+

EP1266391B1 - Convertisseur de rayonnement comprenant un scintillateur, une photocathode et un multiplicateur à électrons - Google Patents

Convertisseur de rayonnement comprenant un scintillateur, une photocathode et un multiplicateur à électrons Download PDF

Info

Publication number
EP1266391B1
EP1266391B1 EP01935937A EP01935937A EP1266391B1 EP 1266391 B1 EP1266391 B1 EP 1266391B1 EP 01935937 A EP01935937 A EP 01935937A EP 01935937 A EP01935937 A EP 01935937A EP 1266391 B1 EP1266391 B1 EP 1266391B1
Authority
EP
European Patent Office
Prior art keywords
radiation
photocathode
converter according
radiation converter
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01935937A
Other languages
German (de)
English (en)
Other versions
EP1266391A2 (fr
Inventor
Manfred Fuchs
Erich Hell
Wolfgang KNÜPFER
Detlef Mattern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Publication of EP1266391A2 publication Critical patent/EP1266391A2/fr
Application granted granted Critical
Publication of EP1266391B1 publication Critical patent/EP1266391B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/49Pick-up adapted for an input of electromagnetic radiation other than visible light and having an electric output, e.g. for an input of X-rays, for an input of infrared radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2231/00Cathode ray tubes or electron beam tubes
    • H01J2231/50Imaging and conversion tubes
    • H01J2231/50005Imaging and conversion tubes characterised by form of illumination
    • H01J2231/5001Photons
    • H01J2231/50031High energy photons
    • H01J2231/50036X-rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2231/00Cathode ray tubes or electron beam tubes
    • H01J2231/50Imaging and conversion tubes
    • H01J2231/50057Imaging and conversion tubes characterised by form of output stage
    • H01J2231/50068Electrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2231/00Cathode ray tubes or electron beam tubes
    • H01J2231/50Imaging and conversion tubes
    • H01J2231/501Imaging and conversion tubes including multiplication stage

