of polymers containing cationic or anionic groups, e.g. mordants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5254—Macromolecular coatings characterised by the use of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
Definitions
- the present invention relates to an improved recording element for ink jet printing.
- ink jet printing has become a popular technique because of its simplicity, convenience and low cost. Especially in those instances where a limited edition of the printed matter is needed ink jet printing has become a technology of choice.
- a recent survey on progress and trends in ink jet printing technology is given by Hue P. Le in Journal of Imaging Science and Technology Vol. 42 (1), Jan/Febr 1998.
- ink jet printing tiny drops of ink fluid are projected directly onto an ink receptor surface without physical contact between the printing device and the receptor.
- the printing device stores the printing data electronically and controls a mechanism for ejecting the drops image-wise. Printing is accomplished by moving the print head across the paper or vice versa.
- Early patents on ink jet printers include US 3,739,393, US 3,805,273 and US 3,891,121.
- the jetting of the ink droplets can be performed in several different ways.
- a continuous droplet stream is created by applying a pressure wave pattern. This process is known as continuous ink jet printing.
- the droplet stream is divided into droplets that are electrostatically charged, deflected and recollected, and into droplets that remain uncharged, continue their way undeflected, and form the image.
- the charged deflected stream forms the image and the uncharged undeflected jet is recollected.
- several jets are deflected to a different degree and thus record the image (multideflection system).
- the ink droplets can be created “on demand” (“DOD” or “drop on demand” method) whereby the printing device ejects the droplets only when they are used in imaging on a receiver thereby avoiding the complexity of drop charging, deflection hardware, and ink recollection.
- DOD on demand
- the ink droplet can be formed by means of a pressure wave created by a mechanical motion of a piezoelectric transducer (so-called “piezo method”), or by means of discrete thermal pushes (so-called “bubble jet” method, or “thermal jet” method).
- Ink compositions for ink jet typically include following ingredients : dyes or pigments, water and/or organic solvents, humectants such as glycols, detergents, thickeners, polymeric binders, preservatives, etc.. It will be readily understood that the optimal composition of such an ink is dependent on the ink jetting method used and on the nature of the substrate to be printed.
- the ink compositions can be roughly divided in :
- Pigments and particles have also been described in patent applications including DE 2,925,769, GB 2,050,866, US-P 4,474,850, US-P 4,547,405, US-P 4,578,285, WO 88 06532, US-P 4,849,286, EP 339604, EP 400681, EP 407881, EP 411638 and US-P 5,045,864 (non-exhaustive list).
- binders of which the most common types are gelatin, polyvinyl alcohol, polyvinyl pyrrolidone, and various types of cellulose derivatives. These conventional binders are mentioned in numerous patent documents.
- the present invention extends the teachings on ink-absorptive pigments in ink jet recording media.
- an ink jet recording element comprising a support and an ink receiving layer containing a binder and Ca 3 (PO 4 ) 2 pigment characterized in that said Ca 3 (PO 4 ) 2 pigment consists substantially of the whitlockite crystal structure.
- the pigment incorporated in the ink receiver layer is calcium phosphate (Ca 3 (PO 4 ) 2 ) substantially completely composed of the so-called whitlockite crystal structure, also called ⁇ -calcium triphosphate ( ⁇ -CTP), which is a rhombohedral crystal structure.
- ⁇ -CTP ⁇ -calcium triphosphate
- Crystal structures which also can deviate stoechiometrically from Ca 3 (PO 4 ) 2 may be present, such as apatite, hydroxylapatite, monetite, etc..
- the nature of the crystal srtucture(s) present can be verified by means of X-ray diffraction XRD.
- the preparation of calcium phosphate of the whitlockite structure is described a.o. in US-P 5,939,039. Scientific publications on whitlockite type calcium phosphate and derivatives include : Lazoryak et al., "Triple phosphates of calcium, sodium, and trivalent elements with whitlockite-like structure", Mater . Res . Bull .
- Calcium phosphate particles of whitlockite crystal type may be used in any of the orthopaedic or dental applications known for the use of calcium phosphate, such as bone filling defect repair, oncological defect filling, dental extraction site filling, and potential drug delivery applications. See, for instance, Jarcho et al., "Synthesis and fabrication of ⁇ -tricalcium phosphate (whilockite) ceramics for potential prosthetic applications", J . Mater . Sci. (1979), 14(1) 142-50.
- the whitlockite type calcium phosphate is the sole pigment of the ink receiving layer.
- it may be mixed with some other well-known pigments such as silica, talc, clay, koalin, diatomaceous earth, calcium carbonate, magnesium carbonate, aluminium hydroxide, aluminium oxide, titanium oxide, zinc oxide, barium sulfate, calcium sulfate, zinc sulfide, satin white, boehmite and pseudo-boehmite, or organic particles such as polystyrene, polymethylmethacrylate, silicones, urea-formaldehyde condensation polymers, polyesters and polyamides.
- the binder can be chosen from a list of compounds well-known in the art including hydroxyethyl cellulose; hydroxypropyl cellulose; hydroxyethylmethyl cellulose; hydroxypropyl methyl cellulose; hydroxybutylmethyl cellulose; methyl cellulose; sodium carboxymethyl cellulose; sodium carboxymethylhydroxethyl cellulose; water soluble ethylhydroxyethyl cellulose; cellulose sulfate; polyvinyl alcohol; vinylalcohol copolymers; polyvinyl acetate; polyvinylacetal; polyvinyl pyrrolidone; polyacrylamide; acrylamide/acrylic acid copolymer; styrene/acrylic acid copolymer; ethylene-vinylacetate copolymer; vinylmethyl ether/maleic acid copolymer; poly(2-acrylamido-2-methyl propane sulfonic acid); poly(diethylene triamine-co-adipic acid); polyvinyl pyridine; polyvin
- a preferred binder for the practice of the present invention is polyvinyl alcohol (PVA).
