EP1265639A1 - The use of anticoagulant agents in the extracorporeal treatment of blood - Google Patents
The use of anticoagulant agents in the extracorporeal treatment of bloodInfo
- Publication number
- EP1265639A1 EP1265639A1 EP01921346A EP01921346A EP1265639A1 EP 1265639 A1 EP1265639 A1 EP 1265639A1 EP 01921346 A EP01921346 A EP 01921346A EP 01921346 A EP01921346 A EP 01921346A EP 1265639 A1 EP1265639 A1 EP 1265639A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fold
- blood
- hirudin
- anticoagulant
- extracorporeal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000003146 anticoagulant agent Substances 0.000 title claims abstract description 87
- 229940127090 anticoagulant agent Drugs 0.000 title claims abstract description 62
- 210000004369 blood Anatomy 0.000 title claims description 37
- 239000008280 blood Substances 0.000 title claims description 37
- 238000011282 treatment Methods 0.000 title description 36
- 230000004087 circulation Effects 0.000 claims abstract description 53
- 108010039231 polyethyleneglycol-hirudin Proteins 0.000 claims abstract description 48
- 238000001631 haemodialysis Methods 0.000 claims abstract description 27
- 230000000322 hemodialysis Effects 0.000 claims abstract description 27
- 230000002792 vascular Effects 0.000 claims abstract description 27
- 238000011321 prophylaxis Methods 0.000 claims abstract description 13
- 208000020832 chronic kidney disease Diseases 0.000 claims abstract description 9
- 230000002035 prolonged effect Effects 0.000 claims description 26
- 230000003285 pharmacodynamic effect Effects 0.000 claims description 7
- 239000003814 drug Substances 0.000 claims description 5
- 238000000502 dialysis Methods 0.000 abstract description 16
- 230000036765 blood level Effects 0.000 description 39
- 238000005259 measurement Methods 0.000 description 29
- 229940127219 anticoagulant drug Drugs 0.000 description 25
- WQPDUTSPKFMPDP-OUMQNGNKSA-N hirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 WQPDUTSPKFMPDP-OUMQNGNKSA-N 0.000 description 20
- 230000000694 effects Effects 0.000 description 17
- 108010007267 Hirudins Proteins 0.000 description 16
- 102000007625 Hirudins Human genes 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 13
- 229940006607 hirudin Drugs 0.000 description 12
- 239000012528 membrane Substances 0.000 description 11
- 229920001223 polyethylene glycol Polymers 0.000 description 10
- 230000008030 elimination Effects 0.000 description 9
- 238000003379 elimination reaction Methods 0.000 description 9
- 230000000069 prophylactic effect Effects 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- 238000010790 dilution Methods 0.000 description 8
- 239000012895 dilution Substances 0.000 description 8
- 229920000669 heparin Polymers 0.000 description 8
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 7
- 239000002202 Polyethylene glycol Substances 0.000 description 7
- 230000037396 body weight Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 102000004196 processed proteins & peptides Human genes 0.000 description 7
- 108090000765 processed proteins & peptides Proteins 0.000 description 7
- 208000007536 Thrombosis Diseases 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 229960002897 heparin Drugs 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- -1 for example Substances 0.000 description 5
- 125000003827 glycol group Chemical group 0.000 description 5
- 229920001184 polypeptide Polymers 0.000 description 5
- 208000032843 Hemorrhage Diseases 0.000 description 4
- 208000001647 Renal Insufficiency Diseases 0.000 description 4
- 108090000190 Thrombin Proteins 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 4
- 208000034158 bleeding Diseases 0.000 description 4
- 230000000740 bleeding effect Effects 0.000 description 4
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 4
- 108010085662 ecarin Proteins 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 201000006370 kidney failure Diseases 0.000 description 4
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 3
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 3
- 206010062506 Heparin-induced thrombocytopenia Diseases 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 230000002429 anti-coagulating effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000002615 hemofiltration Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229960004072 thrombin Drugs 0.000 description 3
- PGOHTUIFYSHAQG-LJSDBVFPSA-N (2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-1-[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-3-sulfanylpropanoyl]amino]-4-methylsulfanylbutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxybutanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-oxopentanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-oxobutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-carboxybutanoyl]amino]-5-oxopentanoyl]amino]hexanoic acid Chemical compound CSCC[C@H](N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](Cc1cnc[nH]1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(O)=O PGOHTUIFYSHAQG-LJSDBVFPSA-N 0.000 description 2
- 102000007469 Actins Human genes 0.000 description 2
- 108010085238 Actins Proteins 0.000 description 2
- 206010053567 Coagulopathies Diseases 0.000 description 2
- 108010049003 Fibrinogen Proteins 0.000 description 2
- 102000008946 Fibrinogen Human genes 0.000 description 2
- 229920002683 Glycosaminoglycan Polymers 0.000 description 2
- 241000237902 Hirudo medicinalis Species 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 108010000499 Thromboplastin Proteins 0.000 description 2
- 102000002262 Thromboplastin Human genes 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000002785 anti-thrombosis Effects 0.000 description 2
- 239000004019 antithrombin Substances 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 230000023555 blood coagulation Effects 0.000 description 2
- 230000002612 cardiopulmonary effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000035602 clotting Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229940109239 creatinine Drugs 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 229940012952 fibrinogen Drugs 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 230000003907 kidney function Effects 0.000 description 2
- 238000011866 long-term treatment Methods 0.000 description 2
- 229940127215 low-molecular weight heparin Drugs 0.000 description 2
- 108010011227 meizothrombin Proteins 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 230000001732 thrombotic effect Effects 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- YDMBNDUHUNWWRP-VJBWXMMDSA-N (2s)-1-[(2r)-2-amino-3-phenylpropanoyl]-n-[(2s)-5-(diaminomethylideneamino)-1-(4-nitroanilino)-1-oxopentan-2-yl]piperidine-2-carboxamide Chemical compound C([C@@H](N)C(=O)N1[C@@H](CCCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NC=1C=CC(=CC=1)[N+]([O-])=O)C1=CC=CC=C1 YDMBNDUHUNWWRP-VJBWXMMDSA-N 0.000 description 1
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 1
