+

EP1075591B1 - Procede de fonctionnement d'un moteur a combustion interne a quatre temps - Google Patents

Procede de fonctionnement d'un moteur a combustion interne a quatre temps Download PDF

Info

Publication number
EP1075591B1
EP1075591B1 EP99947072A EP99947072A EP1075591B1 EP 1075591 B1 EP1075591 B1 EP 1075591B1 EP 99947072 A EP99947072 A EP 99947072A EP 99947072 A EP99947072 A EP 99947072A EP 1075591 B1 EP1075591 B1 EP 1075591B1
Authority
EP
European Patent Office
Prior art keywords
fuel
combustion
mixture
injection
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99947072A
Other languages
German (de)
English (en)
Other versions
EP1075591A1 (fr
Inventor
Rolf-Günther Nieberding
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1075591A1 publication Critical patent/EP1075591A1/fr
Application granted granted Critical
Publication of EP1075591B1 publication Critical patent/EP1075591B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for operating an im Four - stroke internal combustion engine in the preamble of the Claim 1 specified genus.
  • the invention has for its object to provide a method of im To provide preamble of claim 1 specified genus with the one adapted to the respective operating area and low-consumption and low-emission combustion is possible.
  • the object is achieved by a method having the features of the claim 1 solved.
  • Timing and course of combustion are crucial for low-consumption and low-emission substances, as well as intermittent and knock-free operation.
  • a start of combustion in the area of Top dead center is optimal for consumption and pollutants.
  • a delayed combustion leaves the fuel consumption and pollutant emissions increase and lead to Misfiring, too early combustion, however leads to impermissible pressure increases and peak pressures Knock phenomena.
  • the delay of the inflammations of the mixture may be the Relieve energy release, so that limited Adjust pressure increases in the combustion chamber, which in one acceptable range.
  • a delay of the inflammation takes place via an energy intake of the released combustion energy. Since the inflammatory process as energetic represents an integral process, can by temporal and local spread of the auto-ignition process a delay be achieved in the energy release. Instead of Homogeneity of the mixture with similar ignition tendency is now based on a gradient of the ignitability of the mixture , resulting in a delayed energy conversion in the Burning chamber leads, due to delayed combustion the Pressure increases lower.
  • the gradient of Ignition in the mixture is differentially in all Mixture proportions that are detected by the injection. Of the Gradient may not be so great that a Set temperature gradient in the mixture that the Energy transfer of the combustion reaction by heat conduction is determined.
  • a temporal and spatial spread of ignitability can by a different energy intake over time and to be set in the room.
  • energy is absorbed.
  • the amount of fuel is in the in the Brennraum existing medium so introduced that Combustor areas of different fuel evaporation result. In the areas of earliest and best evaporation the fuel components receive the highest energy input the time and therefore form the highest ignition tendency out.
  • the areas of incomplete mixing still take Energy evaporates during evaporation, so they slow down Ignition propensity.
  • the energy intake by evaporation causes the gradient of ignitability over the combustion chamber.
  • a time-stratified injection exists during the compression from already very igniting Fuel areas.
  • the freshly supplied to the combustion chamber Fuel shares take during their preparation phase Energy from the compressed mixture and delay the Inflammatory process of the already precompressed mixture.
  • the Energy absorption reduces the pressure increases, i. of the Gradient of ignitability is due to the separation of the Injection process influenced in several partial injections.
  • the mixture formation can the retention of exhaust gases in the combustion chamber to influence the be combined next combustion process.
  • Exhaust gas retention is achieved by reducing the combustion chamber volume the exhaust valve closed earlier, reducing the amount of exhaust gas compressed over the minimum volume and then is expanded.
  • At a late opening the inlet organs is due to the larger pressure difference one higher inflow energy given the stratification of exhaust gas and fresh gas decreased.
  • a homogeneous temperature distribution in the Combustion chamber may have a late injection or the separation of the Injection process in the sense shown above a gradient in the ignition.
  • the early injection during the turbulent mixture formation of the fresh gas with the Exhaust gas components in the combustion chamber as a result of late Opening the intake valve allows the previously injected Proportion of fuel homogeneously distributed in the combustion chamber and due to temperature increase over the conditioning time to ignite.
  • the second part of the fuel will be later fed to a local lowering of the ignition due to of energy absorption by evaporation bring about.
