EP1266391B1 - Convertisseur de rayonnement comprenant un scintillateur, une photocathode et un multiplicateur à électrons - Google Patents
Convertisseur de rayonnement comprenant un scintillateur, une photocathode et un multiplicateur à électrons Download PDFInfo
- Publication number
- EP1266391B1 EP1266391B1 EP01935937A EP01935937A EP1266391B1 EP 1266391 B1 EP1266391 B1 EP 1266391B1 EP 01935937 A EP01935937 A EP 01935937A EP 01935937 A EP01935937 A EP 01935937A EP 1266391 B1 EP1266391 B1 EP 1266391B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radiation
- photocathode
- converter according
- radiation converter
- case
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005855 radiation Effects 0.000 title claims description 40
- 239000006100 radiation absorber Substances 0.000 claims description 20
- 239000007789 gas Substances 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 6
- 229920001721 polyimide Polymers 0.000 claims description 5
- 239000010409 thin film Substances 0.000 claims description 4
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 150000002430 hydrocarbons Chemical class 0.000 claims description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000004642 Polyimide Substances 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052792 caesium Inorganic materials 0.000 claims description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052743 krypton Inorganic materials 0.000 claims description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 239000007769 metal material Substances 0.000 claims description 2
- 229910052754 neon Inorganic materials 0.000 claims description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 2
- 239000002985 plastic film Substances 0.000 claims description 2
- 229920006255 plastic film Polymers 0.000 claims description 2
- 229910052724 xenon Inorganic materials 0.000 claims description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 claims 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims 1
- 229910002092 carbon dioxide Inorganic materials 0.000 claims 1
- 239000000470 constituent Substances 0.000 claims 1
- 238000012546 transfer Methods 0.000 description 6
- 239000006096 absorbing agent Substances 0.000 description 4
- 238000002594 fluoroscopy Methods 0.000 description 4
- 239000011669 selenium Substances 0.000 description 3
- 101100258233 Caenorhabditis elegans sun-1 gene Proteins 0.000 description 2
- 101100024583 Mus musculus Mtf1 gene Proteins 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 238000002601 radiography Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J31/00—Cathode ray tubes; Electron beam tubes
- H01J31/08—Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
- H01J31/49—Pick-up adapted for an input of electromagnetic radiation other than visible light and having an electric output, e.g. for an input of X-rays, for an input of infrared radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2231/00—Cathode ray tubes or electron beam tubes
- H01J2231/50—Imaging and conversion tubes
- H01J2231/50005—Imaging and conversion tubes characterised by form of illumination
- H01J2231/5001—Photons
- H01J2231/50031—High energy photons
- H01J2231/50036—X-rays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2231/00—Cathode ray tubes or electron beam tubes
- H01J2231/50—Imaging and conversion tubes
- H01J2231/50057—Imaging and conversion tubes characterised by form of output stage
- H01J2231/50068—Electrical
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2231/00—Cathode ray tubes or electron beam tubes
- H01J2231/50—Imaging and conversion tubes
- H01J2231/501—Imaging and conversion tubes including multiplication stage
Definitions
- the invention relates to an X-radiation incident with a radiation absorber for generating photons as a function of the intensity.
- image intensifier radiation converter From the DE 33 32 648 A1 a known as image intensifier radiation converter is known.
- image intensifiers have an input window with a radiation absorber for generating light photons depending on the radiation intensity incident radiation.
- the beam absorber is followed by a photocathode, which generates electrons as a function of the light photons emitted by the radiation absorber.
- These electrons are accelerated by an electrode system onto an electron receiver.
- this electron receiver In the case of the image intensifier, this electron receiver is designed as an output screen which generates light photons on account of the incident electrons.
- An X-ray detector is known in which the photocathode is applied to a radiation absorber.
- the photocathode is disposed at a distance opposite to an amorphous selenium layer of an output screen.
- Another detector device is out of the DE 44 29 925 C1 known.
- a shadow mask made of wires is provided on the radiation input side, which is connected downstream of a chevron plate.
- a low-resistance anode structure is provided outside the detector on its rear side. From the EP 0 053 530 a photodetector is known, in which in the radiation direction of a photocathode, an electron multiplier and a detector anode are connected downstream.
- a radiation converter is known with a radiation absorber for generating photons in response to the intensity of incident X-ray radiation to enable the display of X-ray images with a photocathode for generating electrons in dependence from the photons emitted by the beam absorber, with means for accelerating the electrons emitted from the photocathode, with an electron multiplier for multiplying electrons, and with an electron detector for generating electrical signals in response to the incident electrons.
