EP0382789A1 - Catalytic recombination of corrosion evolved hydrogen in alkaline cells - Google Patents
Catalytic recombination of corrosion evolved hydrogen in alkaline cellsInfo
- Publication number
- EP0382789A1 EP0382789A1 EP89900441A EP89900441A EP0382789A1 EP 0382789 A1 EP0382789 A1 EP 0382789A1 EP 89900441 A EP89900441 A EP 89900441A EP 89900441 A EP89900441 A EP 89900441A EP 0382789 A1 EP0382789 A1 EP 0382789A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cathode
- cell
- metal oxide
- rechargeable cell
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/52—Removing gases inside the secondary cell, e.g. by absorption
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/34—Gastight accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/04—Cells with aqueous electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Dans des accumulateurs électrochimiques rechargeables ou primaires, de l'hydrogène peut se dégager. La présente invention se rapporte à l'utilisation d'un matériau d'électrode auxiliaire servant à catalyser la combinaison d'hydrogène pressurisé, tel que de l'hydrogène soumis à des pressions allant de 5 à 15 psig jusqu'au relâchement de la pression de l'accumulateur. L'accumulateur est constitué par un accumulateur étanche comportant une cathode en oxyde de métal (12), une anode en zinc (14) et un électrolyte alcalin aqueux en contact avec l'anode et la cathode. Le matériau de l'électrode auxiliaire, qui peut être mélangé avec le matériau de la cathode ou qui peut être formé en une cathode auxiliaire séparée (28), comprend un substrat poreux servant à l'absorption de l'hydrogène pressurisé par l'électrolyte. Le substrat peut être en carbone, en graphite ou en métal. Le catalyseur peut être constitué par du carbone, par des métaux nobles catalytiquement actifs, par des sels ou oxydes de plomb, de nickel, de titane, de lanthane, de chrome, de tantale et par des alliages de ces métaux ou par des mélanges de carbone avec les sels ou oxydes.In rechargeable or primary electrochemical cells, hydrogen can be released. The present invention relates to the use of an auxiliary electrode material used to catalyze the combination of pressurized hydrogen, such as hydrogen subjected to pressures ranging from 5 to 15 psig until the pressure is released. of the accumulator. The accumulator consists of a sealed accumulator comprising a metal oxide cathode (12), a zinc anode (14) and an aqueous alkaline electrolyte in contact with the anode and the cathode. The auxiliary electrode material, which can be mixed with the cathode material or which can be formed into a separate auxiliary cathode (28), includes a porous substrate for absorption of pressurized hydrogen by the electrolyte . The substrate can be made of carbon, graphite or metal. The catalyst can be constituted by carbon, by catalytically active noble metals, by salts or oxides of lead, nickel, titanium, lanthanum, chromium, tantalum and by alloys of these metals or by mixtures of carbon with salts or oxides.
Description
CATALYTIC RECOMBINATION OF CORROSION EVOLVED HYDROGEN IN ASULINE CELLS FIELD OF THE INVENTION: This invention relates to rechargeable, alkaline, sealed cells such as alkaline zinc/manganese dioxide cells. In particular, the invention relates to porous electrodes which may be used as fuel cell cathodes, wherein a catalyst for the re-absorbtion of hydrogen is used with a porous conductive substrate. The invention aims to provide means of recombining hydrogen, which may be evolved during storage, recharging or even in use, with the active mass of electrolyte. Thus loss of water may be avoided and the risk of pressure build up within the cell may be reduced. BACKGROUND OF THE INVENTION: The prior art has concerned itself, for many years, with the problem of reducing or eliminating the loss of water in galvanic cells using aqueous electrolyte and avoiding build up of excessive gas pressure in sealed cells. Hydrogen gas is evolved during charge or standby by several electrode materials as aluminum, magnesium, zinc, iron, lead etc. The electrodes in general do not have the capability of recombining the hydrogen and the