Definitions

  • the invention relates to an X-radiation incident with a radiation absorber for generating photons as a function of the intensity.
  • image intensifier radiation converter From the DE 33 32 648 A1 a known as image intensifier radiation converter is known.
  • image intensifiers have an input window with a radiation absorber for generating light photons depending on the radiation intensity incident radiation.
  • the beam absorber is followed by a photocathode, which generates electrons as a function of the light photons emitted by the radiation absorber.
  • These electrons are accelerated by an electrode system onto an electron receiver.
  • this electron receiver In the case of the image intensifier, this electron receiver is designed as an output screen which generates light photons on account of the incident electrons.
  • An X-ray detector is known in which the photocathode is applied to a radiation absorber.
  • the photocathode is disposed at a distance opposite to an amorphous selenium layer of an output screen.
  • Another detector device is out of the DE 44 29 925 C1 known.
  • a shadow mask made of wires is provided on the radiation input side, which is connected downstream of a chevron plate.
  • a low-resistance anode structure is provided outside the detector on its rear side. From the EP 0 053 530 a photodetector is known, in which in the radiation direction of a photocathode, an electron multiplier and a detector anode are connected downstream.
  • a radiation converter is known with a radiation absorber for generating photons in response to the intensity of incident X-ray radiation to enable the display of X-ray images with a photocathode for generating electrons in dependence from the photons emitted by the beam absorber, with means for accelerating the electrons emitted from the photocathode, with an electron multiplier for multiplying electrons, and with an electron detector for generating electrical signals in response to the incident electrons.
  • the radiation exposure is to be kept as small as technically feasible to minimize the radiation exposure of the patient, the efficient use of the patient and penetrating the radiation receiver incident radiation top priority.
  • the lower the radiation intensity impinging on the radiation receiver the lower the signals which can be derived from the radiation receiver.
  • the distance between the signal levels and the noise signals also decreases, which is accompanied by a poorer diagnosability of the visual representations that can be generated on the basis of these signals. So it is a compromise between a low radiation exposure of the patient and to close the necessary for a good diagnosability of producible radiographic images of the patient radiation dose.
  • the photographic film for example, is nothing more than a chemical amplifier that amplifies the ionization processes of the radiation in the microscopic range by many orders of magnitude and makes them visible in the macroscopic range.
  • Storage phosphor plates store the radiation shadow of an object latently. By scanning the storage phosphor plate by means of a light beam light photons are generated due to the latent image, which are converted by a readout with a photomultiplier into electrons, which can be amplified almost noiseless up to a factor of 10 6 and converted into electrical signals. This electrical Signals are then available for visual representation.
  • the geometric reduction which results from a large input window and a smaller output window, is used to increase the luminance, which is supported by the energy absorption of the electrons from the input screen to the output screen by a here intermediate acceleration field.
  • a radiation-to-light-emitting layer comprising CsI, for example, is brought into direct contact with a photodiode array of amorphous silicon, so that the light photons generated by the layer due to incident radiation can be converted into electrical signals via the photodiode array then be available for pictorial representation. Since there is no amplification of the light photons via electrons, only relatively small signals can be derived from the photodiode matrix, which can only be amplified in a downstream device, for example an amplifier.
  • the signals derived from the flat-panel detector are particularly low and are close to the noise region and thus require complex artifact corrections.
  • fluoroscopy for example, the signals of every other beam scanning are used for correction purposes, so that the usual image repetition rates can not be approached.
  • the dynamic one Range of signals derived from the flat panel detector is also severely limited.
  • the object of the invention is to provide a radiation converter which is as universally usable as possible. Another goal is to improve the dynamics of the radiation converter.
  • a gap is provided between the radiation absorber and the photocathode.
  • the dynamics of the proposed radiation converter is improved.
  • Another advantage is that the photocathode does not have to be made transparent due to the arrangement proposed here. It can thereby be achieved a cost savings.
  • the photocathode may expediently be made opaque. Avalanche UV photons can not reach the photocathode directly.
  • the photocathode is made of a metallic material which preferably contains gold, cesium, copper or antimony. It is further expedient that the photocathode is formed as a layer on the electron multiplier, wherein the electron multiplier can in turn be formed as a layer on the electron detector. According to a particularly advantageous embodiment, the electron multiplier has a perforated, preferably made of polyimide, plastic film. The diameter of the holes is about 25 microns.
  • a common, gas-tight housing is assigned, resulting in a compact design of the radiation converter.
  • a UV photon absorbing gas is received in the housing.
  • the gas may include at least one of argon, krypton, xenon, helium, neon, CO 2 , N 2 , hydrocarbon, di-methyl ether, methanol / ethanol vapor.
  • the radiation absorber converts radiation into light photons in particular advantageously if it has a needle-shaped structure and consists of CsI: Na.
  • the electron detector is designed as a 2D thin-film panel and consists of a-Se, a-Si: H or poly-Si.
  • Such an electron detector is simple in construction and inexpensive.
  • radiation converter is designated by the reference numeral 1, a housing.
  • the housing has a radiation absorber 2, which converts radiation into light photons.
  • the radiation absorber 2 is either designed as a separate part or arranged outside the housing 1 in the region of a first end face. It consists of a scintillator material, preferably of CsI: Na in needle structure, the needles being directed in the direction of a photocathode 3 are.
  • the photocathode 3 is arranged at a distance a of approximately 50 ⁇ m from the radiation absorber 2. It is designed as a layer, which is preferably made of copper, on a perforated polyimide film 4.
  • the polyimide film 4 acts as an electron multiplier. It is applied to an electron detector 5.
  • the electron detector 5 preferably has a pixel structure and converts the incident electrons into electrical signals which can be derived via suitable known measures, for example an electrical line, and on the basis of which a pictorial representation on a display device is possible.
  • the electron detector 5 is preferably designed as a 2D thin-film panel and may preferably consist of a-Se, a-Si: H or poly-Si.
  • a gas, in particular quenching gas for example, a mixture of argon and hydrocarbon, is added.
  • the function of the device is as follows:
  • X-rays are absorbed by the radiation absorber 2 and thereby converted into photons.
  • the photons release photoelectrons from the photocathode 3.
  • the photoelectrons reach the area of the perforated polyimide film 4.
  • a potential is applied between the photocathode 3 and the electron detector 5.
  • By the applied electric potential is achieved that all the photoelectrons are pulled from the surface of the photocathode 3 in the nearest holes.
  • charge ionization takes place by impact ionization.
  • the charge carrier multiplication or gain can be set by the level of the applied potential. Thus, the signal / noise ratio can be improved.
  • the photoelectrons are accelerated by the applied potential on the electron detector. The charges accumulated there are read out with a predetermined clock sequence.
  • the radiation absorber 2 may be provided with a UV-photon absorbing conductive layer.
  • the quench gas absorbs the UV photons generated by impact ionization so that they do not reach the photocathode 3, where they could unintentionally trigger photoelectrons.
  • Fig. 2 the modulation transfer function is plotted above the spatial frequency.
  • the curves MTF 1 and MTF 2 show the modulation transfer function at a distance of the photocathode 3 from the beam absorber 2 of 50 ⁇ m.
  • the curve MTF 2 shows the dot image function of an isotropic point source, the curve MTF 1 the aforementioned point image function for a Lambert source.
  • the curve MTF 3 shows the modulation transfer function, in which case the radiation absorber 2 is in direct contact with the electron detector 5.
  • the curve MTF 3 thus represents the characteristic of conventional flat-panel detectors.
  • the values MTF 4 indicate the modulation transfer function for a Lambert source, wherein the beam absorber 2 is arranged at a distance of 50 ⁇ m from the electron detector 5. It can be seen that the spaced array does not significantly change the modulation transfer function.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Radiation (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Claims (12)