  • a limit of the process is the optimally uniform Mixture preparation through very early injection certainly.
  • the opposite limit is determined by the Mixture introduction in the combustion chamber at such a late Formed at the time when the evaporation of the fuel no longer before the implementation of sufficiently large shares of recycled fuel can take place. It comes because of of high energy states in the environment of incomplete recycled and unburned fuel Dehydration and coagulation in fatty areas to the formation of soot in the combustion chamber and in the exhaust system.
  • the inventive method is exclusively between them both mentioned limits.
  • the combustion engine shown schematically in FIGS. 1 and 2 has a cylinder block 1 with four cylinders 2, in which piston 3 are sealingly guided and by a Cylinder head 4 are closed. Cylinder 1, piston 3 and Cylinder head 4 enclose a combustion chamber 5, in which the Combustion takes place.
  • the gas exchange valves 7, 8 are of a valve control unit 9 opened and closed.
  • the fuel injector 6 is regarding injection timing and Fuel quantity actuated by an injection controller 10, the for the coordinated control of the gas exchange valves 7, 8 with the Valve control unit 9 is connected.
  • a flywheel 13 On the protruding from the cylinder block 1 end of Crankshaft is a flywheel 13, in its area a rotational speed sensor 14 for measuring the rotational nonuniformity the crankshaft is provided.
  • the speed sensor 14 as well other suitable sensors provide real-time signals from Lü and course of combustion, so taking into account of these values, the control of the fuel injection valve 6 and the gas exchange valves 7, 8 can take place.
  • Fig. 2 is a section through the combustion chamber 5 is shown, which is bounded by cylinder 2, piston 3 and cylinder head 4 and in which the fuel injection valve 6 injects fuel.
  • the points denoted Z 0 to Zn represent schematically the fuel components, which later reached the combustion chamber with increasing index and thus have a lower ignitability.
  • the high index elements during their vaporization phase, absorb energy from the mixture regions with otherwise homogeneous temperature distribution consisting of low indices of fuel.
  • the temperature conditions during the compression phase in the combustion chamber 5 shows a temperature profile denoted by T through the same.
  • the method according to the invention works as follows: By an inlet member 7 passes either air or a lean Fuel / air basic mixture in the combustion chamber 5. There is the Mixture with hot exhaust gas mixed and / or until Auto-ignition limit compressed. After the beginning of the combustion this is set by the released heat self-accelerating, especially since many mixture shares too same time reach the autoignition conditions. at small amounts of fuel in the combustion chamber 5 is the released Amount of energy is not so great that it becomes clear Pressure increase in the combustion chamber can lead. This is changing However, with increasing fuel content in the combustion chamber 5. The at homogeneous fuel distribution large, ready for ignition mixture would lead to an unwanted combustion with steep Pressure increases and high peak pressures and strong Pressure oscillations in the combustion chamber 5 lead.
  • the different fuel distribution is through late Direct injection into the homogeneous base mixture achieved.
  • By the evaporation and mixture heat of the individual Fuel droplets will change the mixture temperature locally reduces and thereby also its local ignitability.
  • the time-stratified injection exists during the Compression from already very ignitable fuel areas and those who are just entering the combustion chamber.
  • the fresh added fuel shares during their Preparation phase Energy from the precompressed mixture and delay its inflammatory process with the consequence reduced pressure increases.
  • the exhaust valve 8 In exhaust gas retention, the exhaust valve 8 is closed earlier, whereby the residual gas in Gas functionaltot Vietnamese compressed and then expanded. At an early age Opening of the intake valve 7 shortly after the gas exchange dead center and the subsequent pressure equalization between Combustion chamber 5 and the environment is formed in the combustion chamber 5 a uniform stratification of hot exhaust gas and cold fresh gas out. At a later opening of the intake valves 7 provides because of the higher negative pressure and the consequent higher inflow energy a lower stratification of exhaust gas and fresh gas.
  • the opening of the intake valve 7 is delayed, namely to increase the difference to the environmental condition, which due to the stronger turbulence to a mixing of hot exhaust and colder fresh air leads.
  • a uniform temperature distribution in the combustion chamber 5 can a late, sequential fuel injection one provide graduated ignition.
  • the early injected Fuel is distributed due to the high turbulence of the Air / residual gas mixture evenly and ignites because of long reaction time in the same.
  • the late injected Fuel causes local lowering of the ignition due to the mixture cooling by its evaporation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Claims (9)

