+

EP1266425B1 - Multifrequency antenna for instrument with small volume - Google Patents

Multifrequency antenna for instrument with small volume Download PDF

Info

Publication number
EP1266425B1
EP1266425B1 EP01905562A EP01905562A EP1266425B1 EP 1266425 B1 EP1266425 B1 EP 1266425B1 EP 01905562 A EP01905562 A EP 01905562A EP 01905562 A EP01905562 A EP 01905562A EP 1266425 B1 EP1266425 B1 EP 1266425B1
Authority
EP
European Patent Office
Prior art keywords
capacitor
antenna
strip
inductor
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01905562A
Other languages
German (de)
French (fr)
Other versions
EP1266425A1 (en
Inventor
Jean-François Zürcher
Anja Skrivervik
Olivier Staub
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asulab AG
Original Assignee
Asulab AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asulab AG filed Critical Asulab AG
Priority to EP01905562A priority Critical patent/EP1266425B1/en
Publication of EP1266425A1 publication Critical patent/EP1266425A1/en
Application granted granted Critical
Publication of EP1266425B1 publication Critical patent/EP1266425B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G21/00Input or output devices integrated in time-pieces
    • G04G21/04Input or output devices integrated in time-pieces using radio waves
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R60/00Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements

Definitions

  • the present invention relates to an antenna of elongated shape for small volume instrument, in particular a telephone watch, capable of receiving and to broadcast radio messages on at least two frequencies of values high and low, this antenna being constituted, from a feed point, of a first radiant element whose length is tuned to the high frequency and at least minus a second radiant element, following the first, the length of this second element added to that of the first having a total length granted on the low frequency, the first and second radiant elements being connected together by a resonant circuit whose resonant frequency is chosen to limit the length from the antenna to its first element when the high frequency is active and for use the total length of the antenna when the low frequency is active.
  • each strand of the antenna comprises a first radiant element 3, then a circuit resonant 5 and finally a second radiant element 4.
  • the antenna is designed to be tuned to two different frequencies, for example 28 and 21 MHz.
  • the length L1 of the first radiant element 3 is adapted to the frequency of 28 MHz (or more exactly a quarter of the wavelength of this frequency).
  • the length L2 of the second radiant element 4 added to the length L1 of the first element leads to a radiant element of length L3 adapted to the frequency of 21 MHz (or as more high at a quarter of the wavelength of this frequency).
  • the resonant circuit 5 is a oscillating circuit comprising a coil 6 and a capacitor 7 connected in parallel. The values of these components are chosen to resonate at 28 MHz. As the impedance of the resonant circuit is maximum at this frequency, this resonant circuit will serve as a plug at said frequency and thus limit the length of the strand at the first radiant element 3. On the other hand, at 21 MHz, the resonant circuit has a very low impedance, so the total length of the strand is used. So by means relatively simple have we managed to resonate a section L1 or the whole L3 of the antenna.
  • the antenna is made by means of tubes forming the radiant elements 3 and 4, these tubes being joined by a sleeve containing the resonant circuit 5 produced by means of discrete components either a coil or inductor 6 and a capacitor 7.
  • the frequencies used in small volume instruments are much higher than those mentioned above. If the principle of adapting the antenna to at least two different frequencies can remain the same as that described above, the technique used for these short wavelengths will have to be adapted to the antenna used.
  • This antenna must be able to operate at least on the official frequencies standardized for example by the GSM system (Groupe Spécial Mobile) which provides for a high frequency f h equal to 1.9 GHz and a low frequency f b equal to 900 MHz.
  • the antenna is characterized in that the first and second radiant elements each have a conductive tape of substantially rectangular shape and in that the circuit resonant comprises the combination of an inductor and a capacitor, said inductor being a substantially straight narrow strip formed integrally with at least one of said ribbons and linked to this ribbon by one of its ends.
  • the antenna has two radiant elements connected together by a circuit resonant can be represented schematically as the paralleling of a capacitor and an inductor. It is proposed to make this resonant circuit and in particular the inductance in the form of a relatively wide printed ribbon having the shape of a meander.
  • the capacity value of the resonant circuit is determined here by the parasitic capacitance present between the “turns” or meanders of the inductance.
  • a disadvantage of this solution is that the adjustment of the resonant frequency of the resonant circuit is difficult to perform. Indeed, if we want to modify the inductance value of the resonant circuit, it is necessary to modify the width and / or length of the meander. By performing such an operation, one affects at the same time the value of the parasitic capacitance of the resonant circuit.
  • the solution according to the present invention has the advantage of being able to adjust easily the resonant frequency of the resonant circuit by acting independently on the value of the inductance or on the value of the capacitor.
  • the inductance formed by a narrow, substantially straight track does not significantly affect not the capacity value of the resonant circuit.
  • a narrow track for the inductance has the advantage of a higher inductance with equal dimension by compared to the solution envisaged in document WO 99/03168.
  • the antenna 1 in question has an elongated shape. It is intended for a small volume instrument, in particular for a telephone housed in a watch, this telephone being capable of receiving and transmitting radio messages.
  • the antenna 1 is also capable of working on at least two frequencies of values high f h and low f b and consists, starting from a feed point 2, of a first radiant element 3 whose length L1 is tuned to the high frequency f h and at least one second radiant element 4 which follows the first, the length L2 of this second element 4 added to that of the first having a total length L3 tuned to the low frequency f b .
  • the same figures 2 to 9 show that the first and second radiant elements 3 and 4 are connected together by a resonant circuit 5.
  • the resonance frequency f r of this resonant circuit 5 is chosen to limit the length of the antenna 1 to its first radiant element 3 when the high frequency f h is active and to use the total length L3 of the antenna when the low frequency f b is active.
  • the invention is remarkable first in that the first and second radiant elements 3 and 4 each have a substantially rectangular conductive tape, these ribbons being placed one after the other. Then the invention is remarkable by the fact that the resonant circuit 5 comprises the combination of an inductance 6 and a capacitor 7, 7 ′ this inductance 6 being a narrow strip that is substantially rectilinear formed integrally with at least one of said ribbons and linked to this ribbon by one of its ends 8, 8 '.
  • all of Figures 2 to 9 show that the end 8 of the inductor 6 is linked to the ribbon 3 and that the inductor 6 is formed integrally with one of the ribbons, in this case with the ribbon 3.
  • Figures 2 to 8 show that the inductor 6 and the capacitor 7, 7 'are connected in parallel. Under these conditions, it will be understood that the value of each of these components will be chosen so that the resonant circuit has a resonant frequency f r substantially equal to the high operating frequency f h of the antenna. Indeed, as already mentioned in the preamble to this description, the impedance of the resonant circuit then presents a maximum during resonance and if the resonant circuit is tuned to the high frequency f h , it will represent as a plug or a barrier does not not passing said high frequency. As the first radiant element 3 has a length granted to this high frequency, the antenna will be limited to this first radiant element or first ribbon 3 if the high frequency is active.
  • the resonant circuit 5 will present at this frequency a minimum impedance, allowing said low frequency to pass.
  • the antenna will be adapted to this frequency over its entire length L3.
  • FIG. 2 illustrates a first embodiment of the invention.
  • the first and second ribbons 3 and 4 are self-supporting and therefore do not rest on any substrate, although that fixing means 9 are provided for attaching the antenna to the instrument in which it is implanted.
  • the inductor 6 is a narrow band substantially straight connected by its first end 8 to the first ribbon 3 and by its second end 8 'to the second strip 4.
  • the inductor 6 is formed integrally with the two ribbons 3 and 4. It will be understood that the set of ribbons 3 and 4 and inductance 6 can be manufactured in a single operation by simple stamping which simplifies enormously the execution of the antenna.
  • the capacitor 7 on the other hand is a component discreet, executed separately from the ribbons constituting the antenna and presenting first and second terminals 10 and 10 'soldered respectively to the first and second ribbons 3 and 4.
  • the antenna is supplied by a wire (not shown) welded in a passage 2 made in the first ribbon 3.
  • the length L1 of the first strip 3 is equal to 3.4 cm (equivalent to a quarter of the wavelength of f h ).
  • the additional length L2 makes it possible to adjust f b . It is therefore quite easy to adjust the two frequencies individually.
  • FIG. 3 illustrates a second embodiment of the invention.
  • first and second ribbons 3 and 4 which are self-supporting and are separated by a inductance 5 and a discrete component forming the capacitor 7.
  • the antenna is wound around a box 26 housing the electronic circuits necessary for the operation of the instrument. We will come back to this below execution because it contains other useful features to report.
  • Figure 4 shows a third embodiment of the invention.
  • this third mode is characterized in that the first and second tapes 3 and 4 rest on an insulating substrate 11, for example Kapton (registered trademark) to form a printed circuit.
  • Inductance 6 is a track narrow printed on the substrate 11. It is connected by its first end 8 to the first ribbon 3 and by its second end 8 'to the second ribbon 4. It therefore integral part of the ribbons 3 and 4.
  • the capacitor 7, 7 'associated with inductance 6 can take different forms.
  • a first form of capacitor is illustrated in Figure 4.
  • This capacitor actually comprises two capacitors 7 and 7 'located on either side inductance 6. These two capacitors are connected in parallel and give symmetry to the entire resonant circuit. This symmetry is generally desirable and will be preferred to a non-symmetrical mounting as can be seen in the Figure 2.
  • the capacitor 7, 7 ' comprises a first frame 12, 12' printed on the substrate 11 and connected to the first strip 3. It also includes a second frame 13, 13 ′ also printed on the substrate 11 and connected to the second ribbon 4. As the Figure 4 shows it well, each of these first and second frames has the shape of a comb whose teeth interpenetrate without touching. Capacity is here created in the space between the teeth. We will also talk about a capacity interdigitated.
  • the first ribbon 3 is supplied by a conductor (not shown) welded to feed point 2.
  • This third embodiment illustrated in FIG. 4 shows how, according to the invention, a dual-frequency antenna can be produced simply and above all economically.
  • This antenna is in fact entirely produced in a single circuit printed, the well-known chemical etching making ribbons 3 and 4 all at once, inductance 6 and capacitor 7, 7 '.
  • This antenna can therefore be produced at a extremely low cost since no discrete components are needed to create the resonant circuit 5.
  • FIG. 5 A second form of capacitor associated with a printed inductor 6 is shown in Figures 5 and 6, Figure 5 being a plan view of the antenna and the Figure 6 a section along line VI-VI of Figure 5.
  • Figures 5 and 6 explain a fourth embodiment of the invention.
  • the capacitor includes the setting parallel of two capacitors 7 and 7 'located on either side of the inductor 6 and each formed of a discrete component having a first terminal 14 and 14 ' soldered on the first strip 3 and a second terminal 15 and 15 'soldered on the second ribbon 4.
  • This fourth embodiment has another feature which will be question below.
  • FIG. 7 A third form of capacitor associated with a printed inductance is shown in Figures 7 and 8, Figure 7 being a plan view of the antenna and Figure 8 a section along line VIII-VIII of Figure 7.
  • the capacitor includes the setting parallel of two capacitors 7 and 7 'located on either side of the inductor 6.
  • the capacitor 7 in turn includes the serialization of first and second capacitors 16 and 17 each comprising a common frame 18 printed under the insulating substrate 11, this frame 18 partially extending, on the one hand under the first ribbon 3 to form the first capacitor 16 and on the other hand under the second strip 4 to form the second capacitor 17.
  • the capacitor 7 ' also includes the series connection of first and second capacitors 16 'and 17' each comprising a common frame 18 ′ printed under the insulating substrate 11, this armature 18 'partially extending, on the one hand under the first strip 3 for form the first capacitor 16 'and on the other hand under the second ribbon 4 to form the second capacitor 18 '.
  • the substrate 11 serves as a dielectric for each of the capacitors mentioned.
  • This fifth mode of execution is almost as economical as that described in connection with FIG. 4, since the entire antenna 1 and the resonant circuit 5 can be produced by etching chemistry of a double-sided printed circuit without the addition of discrete components soldered on the ribbons.
  • the first and second strips 3 and 4 are arranged at a determined distance A of a ground plane 19, that the initial part 20 of the first strip 3 is short-circuited to this plane by a bridge 27 and that the final part 21 of the second strip 4 is left free.
  • the ground plane 19 is assimilated to the housing 26 which is metallic.
  • the antenna is supplied by a coaxial cable 28 which includes an internal conductor 29 isolated from the ground plane 19 and connected to the feed point 2 of the first ribbon 3, this feed point being distant from the bridge 27 bypassing said first strip 3 and said ground plane 19.
  • the coaxial cable also has a conductor or shield 30 connected to the plane of ground 19.
  • a conductor or shield 30 connected to the plane of ground 19.
  • the distance A between the ribbons 3 and 4 and the ground plane 19 is maintained by the fact that the ribbons are self-supporting and therefore sufficiently rigid to ensure this distance.
  • the distance A is maintained by a foam 31 bonded to the substrate 11 and to the ground plane 19.
  • An antenna as shown in FIG. 6, but being suitable only for a single frequency and therefore having only one conductive tape is known under the Anglo-Saxon name "Planar Inverted-F Antenna” or PIFA.
  • PIFA Planar Inverted-F Antenna
  • a detailed analysis of the PIFA structure can be found in the document "Analysis, Design and Measurement of small and Low-Profile Antennas", Artech House, Norwood, MA, 1992, Ch. 5, pages 161-180, Kazuhiro Hirasawa and Misao Haneishi.
  • the antenna illustrated in Figure 3 is a variant of the PIFA antenna allowing the adaptation of said antenna to a box forming an integral part of the ground plane, this housing comprising at least one cover, a bottom and a side wall opposite of which is arranged the single ribbon.
  • This variant was the subject of a request for European patent No 99120230.0 filed October 11, 1999 in the name of the same Applicant as that of the present invention.
  • Figure 9 shows a sixth embodiment of the invention.
  • This mode is part of the second category of antenna, mentioned above where the inductor 6 and the capacitor 7 are connected in series. It will be understood that the value of each of these components will be chosen to have a resonant frequency f r substantially equal to the low frequency f b of the antenna operating. Indeed, the resonant circuit 5 here has a minimum impedance at resonance. It follows that when the low frequency f b is active, the resonant circuit 5 does not oppose any resistance at this frequency. The length of the ribbon 4 is then added to the length of the ribbon 3 and the antenna is adapted to the low frequency f b .
  • Figure 9 shows a practical example of antenna construction with a resonant circuit 5 comprising the placing in series of an inductor 6 and a capacitor 7.
  • the first and second strips 3 and 4 rest on an insulating substrate 11 to form a printed circuit.
  • Inductance 6 is a narrow track printed on the substrate and connected by its first end 8 to the first ribbon 3.
  • the second end 8 'of the inductor 6 is connected to a first armature 12 of a capacitor 7 while a second armature 13 of the same capacitor 7 is connected to the second ribbon 4.
  • the first and second frames 12 and 13 have the shape of a comb whose teeth interpenetrate without touching.
  • the same remark can be made here as that expressed in connection with figure 4.
  • the ribbons 3 and 4 as well as the resonant circuit 5 are printed on a substrate 11 without the addition of external components. So we are dealing with a very good antenna market carried out by simple chemical attack on a printed circuit.
  • FIG. 10 and 11 are plan views of the antenna according to the invention drawn over a length X of ⁇ 50 mm and a width Y of ⁇ 10 mm. These figures show the contour lines, expressed in dB, of the electrical component Ez of the electromagnetic field perpendicular to the plane of the antenna and measured close to this plane.
  • the resonant circuit 5 is an oscillating circuit comprising the parallel connection of an inductor 6 and a capacitor 7 as described above. It resonates at the high frequency f h .
  • FIG. 10 shows the behavior of the antenna 1 when the low frequency f b is active.
  • FIG. 11 shows the behavior of the antenna 1 when the high frequency f h is used.
  • the antenna is used on its left part, which is the location of the first ribbon 3.
  • the resonant circuit 5 blocks the passage of the signal to the right where this signal appears to be very weak (from - 12 to - 24 dB).
  • All the embodiments of the antenna described above are adapted to a dual-frequency antenna. It is clear that the invention is not limited to the use of two frequencies. For example, if an additional third frequency even lower than that designated above . catalog by f b, must be radiated by the antenna, it will be understood that it is sufficient to have, after the second tape 4, a third tape and second resonant circuit between the second and third ribbon. The length of this third ribbon will be chosen so that added to the length of the first two, the total length of the antenna is granted to the new lower frequency. In this case, the resonant frequency of the second resonant circuit will be chosen at f b .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