evolved gas is usually vented, causing water loss or pressure build up in hermetically sealed cells. In sealed cells, depending on the amount of hydrogen present and the rate of generation, excessive gas pressure can build up causing rupture of the safety vent and loss of electrolyte -- resulting in cell failure and electrolyte leakage. It has previously been found that cells having a porous manganese dioxide cathode have the capability of recombining the hydrogen, provided catalytically active materials are applied to the cathode electrode. Two approaches are often used in efforts to solve the problems. These are: 1. Catalytic recombination of hydrogen and oxygen inside or outside the battery; in the latter case, provisions are made for the return of the product water to the electrolyte chamber - [ U.S. 3,630,778 (1971), U.S. 3,598,653 (1971), U.S. 3,622,398 (1971), U.S. 3,701,691 (1972)1. 2. Use of an auxiliary (third) electrode as an overcharge recombination reactor as described in "Electrochem. Technol., 4, 383 (1966) by P. Ruetschi and J.B. Ockerman. In fact, KORDESCE et al in United States Patent No. 4,224,384 report excellent hydrogen gas absorption capability of dry MnO powder catalyzed with salts or 2 oxides of platinum, palladium, ruthenium, rhodium, arsenic and lead. These materials, however, when employed in a wetted MnO matrix, did not show significant hydrogen 2 recombination rates at near atmospheric pressures. It has now surprisingly been found that these materials exhibit hydrogen recombination properties provided the gas pressure is increased, for example, in the range of 5 to 15 psig or up to the relief pressure of the cell. Catalytically active carbon bonded with PTFE is also useful. According to the invention there is provided a rechargeable electrochemical sealed cell having a cathode, a zinc anode, and an aqueous, alkaline electrolyte contacting the anode and the cathode, in which cell hydrogen may evolve. The cathode comprises a metal oxide and auxiliary cathode material comprising a porous substrate and a catalyst for the absorption of pressurized hydrogen by the electrolyte, the auxiliary cathode material being located to be at least partially wetted by the electrolyte. The substrate may be carbon, graphite or metal, and the catalyst may be carbon, catalytically active noble metals, salts and oxides of lead, nickel, titanium, lanthanum, chromium, tantalum, and alloys thereof, and the noble metals or mixtures of carbon with the noble metals salts or oxides. The noble metals may be, for example, platinum, palladium, ruthenium, rhodium or silver. The auxiliary cathode material may be provided either in admixture with the metal oxide cathode, suitably in a ratio of 30:70 respectively, or as a discrete auxiliary electrode in electronic contact with the metal oxide cathode. When the auxiliary cathode material is provided as an auxiliary discrete electrode and the metal oxide cathode is cylindrically located about an anode core, then the auxiliary electrode is suitably an annulus or disk of similar diameter to the metal oxide electrode and located in electronic contact with it at one end of the anode. The present invention may provide economic and effective means of removing hydrogen oxygen gas in galvanic cells. Noble metals such as platinum, palladium, rhodium, iridium, ruthenium, and osmium show high catalytic activity for hydrogen oxidation. In alkaline electrolytes, nickel and alloys of nickel with other metals (e.g. titanium and lanthanum) were found to be active catalysts. Gas diffusion electrodes applicable to the present invention are described in the Canadian Patent Disclosure "Metal and Metal Oxide Catalyzed Electrodes for Electrochemical Cells, and Method of Making Same" by K. Tomantschger and K. Kordesch, and can be employed if higher recombination current densities are desired. Embodiments of the invention will now be described by way of illustration with reference to the drawings in conjunction with the Examples, describing various electrodes of the invention and their operating characteristics. BRIEF DESCRIPTION OF THE DRAWINGS: Figure 1 is a vertical cross section