  1. Convertisseur de rayonnement ayant un absorbeur (2) de faisceau pour produire des photons en fonction de l'intensité du rayonnement X incident,
    comprenant une photocathode (3) disposée en aval à une distance (a) de l'absorbeur (2) de faisceau dans le sens du rayonnement pour produire des électrons en fonction des photons sortant de l'absorbeur (2) de faisceau,
    comprenant un dispositif d'accélération des électrons sortant de la photocathode (3) jusqu'à un détecteur (5) d'électrons pour produire des signaux électriques en fonction des électrons incidents et
    comprenant un multiplicateur (4) d'électrons disposé entre la photocathode (3) et le détecteur (5) d'électrons, les électrons sortant de la photocathode (3) étant multipliés par le multiplicateur (4) d'électrons, et caractérisé en ce que la distance (a) est comprise entre 10 et 100 µm.
  2. Convertisseur de rayonnement suivant la revendication 1, dans lequel la photocathode (3) est opaque.
  3. Convertisseur de rayonnement suivant l'une des revendications précédentes, dans lequel la photocathode (3) est en un matériau métallique qui contient de préférence de l'or, du césium, du cuivre ou de l'antimoine.
  4. Convertisseur de rayonnement suivant l'une des revendications précédentes, dans lequel la photocathode (3) est constituée sous la forme d'une couche sur le multiplicateur (4) d'électrons.
  5. Convertisseur de rayonnement suivant l'une des revendications précédentes, dans lequel le multiplicateur (4) d'électrons est constitué sous la forme d'une couche sur le détecteur (5) d'électrons.
  6. Convertisseur de rayonnement suivant l'une des revendications précédentes, dans lequel le multiplicateur (4) d'électrons comporte une feuille de matière plastique perforée, de préférence en polyimide.
  7. Convertisseur de rayonnement suivant l'une des revendications précédentes, dans lequel l'absorbeur (2) de faisceau, le multiplicateur (4) d'électrons et le détecteur (5) d'électrons sont logés dans un boîtier (1) commun et étanche au gaz.
  8. Convertisseur de rayonnement suivant la revendication 7, dans lequel un gaz absorbant les photons UV est contenu dans le boîtier (1).
  9. Convertisseur de rayonnement suivant la revendication 8, dans lequel le gaz a au moins l'un des constituants suivants : argon, krypton, xénon, hélium, néon, CO2, N2, hydrocarbure, oxyde de diméthyle, vapeur de méthanol/d'éthanol.
  10. Convertisseur de rayonnement suivant l'une des revendications précédentes, dans lequel l'absorbeur (2) de faisceau est en un matériau formant scintillateur qui a de préférence une structure en aiguille en CsI:Na.
  11. Convertisseur de rayonnement suivant l'une des revendications précédentes, dans lequel le détecteur (5) d'électrons est réalisé sous la forme d'un panneau à couche mince en 2D.
  12. Convertisseur de rayonnement suivant la revendication 11, dans lequel le panneau à couche mince en 2D est en a-Se, en a-Si:H ou en poly-Si.
EP01935937A 2000-03-23 2001-03-22 Convertisseur de rayonnement comprenant un scintillateur, une photocathode et un multiplicateur à électrons Expired - Lifetime EP1266391B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10014311A DE10014311C2 (de) 2000-03-23 2000-03-23 Strahlungswandler
DE10014311 2000-03-23
PCT/DE2001/001109 WO2001071381A2 (fr) 2000-03-23 2001-03-22 Convertisseur de rayonnement