  1. Procédé pour faire fonctionner un moteur à combustion interne avec allumage sous compression et avec injection directe du carburant, dans lequel
    une charge carburant/air pauvre pré-mélangée est contenue dans la chambre de combustion au début du temps de compression,
    la charge est comprimée jusqu'à la limite d'auto-allumage, du carburant étant injecté dans la chambre de combustion pendant la course de compression,
    caractérisé en ce que
    la quantité de carburant injectée dans la chambre de combustion pendant la course de compression est introduite en plusieurs opérations d'injection sur le plan temporel et local de telle sorte que dans les zones de mélange avec l'injection ultérieure, la spontanéité d'allumage est réduite.
  2. Procédé selon la revendication 1, caractérisé en ce que les spontanéités d'allumage différentes dans la chambre de combustion (5) pendant la phase de compression (Z1 à Zn) forment un gradient de spontanéité d'allumage.
  3. Procédé selon l'une ou l'autre des revendications 1 et 2, caractérisé en ce que le gradient de spontanéité d'allumage est influencé par l'instant d'injection du carburant lors d'une formation de mélange interne, la spontanéité d'allumage dans la chambre de combustion (5) étant déterminée par la température et par l'évolution de pression du mélange pauvre dans le temps.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'on peut déterminer des zones de combustion différentes et leur caractérisation, la détermination s'effectuant à partir de paramètres mémorisés dans des champs de caractéristiques ou par application de réseaux neuronaux.
  5. Procédé selon la revendication 4, caractérisé en ce qu'une régulation s'effectue en dépendance des zones de combustion détectées, la combustion étant optimisée via la configuration de l'injection et de la formation de mélange.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'une optimisation de la combustion s'effectue par variation de la compression et par une inhomogénéité ciblée du mélange air/carburant.
  7. Procédé selon la revendication 6, caractérisé en ce que le mélange local air/carburant est tout au plus stoechiométrique.
  8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que la charge du moteur est variée par réglage simultané de l'instant et de la quantité d'injection ainsi que par la fin de l'échappement et de l'admission.
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que la combustion est optimisée également à des points de fonctionnement stationnaires par variation de la compression, des turbulences et de l'injection.
EP99947072A 1998-02-07 1999-01-16 Procede de fonctionnement d'un moteur a combustion interne a quatre temps Expired - Lifetime EP1075591B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19804983A DE19804983C2 (de) 1998-02-07 1998-02-07 Verfahren zum Betrieb eines im Viertakt arbeitenden Verbrennungsmotors
DE19804983 1998-02-07
PCT/EP1999/000226 WO1999040301A1 (fr) 1998-02-07 1999-01-16 Procede permettant de faire fonctionner un moteur a combustion interne a quatre temps

Publications (2)

Publication Number Publication Date
EP1075591A1 EP1075591A1 (fr) 2001-02-14
EP1075591B1 true EP1075591B1 (fr) 2003-03-12

Family

ID=7857007

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99947072A Expired - Lifetime EP1075591B1 (fr) 1998-02-07 1999-01-16 Procede de fonctionnement d'un moteur a combustion interne a quatre temps

Country Status (5)