of one embodiment of the invention; Figure 2 is a vertical cross section of another embodiment of the invention; Figure 3 is a graph comparing the operating characteristics of prior art and inventive cells as described in Example 2; Figures 4 and 5 is a graph illustrating the operating characteristics of prior art and inventive cells as described in Example 3. DESCRIPTION OF PREFERRED EMBODIMENTS: Figures 1 and 2 of the drawings show two different embodiments of cells according to the invention. In both cases the cell comprises a steel can 10 housing a conventional metal oxide cathode 12. The base of can 10 has boss 11 forming the cathode contact formed cylindrically around anode 14. The cathode 12 may comprise finely divided manganese dioxide and graphite, and is separated from anode 14 which may comprise zinc powder, by an electrolyte permeable separator 16. The electrolyze, which may be aqueous potassium hydroxide, permeates the zinc powder of anode 14 and cathode 12 through separator 16. As shown, the anode is confined by a basket 18, made for example, of Chicopee Rayon/polyvinyl acetate. The basket 18 may be used to also carry an oxygen re-absorbtion catalyst, if used. The oxygen re-absorbtion catalyst may be, for example, as described in copending application in the names of TOMANTSCHGER and KORDESCH. The basket 18 is provided with an end cap 20, for example of brass, insulated from the base of can 10 by insulating disk 15. The cathode 12 is confined into cylindrical shape by screen 22 and annular plastic cap 23. A current collector nail 24 projects into the anode 14 through a casing cover 25, with its head 26 being outside of the cover 25 to form the anode contact. The cover 25 seals the can 12 by crimping formed around its edge. Figure 1 shows an auxiliary discrete cathode disk 28 formed of catalytically active carbon and located on the bottom of can 10 below insulating disk 15. The auxiliary cathode disk 28 is in physical and electronic contact with cathode 12, and is wetted by electrolyte dispersed in the can 10. The embodiment of Figure 2 differs from that of Figure 1 in that, in place of auxiliary cathode disk 28, an auxiliary cathode annulus 30 is placed beneath annular plastic cap 23. The auxiliary cathode annulus may, for example, comprise silver oxide, and is in physical and electronic contact with cathode 12. It, too, is wetted by electrolyte dispersed in the can 10. Figures 1 and 2 both show embodiments in which discrete auxiliary cathodes are used. When the auxiliary cathode material is mixed with the metal oxide cathode, then the inventive cell may be as described with reference to either Figures 1 or 2, but neither disk 28 nor annulus 30 would be present, and the cathode 12 incorporates the auxiliary material. Example I: A conventional rechargeable MnO -Zn cell as 2 disclosed in U.S. 4,384,029 was prepared using a metal cage to confine the cathode active mass. The cathode mix was formed, pressed in rings, and thereafter three rings were placed in D-cell cans containing a metal case, and separator baskets (Chicopee! Rayon PVA) were inserted in the center. CATHODE COMPOSITION: 90.0 parts 84.1% EMD TRONA"D" 9.5 pts 8.9% Lonza KS-44 Graphite 7.0 pts 6.5% 9 N KOH 0.5 pts 0.5% Acetylene Black Total weight: 87.5g Catalytically active cathode blends were prepared substituting 3, 12, 20 and 30% of the EMD weight by Ag 0 2 and D-size test cells were fabricated incorporating a 4 g Ag 0 rich cathode material in the pip area of the cell. 2 A gelled zinc anode was extruded into the center, thereafter the cell was sealed using a polyethylene disk with a brass nail current collector incorporated therein and cell closure was achieved by crimping. ANODE COMPOSITION: 61.4% 3% Hg New Jersey 1205 Zn 2.0% ZnO 1.0% MgO 0.8% 70/30 CMC/940 34.8% 9 N KOH 8% ZnO Total Weight: 21g To demonstrate the capability of the present invention in terms of hydrogen recombination, the series of D cells containing the 3, 12, 20 and 30% substituted EMD was submitted to storage test at 65 C. The elevated temperature caused appreciable Zn gassing producing hydrogen overpressure in the cells. The test results are indicated