- 208000009304 Acute Kidney Injury Diseases 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241001631457 Cannula Species 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- 229920000045 Dermatan sulfate Polymers 0.000 description 1
- 229940123900 Direct thrombin inhibitor Drugs 0.000 description 1
- 241000122860 Echis carinatus Species 0.000 description 1
- AFSDNFLWKVMVRB-UHFFFAOYSA-N Ellagic acid Chemical compound OC1=C(O)C(OC2=O)=C3C4=C2C=C(O)C(O)=C4OC(=O)C3=C1 AFSDNFLWKVMVRB-UHFFFAOYSA-N 0.000 description 1
- ATJXMQHAMYVHRX-CPCISQLKSA-N Ellagic acid Natural products OC1=C(O)[C@H]2OC(=O)c3cc(O)c(O)c4OC(=O)C(=C1)[C@H]2c34 ATJXMQHAMYVHRX-CPCISQLKSA-N 0.000 description 1
- 229920002079 Ellagic acid Polymers 0.000 description 1
- 108010080865 Factor XII Proteins 0.000 description 1
- 102000000429 Factor XII Human genes 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 206010016717 Fistula Diseases 0.000 description 1
- 229920002971 Heparan sulfate Polymers 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 208000030831 Peripheral arterial occlusive disease Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 208000033626 Renal failure acute Diseases 0.000 description 1
- 108010039286 S 2238 Proteins 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 208000005485 Thrombocytosis Diseases 0.000 description 1
- 208000001435 Thromboembolism Diseases 0.000 description 1
- 208000007814 Unstable Angina Diseases 0.000 description 1
- 206010047249 Venous thrombosis Diseases 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000010100 anticoagulation Effects 0.000 description 1
- 239000000729 antidote Substances 0.000 description 1
- 238000002617 apheresis Methods 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 230000004872 arterial blood pressure Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229940059329 chondroitin sulfate Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000009563 continuous hemofiltration Methods 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- AVJBPWGFOQAPRH-FWMKGIEWSA-L dermatan sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@H](OS([O-])(=O)=O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](C([O-])=O)O1 AVJBPWGFOQAPRH-FWMKGIEWSA-L 0.000 description 1
- 229940051593 dermatan sulfate Drugs 0.000 description 1
- 108010073652 desirudin Proteins 0.000 description 1
- XYWBJDRHGNULKG-OUMQNGNKSA-N desirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 XYWBJDRHGNULKG-OUMQNGNKSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 229960002852 ellagic acid Drugs 0.000 description 1
- 235000004132 ellagic acid Nutrition 0.000 description 1
- 238000002270 exclusion chromatography Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000003890 fistula Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 239000008241 heterogeneous mixture Substances 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 230000006623 intrinsic pathway Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 230000037356 lipid metabolism Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- FAARLWTXUUQFSN-UHFFFAOYSA-N methylellagic acid Natural products O1C(=O)C2=CC(O)=C(O)C3=C2C2=C1C(OC)=C(O)C=C2C(=O)O3 FAARLWTXUUQFSN-UHFFFAOYSA-N 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 230000014508 negative regulation of coagulation Effects 0.000 description 1
- 230000021603 oncosis Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 230000020971 positive regulation of blood coagulation Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000003079 salivary gland Anatomy 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000003868 thrombin inhibitor Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 230000006441 vascular event Effects 0.000 description 1
- 239000002435 venom Substances 0.000 description 1
- 210000001048 venom Anatomy 0.000 description 1
- 231100000611 venom Toxicity 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/60—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/08—Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
Definitions
- the present invention relates to the use of anticoagulant agents in the extracorporeal treatment of blood.
- Blood in an extracorporeal circulation comes into contact with exogenous surfaces .
- the prevention of this is the task of the anticoagulants which are conventionally administered in this situation.
- heparin and heparin-like agents which are employed for this purpose, although there are problems with the use thereof.
- Patients treated with heparin need continuous monitoring in particular because of the generally known risk of HIT (heparin-induced thrombocytopenia) , osteoporosis, lipid metabolism disturbances and bleeding complications. It is generally necessary to comply with a complicated dosage regimen.
- HIT heparin-induced thrombocytopenia
- osteoporosis lipid metabolism disturbances and bleeding complications. It is generally necessary to comply with a complicated dosage regimen.
- the patients after an initial bolus of 10 - 20 U/kg, the patients usually receive a further 5 - 10 U/kg/h in order to maintain a predetermined level in the blood (Mehta R. L., ASAIO Journal, 931 - 935 (1994)).
- orgaran has an aXa/alla ratio of 22, whereas most low molecular weight heparins are in the range from 1 to 5 (Beijering et al., Seminars in Thrombosis and Hemostasis, Vol. 23, No. 2, 225 - 233 (1997)).
- hirudins A corresponding search for substances with a prolonged half-life was successful with hirudins.
- hirudins obtained from the salivary glands of the medical leech Hirudo medicinalis
- recombinant hirudin EP 0 158 564
- EP 0 345 616 describes dextran- and Sepharose-derivatized hirudin.
- EP 0 372 670 specifies sulfated and sulfonated, optionally pegylated, hirudins.
- the pegylated hirudin muteins described in EP 0 502 962 were also developed with the aim of achieving even longer half-lives, with undiminished activity (Esslinger H.-U., et al.: Thromb. Haemost. 77(5) (1997) 911-919; Esslinger H.-U., et al.: Ann. Hematol. 76 (Suppl. I) (1998) A97) .
- EP 0 502 962 mentions - in this case for PEG-hirudin - the indications typically listed for anticoagulants, including precisely their use during extracorporeal blood circulation, for example in a hemodialysis or a cardiopulmonary bypass (Heidrich J.P., et al.: Clinical Chemistry and Laboratory Medicine 36 (1998) 847-854).
- coatings based on polylactic acid have already been treated with PEG-hirudin (Schmidmaier G., et al.: Journal of the American College of Cardiology, 29/2 (1997) 354A) .
- the object on which the present invention is based, of more comprehensive protection of patients with an extracorporeal circulation and, in particular, dialysis patients receiving long-term treatment, is achieved by the supplementary prophylactic, and in particular the combined therapeutic and prophylactic, use of anticoagulant agents.
- the present invention therefore relates to the use of at least one anticoagulant agent for the prophylactic treatment of individuals whose blood undergoes extracorporeal circulation at times .