Publications (2)

Publication Number Publication Date
EP1266391A2 EP1266391A2 (fr) 2002-12-18
EP1266391B1 true EP1266391B1 (fr) 2008-07-16

Family

ID=7635969

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01935937A Expired - Lifetime EP1266391B1 (fr) 2000-03-23 2001-03-22 Convertisseur de rayonnement comprenant un scintillateur, une photocathode et un multiplicateur à électrons

Country Status (5)

Country Link
US (1) US7022994B2 (fr)
EP (1) EP1266391B1 (fr)
JP (1) JP2003528427A (fr)
DE (2) DE10014311C2 (fr)
WO (1) WO2001071381A2 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3145066A1 (de) 1981-11-13 1983-05-19 Fritz Werner Industrie-Ausrüstungen GmbH, 6222 Geisenheim Verfahren zum herstellen eines vergleichsweise energiereicheren, stickstofffreien gases und einrichtung zur durchfuehrung des verfahrens
US6747258B2 (en) * 2001-10-09 2004-06-08 Itt Manufacturing Enterprises, Inc. Intensified hybrid solid-state sensor with an insulating layer
US7015452B2 (en) 2001-10-09 2006-03-21 Itt Manufacturing Enterprises, Inc. Intensified hybrid solid-state sensor
US7791047B2 (en) 2003-12-12 2010-09-07 Semequip, Inc. Method and apparatus for extracting ions from an ion source for use in ion implantation
US7835502B2 (en) * 2009-02-11 2010-11-16 Tomotherapy Incorporated Target pedestal assembly and method of preserving the target
JP5554322B2 (ja) * 2009-04-01 2014-07-23 株式会社トクヤマ 放射線画像検出器
US8395312B2 (en) * 2010-04-19 2013-03-12 Bridgelux, Inc. Phosphor converted light source having an additional LED to provide long wavelength light
CN107469240B (zh) 2013-02-26 2020-04-21 安科锐公司 多叶准直器和用于准直治疗放射束的系统
GB2524778A (en) * 2014-04-02 2015-10-07 Univ Warwick Ultraviolet light detection

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1175597A (en) * 1967-06-16 1969-12-23 Mullard Ltd Improvements in or relating to Image Intensifiers
US3609359A (en) * 1969-01-08 1971-09-28 Eugene Wainer X-ray image intensifier with electron michrochannels and electron multiplying means
US3846630A (en) * 1970-01-07 1974-11-05 Zeev D Ben Method for identifying elemental areas of a photocathode
US3710125A (en) * 1970-04-29 1973-01-09 Univ Northwestern Secondary emission enhancer for an x-ray image intensifier
GB1457213A (en) * 1975-01-30 1976-12-01 Mullard Ltd Electron multipliers
US4345153A (en) * 1980-07-30 1982-08-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Low intensity X-ray and gamma-ray spectrometer
US4376892A (en) * 1980-10-16 1983-03-15 Agence Nationale De Valorisation De La Recherche (Anvar) Detection and imaging of the spatial distribution of visible or ultraviolet photons
FR2494906A1 (fr) * 1980-11-25 1982-05-28 Thomson Csf Tube photodetecteur a multiplication d'electrons utilisable dans un lecteur video couleur
DE3332648A1 (de) 1983-09-09 1985-03-28 Siemens AG, 1000 Berlin und 8000 München Roentgendiagnostikeinrichtung mit einem roentgenkonverter
US4866970A (en) * 1985-04-24 1989-09-19 Albino Castiglioni Apparatus for the continuous shearing off and cold swaging of metal workpieces
EP0534547B1 (fr) * 1991-09-27 1996-09-04 Koninklijke Philips Electronics N.V. Détecteur de rayons X avec lecture d'image de charge
DE4237097A1 (en) 1991-11-19 1993-05-27 Siemens Ag X=ray image intensifier with vacuum housing having input light screening - has input window of vacuum housing and photocathode optically coupled on one side of glass carrier and electron multiplying stage
GB2269048B (en) * 1992-07-03 1995-10-04 Third Generation Technology Li Photoemitters
JPH07294644A (ja) * 1994-04-25 1995-11-10 Shimadzu Corp 放射線二次元検出器
DE4429925C1 (de) * 1994-08-23 1995-11-23 Roentdek Handels Gmbh Verfahren und Detektoreinrichtung zur elektronischen positionsbezogenen Erfassung von Strahlung
DE19527794C2 (de) * 1995-07-19 1997-10-23 Ifg Inst Fuer Geraetebau Gmbh Verfahren und Vorrichtung zur Herstellung optischer Elemente für die Kapillaroptik
JP2001135267A (ja) * 1999-09-08 2001-05-18 Siemens Ag 輻射変換器