- the total dry coating weight of the receiving layer is preferably comprised between 10 and 40 g/m 2 .
- a cationic substance acting as mordant may be present in the ink receiving layer.
- Such substances increase the capacity of the layer for fixing and holding the dye of the ink droplets.
- a particularly suited compound is a poly(diallyldimethylammonium chloride) or, in short, a poly(dadmac). These compounds are commercially available from several companies, e.g. Aldrich, Calgon, Clariant, BASF, EKA Chemicals, and Nippon Goshei.
- a preferred type is GOHSEFIMER K210, trade name of Nippon Goshei Co..
- dadmac copolymers such as copolymers with acrylamide; dimethylamine-epichlorohydrine copolymers,
- CYPRO 514/515/516, SUPERFLOC 507/521/567 cationic cellulose derivatives such as CELQUAT L-200, H-100, SC-240C, SC-230M, trade names of Starch & Chemical Co., and QUATRISOFT LM200, UCARE polymers JR125, JR400, LR400, JR30M, LR30M and UCARE polymer LK; fixing agents from Chukyo Europe: PALSET JK-512, PALSET JK512L, PALSET JK-182, PALSET JK-220, WSC-173, WSC-173L, PALSET JK-320, PALSET JK-320L and PALSET JK-350; polyethyleneimine and copolymers, e.g.
- LUPASOL trade name of BASF AG
- triethanolamine-titanium-chelate e.g. TYZOR, trade name of Du Pont Co.
- copolymers of vinylpyrrolidone such as VIVIPRINT 111, trade name of ISP, a methacrylamido propyl dimethylamine copolymer; with dimethylaminoethylmethacrylate such as COPOLYMER 845 and COPOLYMER 937, trade names of ISP
- vinylimidazole e.g.
- LUVIQUAT CARE, LUVITEC 73W, LUVITEC VP155 K18P, LUVITEC VP155 K72W, LUVIQUAT FC905, LUVIQUAT FC550, LUVIQUAT HM522, and SOKALAN HP56 all trade names of BASF AG; polyamidoamines, e.g. RETAMINOL and NADAVIN, trade marks of Bayer AG; and phosphonium compounds such as disclosed in EP 609930.
- Still other cationic compounds include gelatin when the layer pH is below the isoelectric point of the gelatin, cationic aluminum oxide, boehmite, and poly(aluminumhydroxychloride) such as SYLOJET A200, trade name of Grace Co..
- Still further cationic polymers include polyvinylamines, e.g. PVAM-0595B from Esprit Co., and cationic modified acrylics, e.g. ACRIT RKW319SX, trade name of Tasei Chemical Industries, and RD134 from Goo Chemical.
- the cationic substance is not incorporated in the ink receiving layer itself but in a separate thin top layer.
- this layer is coated from an aqueous medium. Its dry coverage is preferably comprised between 0.5 and 5 g/m 2 .
- the cationic mordant can also be distributed between the ink receiving bulk layer and the extra thin top layer.
- an extra adhesive layer may be applied between the support and the ink receiving layer (undercoat layer).
- This layer is then coated from an aqueous medium containing any of the numerous known adhesive polymers.
- Preferred adhesive polymers include styrene-butadiene latex, acrylate latices, such as ethylacrylate-hydroxyethylmethacrylate, poly(ethylene-vinylacetate), polyvinylesters, copolyesters, and polyurethanes.
- the dry coating weight of this undercoat layer when present is preferably comprised between 0.5 and 10 g/m 2 .
- the ink receiving layer and the optional top- and undercoat layers may further contain well-known conventional ingredi ⁇ nts, such as surfactants serving as coating aids, hardening agents plasticizers, whitening agents and matting agents.
- Surfactants may be incorporated in the ink-receiving layer of the present invention. They can be any of the cationic, anionic, amphoteric, and non-ionic ones as described in JP-A 62-280068 (1987).
- the surfactants are N-alkylamino acid salts, alkylether carboxylic acid salts, acylated peptides, alkylsulfonic acid salts, alkylbenzene and alkylnaphthalene sulfonic acid salts, sulfosuccinic acid salts, ⁇ -olefin sulfonic acid salts, N-acylsulfonic acid salts, sulfonated oils, alkylsulfonic acid salts, alkylether sulfonic acid salts, alkylallylethersulfonic acid salts, alkylamidesulfonic acid salts, alkylphosphoric acid salts, alkyletherphosphoric acid salts, alkyl
- Useful cationic surfactants include N-alkyl dimethyl ammonium chloride, palmityl trimethyl ammonium chloride, dodecyldimethylamine, tetradecyldimethylamine, ethoxylated alkyl guanidine-amine complex, oleamine hydroxypropyl bistrimonium chloride, oleyl imidazoline, stearyl imidazoline, cocamine acetate, palmitamine, dihydroxyethylcocamine, cocotrimonium chloride, alkyl polyglycolether ammonium sulphate, ethoxylated oleamine, lauryl pyridinium chloride, N-oleyl-1,3-diaminopropane, stearamidopropyl dimethylamine lactate, coconut fatty amide, oleyl hydroxyethyl imidazoline, isostearyl ethylimidonium ethosulphate, lauramidopropyl PEG-d
- These surfactants are commercially available from DuPont and 3M.
- the concentration of the surfactant component in the ink-receiving layer is typically in the range of 0.1 to 2 %, preferably in the range of 0.4 to 1.5 % and is most preferably 0.75 % by weight based on the total dry weight of the layer.
- the ink-receiving layer according to this invention may be crosslinked to provide such desired features as waterfastness and non-blocking characteristics.
- the crosslinking is also useful in providing abrasion resistance and resistance to the formation of fingerprints on the element as a result of handling.
- crosslinking agents also known as hardening agents - that will function to crosslink film forming materials. Hardening agents can be used individually or in combination and in free or in blocked form.