La présente invention est relative à une antenne de forme allongée pour instrument de petit volume, notamment une montre-téléphone, susceptible de recevoir et d'émettre des messages radiodiffusés sur au moins deux fréquences de valeurs haute et basse, cette antenne étant constituée, à partir d'un point d'alimentation, d'un premier élément radiant dont la longueur est accordée sur la fréquence haute et d'au moins un second élément radiant, faisant suite au premier, la longueur de ce second élément ajoutée à celle du premier présentant une longueur totale accordée sur la fréquence basse, les premier et second éléments radiants étant reliés ensemble par un circuit résonant dont la fréquence de résonance est choisie pour limiter la longueur de l'antenne à son premier élément quand la fréquence haute est active et pour utiliser la longueur totale de l'antenne quand la fréquence basse est active.The present invention relates to an antenna of elongated shape for small volume instrument, in particular a telephone watch, capable of receiving and to broadcast radio messages on at least two frequencies of values high and low, this antenna being constituted, from a feed point, of a first radiant element whose length is tuned to the high frequency and at least minus a second radiant element, following the first, the length of this second element added to that of the first having a total length granted on the low frequency, the first and second radiant elements being connected together by a resonant circuit whose resonant frequency is chosen to limit the length from the antenna to its first element when the high frequency is active and for use the total length of the antenna when the low frequency is active.