- the prophylactic treatment serves in particular to avert (reduce) vascular complications.
- the aim of the treatment is at least a comparatively reduced risk for, and in particular reduced occurrence of, vascular events.
- the treatment is especially important when the individual's blood is not undergoing extracorporeal circulation.
- the treatment is thus in a way an after-treatment of individuals whose blood has undergone extracorporeal circulation. It supplements the anticoagulant protection, which is always necessary during extracorporeal circulation, so that prophylactic protection against the development and occurrence of vascular complications also exists at times when the blood is not in an extracorporeal circulation.
- the present invention therefore relates in particular to the use of at least one anticoagulant agent for the treatment of individuals with an extracorporeal circulation as anticoagulant during the extracorporeal circulation and for prophylaxis of vascular complications after the extracorporeal circulation.
- This corresponds to a method for treating individuals undergoing extracorporeal circulation where at least one anticoagulant agent is used as anticoagulant during the extracorporeal circulation and for prophylaxis of vascular complications after the extracorporeal circulation.
- the treatment period is divided according to the invention into treatment phases in which the blood of the individual to be treated passes through an extracorporeal circulation (extracorporeal treatment phases), and into treatment phases in which the blood is not passed through an extracorporeal circulation (intracorporeal treatment phases).
- An extracorporeal circulation means diverting the blood outside an individual's body.
- the aim is usually to exclude sections of the body from the bloodstream and/or perform an extracorporeal treatment of the blood.
- the former use is indicated in particular in operations on the open heart or on major blood vessels, for example for temporary disconnection of the heart by means of a cardiopulmonary bypass (heart-lung machine).
- the latter use is particularly indicated for extrarenal kidney-function treatment of blood, for example by hemodialysis in cases of renal insufficiency or by hemofiltration in cases of renal insufficiency or other conditions, for example in patients undergoing lipid apheresis.
- further expedient anticoagulant measures during the extracorporeal phase on use of a particular anticoagulant agent.
- the expediency of and necessity for further anticoagulant measures are subject to expert assessment.
- further anticoagulants in addition to a particular anticoagulant agent may be used within the framework of further anticoagulant measures.
- a particular type of further anticoagulant measures may comprise equipping extracorporeal systems or parts thereof with anticoagulants, for example, coating surfaces.
- anticoagulant has the generally accepted meaning for the purpose of the invention. Accordingly, the anticoagulant agents include accepted anticoagulants and agents with a similar effect on blood coagulation of vertebrates, preferably mammals and, in particular, humans.
- a particular class of anticoagulant agents comprises the direct thro bin inhibitors, for example hirudins and hirudin derivatives, especially PEG-hirudin.
- anticoagulant agents with an extended half-life in the organism to be treated are advantageous for particular treatment regimens according to the invention.
- Preferred according to the invention for this purpose are anticoagulant agents with a longer half-life than heparins and, in particular, unfractionated heparins and, especially, those with a terminal half-life after intravenous administration of at least about 4 h, even better of at least about 5 h and, in particular, of at least about 6 h.
- the stated terminal half-lives relate to essentially intact kidney function, that is to say normally a renal elimination efficiency corresponding to a creatinine clearance CL C of at least about 100 ml/min.
- anticoagulant agents with an enduring pharmacodynamic activity in the organism to be treated are advantageous for particular treatment regimens according to the invention.
- Agents with pharmacodynamic activity are those which according to the invention have minimal prophylactic activity, i.e. bring about a clinically relevant reduction of vascular complications compared with an untreated control group.
- Enduring means, in particular, a time span which extends beyond the extracorporeal phase and, specifically in the case of a regular alternation of extra- and intracorporeal phases, advantageously extends to the next extracorporeal phase.
- an anticoagulant agent not only depend on the agent chosen but may also be controlled, within the framework of the treatment and in particular of the mode of administration, by pharmaceutical measures for example.
- agents with a short half-life or pharmacodynamic activity per se can be administered as suitable slow-release formulation.
- hirudin derivatives composed of hirudin and soluble carriers, as agents with delayed action.
- an anticoagulant agent with an extended half-life and/or an enduring pharmacodynamic activity offers the advantage of being able to be used both as anticoagulant during the extracorporeal circulation and for prophylaxis of vascular complications after the extracorporeal circulation.
- the use of PEG-hirudin is particularly preferred according to the invention.
- PEG-hirudin stands for polyethylene glycol conjugates of hirudin.
- the term hirudin refers here to a class of polypeptide-based anticoagulant substances which are derived from true hirudin, the natural polypeptide which can be isolated from the medical leech Hirudo medicinalis.
- the term hirudin according to the invention also includes recombinant variants (r-hirudin) and also mutated variants (hirudin muteins).
- Preferred for the polyethylene glycol conjugation are the polypeptides of the formula II described in EP 0 502 962 and, of these, in particular the polypeptide with the sequence SEQ ID NO:l according to the invention.
- the polyethylene glycols are preferably conjugated via lysine residues, where appropriate using suitable linkers, for example those indicated in EP 0 502 962, which are advantageously stable under physiological conditions.
- PEG-hirudin based on the polypeptide described above with the sequence SEQ ID NO:l, to which a polyethylene glycol residue is bound in each case to the lysine in position 27 and the lysine in position 33.
- the binding can take place, for example, via a urethane-like linker.
- n is an integer from 50 to 200, preferably from 75 to 150 and, in particular, from 110 to 120, and R is alkyl preferably having 1 to 4 carbon atoms. R is, in particular, methyl.
- PEG-hirudin refers to a usually heterogeneous mixture of pegylated peptides with varying polyethylene glycol residues.
- the variation in the polyethylene glycol residues is attributable in particular to a variation in the PEG chain length, whose molecular weight varies in accordance with the value of n in a range from about 2000 to about 9000, preferably from about 3000 to about 7000 and, in particular, about 5000 +/- 1000 Da.
- one embodiment of PEG-hirudin has a weight average molecular weight, determined by exclusion chromatography (Superose 12, calibrated with PEG, Pharmacia), of about 17,000 +/- 1000 Da.
- an advantageous embodiment of PEG-hirudin has a specific antithrombotic activity of about 10,000 - 14,000 ATU/mg of protein.