- the radiation exposure is to be kept as small as technically feasible to minimize the radiation exposure of the patient, the efficient use of the patient and penetrating the radiation receiver incident radiation top priority.
- the lower the radiation intensity impinging on the radiation receiver the lower the signals which can be derived from the radiation receiver.
- the distance between the signal levels and the noise signals also decreases, which is accompanied by a poorer diagnosability of the visual representations that can be generated on the basis of these signals. So it is a compromise between a low radiation exposure of the patient and to close the necessary for a good diagnosability of producible radiographic images of the patient radiation dose.
- the photographic film for example, is nothing more than a chemical amplifier that amplifies the ionization processes of the radiation in the microscopic range by many orders of magnitude and makes them visible in the macroscopic range.
- Storage phosphor plates store the radiation shadow of an object latently. By scanning the storage phosphor plate by means of a light beam light photons are generated due to the latent image, which are converted by a readout with a photomultiplier into electrons, which can be amplified almost noiseless up to a factor of 10 6 and converted into electrical signals. This electrical Signals are then available for visual representation.
- the geometric reduction which results from a large input window and a smaller output window, is used to increase the luminance, which is supported by the energy absorption of the electrons from the input screen to the output screen by a here intermediate acceleration field.
- a radiation-to-light-emitting layer comprising CsI, for example, is brought into direct contact with a photodiode array of amorphous silicon, so that the light photons generated by the layer due to incident radiation can be converted into electrical signals via the photodiode array then be available for pictorial representation. Since there is no amplification of the light photons via electrons, only relatively small signals can be derived from the photodiode matrix, which can only be amplified in a downstream device, for example an amplifier.
- the signals derived from the flat-panel detector are particularly low and are close to the noise region and thus require complex artifact corrections.
- fluoroscopy for example, the signals of every other beam scanning are used for correction purposes, so that the usual image repetition rates can not be approached.
- the dynamic one Range of signals derived from the flat panel detector is also severely limited.
- the object of the invention is to provide a radiation converter which is as universally usable as possible. Another goal is to improve the dynamics of the radiation converter.
- a gap is provided between the radiation absorber and the photocathode.
- the dynamics of the proposed radiation converter is improved.
- Another advantage is that the photocathode does not have to be made transparent due to the arrangement proposed here. It can thereby be achieved a cost savings.
- the photocathode may expediently be made opaque. Avalanche UV photons can not reach the photocathode directly.
- the photocathode is made of a metallic material which preferably contains gold, cesium, copper or antimony. It is further expedient that the photocathode is formed as a layer on the electron multiplier, wherein the electron multiplier can in turn be formed as a layer on the electron detector. According to a particularly advantageous embodiment, the electron multiplier has a perforated, preferably made of polyimide, plastic film. The diameter of the holes is about 25 microns.
- a common, gas-tight housing is assigned, resulting in a compact design of the radiation converter.
- a UV photon absorbing gas is received in the housing.
- the gas may include at least one of argon, krypton, xenon, helium, neon, CO 2 , N 2 , hydrocarbon, di-methyl ether, methanol / ethanol vapor.
- the radiation absorber converts radiation into light photons in particular advantageously if it has a needle-shaped structure and consists of CsI: Na.
- the electron detector is designed as a 2D thin-film panel and consists of a-Se, a-Si: H or poly-Si.
- Such an electron detector is simple in construction and inexpensive.
- radiation converter is designated by the reference numeral 1, a housing.
- the housing has a radiation absorber 2, which converts radiation into light photons.
- the radiation absorber 2 is either designed as a separate part or arranged outside the housing 1 in the region of a first end face. It consists of a scintillator material, preferably of CsI: Na in needle structure, the needles being directed in the direction of a photocathode 3 are.
- the photocathode 3 is arranged at a distance a of approximately 50 ⁇ m from the radiation absorber 2. It is designed as a layer, which is preferably made of copper, on a perforated polyimide film 4.
- the polyimide film 4 acts as an electron multiplier. It is applied to an electron detector 5.
- the electron detector 5 preferably has a pixel structure and converts the incident electrons into electrical signals which can be derived via suitable known measures, for example an electrical line, and on the basis of which a pictorial representation on a display device is possible.
- the electron detector 5 is preferably designed as a 2D thin-film panel and may preferably consist of a-Se, a-Si: H or poly-Si.
- a gas, in particular quenching gas for example, a mixture of argon and hydrocarbon, is added.
- the function of the device is as follows:
- X-rays are absorbed by the radiation absorber 2 and thereby converted into photons.
- the photons release photoelectrons from the photocathode 3.
- the photoelectrons reach the area of the perforated polyimide film 4.