Country Link
US (1) US6394064B1 (fr)
EP (1) EP1075591B1 (fr)
JP (1) JP4897999B2 (fr)
DE (2) DE19804983C2 (fr)
WO (1) WO1999040301A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1233313B (zh) 1996-08-23 2013-01-02 卡明斯发动机公司 带最佳燃烧控制的预混合可燃混合气压燃发动机
US6230683B1 (en) 1997-08-22 2001-05-15 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control
DE69936081T2 (de) 1998-02-23 2008-01-17 Cummins, Inc., Columbus Regelung einer verbrennungskraftmaschine mit kompressionszündung und kraftstoff-luftvormischung
SE9903525D0 (sv) * 1999-09-29 1999-09-29 Volvo Ab Förfarande vid en förbränningsmotor
EP1134400B1 (fr) * 2000-01-27 2012-01-18 Nissan Motor Company Limited Gestion de combustion auto-allumée dans un moteur à combustion interne
JP3920526B2 (ja) * 2000-03-08 2007-05-30 トヨタ自動車株式会社 火花点火式成層燃焼内燃機関
AU2001261245A1 (en) 2000-05-08 2001-11-20 Cummins, Inc. Multiple operating mode engine and method of operation
US6953024B2 (en) 2001-08-17 2005-10-11 Tiax Llc Method of controlling combustion in a homogeneous charge compression ignition engine
JP3991789B2 (ja) * 2002-07-04 2007-10-17 トヨタ自動車株式会社 混合気を圧縮自着火させる内燃機関
US20140032081A1 (en) * 2012-07-27 2014-01-30 Caterpillar Inc. Dual Mode Engine Using Two or More Fuels and Method for Operating Such Engine

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE195163C (fr) *
DE464601C (de) * 1923-09-29 1930-08-30 Daimler Benz Akt Ges Arbeitsverfahren fuer gemischverdichtende Brennkraftmaschinen mit Selbstzuendung
DE1122763B (de) * 1956-11-03 1962-01-25 Guenther Leunig Dipl Ing Mit Selbstzuendung arbeitende gemischverdichtende Brennkraftmaschine
DE2017153A1 (de) * 1970-04-10 1971-10-21 Kraft und Schmierstofftechnik, 6702 Bad Durkheim Verfahren zum Betneb von Ver brermungskraftmaschinen mit Kraftstoffen beliebiger Siedelage durch kraftstoffseitig wahrend des Betriebes regulierte Selbst zündung der Gasladung mit Hilfe der Zugabe eines Zundungsauslosers im Ladungshub durch Saugrohr Einspritzung
CH665453A5 (de) * 1985-01-11 1988-05-13 Sulzer Ag Zylinderdeckel fuer eine kolbenbrennkraftmaschine.
JPS6287609A (ja) * 1985-10-14 1987-04-22 Toyota Motor Corp 直噴式デイ−ゼル機関
JPS62191622A (ja) * 1986-02-19 1987-08-22 Toyota Motor Corp 筒内直接噴射式火花点火機関
US4872433A (en) * 1987-12-07 1989-10-10 Paul Marius A Combustion chamber configurations for two cycle engines
US4924828A (en) * 1989-02-24 1990-05-15 The Regents Of The University Of California Method and system for controlled combustion engines
FI84749C (fi) * 1989-09-26 1992-01-10 Waertsilae Diesel Int Foerbaettrad gasbraensle utnyttjande foerbraenningsprocess vid kolvfoerbraenningsmotorer och anordning foer aostadkommande av en saodan process.
JP2841552B2 (ja) * 1989-09-29 1998-12-24 いすゞ自動車株式会社 副室式断熱エンジンの燃料噴射装置
JP3136601B2 (ja) * 1990-08-24 2001-02-19 いすゞ自動車株式会社 圧縮着火式内燃機関
GB2277776B (en) * 1993-04-14 1997-03-19 John Heath Greenhough Compression ignition engine
JP3218867B2 (ja) * 1994-06-07 2001-10-15 株式会社豊田中央研究所 圧縮着火式内燃機関
JPH08218981A (ja) * 1995-02-09 1996-08-27 Nippon Clean Engine Lab Co Ltd 圧縮着火内燃機関の多噴口多段多角度燃料噴射ノズル並びに その燃焼方式
DE19519663A1 (de) * 1995-05-30 1996-05-15 Daimler Benz Ag Verfahren zum Betrieb eines Verbrennungsmotors mit Selbstzündung
JPH09158810A (ja) * 1995-10-02 1997-06-17 Hino Motors Ltd ディーゼルエンジン
JPH0996241A (ja) * 1995-10-02 1997-04-08 Mitsubishi Motors Corp ディーゼルエンジンの燃焼装置
US5609131A (en) * 1995-10-11 1997-03-11 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Multi-stage combustion engine
DE19621297C1 (de) * 1996-05-28 1997-12-04 Man B & W Diesel Ag Einrichtung zur Steuerung/Regelung der Zündöl-Einspritzung eines Gasmotors
JP3695011B2 (ja) * 1996-06-07 2005-09-14 いすゞ自動車株式会社 副室式エンジン
JP3827102B2 (ja) * 1996-06-10 2006-09-27 株式会社新エィシーイー ディーゼルエンジンの燃料噴射制御方法
JP3804879B2 (ja) * 1997-03-06 2006-08-02 ヤンマー株式会社 直噴式ディーゼル機関の燃焼方法
JPH10274086A (ja) * 1997-03-31 1998-10-13 Mazda Motor Corp ディーゼルエンジンの燃料噴射制御装置
JP3581540B2 (ja) * 1997-09-18 2004-10-27 三菱重工業株式会社 ディーゼル機関
US5947080A (en) * 1997-12-10 1999-09-07 Exxon Research And Engineering Company NO to NO2 conversion control in a compression injection engine by hydrocarbon injection during the expansion stroke