- an arteriovenous connection describes an extracorporeal system which takes arterial blood from the individual's body and - if necessary after appropriate treatment - returns it to the venous system of the body.
- AV and W connections are usually preferred in the area of hemodialysis and hemofiltration. Whereas extracorporeal W and VA systems are usually operated with an external pump, this is unnecessary with extracorporeal AV systems - provided the arterial blood pressure is sufficient.
- the dosage of anticoagulant agents and adjuvant anticoagulants may be different with different types of connection, for example higher dosages may be necessary on use of pumps.
- the access to the corporeal vascular system can be achieved for example by introducing tubular inlet lines into corporeal vessels.
- Suitable examples are cannulas or catheters, whose dimensions, that is to say in particular length and internal diameter, can be adapted to the particular system.
- short and wide-lumen catheters are preferred for AV systems, and double-lumen catheters are preferred for W systems.
- shunts are used as appropriate access to the corporeal vascular system, for example in the form of artificial vascular implants or fistulas.
- the blood is passed along or through filters or membranes. It may be necessary to choose the membrane in accordance with the anticoagulant agent used.
- the preferred use according to the invention of PEG-hirudin is suitable for conventional membrane and filtration systems employed in particular in the area of hemodialysis and hemofiltration. These include membranes of natural materials such as cellulose derivatives, for example cellulose triacetate, and synthetic materials, for example polysulfones, polyamides, polyacrylonitrile. Plate filters and hollow fiber arrangements are examples of possible geometries.
- One advantage of the use of PEG-hirudin is that it is suitable both for extracorporeal systems with HF membranes (high flux) and for those with LF membranes (low flux).
- PMMA membranes for example the membranes made of poly(methyl methacrylate) or poly(methyl methacrylate) copolymers described in DE 197 15 504 Al, for example the Toray membrane known for this purpose can, because of their particular binding properties for PEG-hirudin, be used as functional antidote for rapid elimination of PEG-hirudin, for example in cases of intolerance reactions or overdosage .
- anticoagulant agents are, optionally in addition to that as anticoagulant during the extracorporeal circulation, the prophylaxis of, in particular secondary, vascular complications after the extracorporeal circulation.
- Vascular complications include according to the invention disturbances of the function of the cerebral, cardiac, mesenteric and peripheral vessels and pathological states associated therewith and symptoms thereof. These include, for example, the formation of thrombi in the vascular system of the individual to be treated, that is to say, in particular, venous and arterial thromboses, in particular deep vein thromboses, peripheral occlusive diseases, shunt thromboses, catheter thromboses, thromboembolisms, myocardial infarct, unstable angina pectoris and stroke. Accordingly, the use according to the invention of anticoagulant agents has particular advantages in individuals at increased risk of vascular complications.
- Risk-increasing factors include both disorders of the coagulation system, in particular AT-III deficits and elevated fibrinogen levels, thrombocytosis, HIT, and hypertension and preexistent disorders such as coronary heart diseases, diabetes or other vascular disorders .
- anticoagulant agents for the prophylaxis of vascular complications extends at least over a period which is subsequent to the time of the extracorporeal circulation and, according to a particular embodiment of the present invention, follows it directly.
- this period ideally extends until the next extracorporeal phase.
- anticoagulant agents are used for treatment of an individual with multiple alternation of extra- and intracorporeal phase as anticoagulant during the extracorporeal phases and for the prophylaxis of vascular complications during the intracorporeal phases .
- the use as anticoagulant during the extracorporeal phase may likewise include a prophylactic treatment of vascular complications, and this is also usually the case.
- anticoagulant agents comprises a method within the framework of the treatment. This entails administering to the individual to be treated, preferably a mammal, in particular a human, agricultural animal or domestic animal, an appropriate amount of one or more anticoagulant agents, usually formulated in accordance with human pharmaceutical or veterinary practice.
- anticoagulant agents can take place in accordance with a - usually necessary - systemic agent administration.
- a convenient possibility for administering an appropriate amount of anticoagulant agents is the parenteral route and, in particular, injection with the blood front into the dialysis system, in particular via an introduction means .
- expediency of the amount of anticoagulant agents to be administered is determined in particular by the anticoagulant effect of the resulting blood levels.
- values in the therapeutic range are expedient.
- Therapeutic means here an effect which is able to counteract the thrombotic stimuli occurring during the extracorporeal circulation.
- blood levels minimum blood levels
- anti-IIa of at least about 400 ng/ml, preferably of at least about 500 ng/ml and, in particular, of at least about 600 ng/ml.
- Measurement of the APTT shows an APTT prolonged advantageously at least about 1.3-fold, preferably at least about 1.6-fold and, in particular, at least about 1.8-fold.
- Measurement of the ECT shows an ECT prolonged advantageously at least about 1.2-fold, preferably at least about 1.6-fold and, in particular, at least about 1.8-fold.
- expedient values are those which keep the risk of bleeding by the treated individual within limits.
- the blood levels to be, about 5 minutes after administration of the anticoagulant agent, a maximum of about 2400 ng/ml, preferably a maximum of about 1700 ng/ml and, in particular, a maximum of about 1500 ng/ml, based on anti-IIa.
- Measurement of the APTT shows an APTT prolonged advantageously by a maximum of about 5.0-fold, preferably by a maximum of about 3.3-fold and, in particular, by a maximum of about 2.7-fold.
- Measurement of the ECT shows an ECT prolonged advantageously by a maximum of about 5.5-fold, preferably by a maximum of about 4.5-fold and, in particular, by a maximum of about 4.0-fold.
- the abovementioned values need not - where medically justifiable - be maintained throughout the extracorporeal phase.
- the amount of anticoagulant agent to be administered is such that the aforementioned minimum blood levels are obtained when the extracorporeal circulation is completed.
- the abovementioned values apply to the period which is limited on the one hand by the reaching of a maximum blood level, and on the other hand by the completion of the extracorporeal phase.
- an anticoagulant agent and, where appropriate, further anticoagulants is expediently chosen so that an anticoagulant effect is ensured even in the initial phase of the extracorporeal circulation.
- the administration can take place before connection to the extracorporeal system.