- a great many hardeners, useful for the present invention are known, including formaldehyde and free dialdehydes, such as succinaldehyde and glutaraldehyde, blocked dialdehydes, active esters, sulfonate esters, active halogen compounds, isocyanate or blocked isocyanates, polyfunctional isocyanates, melamine derivatives, s-triazines and diazines, epoxides, active olefins having two or more active bonds, carbodiimides, isoxazolium salts subsituted in the 3-position, esters of 2-alkoxy-N-carboxy-dihydroquinoline, N-carbamoylpyridinium salts, hardeners of mixed function, such as halogen-substituted aldehyde acids (e.g.
- mucochloric and mucobromic acids onium substituted acroleins and vinyl sulfones and polymeric hardeners, such as dialdehyde starches and copoly(acroleinmethacrylic acid), and oxazoline functional polymers, e.g. EPOCROS WS-500, and EPOCROS K-1000 series.
- boric acid is a preferred crosslinker.
- the ink-receiving layer of the present invention may also comprise a plasticizer such as ethylene glycol, diethylene glycol, propylene glycol, polyethylene glycol, glycerol monomethylether, glycerol monochlorohydrin, ethylene carbonate, propylene carbonate, tetrachlorophthalic anhydride, tetrabromophthalicanhydride, urea phosphate, triphenylphosphate, glycerolmonostearate, propylene glycol monostearate, tetramethylene sulfone, n-methyl-2-pyrrolidone, n-vinyl-2-pyrrolidone.
- a plasticizer such as ethylene glycol, diethylene glycol, propylene glycol, polyethylene glycol, glycerol monomethylether, glycerol monochlorohydrin, ethylene carbonate, propylene carbonate, tetrachlorophthalic anhydride, tetrabromo
- the ink-receiving layer of the present invention may also comprise ingredients to improve the lightfastness of the printed image, such as antioxidants, UV-absorbers, peroxide scavengers, singlet oxygen quenchers such as hindered amine light stabilizers, (Hals compounds) etc..
- ingredients to improve the lightfastness of the printed image such as antioxidants, UV-absorbers, peroxide scavengers, singlet oxygen quenchers such as hindered amine light stabilizers, (Hals compounds) etc.
- the ink receiving layer and the optional supplementary layers can be coated onto the support by any conventional coating technique, such as dip coating, knife coating, extrusion coating, spin coating, slide hopper coating and curtain coating.
- the support for use in the present invention can be chosen from the paper type and polymeric type support well-known from photographic technology.
- Paper types include plain paper, cast coated paper, polyethylene coated paper and polypropylene coated paper.
- Polymeric supports include cellulose acetate propionate or cellulose acetate butyrate, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate, polyamides, polycarbonates, polyimides, polyolefins, poly(vinylacetals), polyethers and polysulfonamides.
- PET polyethylene terephthalate
- Other examples of useful high-quality polymeric supports for the present invention include opaque white polyesters and extrusion blends of polyethylene terephthalate and polypropylene. Polyester film supports, and especially polyethylene terephthalate, are preferred because of their excellent properties of dimensional stability.
- Typical supports for outdoor use include PET, wet strength paper, PVC, PVC with an adhesive backing, the polyethylene paper TYVEK, trade name of Du Pont Co., the porous polyethylene paper TESLIN, trade name of International Paper CO., canvas, polypropylene, and polycarbonate.
- a Ca 3 (PO 4 ) 2 powder commercially available and made by Merck was first milled by means of a sand mill (Spangenberg) using zirconium silicate pearls of 0.6 mm. The grinding took place during 6 hours leading to Ca 3 (PO 4 ) 2 pigments with a particle size between 1 and 2 ⁇ m. After the milling the pearls were separated from the pigment by filtering and washing with water. The pigment content of the slurry amounted to 12% (by weight). The pigment was a heterogeneous mixture of different crystal structures, as was demonstrated by XRD.
- a coating liquid for forming an ink recording layer was prepared by adding 5 parts by solid weight of a 10% aqueous solution of polyvinyl alcohol (POVAL 117, trade mark of K.K. Kuraray) to 94.5 parts by solid weight of the prepared Ca 3 (PO 4 ) 2 dispersion. Finally, 0.5 parts by solid weight of boric acid solution was added as crossslinker.
- POVAL 117 polyvinyl alcohol
- boric acid solution was added as crossslinker.
- the resultant coating liquid had a total solid content of 11.2% by weight.
- the coating solution was coated on a subbed PET sheet (100 ⁇ m) using a coating knife to form an ink receiving layer having a dry weight of 28 g/m 2 , and dried at 40°C. As is shown by the nitrogen gas adsorption method the pore volume of the layer is only 0.07 ml/g.
- An ink jet recording medium was produced by the same procedures as in Example 1 with the following exception.
- the polyvinyl alcohol was replaced by a cation - modified polyvinyl alcohol (GOHSEFIMER K210, trade mark of Nippon Gohsei). The test results are shown in table 1.
- An ink jet recording medium was produced by the same procedures as in Example 1 with the following exception.
- the Ca 3 (PO 4 ) 2 was replaced by a porous type of whitlockite crystal structure, as verified by XRD, (source Orthovita Inc.).
- the pore volume of the layer is 0.39 ml/g, much higher than for the comparative example. Further test results are shown in table 1.
- An ink jet recording medium was produced by the same procedures as in Example 2 with the following exception.
- the Ca 3 (PO 4 ) 2 was replaced by a porous type of whitlockite crystal structure, as verified by XRD, (source Orthovita Inc.). The test results are shown in table 1.
- porous Ca 3 (PO 4 ) 2 leads to an important improvement of the drying time and inter color bleeding.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Ink Jet (AREA)
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
Description
- The present invention relates to an improved recording element for ink jet printing.
- In the majority of applications printing proceeds by pressure contact of an ink-loaden printing form with an ink-receiving material which is usually plain paper. The most frequently used impact printing technique is known as lithographic printing based on the selective acceptance of oleophilic ink on a suitable receptor.