- a potential is applied between the photocathode 3 and the electron detector 5.
- By the applied electric potential is achieved that all the photoelectrons are pulled from the surface of the photocathode 3 in the nearest holes.
- charge ionization takes place by impact ionization.
- the charge carrier multiplication or gain can be set by the level of the applied potential. Thus, the signal / noise ratio can be improved.
- the photoelectrons are accelerated by the applied potential on the electron detector. The charges accumulated there are read out with a predetermined clock sequence.
- the radiation absorber 2 may be provided with a UV-photon absorbing conductive layer.
- the quench gas absorbs the UV photons generated by impact ionization so that they do not reach the photocathode 3, where they could unintentionally trigger photoelectrons.
- Fig. 2 the modulation transfer function is plotted above the spatial frequency.
- the curves MTF 1 and MTF 2 show the modulation transfer function at a distance of the photocathode 3 from the beam absorber 2 of 50 ⁇ m.
- the curve MTF 2 shows the dot image function of an isotropic point source, the curve MTF 1 the aforementioned point image function for a Lambert source.
- the curve MTF 3 shows the modulation transfer function, in which case the radiation absorber 2 is in direct contact with the electron detector 5.
- the curve MTF 3 thus represents the characteristic of conventional flat-panel detectors.
- the values MTF 4 indicate the modulation transfer function for a Lambert source, wherein the beam absorber 2 is arranged at a distance of 50 ⁇ m from the electron detector 5. It can be seen that the spaced array does not significantly change the modulation transfer function.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Measurement Of Radiation (AREA)
- Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Conversion Of X-Rays Into Visible Images (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
Claims (12)
- Convertisseur de rayonnement ayant un absorbeur (2) de faisceau pour produire des photons en fonction de l'intensité du rayonnement X incident,
comprenant une photocathode (3) disposée en aval à une distance (a) de l'absorbeur (2) de faisceau dans le sens du rayonnement pour produire des électrons en fonction des photons sortant de l'absorbeur (2) de faisceau,
comprenant un dispositif d'accélération des électrons sortant de la photocathode (3) jusqu'à un détecteur (5) d'électrons pour produire des signaux électriques en fonction des électrons incidents et
comprenant un multiplicateur (4) d'électrons disposé entre la photocathode (3) et le détecteur (5) d'électrons, les électrons sortant de la photocathode (3) étant multipliés par le multiplicateur (4) d'électrons, et caractérisé en ce que la distance (a) est comprise entre 10 et 100 µm. - Convertisseur de rayonnement suivant la revendication 1, dans lequel la photocathode (3) est opaque.
- Convertisseur de rayonnement suivant l'une des revendications précédentes, dans lequel la photocathode (3) est en un matériau métallique qui contient de préférence de l'or, du césium, du cuivre ou de l'antimoine.
- Convertisseur de rayonnement suivant l'une des revendications précédentes, dans lequel la photocathode (3) est constituée sous la forme d'une couche sur le multiplicateur (4) d'électrons.
- Convertisseur de rayonnement suivant l'une des revendications précédentes, dans lequel le multiplicateur (4) d'électrons est constitué sous la forme d'une couche sur le détecteur (5) d'électrons.
- Convertisseur de rayonnement suivant l'une des revendications précédentes, dans lequel le multiplicateur (4) d'électrons comporte une feuille de matière plastique perforée, de préférence en polyimide.
- Convertisseur de rayonnement suivant l'une des revendications précédentes, dans lequel l'absorbeur (2) de faisceau, le multiplicateur (4) d'électrons et le détecteur (5) d'électrons sont logés dans un boîtier (1) commun et étanche au gaz.
- Convertisseur de rayonnement suivant la revendication 7, dans lequel un gaz absorbant les photons UV est contenu dans le boîtier (1).
- Convertisseur de rayonnement suivant la revendication 8, dans lequel le gaz a au moins l'un des constituants suivants : argon, krypton, xénon, hélium, néon, CO2, N2, hydrocarbure, oxyde de diméthyle, vapeur de méthanol/d'éthanol.
- Convertisseur de rayonnement suivant l'une des revendications précédentes, dans lequel l'absorbeur (2) de faisceau est en un matériau formant scintillateur qui a de préférence une structure en aiguille en CsI:Na.
- Convertisseur de rayonnement suivant l'une des revendications précédentes, dans lequel le détecteur (5) d'électrons est réalisé sous la forme d'un panneau à couche mince en 2D.