- Administration directly on connection to the extracorporeal system is also possible and may in this case conveniently take place via the extracorporeal system. If administration takes place directly on connection to the system, this usually takes place with the blood front or - where the residual level of anticoagulant agent in the patient permits this from the medical viewpoint - shortly thereafter.
- Administration via the extracorporeal " system is- to__be included according to the invention within the term parenteral administration and - in the case of a venous connection to the extracorporeal system - in particular within the term intravenous administration.
- the expediency of the amount of anticoagulant agent to be administered will be determined in particular by the prophylactic effect of the resulting blood levels.
- a prophylactic effect is in this connection an antithrombotic effect, which can be adapted to the relatively weak thrombotic stimulus after the extracorporeal circulation.
- blood levels which are lower than the blood levels obtained during the extracorporeal circulation.
- values in the range with prophylactic activity are possible - relatively to the therapeutic blood levels obtained during the extracorporeal circulation.
- blood levels of anticoagulant agents after the extracorporeal circulation of at least about 150 ng/ml, preferably of at least about 300 ng/ml and, in particular, of at least about 400 ng/ml.
- Measurement of the APTT shows an APTT prolonged advantageously at least about 1.2-fold, preferably at 5 least about 1.3-fold and, in particular, at least about 1.5-fold.
- Measurement of the ECT shows an ECT prolonged advantageously at least about 1.1-fold, preferably at least about 1.3-fold and, in particular, at least about 1.4-fold.
- the blood levels during an intracorporeal phase vary between the blood 10 level present on completion of the extracorporeal circulation and the abovementioned minimum values .
- the blood levels normally decrease as a function of time.
- the amount of anticoagulant agent to be administered is such that, with a periodic sequence of extra- and intracorporeal phases, the blood levels obtained at the end of the intracorporeal phases are at least about
- Measurement of the APTT shows an APTT prolonged advantageously at least about 1.2-fold, preferably at least about 1.3-fold and, in particular, at least about 1.5-fold.
- Measurement of the ECT shows
- blood levels advantageous at this time are a maximum of about 1000 ng/ml, preferably a maximum of about 700 ng/ml and, in particular, a maximum of about
- Measurement of the APTT shows an APTT prolonged advantageously by a maximum of about 3.5-fold, preferably by a maximum of about 2.8-fold and, in particular, by a maximum of about 2.5-fold.
- Measurement of the ECT shows an ECT prolonged advantageously by a maximum of about 4.0-fold,
- 35 preferably by a maximum of about 3.0-fold and, in particular, by a maximum of about 2.5-fold.
- transitional period following the extracorporeal circulation are subtherapeutic blood levels usually obtained.
- the transitional period from therapeutic to subtherapeutic and, in particular, prophylactic blood levels depends on the natural or, where appropriate, artificial elimination of anticoagulant agents from
- a particular aspect of the present invention comprises the treatment of individuals with renal insufficiency. Renal insufficiency means according to the invention that the elimination efficiency of the kidney is inadequate or absent. These include, in particular, individuals with a creatinine clearance CL CR of less than 100 ml/min, especially less than 50 ml/min and, in particular, less than 10 ml/min.
- individuals with acute renal insufficiency i.e. with the elimination efficiency of the kidney temporarily inadequate or absent are treated.
- the blood of the affected individual undergoes extracorporeal treatment until an adquate renal elimination efficiency is restored.
- the duration of the extracorporeal phase naturally varies from case to case, averaging several days .
- This type of treatment is referred to according to the invention as continuous hemofiltration.
- the treatment duration of at least about 3 days and, in particular, of at least about 5 days represents a particular embodiment of the present invention.
- a further particular embodiment of the present invention is directed at the treatment of individuals with chronic renal insufficiency. These are individuals whose renal elimination efficiency is permanently inadequate or absent.
- the extracorporeal circulation is a regular event.
- Both the duration of extracorporeal phases and the gaps between the extracorporeal phases which, according to a particular embodiment of the present invention, correspond to the intracorporeal treatment phases are adapted to the condition of the individual, in particular taking account of any remaining renal elimination efficiency.
- the present invention is directed in particular at the treatment of individuals with at least one extracorporeal circulation a week and, in particular, at individuals with advanced chronic renal insufficiency and, accordingly, on average at least about two and, in particular, about three, extracorporeal circulations a week.
- This type of treatment is referred to according to the invention as intermittent (periodic) hemodialysis and represents, according to a particular embodiment of the present invention, a long-term, treatment consisting of alternate extra- and intracorporeal treatment phases .
- the anticoagulant agent is administered in the form of a single dose per cycle, and thus once per hemodialysis.
- a cycle is composed of an extracorporeal and an intracorporeal phase.
- the administration expediently takes place, especially in the case of a single dose, at the start of a cycle, i.e. at the start of an extracorporeal phase. However, it may also take place at another time during a cycle, for example after completion of the extracorporeal circulation.
- Another possibility comprises administering anticoagulant agent at the start of an extracorporeal phase and after completion of the extracorporeal circulation.
- the amount of the single dose preferably as bolus, can advantageously be such that a new dose of anticoagulant agent is given at the start of the next cycle in each instance.
- a possible basis for the amount of each dose, in particular a single dose to be administered at the start of a cycle, is the respective blood level of the anticoagulant agent measured in particular before the start of a cycle. The corresponding blood level is then raised through the administration of the dose. It reaches a maximum which is within a range appropriate for the purose of an anticoagulant measure.
- advantageous blood levels about 5 minutes after administration are at least about 600 ng/ml, preferably at least about 700 ng/ml and, in particular, at least about 800 ng/ml, based on anti-IIa.
- Measurement of the APTT shows an APTT prolonged advantageously at least about 1.5-fold, preferably at least about 1.9-fold and, in particular, at least about 2.3-fold.
- Measurement of the ECT shows an ECT prolonged advantageously at least about 1.5-fold, advantageously at least about 2.0-fold and, in particular, at least about 2.5-fold.
- the APTT can be prolonged up to about 5.0-fold, preferably up to about 3.3-fold and, in particular, up to about 2.7-fold
- the ECT can be prolonged up to about 5.5-fold, preferably up to about 4.5-fold and, in particular, up to about 4.0-fold.