Une antenne répondant à la définition générique ci-dessus est connue de l'état de la technique. Elle est décrite notamment à la page 17-6 de "ARRL Handbook, 1989" et illustrée à la figure 1 accompagnant la présente description. Un autre exemple d'une telle antenne est par exemple décrit dans le brevet U.S. 2,282,292. Il s'agit d'une antenne dipôle alimentée par un feeder 25. A partir du point d'alimentation 2, chaque brin de l'antenne comporte un premier élément radiant 3, puis un circuit résonant 5 et enfin un second élément radiant 4. L'antenne est prévue pour être accordée sur deux fréquences différentes, par exemple 28 et 21 MHz. La longueur L1 du premier élément radiant 3 est adaptée à la fréquence de 28 MHz (ou plus exactement au quart de la longueur d'onde de cette fréquence). La longueur L2 du second élément radiant 4 ajoutée à la longueur L1 du premier élément conduit à un élément radiant de longueur L3 adapté à la fréquence de 21 MHz (ou comme plus haut au quart de la longueur d'onde de cette fréquence). Le circuit résonant 5 est un circuit oscillant comportant une bobine 6 et un condensateur 7 branchés en parallèle. Les valeurs de ces composants sont choisis pour résonner à 28 MHz. Comme l'impédance du circuit résonant est maximum à cette fréquence, ce circuit résonant va servir de bouchon à ladite fréquence et limiter ainsi la longueur du brin au premier élément radiant 3. Par contre à 21 MHz, le circuit résonant présente une très faible impédance, de sorte que la longueur totale du brin est utilisée. Ainsi par des moyens relativement simples est-on parvenu à faire résonner un tronçon L1 ou l'ensemble L3 de l'antenne.An antenna meeting the generic definition above is known from the state of technique. It is described in particular on page 17-6 of "ARRL Handbook, 1989 "and illustrated in FIG. 1 accompanying this description. Another An example of such an antenna is for example described in U.S. Patent 2,282,292. he it is a dipole antenna fed by a feeder 25. From the feed point 2, each strand of the antenna comprises a first radiant element 3, then a circuit resonant 5 and finally a second radiant element 4. The antenna is designed to be tuned to two different frequencies, for example 28 and 21 MHz. The length L1 of the first radiant element 3 is adapted to the frequency of 28 MHz (or more exactly a quarter of the wavelength of this frequency). The length L2 of the second radiant element 4 added to the length L1 of the first element leads to a radiant element of length L3 adapted to the frequency of 21 MHz (or as more high at a quarter of the wavelength of this frequency). The resonant circuit 5 is a oscillating circuit comprising a coil 6 and a capacitor 7 connected in parallel. The values of these components are chosen to resonate at 28 MHz. As the impedance of the resonant circuit is maximum at this frequency, this resonant circuit will serve as a plug at said frequency and thus limit the length of the strand at the first radiant element 3. On the other hand, at 21 MHz, the resonant circuit has a very low impedance, so the total length of the strand is used. So by means relatively simple have we managed to resonate a section L1 or the whole L3 of the antenna.

Aux fréquences considérées ci-dessus (domaine des ondes courtes) l'antenne est confectionnée au moyen de tubes formant les éléments radiants 3 et 4, ces tubes étant réunis par un manchon contenant le circuit résonant 5 réalisé au moyen de composants discrets soit une bobine ou inductance 6 et un condensateur 7.At the frequencies considered above (shortwave domain) the antenna is made by means of tubes forming the radiant elements 3 and 4, these tubes being joined by a sleeve containing the resonant circuit 5 produced by means of discrete components either a coil or inductor 6 and a capacitor 7.

Les fréquences mises en oeuvre dans les instruments de petit volume, par exemple un téléphone mobile ou encore une montre-téléphone sont beaucoup plus élevées que celles évoquées ci-dessus. Si le principe de l'adaptation de l'antenne à au moins deux fréquences différentes peut rester le même que celui décrit plus haut, la technique utilisée pour ces courtes longueurs d'onde devra être adaptée à l'antenne mise en oeuvre. Cette antenne doit pouvoir fonctionner au moins sur les fréquences officielles normalisées par exemple par le système GSM (Groupe Spécial Mobile) qui prévoit une fréquence haute fh égale à 1,9 GHz et une fréquence basse fb égale à 900 MHz.The frequencies used in small volume instruments, for example a mobile telephone or even a telephone watch are much higher than those mentioned above. If the principle of adapting the antenna to at least two different frequencies can remain the same as that described above, the technique used for these short wavelengths will have to be adapted to the antenna used. This antenna must be able to operate at least on the official frequencies standardized for example by the GSM system (Groupe Spécial Mobile) which provides for a high frequency f h equal to 1.9 GHz and a low frequency f b equal to 900 MHz.

C'est l'idée de la présente invention de proposer une antenne susceptible de s'adapter au moins aux fréquences mentionnées. Dans ce but, outre qu'elle satisfait à la définition donnée au premier paragraphe de cette description, l'antenne est caractérisée en ce que les premier et second éléments radiants présentent chacun un ruban conducteur de forme substantiellement rectangulaire et en ce que le circuit résonant comporte la combinaison d'une inductance et d'un condensateur, ladite inductance étant une bande étroite sensiblement rectiligne formée intégralement avec au moins un desdits rubans et liée à ce ruban par l'une de ses extrémités.It is the idea of the present invention to provide an antenna capable of adapt at least to the frequencies mentioned. For this purpose, in addition to meeting the definition given in the first paragraph of this description, the antenna is characterized in that the first and second radiant elements each have a conductive tape of substantially rectangular shape and in that the circuit resonant comprises the combination of an inductor and a capacitor, said inductor being a substantially straight narrow strip formed integrally with at least one of said ribbons and linked to this ribbon by one of its ends.

On notera que le document EP 0 470 797 décrite une antenne susceptible de s'adapter à plusieurs fréquences. Toutes les réalisations envisagées dans ce document font néanmoins appel à des inductances formées de composants discrets qui doivent donc être soudées par leurs extrémités aux divers éléments radiants de l'antenne.Note that document EP 0 470 797 describes an antenna capable of adapt to multiple frequencies. All the achievements envisaged in this document nevertheless use inductors formed of discrete components which must therefore be welded by their ends to the various radiant elements of the antenna.

On notera en outre que le document WO 99/03168 décrit une antenne compacte susceptible de s'adapter au moins à une fréquence basse et une fréquence haute, cette antenne étant notamment destinée à équiper des appareils de téléphonie mobile. Selon un mode de réalisation décrit en référence à la figure 1 de ce document, l'antenne présente deux éléments radiants reliés ensemble par un circuit résonant pouvant être représenté schématiquement comme la mise en parallèle d'un condensateur et d'une inductance. Il est proposé de réaliser ce circuit résonant et notamment l'inductance sous la forme d'un ruban imprimé relativement large ayant la forme d'un méandre. La valeur de capacité du circuit résonant est déterminée ici par la capacité parasite présente entre les « spires » ou méandres de l'inductance.Note also that document WO 99/03168 describes an antenna compact capable of adapting at least to a low frequency and a frequency high, this antenna being in particular intended to equip telephony devices mobile. According to an embodiment described with reference to Figure 1 of this document, the antenna has two radiant elements connected together by a circuit resonant can be represented schematically as the paralleling of a capacitor and an inductor. It is proposed to make this resonant circuit and in particular the inductance in the form of a relatively wide printed ribbon having the shape of a meander. The capacity value of the resonant circuit is determined here by the parasitic capacitance present between the “turns” or meanders of the inductance.

Un inconvénient de cette solution réside dans le fait que l'ajustement de la fréquence de résonance du circuit résonant est difficile à effectuer. En effet, si l'on désire modifier la valeur d'inductance du circuit résonant, il est nécessaire de modifier la largeur et/ou la longueur du méandre. En effectuant une telle opération, on affecte par la même occasion la valeur de la capacité parasite du circuit résonant.A disadvantage of this solution is that the adjustment of the resonant frequency of the resonant circuit is difficult to perform. Indeed, if we want to modify the inductance value of the resonant circuit, it is necessary to modify the width and / or length of the meander. By performing such an operation, one affects at the same time the value of the parasitic capacitance of the resonant circuit.

La solution selon la présente invention présente l'avantage de pouvoir ajuster aisément la fréquence de résonance du circuit résonant en agissant indépendamment sur la valeur de l'inductance ou sur la valeur du condensateur. En particulier, l'inductance formée d'une piste étroite sensiblement rectiligne n'affecte sensiblement pas la valeur de capacité du circuit résonant. En outre, une piste étroite pour l'inductance présente l'avantage d'une inductivité plus élevée à dimension égale par rapport à la solution envisagée dans le document WO 99/03168.The solution according to the present invention has the advantage of being able to adjust easily the resonant frequency of the resonant circuit by acting independently on the value of the inductance or on the value of the capacitor. In particular, the inductance formed by a narrow, substantially straight track does not significantly affect not the capacity value of the resonant circuit. In addition, a narrow track for the inductance has the advantage of a higher inductance with equal dimension by compared to the solution envisaged in document WO 99/03168.

Les caractéristiques et avantages de l'invention vont ressortir maintenant de la description qui va suivre, faite en regard du dessin annexé et donnant à titre explicatif, mais nullement limitatif, plusieurs formes avantageuses de réalisation de l'invention, dessin dans lequel :

  • la figure 1 est un schéma explicitant une antenne bifréquence exécutée selon un art antérieur,
  • la figure 2 montre un premier mode de réalisation de l'antenne selon l'invention, cette antenne étant autoporteuse,
  • la figure 3 illustre un deuxième mode de réalisation de l'antenne selon l'invention, cette antenne étant autoporteuse et intégrée par exemple à une montre-téléphone,
  • la figure 4 montre un troisième mode de réalisation de l'antenne selon l'invention, cette antenne faisant partie intégrante d'un circuit imprimé,
       la figure 5 montre un quatrième mode de réalisation de l'antenne selon l'invention,
  • la figure 6 est une coupe selon la ligne VI-VI visible sur la figure 5,
  • la figure 7 montre un cinquième mode de réalisation de l'antenne selon l'invention, cette exécution étant une variante de l'antenne montée en figure 5,
  • la figure 8 et une coupe selon la ligne VIII-VIII visible sur la figure 7,
  • la figure 9 montre un sixième mode de réalisation de l'antenne de l'invention,
  • la figure 10 est une vue en plan de l'antenne de l'invention, vue sur laquelle sont tracées les courbes de niveau de la composante électrique du champ électromagnétique quand l'antenne travaille à la fréquence basse fb, et
  • la figure 11 est une vue en plan de l'antenne de l'invention, vue sur laquelle sont tracées les courbes de niveau de la composante électrique du champ électromagnétique quand l'antenne travaille à la fréquence haute fh.
The characteristics and advantages of the invention will now emerge from the description which follows, made with reference to the appended drawing and giving by way of explanation, but in no way limiting, several advantageous embodiments of the invention, drawing in which:
  • FIG. 1 is a diagram explaining a dual-frequency antenna executed according to a prior art,
  • FIG. 2 shows a first embodiment of the antenna according to the invention, this antenna being self-supporting,
  • FIG. 3 illustrates a second embodiment of the antenna according to the invention, this antenna being self-supporting and integrated for example into a telephone watch,
  • FIG. 4 shows a third embodiment of the antenna according to the invention, this antenna forming an integral part of a printed circuit,
    FIG. 5 shows a fourth embodiment of the antenna according to the invention,
  • FIG. 6 is a section along the line VI-VI visible in FIG. 5,
  • FIG. 7 shows a fifth embodiment of the antenna according to the invention, this embodiment being a variant of the antenna mounted in FIG. 5,
  • FIG. 8 and a section along the line VIII-VIII visible in FIG. 7,
  • FIG. 9 shows a sixth embodiment of the antenna of the invention,
  • FIG. 10 is a plan view of the antenna of the invention, a view on which the level curves of the electrical component of the electromagnetic field are plotted when the antenna works at the low frequency f b , and
  • FIG. 11 is a plan view of the antenna of the invention, a view on which the level curves of the electrical component of the electromagnetic field are plotted when the antenna works at the high frequency f h .