Also Published As

Publication number Publication date
JP2002502931A (ja) 2002-01-29
WO1999040301A1 (fr) 1999-08-12
DE19804983A1 (de) 1999-08-12
EP1075591A1 (fr) 2001-02-14
JP4897999B2 (ja) 2012-03-14
DE19804983C2 (de) 2003-04-24
DE59904536D1 (de) 2003-04-17
US6394064B1 (en) 2002-05-28

Similar Documents

Publication Publication Date Title
DE3633405C2 (fr)
EP1062412B1 (fr) Procede pour faire fonctionner un moteur a combustion interne quatre temps a piston alternatif
DE69735846T2 (de) Gemischverdichtende dieselbrennkraftmaschine mit optimaler verbrennungsregelung
DE60114932T2 (de) Verbesserte Mehrfacheinspritzung für eine selbstgezündete Benzin Brennkraftmaschine
DE69809335T2 (de) Dieselbrennkraftmaschine
DE2921997C2 (fr)
DE69914449T2 (de) Verfahren und vorrichtung zur erwärmung eines katalysators für eine brennkraftmaschine mit direkteinspritzung
DE69805076T2 (de) Benzinbrennkraftmaschine
EP1001148B1 (fr) Procédé pour l'opération d'un moteur à quatre temps
EP1053389B1 (fr) Procede permettant de faire fonctionner un moteur a combustion interne a quatre temps
AT5720U1 (de) Brennkraftmaschine
DE102018006447A1 (de) Motor, Verfahren zur Motorsteuerung bzw. -regelung, Steuer- bzw. Regelvorrichtung für Motor und Computerprogrammprodukt
WO2007031157A1 (fr) Procede pour faire fonctionner un moteur a combustion a allumage commande
EP3006708B1 (fr) Procédé destiné au fonctionnement d'un moteur à combustion interne
AT5646U1 (de) Verfahren zum betrieb einer brennkraftmaschine
DE69114112T2 (de) Brennkraftmaschine und Verfahren zum Betrieb derselben.
EP1075591B1 (fr) Procede de fonctionnement d'un moteur a combustion interne a quatre temps
DE112019004367T5 (de) Geteilte Direkteinspritzung für reaktivierte Zylinder einer Brennkraftmaschine
DE69021169T2 (de) Zweitakt-Brennkraftmaschine mit variabler Ventilsteuerung.
DE2615643A1 (de) Verfahren zum betrieb einer fremdgezuendeten brennkraftmaschine und brennkraftmaschine zur durchfuehrung dieses verfahrens
EP1180207A1 (fr) Procede de fonctionnement d'un moteur a combustion interne a piston alternatif a quatre temps avec allumage alternativement par compression et par appareillage externe
DE102005044544B4 (de) Verfahren zum Betrieb einer fremdgezündeten 4-Takt-Brennkraftmaschine
DE10204407B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE10160057A1 (de) Brennkraftmaschine mit Kompressionszündung
DE10344427B4 (de) Verfahren zum Betrieb einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000714

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20020211

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030312

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59904536

Country of ref document: DE

Date of ref document: 20030417

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030519

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031215

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130201

Year of fee payment: 15

Ref country code: FR

Payment date: 20130219

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140331

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140116

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59904536

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载