- advantageous blood levels on completion of the extracorporeal phase are a maximum of about 2000 ng/ml, preferably a maximum of about 1500 ng/ml and, in particular, a maximum of about 1100 ng/ml, based on anti-IIa.
- Measurement of the APTT shows an APTT prolonged advantageously by a maximum of about 4.5-fold, preferably by a maximum of about 3.0-fold and, in particular, by a maximum of about 2.5-fold.
- Measurement of the ECT shows an ECT prolonged advantageously by a maximum of about 4.0-fold, preferably by a maximum of about 3.5-fold and, in particular, by a maximum of about 3.0-fold.
- the single dose to remain essentially the same per cycle on use of anticoagulant agents in the framework of intermittent hemodialysis. Accordingly, an amount of anticoagulant agent which remains essentially constant from cycle to cycle is administered to an individual. This amount can be based on individual parameters, in particular those influencing the dosage, for example, the body weight of the individual to be treated, but it is also possible to use a fixed dose per individual. However, account must be taken of the fact that adaptation to the anticoagulant agent used according to the invention may be necessary at the start of therapy. Thus, for example, a relatively high dose must be chosen at the start of regular administration of PEG-hirudin to patients with chronic renal insufficiency in order to obtain expedient blood levels.
- the dosage can then be kept from cycle to cycle at a level which remains essentially constant during the subsequent regular administration of PEG-hirudin.
- the adaptation phase usually comprises several cycles, preferably less than 15 and, in particular, less than 10, it being possible advantageously to choose after about 5 cycles a dosage which is a maximum of about +/- 25% or, in particular, +/- 10% and preferably essentially at the desired constant dosage.
- the monitoring of the individual can be confined to checking the particular blood level before an extracorporeal phase and, where appropriate, checking the particular blood level after administration of the single dose.
- the former check serves in particular as a basis for the amount of the necessary dosage, and the latter to avoid an increased risk of bleeding due to any excessive maximum blood levels.
- PEG-hirudin advantageously provides a possibility of eliminating PEG-hirudin efficiency from the blood of an individual. Reference is made to the membranes which are described above and are known for this purpose.
- the amount of the single dose administered for, and preferably at the start of, a hemodialysis is such that the concentration of anticoagulant agent varies in a range from about 400 ng/ml to about 2400 ng/ml, preferably in a range from about 500 ng/ml to about 1700 ng/ml and, in particular, in a range from about 600 ng/ml to about 1500 ng/ml, based on anti-IIa, during the hemodialysis.
- the measured APTT is prolonged in a range of about 1.3-fold to about 5.0-fold, preferably in a range from about 1.6-fold to about 3.3-fold and, in particular, in a range from about 1.8-fold to about 2.7-fold, or the measured ECT is prolonged in a range from about 1.2-fold to about 5.5-fold, preferably in a range from about 1.6-fold to about 4.5-fold and, in particular, in a range from about 1.8-fold to about 4.0-fold.
- the amount of the single dose administered for, and preferably at the start of, a hemodialysis is such that the concentration of anticoagulant agent after completion of a hemodialysis and until the next one varies in the range from about 2000 ng/ml to about 150 ng/ml, preferably in a range from about 1500 ng/ml to about 300 ng/ml and, in particular, in a range from about 1100 ng/ml to about 400 ng/ml, based on anti-IIa.
- the measured APTT is prolonged in a range from about 4.5-fold to about 1.2-fold, preferably in a range from about 3.0-fold to about 1.3-fold and, in particular, in a range from about 2.5-fold to about 1.5-fold
- the measured ECT is prolonged in a range from about 4.5-fold to about 1.1-fold, preferably in a range from about 3.5-fold to about 1.3-fold and, in particular, in a range from about 3.0-fold to about 1.4-fold.
- the amount of the single dose administered for a hemodialysis can advantageously be such that, about 5 minutes after administration, the concentration of anticoagulant agent is at least about 600 ng/ml, preferably at least about 700 ng/ml and, in particular, at least about 800 ng/ml, based on anti-IIa.
- Measurement of the APTT shows an APTT prolonged advantageously by at least about 1.5-fold, preferably by at least about 1.9-fold and, in particular, by at least about 2.3-fold.
- Measurement of the ECT shows an ECT prolonged advantageously by at least about 1.5-fold, preferably by at least about 2.0-fold and, in particular, by at least about 2.5-fold.
- the blood levels described above can usually be obtained with bolus doses in the range from about 200 to about 1400 ATU/kg, preferably from about 400 ATU/kg to about 1200 ATU/kg and, in particular, from about 600 ATU/kg to about 1000 ATU/kg, of body weight.
- bolus doses in the range from about 200 to about 1400 ATU/kg, preferably from about 400 ATU/kg to about 1200 ATU/kg and, in particular, from about 600 ATU/kg to about 1000 ATU/kg, of body weight.
- ATU stands for antithrombin units based on the WHO I thrombin standard.
- an individual with chronic renal insufficiency can be treated, with an average of three extracorporeal circulations a week, with a dosage of about 0.02 to about 1.0 g of
- PEG-hirudin and, after adaptation, with a dosage of about 0.03 to about 0.06 mg, in each case based on kg of body weight, on use of a PEG-hirudin with a specific activity of about 10,000 to 14,000 ATU/mg of protein and, in particular, a specific activity of about 13,350 ATU/mg of protein.
- the invention also relates to the use of anticoagulant agents for producing medicaments, in particular pharmaceutical compositions, for the treatment according to the invention.
- anticoagulant agents are usually administered in the form of pharmaceutical compositions which, besides the agent, comprise at least one pharmaceutically suitable excipient.
- Compositions or medicaments of this type can be produced and formulated using techniques generally known to the skilled worker.
- the pharmaceutical compositions are preferably administered as liquid pharmaceutical form.
- Agent solutions in aqueous media such as water or physiological saline are particularly preferred.
- anticoagulant agents in particular PEG-hirudin
- PEG-hirudin can be supplied in solid, especially lyophilized, form and, separately therefrom, the solvent.
- Agent and solvent can be packed in aliquots in suitable containers, for example vials, which makes reconstitution of a solution of known concentration conveniently possible.