- Convertisseur de rayonnement suivant la revendication 11, dans lequel le panneau à couche mince en 2D est en a-Se, en a-Si:H ou en poly-Si.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10014311A DE10014311C2 (de) | 2000-03-23 | 2000-03-23 | Strahlungswandler |
DE10014311 | 2000-03-23 | ||
PCT/DE2001/001109 WO2001071381A2 (fr) | 2000-03-23 | 2001-03-22 | Convertisseur de rayonnement |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1266391A2 EP1266391A2 (fr) | 2002-12-18 |
EP1266391B1 true EP1266391B1 (fr) | 2008-07-16 |
Family
ID=7635969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01935937A Expired - Lifetime EP1266391B1 (fr) | 2000-03-23 | 2001-03-22 | Convertisseur de rayonnement comprenant un scintillateur, une photocathode et un multiplicateur à électrons |
Country Status (5)
Country | Link |
---|---|
US (1) | US7022994B2 (fr) |
EP (1) | EP1266391B1 (fr) |
JP (1) | JP2003528427A (fr) |
DE (2) | DE10014311C2 (fr) |
WO (1) | WO2001071381A2 (fr) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3145066A1 (de) | 1981-11-13 | 1983-05-19 | Fritz Werner Industrie-Ausrüstungen GmbH, 6222 Geisenheim | Verfahren zum herstellen eines vergleichsweise energiereicheren, stickstofffreien gases und einrichtung zur durchfuehrung des verfahrens |
US6747258B2 (en) * | 2001-10-09 | 2004-06-08 | Itt Manufacturing Enterprises, Inc. | Intensified hybrid solid-state sensor with an insulating layer |
US7015452B2 (en) | 2001-10-09 | 2006-03-21 | Itt Manufacturing Enterprises, Inc. | Intensified hybrid solid-state sensor |
US7791047B2 (en) | 2003-12-12 | 2010-09-07 | Semequip, Inc. | Method and apparatus for extracting ions from an ion source for use in ion implantation |
US7835502B2 (en) * | 2009-02-11 | 2010-11-16 | Tomotherapy Incorporated | Target pedestal assembly and method of preserving the target |
JP5554322B2 (ja) * | 2009-04-01 | 2014-07-23 | 株式会社トクヤマ | 放射線画像検出器 |
US8395312B2 (en) * | 2010-04-19 | 2013-03-12 | Bridgelux, Inc. | Phosphor converted light source having an additional LED to provide long wavelength light |
CN107469240B (zh) | 2013-02-26 | 2020-04-21 | 安科锐公司 | 多叶准直器和用于准直治疗放射束的系统 |
GB2524778A (en) * | 2014-04-02 | 2015-10-07 | Univ Warwick | Ultraviolet light detection |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1175597A (en) * | 1967-06-16 | 1969-12-23 | Mullard Ltd | Improvements in or relating to Image Intensifiers |
US3609359A (en) * | 1969-01-08 | 1971-09-28 | Eugene Wainer | X-ray image intensifier with electron michrochannels and electron multiplying means |
US3846630A (en) * | 1970-01-07 | 1974-11-05 | Zeev D Ben | Method for identifying elemental areas of a photocathode |
US3710125A (en) * | 1970-04-29 | 1973-01-09 | Univ Northwestern | Secondary emission enhancer for an x-ray image intensifier |
GB1457213A (en) * | 1975-01-30 | 1976-12-01 | Mullard Ltd | Electron multipliers |
US4345153A (en) * | 1980-07-30 | 1982-08-17 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Low intensity X-ray and gamma-ray spectrometer |
US4376892A (en) * | 1980-10-16 | 1983-03-15 | Agence Nationale De Valorisation De La Recherche (Anvar) | Detection and imaging of the spatial distribution of visible or ultraviolet photons |
FR2494906A1 (fr) * | 1980-11-25 | 1982-05-28 | Thomson Csf | Tube photodetecteur a multiplication d'electrons utilisable dans un lecteur video couleur |
DE3332648A1 (de) | 1983-09-09 | 1985-03-28 | Siemens AG, 1000 Berlin und 8000 München | Roentgendiagnostikeinrichtung mit einem roentgenkonverter |
US4866970A (en) * | 1985-04-24 | 1989-09-19 | Albino Castiglioni | Apparatus for the continuous shearing off and cold swaging of metal workpieces |
EP0534547B1 (fr) * | 1991-09-27 | 1996-09-04 | Koninklijke Philips Electronics N.V. | Détecteur de rayons X avec lecture d'image de charge |
DE4237097A1 (en) | 1991-11-19 | 1993-05-27 | Siemens Ag | X=ray image intensifier with vacuum housing having input light screening - has input window of vacuum housing and photocathode optically coupled on one side of glass carrier and electron multiplying stage |
GB2269048B (en) * | 1992-07-03 | 1995-10-04 | Third Generation Technology Li | Photoemitters |
JPH07294644A (ja) * | 1994-04-25 | 1995-11-10 | Shimadzu Corp | 放射線二次元検出器 |