- In recent times however so-called non-impact printing systems have replaced classical pressure-contact printing to some extent for specific applications. A survey is given e.g. in the book "Principles of Non Impact Printing" by Jerome L. Johnson (1986), Palatino Press, Irvine, CA 92715, USA.
- Among non-impact printing techniques ink jet printing has become a popular technique because of its simplicity, convenience and low cost. Especially in those instances where a limited edition of the printed matter is needed ink jet printing has become a technology of choice. A recent survey on progress and trends in ink jet printing technology is given by Hue P. Le in Journal of Imaging Science and Technology Vol. 42 (1), Jan/Febr 1998.
- In ink jet printing tiny drops of ink fluid are projected directly onto an ink receptor surface without physical contact between the printing device and the receptor. The printing device stores the printing data electronically and controls a mechanism for ejecting the drops image-wise. Printing is accomplished by moving the print head across the paper or vice versa. Early patents on ink jet printers include US 3,739,393, US 3,805,273 and US 3,891,121.
- The jetting of the ink droplets can be performed in several different ways. In a first type of process a continuous droplet stream is created by applying a pressure wave pattern. This process is known as continuous ink jet printing. In a first embodiment the droplet stream is divided into droplets that are electrostatically charged, deflected and recollected, and into droplets that remain uncharged, continue their way undeflected, and form the image. Alternatively, the charged deflected stream forms the image and the uncharged undeflected jet is recollected. In this variant of continuous ink jet printing several jets are deflected to a different degree and thus record the image (multideflection system).
- According to a second process the ink droplets can be created "on demand" ("DOD" or "drop on demand" method) whereby the printing device ejects the droplets only when they are used in imaging on a receiver thereby avoiding the complexity of drop charging, deflection hardware, and ink recollection. In drop-on-demand the ink droplet can be formed by means of a pressure wave created by a mechanical motion of a piezoelectric transducer (so-called "piezo method"), or by means of discrete thermal pushes (so-called "bubble jet" method, or "thermal jet" method).
- Ink compositions for ink jet typically include following ingredients : dyes or pigments, water and/or organic solvents, humectants such as glycols, detergents, thickeners, polymeric binders, preservatives, etc.. It will be readily understood that the optimal composition of such an ink is dependent on the ink jetting method used and on the nature of the substrate to be printed. The ink compositions can be roughly divided in :
- water based ; the drying mechanism involves absorption, penetration and evaporation;
- oil based ; the drying involves absorption and penetration;
- solvent based ; the drying mechanism involves primarely evaporation;
- hot melt or phase change : the ink vehicle is liquid at the ejection temperature but solid at room temperature ; drying is replaced by solidification;
- UV-curable ; drying is replaced by polymerization.
- It is known that the ink-receiving layers in ink-jet recording elements must meet different stringent requirements :
- The ink-receiving layer should have a high ink absorbing capacity, so that the dots will not flow out and will not be expanded more than is necessary to obtain a high optical density.
- The ink-receiving layer should have a high ink absorbing speed (short ink drying time) so that the ink droplets will not feather if smeared immediately after applying.
- The ink dots that are applied to the ink-receiving layer should be substantially round in shape and smooth at their peripheries. The dot diameter must be constant and accurately controlled.
- The receiving layer must be readily wetted so that there is no "puddling", i.e. coalescence of adjacent ink dots, and an earlier absorbed ink drop should not show any "bleeding", i.e. overlap with neighbouring or later placed dots.
- Transparent ink-jet recording elements must have a low haze-value and be excellent in transmittance properties.
- After being printed the image must have a good resistance regarding water-fastness, light-fastness, and good endurance under severe conditions of temperature and humidity.
- The ink jet recording element may not show any curl or sticky behaviour if stacked before or after being printed.
- The ink jet recording element must be able to move smoothly through different types of printers.
- All these properties are often in a relation of trade-off. It is difficult to satisfy them all at the same time.
- It is known that the presence in the ink accepting layer of absorptive pigments such as silica, kaolin, talc, aluminum oxide, boehmite, etc. improves the absorption capacity, the obtainable colour density and the drying time. Many patent applications have described this effect for many different binder-systems. US-P 3,357,846 describes pigments such as kaolin, talc, bariet, TiO2 used in starch and PVA. US-P 3,889,270 describes silica in gelatin, PVA and cellulose. Pigments and particles have also been described in patent applications including DE 2,925,769, GB 2,050,866, US-P 4,474,850, US-P 4,547,405, US-P 4,578,285, WO 88 06532, US-P 4,849,286, EP 339604, EP 400681, EP 407881, EP 411638 and US-P 5,045,864 (non-exhaustive list).
- These particulates are dispersed in various types of binders of which the most common types are gelatin, polyvinyl alcohol, polyvinyl pyrrolidone, and various types of cellulose derivatives. These conventional binders are mentioned in numerous patent documents.
- Since printing speeds are becoming ever faster the issue of fast ink droplet absorption is a crucial one. A first droplet must be absorbed into the interior of the receiver layer before a second one arrives at the same pixel. So, to improve this property there is a permanent need for better absorptive pigments.
- The present invention extends the teachings on ink-absorptive pigments in ink jet recording media.
- It is an object of the present invention to provide an ink jet recording element with high ink absorptivity.
- It is a further object of the present invention to provide an ink jet recording element with very fast drying characteristics.
- The above mentioned objects are realised by providing an ink jet recording element comprising a support and an ink receiving layer containing a binder and Ca3(PO4)2 pigment characterized in that said Ca3(PO4)2 pigment consists substantially of the whitlockite crystal structure.