- suitable containers for example, 2 or 10 ml containers respectively containing 5 to 50 mg of PEG-hirudin; vials containing 50 mg of PEG-hirudin can be supplied as multiple-dose containers (reconstitution of the agent with a preserved solution) .
- blood level refers to a particular amount of anticoagulant agen (s) in the blood of an individual, which, on use of the determination methods described in the reference examples, can be expressed by one or, where appropriate, even several of the stated activity values.
- the stated concentrations of anticoagulant agents based on anti-IIa relate to the protein content of the PEG-hirudin used. Equivalent amounts apply to other substances with anti-IIa activity.
- Measurement of the ECT refers according to the invention to the use of direct thrombin inhibitors.
- the stated blood levels represent average values which relation to a group of at least about 10 individuals. Thus, because of the biological variability, the value for a single individual will usually differ from the stated statistical average within the framework of the statistical assessment and nevertheless be assignable to the average.
- the stated blood levels are guideline values which may vary within the scope of the accuracy of measurement even in relation to the same measurement sample. Accuracies of measurement for the individual determination methods are indicated in the reference examples. This variation is expressed by the "about" prefixing each value.
- the measured values served as the basis for the amount of the PEG-hirudin doses to be administered immediately before each hemodialysis.
- the residual PEG-hirudin concentrations initially increased and allowed the dose to be reduced from the initial 0.08 mg/kg of body weight to 0.03 to 0.05 mg/kg of body weight. It emerged that this dosage was suitable for obtaining blood levels of PEG-hirudin in the range from about 500 to about 1000 ng/ml of whole blood on completion of each dialysis with three hemodialyses a week.
- the residual PEG-hirudin concentration in the blood of each patient between the hemodialysis sessions ensured prophylactic protection against vascular complications .
- the determination of the activated partial thromboplastin time is based on plasma fibrin formation induced by addition of a partial thromboplastin (Actin FS) and calcium ions to the plasma. Ellagic acid is used as activator.
- sample volume is at least 450 ⁇ l. Samples are dispatched if necessary in the frozen state, and samples are stored in freezers.
- the controls used are control plasma in the normal range, control plasma in the therapeutic range, control plasma in the low therapeutic range and a quality control in the normal range, for example the controls commercially available from Dade Citrol 1, Citrol 2, Citrol 3 and Coag Trol N.
- the measurement is carried out in an ACL 3000.
- the ACL 3000 is a completely automatic, microcomputer-controlled centrifugal analysis system. After the start of the analysis cycle, sample and Actin are pipetted separately into the half-cuvettes of a reaction rotor made of acrylic glass with 20 cuvettes, and are mixed and then incubated. After the incubation, calcium chloride is pipetted into the cuvettes, mixed and measured. Measurements are carried out while the rotor is rotating.
- LED light-emitting diode
- the scattered light distribution is measured at an angle of 90° to the light source with the aid of a semiconductor sensor located underneath the rotor carrier.
- the measured results can also be stated as ratio and describe the ratio of the current value to the individual baseline value for a patient before the dialysis with PEG-hirudin.
- the accuracy of measurement is +10% to -10%.
- Determination of the anti-IIa activity is based on measurement of the activity remaining after addition of excess thrombin to the sample. Heparin and other non-thrombin serine proteases are neutralized before the assay by adding protamine chloride and aprotinin to the sample. Remaining thrombin cleaves the chromogenic substrate S2238 which is added to the sample.
- Standard B - D are stored in aliquots in the frozen state before use.
- Calibration samples with concentrations of 100, 200, 400, 600 and 800 ng/ml are prepared by suitable dilution of standard D with normal human citrated plasma.
- This method can be standardized correspondingly for determination of other anticoagulant agents .
- the measurement is carried out in an ACL 3000 (incubation time: 120 s; inter-ramp interval: 3 s; delay time: 3 s; acquisition time: 120 s; speed: 600 rpm).
- the extinction is measured using a 405 nm filter at a constant rotor speed.
- the accuracy of measurement is +20 to -10%.
- Determination of the ECT is based on the inhibition of the coagulation activity of meizothrombin.
- Ecarin a purified fraction of Echis carinatus venom, produces meizothrombin by cleavage of the prothromin in the plasma. The time until fibrinogen coagulates induced by ecarin is measured.
- Standard B - E are stored in aliquots in the frozen state before use.
- Calibration samples with concentrations of 250, 500, 1500, 2000 and 2500 ng/ml are prepared by suitable dilution of standard E with normal human citrated plasma.
- This method can be standardized correspondingly for determination of other anticoagulant agents.
- the measurement is carried out in an ACL 3000 (incubation time: 120 s; inter-ramp interval: 3 s; delay time: 3 s; acquisition time: 800 s; speed: 1200 rpm).
- the measured results can also be stated as ratio and describe the ratio of the current value to the individual baseline value for a patient before the dialysis with PEG-hirudin.
- the accuracy of measurement is +30% to -10%.
- the terminal half-life ⁇ / 2 is calculated from 0.693/ ⁇ z .