Also Published As

Publication number Publication date
WO2001071381A2 (fr) 2001-09-27
WO2001071381A3 (fr) 2002-04-18
DE50114124D1 (de) 2008-08-28
DE10014311C2 (de) 2003-08-14
US20030164682A1 (en) 2003-09-04
EP1266391A2 (fr) 2002-12-18
US7022994B2 (en) 2006-04-04
JP2003528427A (ja) 2003-09-24
DE10014311A1 (de) 2001-10-04

Similar Documents

Publication Publication Date Title
Zhao et al. Digital radiology using active matrix readout of amorphous selenium: Theoretical analysis of detective quantum efficiency
EP1102302B1 (fr) Source monochromatique à rayons X
US4142101A (en) Low intensity X-ray and gamma-ray imaging device
EP1266391B1 (fr) Convertisseur de rayonnement comprenant un scintillateur, une photocathode et un multiplicateur à électrons
DE2909066C2 (fr)
DE3704716C2 (fr)
DE2038607A1 (de) Strahlenabbildungseinrichtung
DE102008051045B4 (de) Strahlungsdirektkonverter
DE69110940T2 (de) Nahfokus-Röntgenbildverstärkerröhre.
DE4223693C2 (de) Röntgenbildverstärker mit einem CCD-Bildwandler
DE102009060315A1 (de) Zählender Röntgendetektor
DE2750132C2 (fr)
DE2946108C2 (de) Strahlendetektor
US6566809B1 (en) Radiation converter having an electron multiplier
DE10137012B4 (de) Röntgendiagnostikeinrichtung mit einem flächenhaften Festkörper-Röntgenbildwandler
WO2007036463A1 (fr) Detecteur de rayons x et procede permettant son fonctionnement
EP1192660A2 (fr) Capteur a semi-conducteur pourvu d'une structure a pixels, et utilisation de ce capteur dans un systeme a vide
DE10013168A1 (de) Strahlungswandler
EP0156024B1 (fr) Système de détection
DE10126388B4 (de) Festkörperstrahlungsdetektor
DE2605965C2 (fr)
DE2306575A1 (de) Roentgenbildverstaerker
DE4322834A1 (de) Röntgenbildverstärker
DE69402367T2 (de) Bildverstärkerröhre
DE2214842A1 (de) Detektor für elektromagnetische Strahlung hoher Energie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020911

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20030307

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

RTI1 Title (correction)

Free format text: RADIATION CONVERTER COMPRISING A SCINTILLATOR, A PHOTOCATHODE AND AN ELECTRON MULTIPLIER

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50114124

Country of ref document: DE

Date of ref document: 20080828

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110321

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110310

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R409

Ref document number: 50114124

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R409

Ref document number: 50114124

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110520

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120322

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50114124

Country of ref document: DE

Effective date: 20121002

Ref country code: DE

Ref legal event code: R119

Ref document number: 50114124

Country of ref document: DE

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121002

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载