in the following table: 3% Ag 0 12% Ag 0 20 % Ag 0 30% A 0 2 2 2 g 1 wk @ 65 C 6/6 OK 6/6 OK 6/6 OK 6/6 OK 2 wk @ 65 C 3/4 OK 2/4 OK 3/4 OK 4/4 OK 3 wk @ 65 C 1/1 OK 0 1/1 OK 2/2 OK Typical 0% Ag 0 control cells exhibit a failure 2 rate of 50% after 2 weeks at 65 C, (in this case failure means cell leakage; while all the substituted cells showed improvement and the 30% substituted cells showed no failures. Example II: A conventional porous MnO cathode as used in 2 primary alkaline or rechargeable alkaline MnO -Zn cells was 2 formed, pressed in rings, and thereafter three rings were placed in C-cell cans containing a metal case to confine the cathode mass, and separator baskets (Chicopeeo Rayon/PVA) placed in the center of a C-cell (Figure 2). CATHODE COMPOSITION: 84.1% EMD TRONA"D" 8.9% Lonza KS-44 Graphite 6.5% 9 N KOH 0.5% Acetylene Black Total Weight: 37.5g Catalytically active cathode blends were prepared substituting 0 and 308 of the EMD weight by Ag 0 and C-size 2 test cells were fabricated incorporating a 4 g Ag 0 rich 2 cathode ring on the open end of the cell. To demonstrate the capability of the present invention in terms of hydrogen recombination, two half cells of the C-cell size were fabricated, one with and one without the catalytically active cathode ring. Both open cells were placed vertically in a tube, the negative electrode void was filled with 9 N KOH to the height of the polyethylene spacer, a spirally wound Ni wire was submersed into the electrolyte, and the cells were galvanostatically discharged at 50 mA for 20 hours removing 1 Ah stored energy from the positive electrodes (total capacity appr. 8 Ah). Cell tops were used to close the elements, and contained tube fittings attached to U tubes filled with water by means of flexible tubing. After crimping the cells were gas tight, and any pressure change was indicated by the manometers. Both cells were galvanostatically charged with 10 and 25 mA to a pressure of 300 mm water. Neither cell showed significant hydrogen recombination at atmospheric pressure. Thereafter, the U tube was replaced by precision manometers (total gas space 2.0 ml NTP), and both cells were galvanostatically charged with 50 mA at room temperature until the pressure inside the cell reached 30 psig. The positive electrode reaction involves conversion of MnO(OH) to MnO , and the counter reaction involves 2 2 hydrogen generation on the surface of the Ni spiral wire inserted into the negative electrode cavity. Hydrogen gas was evolved at a rate of 20 ml per hour (at 50 mA). The results are summarized in Figure 3. Figure 3 shows the pressure build-up of hydrogen with time, and shows that pressure builds up faster in the conventional cell (curve A) than in the cell employing Ag 0 2 material. Thus, it can be seen that the cell containing the catalytically active disk possessed a significant hydrogen recombination rate. Furthermore, after the power supply was disconnected, the pressure in the cell containing the active catalyst decreased significantly faster than the pressure in the control cell. Example III: A conventional porous MnO cathode as used in 2 primary alkaline or rechargeable alkaline MnO -Zn cells was 2 formed, pressed in rings, and thereafter three rings were placed in C-cell cans containing a metal case to confine the cathode mass, and separator baskets (Chicopee Rayon/PVA) were placed in the center of a C-cell (Figure 2). CATHODE COMPOSITION: 84.1% EMD TRONA"D" 8.9% Lonza KS-44 Graphite 6.5% 9 N KOH 0.5% Acetylene Black Total Weight: 37.5g A gas diffusion electrode, employing a mixture of Pd/Rh as hydrogen re-absorbtion catalyst, was prepared and incorporated into a 400 micron layer comprising a mixture of carbon available commercially as "Black Pearls 2000 and PTFE to form a foil. As additional option a separator sheet (Dexcerb C1235) can be pressed in one side and a Ni screen into the other side of the carbon/PTFE layer comprising 70% carbon and 308 PTFE. A ring with an outer diameter of 25 mm and an inner diameter of 14 mm was punched out of the foil and the carbon ring placed on the top of the cathode with the separator side facing the cathode. After the placement of a perforated polyethylene ring, the assembly was pushed onto the cathode sleeve. The function of the separator disk is to soak up electrolyte assisting in partial wetting of the carbon disk and providing ionic contact between hydrogen and the MnO 2 electrode. The carbon disk maintains electronic contact with the metal can and the metal cage, establishing a "hydrogen-MnO short circuit element". 