Comme on peut le voir sur les figures 2 à 9, l'antenne 1 en question présente une forme allongée. Elle est destinée à un instrument de petit volume, notamment à un téléphone logé dans une montre, ce téléphone étant susceptible de recevoir et d'émettre des messages radiodiffusés. L'antenne 1 est en outre capable de travailler sur au moins deux fréquences de valeurs haute fh et basse fb et est constituée, à partir d'un point d'alimentation 2, d'un premier élément radiant 3 dont la longueur L1 est accordée sur la fréquence haute fh et d'au moins un second élément radiant 4 qui fait suite au premier, la longueur L2 de ce second élément 4 ajoutée à celle du premier présentant une longueur totale L3 accordée sur la fréquence basse fb. Les mêmes figures 2 à 9 montrent que les premier et second éléments radiants 3 et 4 sont reliés ensemble par un circuit résonant 5. La fréquence de résonance fr de ce circuit résonant 5 est choisie pour limiter la longueur de l'antenne 1 à son premier élément radiant 3 quand la fréquence haute fh est active et pour utiliser la longueur totale L3 de l'antenne quand la fréquence basse fb est active.As can be seen in Figures 2 to 9, the antenna 1 in question has an elongated shape. It is intended for a small volume instrument, in particular for a telephone housed in a watch, this telephone being capable of receiving and transmitting radio messages. The antenna 1 is also capable of working on at least two frequencies of values high f h and low f b and consists, starting from a feed point 2, of a first radiant element 3 whose length L1 is tuned to the high frequency f h and at least one second radiant element 4 which follows the first, the length L2 of this second element 4 added to that of the first having a total length L3 tuned to the low frequency f b . The same figures 2 to 9 show that the first and second radiant elements 3 and 4 are connected together by a resonant circuit 5. The resonance frequency f r of this resonant circuit 5 is chosen to limit the length of the antenna 1 to its first radiant element 3 when the high frequency f h is active and to use the total length L3 of the antenna when the low frequency f b is active.

Ceci étant, et comme le montrent encore les figures 2 à 9, l'invention est remarquable d'abord en ce que les premier et second éléments radiants 3 et 4 présentent chacun un ruban conducteur de forme sensiblement rectangulaire, ces rubans étant placés l'un à la suite de l'autre. Ensuite l'invention est remarquable par le fait que le circuit résonant 5 comporte la combinaison d'une inductance 6 et d'un condensateur 7, 7' cette inductance 6 étant une bande étroite sensiblement rectiligne formée intégralement avec au moins l'un desdits rubans et liée à ce ruban par l'une de ses extrémités 8, 8'. A ce sujet toutes les figures 2 à 9 montrent que l'extrémité 8 de l'inductance 6 est liée au ruban 3 et que l'inductance 6 est formée intégralement avec l'un des rubans, en l'occurrence avec le ruban 3.This being so, and as still shown in FIGS. 2 to 9, the invention is remarkable first in that the first and second radiant elements 3 and 4 each have a substantially rectangular conductive tape, these ribbons being placed one after the other. Then the invention is remarkable by the fact that the resonant circuit 5 comprises the combination of an inductance 6 and a capacitor 7, 7 ′ this inductance 6 being a narrow strip that is substantially rectilinear formed integrally with at least one of said ribbons and linked to this ribbon by one of its ends 8, 8 '. In this regard, all of Figures 2 to 9 show that the end 8 of the inductor 6 is linked to the ribbon 3 and that the inductor 6 is formed integrally with one of the ribbons, in this case with the ribbon 3.

La base constituant l'invention ayant été exposée ci-dessus, on va passer en revue maintenant différents modes d'exécution en utilisant l'une après l'autre les figures annexées à cette description.The base constituting the invention having been set out above, we will pass on now review different execution modes using one after another the figures appended to this description.

Les figures 2 à 8 montrent que l'inductance 6 et le condensateur 7, 7' sont connectés en parallèle. Dans ces conditions, on comprendra que la valeur de chacun de ces composants sera choisie pour que le circuit résonant présente une fréquence de résonance fr substantiellement égale à la fréquence haute fh de fonctionnement de l'antenne. En effet, comme déjà évoqué dans le préambule de cette description, l'impédance du circuit résonant présente alors un maximum lors de la résonance et si le circuit résonant est accordé à la fréquence haute fh, il représentera comme un bouchon ou une barrière ne laissant pas passer ladite fréquence haute. Comme le premier élément radiant 3 comporte une longueur accordée à cette fréquence haute, l'antenne sera limitée à ce premier élément radiant ou premier ruban 3 si la fréquence haute est active. Contrairement à cela, si c'est la fréquence basse qui est active pour émettre ou recevoir les messages, le circuit résonant 5 va présenter à cette fréquence une impédance minimum, laissant passer ladite fréquence basse. Comme la somme des longueurs L1 et L2 des rubans 3 et 4 est accordée à la fréquence basse fb, l'antenne sera adaptée à cette fréquence sur la totalité de sa longueur L3.Figures 2 to 8 show that the inductor 6 and the capacitor 7, 7 'are connected in parallel. Under these conditions, it will be understood that the value of each of these components will be chosen so that the resonant circuit has a resonant frequency f r substantially equal to the high operating frequency f h of the antenna. Indeed, as already mentioned in the preamble to this description, the impedance of the resonant circuit then presents a maximum during resonance and if the resonant circuit is tuned to the high frequency f h , it will represent as a plug or a barrier does not not passing said high frequency. As the first radiant element 3 has a length granted to this high frequency, the antenna will be limited to this first radiant element or first ribbon 3 if the high frequency is active. Contrary to this, if it is the low frequency which is active for transmitting or receiving the messages, the resonant circuit 5 will present at this frequency a minimum impedance, allowing said low frequency to pass. As the sum of the lengths L1 and L2 of the strips 3 and 4 is given to the low frequency f b , the antenna will be adapted to this frequency over its entire length L3.

La figure 2 illustre un premier mode d'exécution de l'invention. Les premier et second rubans 3 et 4 sont autoporteurs et ne reposent donc sur aucun substrat, bien que des moyens de fixation 9 sont prévus pour attacher l'antenne à l'instrument dans lequel elle est implantée. Ceci suppose naturellement que les rubans présentent une certaine épaisseur pour assurer une certaine rigidité mécanique à tout l'ensemble. Dans ce mode d'exécution, l'inductance 6 est une bande étroite sensiblement rectiligne reliée par sa première extrémité 8 au premier ruban 3 et par sa seconde extrémité 8' au second ruban 4. Ici l'inductance 6 est formée intégralement avec les deux rubans 3 et 4. On comprendra que l'ensemble rubans 3 et 4 et inductance 6 peut être fabriqué en une seule opération par simple étampage ce qui simplifie énormément l'exécution de l'antenne. Le condensateur 7 par contre est un composant discret, exécuté séparément des rubans constituant l'antenne et présentant des première et seconde bornes 10 et 10' soudées respectivement sur les premier et second rubans 3 et 4. L'antenne est alimentée par un fil (non représenté) soudé dans un passage 2 pratiqué dans le premier ruban 3.FIG. 2 illustrates a first embodiment of the invention. The first and second ribbons 3 and 4 are self-supporting and therefore do not rest on any substrate, although that fixing means 9 are provided for attaching the antenna to the instrument in which it is implanted. This naturally assumes that the ribbons have a certain thickness to ensure a certain mechanical rigidity to the whole assembly. In this embodiment, the inductor 6 is a narrow band substantially straight connected by its first end 8 to the first ribbon 3 and by its second end 8 'to the second strip 4. Here the inductor 6 is formed integrally with the two ribbons 3 and 4. It will be understood that the set of ribbons 3 and 4 and inductance 6 can be manufactured in a single operation by simple stamping which simplifies enormously the execution of the antenna. The capacitor 7 on the other hand is a component discreet, executed separately from the ribbons constituting the antenna and presenting first and second terminals 10 and 10 'soldered respectively to the first and second ribbons 3 and 4. The antenna is supplied by a wire (not shown) welded in a passage 2 made in the first ribbon 3.