DE4429925C1 (de) * | 1994-08-23 | 1995-11-23 | Roentdek Handels Gmbh | Verfahren und Detektoreinrichtung zur elektronischen positionsbezogenen Erfassung von Strahlung |
DE19527794C2 (de) * | 1995-07-19 | 1997-10-23 | Ifg Inst Fuer Geraetebau Gmbh | Verfahren und Vorrichtung zur Herstellung optischer Elemente für die Kapillaroptik |
JP2001135267A (ja) * | 1999-09-08 | 2001-05-18 | Siemens Ag | 輻射変換器 |
-
2000
- 2000-03-23 DE DE10014311A patent/DE10014311C2/de not_active Expired - Fee Related
-
2001
- 2001-03-22 JP JP2001569516A patent/JP2003528427A/ja not_active Withdrawn
- 2001-03-22 DE DE50114124T patent/DE50114124D1/de not_active Expired - Lifetime
- 2001-03-22 US US10/239,547 patent/US7022994B2/en not_active Expired - Fee Related
- 2001-03-22 EP EP01935937A patent/EP1266391B1/fr not_active Expired - Lifetime
- 2001-03-22 WO PCT/DE2001/001109 patent/WO2001071381A2/fr active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
WO2001071381A2 (fr) | 2001-09-27 |
WO2001071381A3 (fr) | 2002-04-18 |
DE50114124D1 (de) | 2008-08-28 |
DE10014311C2 (de) | 2003-08-14 |
US20030164682A1 (en) | 2003-09-04 |
EP1266391A2 (fr) | 2002-12-18 |
US7022994B2 (en) | 2006-04-04 |
JP2003528427A (ja) | 2003-09-24 |
DE10014311A1 (de) | 2001-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | Digital radiology using active matrix readout of amorphous selenium: Theoretical analysis of detective quantum efficiency | |
EP1102302B1 (fr) | Source monochromatique à rayons X | |
US4142101A (en) | Low intensity X-ray and gamma-ray imaging device | |
EP1266391B1 (fr) | Convertisseur de rayonnement comprenant un scintillateur, une photocathode et un multiplicateur à électrons | |
DE2909066C2 (fr) | ||
DE3704716C2 (fr) | ||
DE2038607A1 (de) | Strahlenabbildungseinrichtung | |
DE102008051045B4 (de) | Strahlungsdirektkonverter | |
DE69110940T2 (de) | Nahfokus-Röntgenbildverstärkerröhre. | |
DE4223693C2 (de) | Röntgenbildverstärker mit einem CCD-Bildwandler | |
DE102009060315A1 (de) | Zählender Röntgendetektor | |
DE2750132C2 (fr) | ||
DE2946108C2 (de) | Strahlendetektor | |
US6566809B1 (en) | Radiation converter having an electron multiplier | |
DE10137012B4 (de) | Röntgendiagnostikeinrichtung mit einem flächenhaften Festkörper-Röntgenbildwandler | |
WO2007036463A1 (fr) | Detecteur de rayons x et procede permettant son fonctionnement | |
EP1192660A2 (fr) | Capteur a semi-conducteur pourvu d'une structure a pixels, et utilisation de ce capteur dans un systeme a vide | |
DE10013168A1 (de) | Strahlungswandler | |
EP0156024B1 (fr) | Système de détection | |
DE10126388B4 (de) | Festkörperstrahlungsdetektor | |
DE2605965C2 (fr) | ||
DE2306575A1 (de) | Roentgenbildverstaerker | |
DE4322834A1 (de) | Röntgenbildverstärker | |
DE69402367T2 (de) | Bildverstärkerröhre | |
DE2214842A1 (de) | Detektor für elektromagnetische Strahlung hoher Energie |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020911 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
17Q | First examination report despatched |
Effective date: 20030307 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
RTI1 | Title (correction) |
Free format text: RADIATION CONVERTER COMPRISING A SCINTILLATOR, A PHOTOCATHODE AND AN ELECTRON MULTIPLIER |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50114124 Country of ref document: DE Date of ref document: 20080828 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090417 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110321 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110310 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R409 Ref document number: 50114124 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R409 Ref document number: 50114124 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20110520 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120322 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20121130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50114124 Country of ref document: DE Effective date: 20121002 Ref country code: DE Ref legal event code: R119 Ref document number: 50114124 Country of ref document: DE Effective date: 20111001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120402 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121002 |