- ⁇ z represents the terminal rate of elimination which is determined by linear regression of a logarithmic plot of the concentration of the relevant agent in the blood against time as terminal slope of the concentration-time curve. For example, based on the time-dependent change in concentration indicated in Table 4 below, ⁇ z can be calculated to be 0.086 1/h and % ⁇ /2 can be calculated to be 8.04 h.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Heart & Thoracic Surgery (AREA)
- Neurosurgery (AREA)
- Urology & Nephrology (AREA)
- Cardiology (AREA)
- Diabetes (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Hospice & Palliative Care (AREA)
- Vascular Medicine (AREA)
- Psychiatry (AREA)
- Epidemiology (AREA)
- Medicinal Preparation (AREA)
- External Artificial Organs (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
Claims
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US19010300P | 2000-03-20 | 2000-03-20 | |
US190103P | 2000-03-20 | ||
EP00105867 | 2000-03-20 | ||
EP00105867 | 2000-03-20 | ||
PCT/EP2001/003181 WO2001070273A1 (en) | 2000-03-20 | 2001-03-20 | The use of anticoagulant agents in the extracorporeal treatment of blood |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1265639A1 true EP1265639A1 (en) | 2002-12-18 |
Family
ID=26070693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01921346A Ceased EP1265639A1 (en) | 2000-03-20 | 2001-03-20 | The use of anticoagulant agents in the extracorporeal treatment of blood |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1265639A1 (en) |
JP (2) | JP5367202B2 (en) |
AR (1) | AR027686A1 (en) |
AU (1) | AU2001248355A1 (en) |
CA (1) | CA2404115A1 (en) |
WO (1) | WO2001070273A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10077426B2 (en) | 2012-12-06 | 2018-09-18 | Enlivex Therapeutics Ltd | Therapeutic apoptotic cell preparations, method for producing same and uses thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1341414C (en) * | 1984-03-27 | 2002-12-31 | Paul Tolstoshev | Expression vectors of hirudine, transformed cells and process for the preparation of hirudine |
JPH04503660A (en) * | 1988-12-05 | 1992-07-02 | バイオジェン インコーポレイテッド | Method and composition for inhibiting platelet aggregation |
ES2084149T3 (en) * | 1989-12-01 | 1996-05-01 | Basf Ag | CONJUGATES OF HIRUDINPOLIALQUILENGLICOL. |
JPH05168705A (en) * | 1991-06-11 | 1993-07-02 | Toray Ind Inc | System removing von willebrand factor |
JPH05220218A (en) * | 1992-02-13 | 1993-08-31 | Norio Nakabayashi | Anti-thrombogenic regeneration cellulose film and manufacture thereof |
DE4242655A1 (en) * | 1992-12-17 | 1994-06-23 | Behringwerke Ag | Use of thrombin inhibitors to inhibit ocular fibrin formation |
DE19715504C2 (en) * | 1997-04-14 | 2000-10-26 | Max Planck Gesellschaft | PMMA membranes with polyethylene glycol-coupled active substances |
JP3601662B2 (en) * | 1998-07-24 | 2004-12-15 | 東洋紡績株式会社 | Blood purification membrane with improved antithrombotic properties |
-
2001
- 2001-03-20 JP JP2001568469A patent/JP5367202B2/en not_active Expired - Lifetime
- 2001-03-20 CA CA002404115A patent/CA2404115A1/en not_active Abandoned
- 2001-03-20 EP EP01921346A patent/EP1265639A1/en not_active Ceased
- 2001-03-20 AU AU2001248355A patent/AU2001248355A1/en not_active Abandoned
- 2001-03-20 WO PCT/EP2001/003181 patent/WO2001070273A1/en active Application Filing
- 2001-03-20 AR ARP010101290A patent/AR027686A1/en unknown
-
2011
- 2011-08-26 JP JP2011184920A patent/JP2012006964A/en active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO0170273A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU2001248355A1 (en) | 2001-10-03 |
JP2003527442A (en) | 2003-09-16 |
JP2012006964A (en) | 2012-01-12 |
WO2001070273A1 (en) | 2001-09-27 |
AR027686A1 (en) | 2003-04-09 |
CA2404115A1 (en) | 2001-09-27 |
JP5367202B2 (en) | 2013-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Davenport | What are the anticoagulation options for intermittent hemodialysis? | |
Barrowcliffe et al. | Anticoagulant activities of high and low molecular weight heparin fractions | |
US5112615A (en) | Soluble hirudin conjugates | |
Stefoni et al. | Standard heparin versus low-molecular-weight heparin: a medium-term comparison in hemodialysis | |
Freund et al. | Inhibition by recombinant hirudins of experimental venous thrombosis and disseminated intravascular coagulation induced by tissue factor in rats | |
US5922358A (en) | Antithrombotic and non-hemorrhagic heparin-based compositions, process for their preparation and therapeutic applications | |
Hubbard et al. | Neutralisation of heparan sulphate and low molecular weight heparin by protamine | |
JP3813169B2 (en) | Antithrombotic | |
Fareed et al. | An objective perspective on recombinant hirudin: a new anticoagulant and antithrombotic agent | |
Bucha et al. | Hirudin in haemodialysis | |
Diness et al. | Neutralization of a low molecular weight heparin (LHN-1) and conventional heparin by protamine sulfate in rats | |
US6809076B2 (en) | Use of anticoagulant agents in the extracorporeal treatment of blood | |
Kaiser | Anticoagulant and antithrombotic actions of recombinant hirudin | |
Ten Cate et al. | Anticoagulant effects of a low molecular weight heparinoid (Org 10172) in human volunteers and haemodialysis patients | |
US20070275086A1 (en) | Use of Increased Molecular-Weight Hirudin as an Anticoagulant in Extracorporeal Kidney Replace Therapy | |
EP1265639A1 (en) | The use of anticoagulant agents in the extracorporeal treatment of blood | |
De Prost | Heparin fractions and analogues: a new therapeutic possibility for thrombosis | |
Zhang et al. | Improvement of patency in small veins following dextran and/or low-molecular-weight heparin treatment | |
Vanholder et al. | Recombinant hirudin: clinical pharmacology and potential applications in nephrology | |
US20040038932A1 (en) | Antithrombotic compositions | |
Goddard et al. | Plasma exchange as a treatment for endogenous glycosaminoglycan anticoagulant induced haemorrhage in a patient with myeloma kidney | |
Dieval et al. | Influence of thromboembolism prophylaxis by low molecular weight heparin CY 216 (fraxiparine®) on several parameters of haemostasis in patients under dialysis and receiving either unfractionated heparin or CY 216 | |
Ronco et al. | Antithrombotic managemement of the blood circuit in intermittent renal replacement therapy | |
Sieberth | Influence of Coagulation Parameters on Filter Running Time during Continuous | |
CA2369096A1 (en) | Use of increased-molecular-weight hirudin as an anticoagulant in extracorporeal kidney replacement therapy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020918 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHERHAG, RUDI Inventor name: BACHER, PETER Inventor name: ESSLINGER, HANS-ULRICH Inventor name: PAROW, CHRISTOPHER Inventor name: ABEL, FLORIAN |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ABBOTT GMBH & CO. KG |
|
17Q | First examination report despatched |
Effective date: 20071123 |
|
APBK | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNE |
|
APBN | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2E |
|
APBR | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3E |
|
APAF | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ABBVIE DEUTSCHLAND GMBH & CO KG |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R003 |
|
APBT | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9E |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20160301 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1051976 Country of ref document: HK |