A propos de la figure 2, oh peut donner les valeurs pratiques de construction suivantes au cas où fb = 900 MHz et fh = 1,9 GHz. La longueur L1 du premier ruban 3 est égale à 3,4 cm (équivalent au quart de la longueur d'onde de fh). La longueur L3 (correspondant au quart de la longueur d'onde de fb) est de 8,3 cm, d'où l'on déduit la longueur L2 = 4,9 cm. On observera ici que les valeurs données sont théoriques étant donné qu'elles sont influencées par certains facteurs, notamment par la largeur des rubans ainsi que par l'espace existant entre ces rubans. Comme la position du circuit résonant 5 détermine fh, la longueur additionnelle L2 permet d'ajuster fb. On peut donc assez facilement ajuster les deux fréquences individuellement. Une fois fixée la position du circuit résonant 5, on peut ajuster finalement fh en réglant la valeur du condensateur 7.With regard to FIG. 2, oh can give the following practical construction values in the case where f b = 900 MHz and f h = 1.9 GHz. The length L1 of the first strip 3 is equal to 3.4 cm (equivalent to a quarter of the wavelength of f h ). The length L3 (corresponding to a quarter of the wavelength of f b ) is 8.3 cm, from which the length L2 = 4.9 cm is deduced. It will be observed here that the values given are theoretical since they are influenced by certain factors, in particular by the width of the ribbons as well as by the space existing between these ribbons. As the position of the resonant circuit 5 determines f h , the additional length L2 makes it possible to adjust f b . It is therefore quite easy to adjust the two frequencies individually. Once the position of the resonant circuit 5 has been fixed, we can finally adjust f h by adjusting the value of the capacitor 7.

En ce qui concerne les valeurs à donner à l'inductance 6 et au condensateur 7, on appliquera la formule fh = 1/2π LC . Pour fh = 1,9 MHZ, la formule est satisfaite si C = 0,7 pF et L = 10 nHy. L'inductance 6 est ici une bande étroite dont la valeur vaut environ 10 nHy par cm. Dans l'exemple pris ici, l'espace entre les rubans 3 et 4 est donc de 1 cm.With regard to the values to be given to inductance 6 and to capacitor 7, the formula f h = 1 / 2π will be applied LC . For f h = 1.9 MHZ, the formula is satisfied if C = 0.7 pF and L = 10 nHy. Inductance 6 is here a narrow band whose value is approximately 10 nHy per cm. In the example taken here, the space between the ribbons 3 and 4 is therefore 1 cm.

La figure 3 illustre un deuxième mode d'exécution de l'invention. On retrouve ici des premier et second rubans 3 et 4 qui sont autoporteurs et sont séparés par une inductance 5 et un composant discret formant le condensateur 7. Ici par contre l'antenne est enroulée autour d'un boítier 26 abritant les circuits électroniques nécessaires au fonctionnement de l'instrument. On reviendra plus bas sur cette exécution car elle comporte d'autres particularités utiles à signaler.FIG. 3 illustrates a second embodiment of the invention. We find here first and second ribbons 3 and 4 which are self-supporting and are separated by a inductance 5 and a discrete component forming the capacitor 7. Here on the other hand the antenna is wound around a box 26 housing the electronic circuits necessary for the operation of the instrument. We will come back to this below execution because it contains other useful features to report.

La figure 4 montre un troisième mode d'exécution de l'invention. Par rapport au premier et au deuxième mode, ce troisième mode est caractérisé en ce que les premier et second rubans 3 et 4 reposent sur un substrat isolant 11, par exemple du Kapton (marque déposée) pour former un circuit imprimé. L'inductance 6 est une piste étroite imprimée sur le substrat 11. Elle est reliée par sa première extrémité 8 au premier ruban 3 et par sa seconde extrémité 8' au second ruban 4. Elle fait donc partie intégrante des rubans 3 et 4. Pour constituer le circuit résonant 5, le condensateur 7, 7' associé à l'inductance 6 peut prendre différentes formes.Figure 4 shows a third embodiment of the invention. Related to first and second mode, this third mode is characterized in that the first and second tapes 3 and 4 rest on an insulating substrate 11, for example Kapton (registered trademark) to form a printed circuit. Inductance 6 is a track narrow printed on the substrate 11. It is connected by its first end 8 to the first ribbon 3 and by its second end 8 'to the second ribbon 4. It therefore integral part of the ribbons 3 and 4. To constitute the resonant circuit 5, the capacitor 7, 7 'associated with inductance 6 can take different forms.

Une première forme de condensateur est illustrée à la figure 4. Ce condensateur comporte en réalité deux condensateurs 7 et 7' situés de part et d'autre de l'inductance 6. Ces deux condensateurs sont branchés en parallèle et confèrent une symétrie à l'ensemble du circuit résonant. Cette symétrie est généralement souhaitable et sera préférée à un montage non symétrique comme on peut le voir à la figure 2. Le condensateur 7, 7' comprend une première armature 12, 12' imprimée sur le substrat 11 et reliée au premier ruban 3. Il comprend encore une seconde armature 13, 13' également imprimée sur le substrat 11 et reliée au second ruban 4. Comme la figure 4 le montre bien, chacune de ces première et seconde armatures présente la forme d'un peigne dont les dents s'interpénètrent sans se toucher. La capacité est ici créée dans l'espace existant entre les dents. On parlera aussi d'une capacité interdigitée. Par ailleurs, le premier ruban 3 est alimenté par un conducteur (non représenté) soudé au point d'alimentation 2.A first form of capacitor is illustrated in Figure 4. This capacitor actually comprises two capacitors 7 and 7 'located on either side inductance 6. These two capacitors are connected in parallel and give symmetry to the entire resonant circuit. This symmetry is generally desirable and will be preferred to a non-symmetrical mounting as can be seen in the Figure 2. The capacitor 7, 7 'comprises a first frame 12, 12' printed on the substrate 11 and connected to the first strip 3. It also includes a second frame 13, 13 ′ also printed on the substrate 11 and connected to the second ribbon 4. As the Figure 4 shows it well, each of these first and second frames has the shape of a comb whose teeth interpenetrate without touching. Capacity is here created in the space between the teeth. We will also talk about a capacity interdigitated. Furthermore, the first ribbon 3 is supplied by a conductor (not shown) welded to feed point 2.

Ce troisième mode d'exécution illustré par la figure 4 montre comment, selon l'invention, une antenne bifréquence peut être réalisée simplement et surtout économiquement. Cette antenne est en effet entièrement réalisée dans un seul circuit imprimé, le gravage chimique bien connu réalisant d'un seul coup les rubans 3 et 4, l'inductance 6 et le condensateur 7, 7'. Cette antenne peut donc être produite à un coût extrêmement bas puisque aucun composant discret n'est nécessaire pour créer le circuit résonant 5.This third embodiment illustrated in FIG. 4 shows how, according to the invention, a dual-frequency antenna can be produced simply and above all economically. This antenna is in fact entirely produced in a single circuit printed, the well-known chemical etching making ribbons 3 and 4 all at once, inductance 6 and capacitor 7, 7 '. This antenna can therefore be produced at a extremely low cost since no discrete components are needed to create the resonant circuit 5.

Une deuxième forme de condensateur associé à une inductance imprimée 6 est montrée aux figures 5 et 6, la figure 5 étant une vue en plan de l'antenne et la figure 6 une coupe selon la ligne VI-VI de la figure 5. Ces figures 5 et 6 explicitent un quatrième mode d'exécution de l'invention. Le condensateur comporte la mise en parallèle de deux condensateurs 7 et 7' situés de part et d'autre de l'inductance 6 et formés chacun d'un composant discret présentant une première borne 14 et 14' soudée sur le premier ruban 3 et une seconde borne 15 et 15' soudée sur le second ruban 4. Ce quatrième mode d'exécution présente une autre particularité dont il sera question plus bas.A second form of capacitor associated with a printed inductor 6 is shown in Figures 5 and 6, Figure 5 being a plan view of the antenna and the Figure 6 a section along line VI-VI of Figure 5. These Figures 5 and 6 explain a fourth embodiment of the invention. The capacitor includes the setting parallel of two capacitors 7 and 7 'located on either side of the inductor 6 and each formed of a discrete component having a first terminal 14 and 14 ' soldered on the first strip 3 and a second terminal 15 and 15 'soldered on the second ribbon 4. This fourth embodiment has another feature which will be question below.