- The essence of the present invention is the fact that the pigment incorporated in the ink receiver layer is calcium phosphate (Ca3(PO4)2) substantially completely composed of the so-called whitlockite crystal structure, also called β-calcium triphosphate (β-CTP), which is a rhombohedral crystal structure. By "substantially" is meant that the great majority of the calcium phosphate present shows this crystal structure. Minor amounts of other crystal structures which also can deviate stoechiometrically from Ca3(PO4)2 may be present, such as apatite, hydroxylapatite, monetite, etc..The nature of the crystal srtucture(s) present can be verified by means of X-ray diffraction XRD. The preparation of calcium phosphate of the whitlockite structure is described a.o. in US-P 5,939,039. Scientific publications on whitlockite type calcium phosphate and derivatives include : Lazoryak et al., "Triple phosphates of calcium, sodium, and trivalent elements with whitlockite-like structure", Mater. Res. Bull. (1996), 31 (2), 207-16 ; L. Keller, "X-ray power diffraction patterns of calcium phosphates by the Rietveld method.", J. Biomed. Mater. Res., (1995) , 29(11), 1403-13 ; Yanov et al., "A whitlockite calcium copper phosphate", Mater. Res. Bull. (1994), 29(12), 1307-14.
- Calcium phosphate particles of whitlockite crystal type may be used in any of the orthopaedic or dental applications known for the use of calcium phosphate, such as bone filling defect repair, oncological defect filling, dental extraction site filling, and potential drug delivery applications. See, for instance, Jarcho et al., "Synthesis and fabrication of β-tricalcium phosphate (whilockite) ceramics for potential prosthetic applications", J. Mater. Sci. (1979), 14(1) 142-50.
- However, to our knowledge, it is the first time that the use of whitlockite type calcium phosphate as pigment in an ink jet receiver layer is disclosed. The presence of the compound gives the receiving layer a high degree of porosity so that the uptake velocity of ink droplets is strongly enhanced.
- Preferably, the whitlockite type calcium phosphate is the sole pigment of the ink receiving layer. Alternatively however, it may be mixed with some other well-known pigments such as silica, talc, clay, koalin, diatomaceous earth, calcium carbonate, magnesium carbonate, aluminium hydroxide, aluminium oxide, titanium oxide, zinc oxide, barium sulfate, calcium sulfate, zinc sulfide, satin white, boehmite and pseudo-boehmite, or organic particles such as polystyrene, polymethylmethacrylate, silicones, urea-formaldehyde condensation polymers, polyesters and polyamides.
- The binder can be chosen from a list of compounds well-known in the art including hydroxyethyl cellulose; hydroxypropyl cellulose; hydroxyethylmethyl cellulose; hydroxypropyl methyl cellulose; hydroxybutylmethyl cellulose; methyl cellulose; sodium carboxymethyl cellulose; sodium carboxymethylhydroxethyl cellulose; water soluble ethylhydroxyethyl cellulose; cellulose sulfate; polyvinyl alcohol; vinylalcohol copolymers; polyvinyl acetate; polyvinylacetal; polyvinyl pyrrolidone; polyacrylamide; acrylamide/acrylic acid copolymer; styrene/acrylic acid copolymer; ethylene-vinylacetate copolymer; vinylmethyl ether/maleic acid copolymer; poly(2-acrylamido-2-methyl propane sulfonic acid); poly(diethylene triamine-co-adipic acid); polyvinyl pyridine; polyvinyl imidazole; polyimidazoline quaternized; polyethylene imine epichlorohydrin modified; polyethylene imine ethoxylated; poly(N,N-dimethyl-3,5-dimethylene piperidinium chloride; polyethylene oxide; polyurethane; melamine resins; gelatin; carrageenan; dextran; gum arabic; casein; pectin; albumin; starch; collagen derivatives; collodion and agar-agar.
- A preferred binder for the practice of the present invention is polyvinyl alcohol (PVA).
- The total dry coating weight of the receiving layer is preferably comprised between 10 and 40 g/m2.
- Apart from the essential ingredients described above a cationic substance acting as mordant may be present in the ink receiving layer. Such substances increase the capacity of the layer for fixing and holding the dye of the ink droplets. A particularly suited compound is a poly(diallyldimethylammonium chloride) or, in short, a poly(dadmac). These compounds are commercially available from several companies, e.g. Aldrich, Calgon, Clariant, BASF, EKA Chemicals, and Nippon Goshei. A preferred type is GOHSEFIMER K210, trade name of Nippon Goshei Co..
- Other useful cationic compounds include dadmac copolymers such as copolymers with acrylamide; dimethylamine-epichlorohydrine copolymers, e.g. POLYFIX 700, trade name of Showa High Polymer Co.; other POLYFIX grades which could be used are POLYFIX 601, POLYFIX 301, POLYFIX 301A, POLYFIX 250WS, and POLYFIX 3000 ; NEOFIX E-117, trade name of Nicca Chemical Co., a polyoxyalkylene polyamine dicyanodiamine, and REDIFLOC 4150, trade name of EKA Chemicals, a polyamine; MADAME (methacrylatedimethylaminoethyl = dimethylaminoethyl methacrylate) or MADQUAT (methacryloxyethyltrimethylammonium chloride) modified polymers, e.g. ROHAGIT KL280, ROHAGIT 210, ROHAGIT SL144, PLEX 4739L, PLEX 3073 from Röhm, DIAFLOC KP155 and other DIAFLOC products from Diafloc Co., and BMB 1305 and other BMB products from EKA chemicals; cationic epichlorohydrin adducts such as POLYCUP 171 and POLYCUP 172, trade names from Hercules Co.; from Cytec industries : CYPRO products, e.g. CYPRO 514/515/516, SUPERFLOC 507/521/567; cationic cellulose derivatives such as CELQUAT L-200, H-100, SC-240C, SC-230M, trade names of Starch & Chemical Co., and QUATRISOFT LM200, UCARE polymers JR125, JR400, LR400, JR30M, LR30M and UCARE polymer LK; fixing agents from Chukyo Europe: PALSET JK-512, PALSET JK512L, PALSET JK-182, PALSET JK-220, WSC-173, WSC-173L, PALSET JK-320, PALSET JK-320L and PALSET JK-350; polyethyleneimine and copolymers, e.g. LUPASOL, trade name of BASF AG; triethanolamine-titanium-chelate, e.g. TYZOR, trade name of Du Pont Co.; copolymers of vinylpyrrolidone such as VIVIPRINT 111, trade name of ISP, a methacrylamido propyl dimethylamine copolymer; with dimethylaminoethylmethacrylate such as COPOLYMER 845 and COPOLYMER 937, trade names of ISP; with vinylimidazole, e.g. LUVIQUAT CARE, LUVITEC 73W, LUVITEC VP155 K18P, LUVITEC VP155 K72W, LUVIQUAT FC905, LUVIQUAT FC550, LUVIQUAT HM522, and SOKALAN HP56, all trade names of BASF AG; polyamidoamines, e.g. RETAMINOL and NADAVIN, trade marks of Bayer AG; and phosphonium compounds such as disclosed in EP 609930.