2 To demonstrate hydrogen re-absorbtion, two C-size cells were fabricated, one with and one without the catalyzed carbon ring. Both open cells were placed vertically in a tube, the cathode space was filled with 9 N KOH to the height of the polyethylene spacer, a spirally wound Ni wire was inserted as a counter electrode and the cells were galvanostatically discharged at 50 mA for 20 hours removing 1 Ah of the negative electrodes (total capacity appr. 8 Ah). The cell tops used to close the elements contained tube fittings attached to precision manometer (2 ml gas space). Both cells were galvanostatically charged with 50 mA at room temperature. The positive electrode reaction consisted of oxidation of MnO(CH) to MnO . The counter 2 2 reaction involved generation of hydrogen on the surface of the Ni wire at a rate of 20 ml hydrogen per hour (at 50 mA). Figure 4 shows the resulting pressure curves. Curve C represents use in pressure with time for the conventional electrode without the catalysed carbon ring. The cell containing the catalytically active ring described herein invention recombined the hydrogen generated, maintaining a cell pressure of appr. 6 psig for over four hours (curve D). During the four hours of overcharge at 50 mA, the 3.5 cm2 disk recombined over 80 ml NPT of hydrogen gas by maintaining the pressure. A 10 mA current was passed through the cell for 12 hours, then the current increased to 25, 50 and 100 mA in 12 hour intervals. Figure 5 shows that over a period of time of 48 hours, over 900 ml hydrogen were generated and the recombination rate maintained the internal cell pressure below 25 psig. The maximum hydrogen gas recombination rate was determined to be in excess of 145 ml hydrogen per hour (3.5 cm2 electrode ring area) -- which is equivalent to an hydrogen evolution current of 100 mA. For the C-size cell used, this is significantly more than required under II realistic user condition To determine the long term electrode performance, the electrode described herein was placed in a half cell and operated continuously at 50 mA/cm2 for over 1000 hours. The test was discontinued after consumption of in excess of 20 1 NTP hydrogen. The following table demonstrates the performance obtained in 6 N KOH electrolyte at room temperature for hydrogen as reaction gas. Time Hydrogen Current IR Free Potential [ hrs.i Consumption tmA/cm21 tmV vs. Zn ] [ 1 ] 0 0 50 22 163 3.4 50 10 3Q7 6.4 50 25 475 9.9 50 30 691 14.3 50 46 859 17.8 50 47 1003 20.8 50 49 [The IR free potential is determined using laboratory procedures and standards, and is measured in millivolts as against the Reversible Hydrogen Electrode Reference].
Claims
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA550336 | 1987-10-27 | ||
CA000550336A CA1307818C (en) | 1987-10-27 | 1987-10-27 | Catalytic recombination of corrosion evolved hydrogen in alkaline cells |
US23474988A | 1988-08-22 | 1988-08-22 | |
US234749 | 1994-04-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0382789A1 true EP0382789A1 (en) | 1990-08-22 |
EP0382789A4 EP0382789A4 (en) | 1993-10-20 |
Family
ID=25671568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19890900441 Withdrawn EP0382789A4 (en) | 1987-10-27 | 1988-10-25 | Catalytic recombination of corrosion evolved hydrogen in alkaline cells |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0382789A4 (en) |
JP (1) | JPH03501424A (en) |
HU (1) | HU207612B (en) |
WO (1) | WO1989004067A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE527793T1 (en) * | 1990-05-09 | 1994-12-08 | Battery Technologies Inc | CATALYTIC RECOMBINATION OF HYDROGEN IN ALKALINE BATTERIES. |
US5626988A (en) * | 1994-05-06 | 1997-05-06 | Battery Technologies Inc. | Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture |
RU2468866C1 (en) * | 2011-09-15 | 2012-12-10 | Владимир Андреевич Шепелин | Method of manufacturing catalyst and impregnated porous catalyst carrier for hydrogen and oxygen recombination |
US11611115B2 (en) | 2017-12-29 | 2023-03-21 | Form Energy, Inc. | Long life sealed alkaline secondary batteries |
CN120049075A (en) | 2018-07-27 | 2025-05-27 | 福恩能源公司 | Negative electrode for electrochemical cells |
US12294086B2 (en) | 2019-07-26 | 2025-05-06 | Form Energy, Inc. | Low cost metal electrodes |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL39005C (en) * | 1933-05-18 | |||
US3261714A (en) * | 1963-01-07 | 1966-07-19 | Union Carbide Corp | Sealed dry cells having an ionization catalyst in the depolarizer |
DE1771189B1 (en) * | 1968-04-19 | 1972-05-31 | Matsushita Electric Ind Co Ltd | Hermetically sealed accumulator with at least one auxiliary electrode and at least one voltage regulating device which is connected between the auxiliary electrode and either the positive or the negative electrode |
BE755337A (en) * | 1969-08-27 | 1971-02-26 | Union Carbide Corp | HYDROGEN ABSORBING MATERIAL FOR ELECTROCHEMICAL CELLS |
US4350745A (en) * | 1980-12-29 | 1982-09-21 | Duracell Inc. | Electrochemical cells having hydrogen gas absorbing agent |
GB2140967B (en) * | 1982-11-19 | 1986-03-05 | Gould Inc | Sealed nickel-zinc cell |
JPH05324539A (en) * | 1992-05-25 | 1993-12-07 | Fujitsu Ltd | Semiconductor device |
-
1988
- 1988-10-25 WO PCT/US1988/003811 patent/WO1989004067A1/en not_active Application Discontinuation
- 1988-10-25 EP EP19890900441 patent/EP0382789A4/en not_active Withdrawn
- 1988-10-25 JP JP1500964A patent/JPH03501424A/en active Pending
- 1988-10-25 HU HU89273A patent/HU207612B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
HU207612B (en) | 1993-04-28 |
HUT55170A (en) | 1991-04-29 |
WO1989004067A1 (en) | 1989-05-05 |
JPH03501424A (en) | 1991-03-28 |
EP0382789A4 (en) | 1993-10-20 |
HU890273D0 (en) | 1990-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4925747A (en) | Catalytic recombination of corrosion evolved hydrogen in alkaline cells | |
US5162169A (en) | Catalytic recombination of hydrogen in alkaline cells | |
JP3607612B2 (en) | Galvanic battery and manufacturing method thereof | |
US5043234A (en) | Recombination of evolved oxygen in galvanic cells using transfer anode material | |
US5069988A (en) | Metal and metal oxide catalyzed electrodes for electrochemical cells, and methods of making same | |
US3939006A (en) | Hydrogen absorbing material for electrochemical cells | |
US3891462A (en) | Galvanic cell structure | |
CA2082515C (en) | Catalytic recombination of hydrogen in alkaline cells | |
KR0130137B1 (en) | Catalytic Recombination Characteristics of Emitted Hydrogen Cells | |
CN101322282A (en) | Zinc/air cell | |
US6787008B2 (en) | Hydrogen generating cell with cathode | |
EP0382789A1 (en) | Catalytic recombination of corrosion evolved hydrogen in alkaline cells | |
US3278340A (en) | Deformation-safe dry cell | |
US6060197A (en) | Zinc based electrochemical cell | |
AU621580B2 (en) | Catalytic recombination of evolved oxygen in galvanic cells | |
AU549585B2 (en) | Sealed nickel-zinc battery | |
US4174565A (en) | Method of precharging rechargeable metal oxide-hydrogen cells | |
EP0126143A1 (en) | Sealed nickel-zinc cell | |
AU621079B2 (en) | Catalytic recombination of corrosion evolved hydrogen in alkaline cells | |
EP0341782B1 (en) | Method of making a sealed electrochemical cell | |
WO1992020111A1 (en) | Recombination of evolved oxygen in galvanic cells using transfer anode materials | |
WO1991020102A1 (en) | Metal and metal oxide catalyzed electrodes for electrochemical cells, and methods of making same | |
JP2001068070A (en) | Button cell | |
JPH10270026A (en) | Zinc alkaline storage battery and manufacture of zinc negative electrode | |
JPS58131649A (en) | Cylindrical alkaline cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900426 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19930902 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Withdrawal date: 19931117 |
|
R18W | Application withdrawn (corrected) |
Effective date: 19931117 |