Une troisième forme de condensateur associé à une inductance imprimée est montrée aux figures 7 et 8, la figure 7 étant une vue en plan de l'antenne et la figure 8 une coupe selon la ligne VIII-VIII de la figure 7. Ces figures 7 et 8 explicitent un cinquième mode d'exécution de l'invention. Le condensateur comporte la mise en parallèle de deux condensateurs 7 et 7' situés de part et d'autre de l'inductance 6. Le condensateur 7 comporte à son tour la mise en série de premier et second condensateurs 16 et 17 comprenant chacun une armature commune 18 imprimée sous le substrat isolant 11, cette armature 18 s'étendant partiellement, d'une part sous le premier ruban 3 pour former le premier condensateur 16 et d'autre part sous le second ruban 4 pour former le second condensateur 17. Le condensateur 7' comporte également la mise en série de premier et second condensateurs 16' et 17' comprenant chacun une armature commune 18' imprimée sous le substrat isolant 11, cette armature 18' s'étendant partiellement, d'une part sous le premier ruban 3 pour former le premier condensateur 16' et d'autre part sous le second ruban 4 pour former le second condensateur 18'. Dans cette exécution, on comprend que le substrat 11 sert de diélectrique à chacun des condensateurs mentionnés. Ce cinquième mode d'exécution est presque aussi économique que celui décrit à propos de la figure 4, puisque toute l'antenne 1 et le circuit résonant 5 peuvent être réalisés par gravage chimique d'un circuit imprimé double face et cela sans apport de composants discrets soudés sur les rubans.A third form of capacitor associated with a printed inductance is shown in Figures 7 and 8, Figure 7 being a plan view of the antenna and Figure 8 a section along line VIII-VIII of Figure 7. These Figures 7 and 8 explain a fifth embodiment of the invention. The capacitor includes the setting parallel of two capacitors 7 and 7 'located on either side of the inductor 6. The capacitor 7 in turn includes the serialization of first and second capacitors 16 and 17 each comprising a common frame 18 printed under the insulating substrate 11, this frame 18 partially extending, on the one hand under the first ribbon 3 to form the first capacitor 16 and on the other hand under the second strip 4 to form the second capacitor 17. The capacitor 7 ' also includes the series connection of first and second capacitors 16 'and 17' each comprising a common frame 18 ′ printed under the insulating substrate 11, this armature 18 'partially extending, on the one hand under the first strip 3 for form the first capacitor 16 'and on the other hand under the second ribbon 4 to form the second capacitor 18 '. In this embodiment, it is understood that the substrate 11 serves as a dielectric for each of the capacitors mentioned. This fifth mode of execution is almost as economical as that described in connection with FIG. 4, since the entire antenna 1 and the resonant circuit 5 can be produced by etching chemistry of a double-sided printed circuit without the addition of discrete components soldered on the ribbons.

On a mentionné ci-dessus, à propos des deuxième (figure 3) et quatrième (figure 6) modes d'exécution, que ces modes présentent une particularité qu'il convient de décrire maintenant. En effet, dans ces exécutions particulières, on voit que les premier et second rubans 3 et 4 sont disposés à une distance déterminée A d'un plan de masse 19, que la partie initiale 20 du premier ruban 3 est court-circuitée à ce plan par un pont 27 et que la partie finale 21 du second ruban 4 est laissée libre. Dans la figure 3, le plan de masse 19 est assimilé au boítier 26 qui est métallique. Comme le montrent les figures 3 et 6, l'alimentation de l'antenne est assurée par un câble coaxial 28 qui comprend un conducteur interne 29 isolé du plan de masse 19 et connecté au point d'alimentation 2 du premier ruban 3, ce point d'alimentation étant distant du pont 27 court-circuitant ledit premier ruban 3 et ledit plan de masse 19. Le câble coaxial comporte encore un conducteur ou blindage 30 connecté au plan de masse 19. En figure 3, la distance A entre les rubans 3 et 4 et le plan de masse 19 est maintenue par le fait que les rubans sont autoporteurs et donc suffisamment rigides pour assurer cette distance. En figure 6, la distance A est maintenue par une mousse 31 collée sur le substrat 11 et sur le plan de masse 19.We mentioned above, about the second (Figure 3) and fourth (Figure 6) modes of execution, that these modes have a particularity that should describe now. Indeed, in these particular executions, we see that the first and second strips 3 and 4 are arranged at a determined distance A of a ground plane 19, that the initial part 20 of the first strip 3 is short-circuited to this plane by a bridge 27 and that the final part 21 of the second strip 4 is left free. In Figure 3, the ground plane 19 is assimilated to the housing 26 which is metallic. As shown in Figures 3 and 6, the antenna is supplied by a coaxial cable 28 which includes an internal conductor 29 isolated from the ground plane 19 and connected to the feed point 2 of the first ribbon 3, this feed point being distant from the bridge 27 bypassing said first strip 3 and said ground plane 19. The coaxial cable also has a conductor or shield 30 connected to the plane of ground 19. In figure 3, the distance A between the ribbons 3 and 4 and the ground plane 19 is maintained by the fact that the ribbons are self-supporting and therefore sufficiently rigid to ensure this distance. In Figure 6, the distance A is maintained by a foam 31 bonded to the substrate 11 and to the ground plane 19.

Une antenne telle que montrée en figure 6, mais n'étant adaptée qu'à une seule fréquence et ne possédant en conséquence qu'un seul ruban conducteur est connue sous la dénomination anglo-saxonne "Planar Inverted-F Antenna" ou PIFA. Une analyse détaillée de la structure PIFA peut être trouvée dans le document "Analysis, Design and Measurement of small and Low-Profile Antennas", Artech House, Norwood, MA, 1992, Ch. 5, pages 161-180, Kazuhiro Hirasawa et Misao Haneishi. L'antenne illustrée en figure 3 est une variante de l'antenne PIFA permettant l'adaptation de ladite antenne à un boítier faisant partie intégrante du plan de masse, ce boítier comprenant au moins un couvercle, un fond et une paroi latérale en regard de laquelle est disposé le ruban unique. Cette variante a fait l'objet d'une demande de brevet européen No 99120230.0 déposée le 11 octobre 1999 au nom du même demandeur que celui de la présente invention.An antenna as shown in FIG. 6, but being suitable only for a single frequency and therefore having only one conductive tape is known under the Anglo-Saxon name "Planar Inverted-F Antenna" or PIFA. A detailed analysis of the PIFA structure can be found in the document "Analysis, Design and Measurement of small and Low-Profile Antennas", Artech House, Norwood, MA, 1992, Ch. 5, pages 161-180, Kazuhiro Hirasawa and Misao Haneishi. The antenna illustrated in Figure 3 is a variant of the PIFA antenna allowing the adaptation of said antenna to a box forming an integral part of the ground plane, this housing comprising at least one cover, a bottom and a side wall opposite of which is arranged the single ribbon. This variant was the subject of a request for European patent No 99120230.0 filed October 11, 1999 in the name of the same Applicant as that of the present invention.

Ce qui précède a été exposé pour montrer que l'antenne multifréquence de la présente invention peut être appliquée tant à une antenne PIFA qu'à une antenne se trouvant sans référence à un plan de masse immédiat, comme cela est illustré en figure 2 ou en figure 4 par exemple.The above has been set out to show that the multifrequency antenna of the present invention can be applied both to a PIFA antenna and to an antenna finding without reference to an immediate ground plane, as illustrated in Figure 2 or Figure 4 for example.

La figure 9 montre un sixième mode d'exécution de l'invention. Ce mode fait partie de la seconde catégorie d'antenne, évoquée plus haut où l'inductance 6 et le condensateur 7 sont connectés en série. On comprendra que la valeur de chacun de ces composants sera choisie pour présenter une fréquence de résonance fr substantiellement égale à la fréquence basse fb de fonctionnement de l'antenne. En effet, le circuit résonant 5 présente ici une impédance minimum à la résonance. Il s'ensuit que lorsque la fréquence basse fb est active, le circuit résonant 5 n'oppose aucune résistance à cette fréquence. La longueur du ruban 4 s'ajoute alors à la longueur du ruban 3 et l'antenne est adaptée à la fréquence basse fb. Par contre, si c'est la fréquence haute fh qui est active, seul le ruban 3, adapté à fh, sera utilisé puisqu'à la fréquence haute, le circuit résonant présente une très haute impédance empêchant la propagation de fh au-delà du premier ruban 3.Figure 9 shows a sixth embodiment of the invention. This mode is part of the second category of antenna, mentioned above where the inductor 6 and the capacitor 7 are connected in series. It will be understood that the value of each of these components will be chosen to have a resonant frequency f r substantially equal to the low frequency f b of the antenna operating. Indeed, the resonant circuit 5 here has a minimum impedance at resonance. It follows that when the low frequency f b is active, the resonant circuit 5 does not oppose any resistance at this frequency. The length of the ribbon 4 is then added to the length of the ribbon 3 and the antenna is adapted to the low frequency f b . On the other hand, if it is the high frequency f h which is active, only the ribbon 3, adapted to f h , will be used since at the high frequency, the resonant circuit has a very high impedance preventing the propagation of f h at beyond the first ribbon 3.

La figure 9 montre un exemple pratique de construction de l'antenne avec un circuit résonant 5 comportant la mise en série d'une inductance 6 et d'un condensateur 7. Les premier et second rubans 3 et 4 reposent sur un substrat isolant 11 pour former un circuit imprimé. L'inductance 6 est une piste étroite imprimée sur le substrat et reliée par sa première extrémité 8 au premier ruban 3. La seconde extrémité 8' de l'inductance 6 est reliée à une première armature 12 d'un condensateur 7 alors qu'une seconde armature 13 du même condensateur 7 est reliée au second ruban 4. On voit que les première et seconde armatures 12 et 13 présentent la forme d'un peigne dont les dents s'interpénètrent sans se toucher. La même remarque peut être faite ici que celle exprimée à propos de la figure 4. En effet, les rubans 3 et 4 ainsi que le circuit résonant 5 sont imprimés sur un substrat 11 sans apport de composants extérieurs. On a donc affaire à une antenne très bon marché réalisée par simple attaque chimique d'un circuit imprimé.Figure 9 shows a practical example of antenna construction with a resonant circuit 5 comprising the placing in series of an inductor 6 and a capacitor 7. The first and second strips 3 and 4 rest on an insulating substrate 11 to form a printed circuit. Inductance 6 is a narrow track printed on the substrate and connected by its first end 8 to the first ribbon 3. The second end 8 'of the inductor 6 is connected to a first armature 12 of a capacitor 7 while a second armature 13 of the same capacitor 7 is connected to the second ribbon 4. We see that the first and second frames 12 and 13 have the shape of a comb whose teeth interpenetrate without touching. The same remark can be made here as that expressed in connection with figure 4. In Indeed, the ribbons 3 and 4 as well as the resonant circuit 5 are printed on a substrate 11 without the addition of external components. So we are dealing with a very good antenna market carried out by simple chemical attack on a printed circuit.