- Still other cationic compounds include gelatin when the layer pH is below the isoelectric point of the gelatin, cationic aluminum oxide, boehmite, and poly(aluminumhydroxychloride) such as SYLOJET A200, trade name of Grace Co.. Still further cationic polymers include polyvinylamines, e.g. PVAM-0595B from Esprit Co., and cationic modified acrylics, e.g. ACRIT RKW319SX, trade name of Tasei Chemical Industries, and RD134 from Goo Chemical.
- In an alternative embodiment the cationic substance is not incorporated in the ink receiving layer itself but in a separate thin top layer. In this case this layer is coated from an aqueous medium. Its dry coverage is preferably comprised between 0.5 and 5 g/m2. The cationic mordant can also be distributed between the ink receiving bulk layer and the extra thin top layer.
- Depending on the surface properties of the substrate an extra adhesive layer may be applied between the support and the ink receiving layer (undercoat layer). This layer is then coated from an aqueous medium containing any of the numerous known adhesive polymers. Preferred adhesive polymers include styrene-butadiene latex, acrylate latices, such as ethylacrylate-hydroxyethylmethacrylate, poly(ethylene-vinylacetate), polyvinylesters, copolyesters, and polyurethanes.
- The dry coating weight of this undercoat layer when present is preferably comprised between 0.5 and 10 g/m2.
- The ink receiving layer and the optional top- and undercoat layers may further contain well-known conventional ingrediënts, such as surfactants serving as coating aids, hardening agents plasticizers, whitening agents and matting agents.
- Surfactants may be incorporated in the ink-receiving layer of the present invention. They can be any of the cationic, anionic, amphoteric, and non-ionic ones as described in JP-A 62-280068 (1987). Examples of the surfactants are N-alkylamino acid salts, alkylether carboxylic acid salts, acylated peptides, alkylsulfonic acid salts, alkylbenzene and alkylnaphthalene sulfonic acid salts, sulfosuccinic acid salts, α-olefin sulfonic acid salts, N-acylsulfonic acid salts, sulfonated oils, alkylsulfonic acid salts, alkylether sulfonic acid salts, alkylallylethersulfonic acid salts, alkylamidesulfonic acid salts, alkylphosphoric acid salts, alkyletherphosphoric acid salts, alkylallyletherphosphoric acid salts, alkyl and alkylallylpolyoxyethylene ethers, alkylallylformaldehyde condensed acid salts, alkylallylethersulfonic acid salts, alkylamidesulfonic acid salts, alkylphosphoric acid salts, alkyletherphosphoric acid salts, alkylallyletherphosphoric acid salts, alkyl and alkylallylpolyoxyethylene ethers, alkylallylformaldehyde condensed polyoxyethylene ethers, blocked polymers having polyoxypropylene, polyoxyethylene polyoxypropylalkylethers, polyoxyethyleneether of glycolesters, polyoxyethyleneether of sorbitanesters, polyoxyethyleneether of sorbitolesters, polyethyleneglycol aliphatic acid esters, glycerol esters, sorbitane esters, propyleneglycol esters, sugaresters, fluoro C2-C10 alkylcarboxylic acids, disodium N-perfluorooctanesulfonyl glutamate, sodium 3-(fluoro-C6-C11-alkyloxy)-1-C3-C4 alkyl sulfonates, sodium 3-(ω-fluoro-C6-C8-alkanoyl-N-ethylamino)-1-propane sulfonates, N-[3-(perfluorooctanesulfonamide)-propyl]-N,N-dimethyl-N-carboxymethylene ammonium betaine, fluoro-C11-C20 alkylcarboxylic acids, perfluoro-C7-C13-alkyl-carboxylic acids, perfluorooctane sulfonic acid diethanolamide, Li, K and Na perfluoro-C4-C12-alkyl sulfonates, N-propyl-N-(2-hydroxyethyl)perfluorooctane sulfonamide, perfluoro-C6-C10-alkylsulfonamide-propyl-sulfonyl-glycinates, bis-(N-perfluorooctylsulfonyl-N-ethanolaminoethyl)phosphonate, mono-perfluoro C6-C16 alkyl-ethyl phosphonates, and perfluoroalkylbetaine.
- Useful cationic surfactants include N-alkyl dimethyl ammonium chloride, palmityl trimethyl ammonium chloride, dodecyldimethylamine, tetradecyldimethylamine, ethoxylated alkyl guanidine-amine complex, oleamine hydroxypropyl bistrimonium chloride, oleyl imidazoline, stearyl imidazoline, cocamine acetate, palmitamine, dihydroxyethylcocamine, cocotrimonium chloride, alkyl polyglycolether ammonium sulphate, ethoxylated oleamine, lauryl pyridinium chloride, N-oleyl-1,3-diaminopropane, stearamidopropyl dimethylamine lactate, coconut fatty amide, oleyl hydroxyethyl imidazoline, isostearyl ethylimidonium ethosulphate, lauramidopropyl PEG-dimoniumchloride phosphate, palmityl trimethylammonium chloride, and cetyltrimethylammonium bromide.