Les figures 10 et 11 sont des vues en plan de l'antenne selon l'invention dessinée sur une longueur X de ± 50 mm et sur une largeur Y de ± 10 mm. Ces figures montrent les courbes de niveau, exprimées en dB, de la composante électrique Ez du champ électromagnétique perpendiculaire au plan de l'antenne et mesurée à proximité de ce plan. Le circuit résonant 5 est un circuit oscillant comportant la mise en parallèle d'une inductance 6 et d'un condensateur 7 comme cela a été décrit plus haut. Il résonne à la fréquence haute fh. L'antenne est composée du premier ruban 3 et du second ruban 4. Ces rubans étant séparés par le circuit résonant 5 placé à x = + 10 mm. La figure 10 montre le comportement de l'antenne 1 quand la fréquence basse fb est active. L'antenne est utilisée sur une grande partie de sa longueur et ignore la présence du circuit résonant dont l'impédance est très basse. La figure 11 montre le comportement de l'antenne 1 quand la fréquence haute fh est utilisée. L'antenne est utilisée sur sa partie gauche, qui est l'endroit du premier ruban 3. Le circuit résonant 5 bloque le passage du signal vers la droite où ce signal apparaít comme très faible (de - 12 à - 24 dB).Figures 10 and 11 are plan views of the antenna according to the invention drawn over a length X of ± 50 mm and a width Y of ± 10 mm. These figures show the contour lines, expressed in dB, of the electrical component Ez of the electromagnetic field perpendicular to the plane of the antenna and measured close to this plane. The resonant circuit 5 is an oscillating circuit comprising the parallel connection of an inductor 6 and a capacitor 7 as described above. It resonates at the high frequency f h . The antenna is composed of the first ribbon 3 and the second ribbon 4. These ribbons are separated by the resonant circuit 5 placed at x = + 10 mm. FIG. 10 shows the behavior of the antenna 1 when the low frequency f b is active. The antenna is used over a large part of its length and ignores the presence of the resonant circuit whose impedance is very low. FIG. 11 shows the behavior of the antenna 1 when the high frequency f h is used. The antenna is used on its left part, which is the location of the first ribbon 3. The resonant circuit 5 blocks the passage of the signal to the right where this signal appears to be very weak (from - 12 to - 24 dB).

Tous les modes d'exécution de l'antenne décrits plus haut sont adaptés à une antenne bifréquence. Il est clair que l'invention n'est pas limitée à l'utilisation de deux fréquences. Par exemple si une troisième fréquence supplémentaire, encore plus basse que celle désignée ci-.dessus par fb, doit être rayonnée par l'antenne, on comprendra qu'il suffit de disposer, après le second ruban 4, un troisième ruban et un second circuit résonant entre le second et le troisième ruban. La longueur de ce troisième ruban sera choisie pour qu'additionnée à la longueur des deux premiers, la longueur totale de l'antenne soit accordée à la nouvelle fréquence plus basse. Dans ce cas, la fréquence de résonance du second circuit résonant sera choisie à fb.All the embodiments of the antenna described above are adapted to a dual-frequency antenna. It is clear that the invention is not limited to the use of two frequencies. For example, if an additional third frequency even lower than that designated above .dessus by f b, must be radiated by the antenna, it will be understood that it is sufficient to have, after the second tape 4, a third tape and second resonant circuit between the second and third ribbon. The length of this third ribbon will be chosen so that added to the length of the first two, the total length of the antenna is granted to the new lower frequency. In this case, the resonant frequency of the second resonant circuit will be chosen at f b .

Claims (10)

  1. Antenna (1) of elongated shape for an instrument of small volume, in particular a telephone-watch, capable of receiving and transmitting radiobroadcast messages at at least two frequencies of high (fh) and low (fb) value, this antenna being formed, from a feed point (2), of a first radiating element (3) the length (L1) of which is tuned to the high frequency (fh) and at least a second radiating element (4), following the first(3), the length (L2) of this second element added to that of the first having a total length (L3) tuned to the low frequency (fb), the first and second radiating elements being connected to each other by a resonant circuit (5) whose resonance frequency (fr) is chosen to limit the length of the antenna to its first element (3) when the high frequency (fh) is active and to use the total length (L3) of the antenna when the low frequency (fb) is active,
       characterized in that the first (3) and second (4) radiating elements each have a conductive strip of substantially rectangular shape and in that the resonant circuit (5) includes the combination of an inductor (6) and a capacitor (7, 7'), said inductor (6) being a substantially rectilinear narrow band integrally formed with at least one of said strips and connected to said strip by one of its ends (8, 8').
  2. Antenna according to claim 1, characterized in that the inductor (6) and the capacitor (7, 7') are connected in parallel, the value of each of these components being selected so as to have a resonance frequency (fr) substantially equal to the antenna's high operating frequency (fh).
  3. Antenna according to claim 2, characterized in that the first (3) and second (4) strips are self-supporting and held in the instrument by securing means (9), characterized in that the inductor (6) is connected by its first end (8) to the first strip (3) and by its second end (8') to the second strip (4) and characterized in that the capacitor (7) is a discrete component having first (10) and second (10') terminals respectively bonded onto the first (3) and second (4) strips.
  4. Antenna according to claim 2, characterized in that the first (3) and second (4) strips rest on an insulating substrate (11) to form a printed circuit and characterized in that the inductor (6) is a narrow printed path on said insulating substrate (11 ) and connected by its first end (8) to the first strip (3) and by its second end (8') to the second strip (4).
  5. Antenna according to claim 4, characterized in that the capacitor (7, 7') includes a first capacitor plate (12, 12') printed on the insulating substrate (11) and connected to the first strip (3) and a second capacitor plate (13, 13') printed on the insulating substrate (11) and connected to the second strip (4), each of said first and second capacitor plates having the shape of a comb whose teeth interlock without touching.
  6. Antenna according to claim 4, characterized in that the capacitor (7, 7') is a discrete component having first (14, 14') and second (15, 15') terminals respectively bonded onto the first (3) and second (4) strips.
  7. Antenna according to claim 4, characterized in that the capacitor (7, 7') includes the series arrangement of first (16, 16') and second (17, 17') capacitors each including a common capacitor plate (18, 18') printed under the insulating substrate (11), this common capacitor plate extending partially, on the one hand, under the first strip (3) to form the first capacitor (16, 16') and, on the other hand, under the second strip (4) to form the second capacitor (17, 17'), said insulating substrate (11) acting as a dielectric for each of said first and second capacitors.
  8. Antenna according to claims 3 or 4, characterized in that the first (3) and second (4) strips are arranged at a determined distance (A) from a ground plane (19), the initial part (20) of the first strip (3) being short-circuited with this ground plane (19) and the final part (21) of the second strip (4) being left free.
  9. Antenna according to claim 1, characterized in that the inductor (6) and the capacitor (7) are connected in series, the value of each of these components being chosen to have a resonance frequency (fr) substantially equal to the antenna's low operating frequency (fb).
  10. Antenna according to claim 9, characterized in that the first (3) and second (4) strips rest on an insulating substrate (11) to form a printed circuit and characterized in that the inductor (6) is a narrow printed path on said insulating substrate (11) and connected by its first end (8) to the first strip (3) and by its second end (8') to a first capacitor plate (12) of a capacitor (7) whose second capacitor plate (13) is connected to the second strip (4), each of said first and second capacitor plates being printed on the insulating substrate, said first and second capacitor plates having the shape of a comb whose teeth interlock without touching.
EP01905562A 2000-03-15 2001-02-23 Multifrequency antenna for instrument with small volume Expired - Lifetime EP1266425B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01905562A EP1266425B1 (en) 2000-03-15 2001-02-23 Multifrequency antenna for instrument with small volume

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00200934 2000-03-15
EP00200934 2000-03-15
EP01905562A EP1266425B1 (en) 2000-03-15 2001-02-23 Multifrequency antenna for instrument with small volume
PCT/CH2001/000119 WO2001069716A1 (en) 2000-03-15 2001-02-23 Multifrequency antenna for instrument with small volume

Publications (2)

Publication Number Publication Date
EP1266425A1 EP1266425A1 (en) 2002-12-18
EP1266425B1 true EP1266425B1 (en) 2003-12-03

Family

ID=8171202

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01905562A Expired - Lifetime EP1266425B1 (en) 2000-03-15 2001-02-23 Multifrequency antenna for instrument with small volume

Country Status (6)

Country Link
US (1) US6642895B2 (en)
EP (1) EP1266425B1 (en)
JP (1) JP2003527015A (en)
CN (1) CN1225057C (en)
DE (1) DE60101378T2 (en)
WO (1) WO2001069716A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7876271B2 (en) 2005-02-23 2011-01-25 Panasonic Corporation Antenna unit and portable radio apparatus