- Especially useful are the fluorocarbon surfactants as described in e.g. US-P 4,781,985, having a structure of :
F(CF2)4-9CH2CH2SCH2CH2N+R3X- wherein R is a hydrogen or an alkyl group; and in US-P 5,084,340, having a structure of:
CF3(CF2)mCH2CH2O(CH2CH2O)nR wherein m = 2 to 10; n = 1 to 18; R is hydrogen or an alkyl group of 1 to 10 carbon atoms. These surfactants are commercially available from DuPont and 3M. The concentration of the surfactant component in the ink-receiving layer is typically in the range of 0.1 to 2 %, preferably in the range of 0.4 to 1.5 % and is most preferably 0.75 % by weight based on the total dry weight of the layer. - The ink-receiving layer according to this invention may be crosslinked to provide such desired features as waterfastness and non-blocking characteristics. The crosslinking is also useful in providing abrasion resistance and resistance to the formation of fingerprints on the element as a result of handling. There are a vast number of known crosslinking agents - also known as hardening agents - that will function to crosslink film forming materials. Hardening agents can be used individually or in combination and in free or in blocked form. A great many hardeners, useful for the present invention, are known, including formaldehyde and free dialdehydes, such as succinaldehyde and glutaraldehyde, blocked dialdehydes, active esters, sulfonate esters, active halogen compounds, isocyanate or blocked isocyanates, polyfunctional isocyanates, melamine derivatives, s-triazines and diazines, epoxides, active olefins having two or more active bonds, carbodiimides, isoxazolium salts subsituted in the 3-position, esters of 2-alkoxy-N-carboxy-dihydroquinoline, N-carbamoylpyridinium salts, hardeners of mixed function, such as halogen-substituted aldehyde acids (e.g. mucochloric and mucobromic acids), onium substituted acroleins and vinyl sulfones and polymeric hardeners, such as dialdehyde starches and copoly(acroleinmethacrylic acid), and oxazoline functional polymers, e.g. EPOCROS WS-500, and EPOCROS K-1000 series.
- In the practice of this invention boric acid is a preferred crosslinker.
- The ink-receiving layer of the present invention may also comprise a plasticizer such as ethylene glycol, diethylene glycol, propylene glycol, polyethylene glycol, glycerol monomethylether, glycerol monochlorohydrin, ethylene carbonate, propylene carbonate, tetrachlorophthalic anhydride, tetrabromophthalicanhydride, urea phosphate, triphenylphosphate, glycerolmonostearate, propylene glycol monostearate, tetramethylene sulfone, n-methyl-2-pyrrolidone, n-vinyl-2-pyrrolidone.
- The ink-receiving layer of the present invention may also comprise ingredients to improve the lightfastness of the printed image, such as antioxidants, UV-absorbers, peroxide scavengers, singlet oxygen quenchers such as hindered amine light stabilizers, (Hals compounds) etc..
- The ink receiving layer and the optional supplementary layers can be coated onto the support by any conventional coating technique, such as dip coating, knife coating, extrusion coating, spin coating, slide hopper coating and curtain coating.
- The support for use in the present invention can be chosen from the paper type and polymeric type support well-known from photographic technology. Paper types include plain paper, cast coated paper, polyethylene coated paper and polypropylene coated paper. Polymeric supports include cellulose acetate propionate or cellulose acetate butyrate, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate, polyamides, polycarbonates, polyimides, polyolefins, poly(vinylacetals), polyethers and polysulfonamides. Other examples of useful high-quality polymeric supports for the present invention include opaque white polyesters and extrusion blends of polyethylene terephthalate and polypropylene. Polyester film supports, and especially polyethylene terephthalate, are preferred because of their excellent properties of dimensional stability.
- Typical supports for outdoor use include PET, wet strength paper, PVC, PVC with an adhesive backing, the polyethylene paper TYVEK, trade name of Du Pont Co., the porous polyethylene paper TESLIN, trade name of International Paper CO., canvas, polypropylene, and polycarbonate.
- The present invention will now be illustrated by the following examples without however being limited thereto.
- A Ca3(PO4)2 powder commercially available and made by Merck was first milled by means of a sand mill (Spangenberg) using zirconium silicate pearls of 0.6 mm. The grinding took place during 6 hours leading to Ca3(PO4)2 pigments with a particle size between 1 and 2 µm. After the milling the pearls were separated from the pigment by filtering and washing with water. The pigment content of the slurry amounted to 12% (by weight). The pigment was a heterogeneous mixture of different crystal structures, as was demonstrated by XRD.
- A coating liquid for forming an ink recording layer was prepared by adding 5 parts by solid weight of a 10% aqueous solution of polyvinyl alcohol (POVAL 117, trade mark of K.K. Kuraray) to 94.5 parts by solid weight of the prepared Ca3(PO4)2 dispersion. Finally, 0.5 parts by solid weight of boric acid solution was added as crossslinker.
- The resultant coating liquid had a total solid content of 11.2% by weight.
- The coating solution was coated on a subbed PET sheet (100 µm) using a coating knife to form an ink receiving layer having a dry weight of 28 g/m2, and dried at 40°C. As is shown by the nitrogen gas adsorption method the pore volume of the layer is only 0.07 ml/g.
- Color patches containing primary and secondary colors were printed on the coated samples by means of a EPSON STYLUS COLOR 460 (trademark: Seiko Epson Corp.). By means of these color patches the drying time, color density and color bleeding can be evaluated. The test results are shown in table 1.
- An ink jet recording medium was produced by the same procedures as in Example 1 with the following exception. In the preparation of the coating liquid for the ink receiving layer, the polyvinyl alcohol was replaced by a cation - modified polyvinyl alcohol (GOHSEFIMER K210, trade mark of Nippon Gohsei). The test results are shown in table 1.