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0104308D0 (en) * 2001-12-19 2001-12-19 Nikolai Roshchupkin Antenna for mobile phone and other radio equipment
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US8236443B2 (en) * 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8404376B2 (en) * 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8445130B2 (en) * 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8431264B2 (en) * 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8394522B2 (en) * 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US7993773B2 (en) * 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
JP2004134975A (en) * 2002-10-09 2004-04-30 Matsushita Electric Ind Co Ltd Communication terminal
JP2004134976A (en) * 2002-10-09 2004-04-30 Matsushita Electric Ind Co Ltd Communication terminal
AU2002952142A0 (en) * 2002-10-17 2002-10-31 Rf Industries Pty Ltd Broad band antenna
TW566680U (en) * 2003-05-27 2003-12-11 Quanta Comp Inc Ring and line combined antenna
JP2005252366A (en) * 2004-03-01 2005-09-15 Sony Corp Inverted-f antenna
DE102005008195A1 (en) * 2005-02-23 2006-08-24 Atmel Germany Gmbh RF arrangement
US20060202835A1 (en) * 2005-02-25 2006-09-14 Osborne Industries, Inc. Dual frequency identification device
KR100788676B1 (en) * 2005-12-21 2007-12-26 삼성전자주식회사 Antenna unit, antenna unit control method and mobile terminal having the antenna unit
US8839488B2 (en) * 2006-06-20 2014-09-23 Hardware Resources, Inc. Adjustable hinge
JP4661776B2 (en) * 2006-12-22 2011-03-30 株式会社村田製作所 Antenna structure and wireless communication apparatus including the same
JP2010522498A (en) * 2007-03-23 2010-07-01 クゥアルコム・インコーポレイテッド An antenna including first and second radiating elements having substantially the same characteristics
US7653967B2 (en) * 2007-05-04 2010-02-02 Hardware Resources, Inc. Compact adjustable hinge
US8855343B2 (en) * 2007-11-27 2014-10-07 Personics Holdings, LLC. Method and device to maintain audio content level reproduction
EP2225406A4 (en) * 2007-12-21 2012-12-05 Infinite Power Solutions Inc Method for sputter targets for electrolyte films
JP4613950B2 (en) * 2007-12-27 2011-01-19 カシオ計算機株式会社 Planar monopole antenna and electronic equipment
JP5705549B2 (en) * 2008-01-11 2015-04-22 インフィニット パワー ソリューションズ, インコーポレイテッド Thin film encapsulation for thin film batteries and other devices
US8350519B2 (en) * 2008-04-02 2013-01-08 Infinite Power Solutions, Inc Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
JP5135098B2 (en) * 2008-07-18 2013-01-30 パナソニック株式会社 Wireless communication device
WO2010016298A1 (en) * 2008-08-05 2010-02-11 株式会社村田製作所 Antenna and wireless communication machine
CN102119454B (en) * 2008-08-11 2014-07-30 无穷动力解决方案股份有限公司 Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US8260203B2 (en) * 2008-09-12 2012-09-04 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
WO2010042601A1 (en) * 2008-10-08 2010-04-15 Infinite Power Solutions, Inc. Foot-powered footwear-embedded sensor-transceiver
US8508193B2 (en) * 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
US8416138B2 (en) * 2008-12-29 2013-04-09 Calamp Corp. Multiband antenna including antenna elements connected by a choking circuit
US20100207832A1 (en) * 2009-02-17 2010-08-19 Sony Ericsson Mobile Communications Ab Antenna arrangement, printed circuit board, portable electronic device & conversion kit
KR20120025521A (en) * 2009-05-20 2012-03-15 인피니트 파워 솔루션스, 인크. Method of integrating electrochemical devices into and onto fixtures
KR101792287B1 (en) 2009-09-01 2017-10-31 사푸라스트 리써치 엘엘씨 Printed circuit board with integrated thin film battery
US20110300432A1 (en) 2010-06-07 2011-12-08 Snyder Shawn W Rechargeable, High-Density Electrochemical Device
JP5724313B2 (en) 2010-11-16 2015-05-27 セイコーエプソン株式会社 Wireless communication device
JP2014523163A (en) * 2011-06-23 2014-09-08 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Electrically small vertical split ring resonator antenna
US9786987B2 (en) * 2012-09-14 2017-10-10 Panasonic Intellectual Property Management Co., Ltd. Small antenna apparatus operable in multiple frequency bands
TW201526389A (en) * 2013-12-31 2015-07-01 Acer Inc Wireless communication device
US9601824B2 (en) * 2014-07-01 2017-03-21 Microsoft Technology Licensing, Llc Slot antenna integrated into a resonant cavity of an electronic device case
TWI553954B (en) * 2014-07-29 2016-10-11 鴻海精密工業股份有限公司 Portable electronic device
US9525201B2 (en) 2014-10-27 2016-12-20 Nokia Technologies Oy Hinge that serves as a radiator
US11695213B2 (en) * 2017-12-21 2023-07-04 Cochlear Limited Antenna for wireless communications integrated in electronic device
CN108400427B (en) * 2018-01-25 2020-12-22 瑞声科技(新加坡)有限公司 Antenna system
CN111954957B (en) * 2018-04-12 2023-06-27 松下知识产权经营株式会社 Antenna device
CN112787061B (en) * 2020-12-31 2024-11-19 京信通信技术(广州)有限公司 Coupling structures, resonant structures, low-frequency radiating units, antennas and electromagnetic boundaries
TWI793867B (en) * 2021-11-19 2023-02-21 啓碁科技股份有限公司 Communication device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2282292A (en) 1937-07-10 1942-05-05 Ernest V Amy All wave radio receiving system
US5450091A (en) * 1988-08-05 1995-09-12 Seiko Epson Corporation Variable size antenna device having resonance frequency compensation
US5128686A (en) * 1989-01-23 1992-07-07 Motorola, Inc. Reactance buffered loop antenna and method for making the same
EP0470797A3 (en) * 1990-08-10 1992-05-13 Matsushita Electric Industrial Co., Ltd Antenna apparatus
US5280645A (en) * 1991-05-24 1994-01-18 Motorola, Inc. Adjustable wristband loop antenna
US5659325A (en) * 1994-12-02 1997-08-19 Harris Corporation Low impedance loop antenna and drive circuitry
FR2739200B1 (en) 1995-09-26 1997-10-31 Asulab Sa WATCHMAKING PIECE WITH AN ANTENNA
FI104662B (en) 1997-04-11 2000-04-14 Nokia Mobile Phones Ltd Antenna arrangement for small radio communication devices
JPH11239020A (en) * 1997-04-18 1999-08-31 Murata Mfg Co Ltd Circular polarizing antenna and radio device using same
AU8365998A (en) * 1997-07-09 1999-02-08 Allgon Ab Trap microstrip pifa
US6304230B1 (en) * 1999-11-04 2001-10-16 Sigem Multiple coupled resonant loop antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7876271B2 (en) 2005-02-23 2011-01-25 Panasonic Corporation Antenna unit and portable radio apparatus

Also Published As

Publication number Publication date
CN1225057C (en) 2005-10-26
DE60101378T2 (en) 2004-10-14
EP1266425A1 (en) 2002-12-18
CN1418389A (en) 2003-05-14
DE60101378D1 (en) 2004-01-15
JP2003527015A (en) 2003-09-09
US6642895B2 (en) 2003-11-04
US20030030589A1 (en) 2003-02-13
WO2001069716A1 (en) 2001-09-20

Similar Documents

Publication Publication Date Title
EP1266425B1 (en) Multifrequency antenna for instrument with small volume
EP3669422B1 (en) Patch antenna having two different radiation modes with two separate working frequencies, device using such an antenna
EP0924797B1 (en) Multifrequency microstrip antenna and apparatus using the same
EP1241733B1 (en) PIFA antenna with slots
EP1305845B9 (en) Planar radiating surface antenna and portable telephone comprising same
EP1145378B1 (en) Dual-band transmission device and antenna therefor
FR2853996A1 (en) Antenna system for PCMCIA card, has transmission antenna placed between two reception antennas, where antenna system is placed at edge of PCMCIA card in zone placed exterior to PCMCIA card reader in computer
FR2778272A1 (en) RADIOCOMMUNICATION DEVICE AND BIFREQUENCY ANTENNA MADE ACCORDING TO MICRO-TAPE TECHNIQUE
FR2811479A1 (en) CONDUCTIVE LAYER ANTENNA AND DUAL BAND TRANSMISSION DEVICE INCLUDING THIS ANTENNA
WO2005036697A1 (en) Low volume internal antenna
FR2654554A1 (en) ANTENNA IN PROPELLER, QUADRIFILAIRE, RESONANT BICOUCHE.
FR2752646A1 (en) PLANE PRINTED ANTENNA WITH OVERLAPPING ELEMENTS SHORT CIRCUITS
WO2002054538A1 (en) Multiband antenna for mobile appliances
EP1225655B1 (en) Dual-band planar antenna and apparatus including such an antenna device
WO2007000503A1 (en) Electronic entity having a magnetic antenna
CA2310125C (en) Antenna
EP1589608A1 (en) Compact RF antenna
FR2833764A1 (en) Domestic wire less transmission wide frequency band circular polarization transmitter/receiver having feed line annular slot antenna connected and feed line two points connected.
CH694625A5 (en) Multi-frequency antenna for portable instrument of small volume, particularly a telephone fitted in a watch capable of transmitting and receiving radio messages, has components capable of operating at high and low frequencies
FR2967537A1 (en) Antenna i.e. planar Inverted-F slot antenna, for e.g. mobile telephone to receive TV channels during live telecasting of sports events, has adaptation element realizing inductive impedance adaptation if antenna is capacitive type antenna
EP3605734A1 (en) Antenna device comprising at least two antennas with single substrate for electrical connection
FR2816114A1 (en) MULTIBAND ANTENNA
EP4203189A1 (en) Monopole plated wire antenna with expanded bandwidth
EP1667281A1 (en) Mobile communication terminal
EP1956682A1 (en) Switching monopole antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021015

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZUERCHER, JEAN-FRANCOIS

Inventor name: SKRIVERVIK, ANJA

Inventor name: STAUB, OLIVIER

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20031203

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60101378

Country of ref document: DE

Date of ref document: 20040115

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040315

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20031203

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040906

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130408

Year of fee payment: 13

Ref country code: GB

Payment date: 20130129

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140122

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140223

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60101378

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载