- An ink jet recording medium was produced by the same procedures as in Example 1 with the following exception. In the preparation of the dispersion for the ink receiving layer, the Ca3(PO4)2 was replaced by a porous type of whitlockite crystal structure, as verified by XRD, (source Orthovita Inc.). As is shown by the nitrogen gas adsorption method the pore volume of the layer is 0.39 ml/g, much higher than for the comparative example. Further test results are shown in table 1.
- An ink jet recording medium was produced by the same procedures as in Example 2 with the following exception. In the preparation of the dispersion for the ink receiving layer, the Ca3(PO4)2, was replaced by a porous type of whitlockite crystal structure, as verified by XRD, (source Orthovita Inc.). The test results are shown in table 1.
-
Test results Sample n° Remark Drying time Bleeding 1 Comp. 3 min Strong 2 Comp. 3 min Strong 3 Inv. <30 s no bleeding 4 Inv. <30 s no bleeding - As can be seen from the results, the porous Ca3(PO4)2 leads to an important improvement of the drying time and inter color bleeding.
Claims (6)
- An ink jet recording element comprising a support and an ink receiving layer containing a binder and Ca3(PO4)2 pigment characterized in that said Ca3(PO4)2 pigment consists substantially of the whitlockite crystal structure.
- An ink jet recording element according to claim 1 wherein said binder is polyvinylalcohol.
- An ink jet recording element according to claim 1 or 2 wherein said ink receiving layer further contains a crosslinker.
- An ink jet recording element according to claim 3 wherein said crosslinker is boric acid.
- An ink jet recording element according to any of claims 1 to 4 wherein said ink receiving layer further contains a cationic mordant.
- An ink jet recording element according to claim 5 wherein said cationic mordant is poly(diallyldimethylammonium chloride).
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2001602683 DE60102683T2 (en) | 2001-07-03 | 2001-07-03 | Improved inkjet receiving medium |
EP20010000266 EP1273455B1 (en) | 2001-07-03 | 2001-07-03 | Improved ink jet recording element |
US10/179,931 US6558779B1 (en) | 2001-07-03 | 2002-06-24 | Ink jet recording element |
JP2002191867A JP2003103925A (en) | 2001-07-03 | 2002-07-01 | Improved ink jet recording element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20010000266 EP1273455B1 (en) | 2001-07-03 | 2001-07-03 | Improved ink jet recording element |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1273455A1 EP1273455A1 (en) | 2003-01-08 |
EP1273455B1 true EP1273455B1 (en) | 2004-04-07 |
Family
ID=8176053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20010000266 Expired - Lifetime EP1273455B1 (en) | 2001-07-03 | 2001-07-03 | Improved ink jet recording element |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1273455B1 (en) |
JP (1) | JP2003103925A (en) |
DE (1) | DE60102683T2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4018674B2 (en) | 2003-08-04 | 2007-12-05 | キヤノン株式会社 | Method for manufacturing recording medium for ink |
JP2006218697A (en) * | 2005-02-09 | 2006-08-24 | Nippon Paper Industries Co Ltd | Inkjet recording medium |
JP2022067068A (en) * | 2020-10-19 | 2022-05-02 | 株式会社リコー | Printed matter |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL56141A (en) * | 1977-12-23 | 1981-10-30 | Sterling Drug Inc | Whitlockite ceramic and its manufacture |
GB2323800B (en) * | 1997-03-31 | 2000-12-27 | Somar Corp | Ink-jet recording film having improved ink fixing |
KR100384311B1 (en) * | 1998-11-13 | 2003-05-16 | 미쯔이카가쿠 가부시기가이샤 | Organic polymer/fine inorganic particle aqueous dispersion with excellent dispersion stability and use thereof |
-
2001
- 2001-07-03 DE DE2001602683 patent/DE60102683T2/en not_active Expired - Fee Related
- 2001-07-03 EP EP20010000266 patent/EP1273455B1/en not_active Expired - Lifetime
-
2002
- 2002-07-01 JP JP2002191867A patent/JP2003103925A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
DE60102683D1 (en) | 2004-05-13 |
JP2003103925A (en) | 2003-04-09 |
DE60102683T2 (en) | 2005-03-24 |
EP1273455A1 (en) | 2003-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6841206B2 (en) | Ink jet recording element | |
US20010024713A1 (en) | Ink jet recording material | |
US6924011B2 (en) | Ink jet recording material | |
US6887536B2 (en) | Recording element for ink jet printing | |
EP1127706B1 (en) | Ink jet recording material | |
EP1419897B1 (en) | Ink jet recording material | |
EP1211086B1 (en) | Improved ink jet recording medium | |
EP1364800B1 (en) | Improved recording element for ink jet printing. | |
EP1273455B1 (en) | Improved ink jet recording element | |
US20030219553A1 (en) | Recording element for ink jet printing | |
US6558779B1 (en) | Ink jet recording element | |
EP1346840B1 (en) | Improved recording element for ink jet printing | |
EP1321300B1 (en) | Improved recording element for ink jet printing | |
US20030137571A1 (en) | Recording element for ink jet printing | |
EP1393922B1 (en) | Ink jet recording material | |
US20040142123A1 (en) | Ink-jet recording material | |
US20040005417A1 (en) | Ink jet image improved for light-fastness | |
EP1211087B1 (en) | Improved ink jet recording element | |
EP1375173B1 (en) | Inkjet recording material | |
US20040076774A1 (en) | Ink jet recording material | |
EP1437230A1 (en) | Ink-jet recording material | |
US20040265515A1 (en) | Ink-receiving material | |
JP2005014611A (en) | Improved ink-acceptance material | |
EP1491352A2 (en) | Improved ink-receiving material. | |
EP1410921A1 (en) | Ink jet recording material and light-stabilising compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20030708 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60102683 Country of ref document: DE Date of ref document: 20040513 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050110 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090622 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20100113 Year of fee payment: 9 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100703 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110201 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60102683 Country of ref document: DE Effective date: 20110201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100703 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090619 Year of fee payment: 9 |