EP0066361B2 - Corrosion resistant high strength nickel-based alloy - Google Patents
Corrosion resistant high strength nickel-based alloy Download PDFInfo
- Publication number
- EP0066361B2 EP0066361B2 EP82301929A EP82301929A EP0066361B2 EP 0066361 B2 EP0066361 B2 EP 0066361B2 EP 82301929 A EP82301929 A EP 82301929A EP 82301929 A EP82301929 A EP 82301929A EP 0066361 B2 EP0066361 B2 EP 0066361B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- cold
- titanium
- niobium
- age
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 70
- 239000000956 alloy Substances 0.000 title claims abstract description 70
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 14
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 7
- 238000005260 corrosion Methods 0.000 title abstract description 11
- 230000007797 corrosion Effects 0.000 title abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 11
- 239000010955 niobium Substances 0.000 claims abstract description 11
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 11
- 239000010936 titanium Substances 0.000 claims abstract description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 10
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 9
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims abstract description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 239000011733 molybdenum Substances 0.000 claims abstract description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000004411 aluminium Substances 0.000 claims abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 239000011651 chromium Substances 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 claims abstract description 5
- 239000004291 sulphur dioxide Substances 0.000 claims abstract description 4
- 235000010269 sulphur dioxide Nutrition 0.000 claims abstract description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 8
- 230000032683 aging Effects 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 239000003921 oil Substances 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- 229910001122 Mischmetal Inorganic materials 0.000 claims description 2
- 229910052779 Neodymium Inorganic materials 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims 1
- 238000000137 annealing Methods 0.000 claims 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims 1
- 230000002596 correlated effect Effects 0.000 claims 1
- 229910052749 magnesium Inorganic materials 0.000 claims 1
- 239000011777 magnesium Substances 0.000 claims 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 9
- 239000001257 hydrogen Substances 0.000 abstract description 9
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 9
- 238000005336 cracking Methods 0.000 abstract description 6
- 239000007789 gas Substances 0.000 abstract description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract description 4
- 239000003208 petroleum Substances 0.000 abstract description 3
- 230000035882 stress Effects 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000005482 strain hardening Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000005864 Sulphur Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000003483 aging Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000003129 oil well Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 229910002065 alloy metal Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- BIJOYKCOMBZXAE-UHFFFAOYSA-N chromium iron nickel Chemical compound [Cr].[Fe].[Ni] BIJOYKCOMBZXAE-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 235000019589 hardness Nutrition 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 229910001068 laves phase Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
Definitions
- the present invention relates to the use of nickel based alloys which have a combination of high strength and corrosion resistance.
- Alloys having high strength are required in some applications for sustaining stress in load-bearing service in chemically adverse environments. Some plastic ductility is also needed for enduring or permitting modest amounts of deformation without sudden fracture, for example to safeguard against accidental bending, or to enable cold forming to be carried out. Alloys having this desirable combination of properties are particularly useful for use in petroleum production tubing for oil wells, in contact with chemically adverse media such as chlorides, acids and such compounds as hydrogen sulphide. The alloys must therefore exhibit resistance to corrosive pitting, stress corrosion cracking and hydrogen embrittlement, as well as high strength.
- the prior art includes numerous disclosures, for example in GB-A-1 385 755 and GB-A-1 514 241, of age-hardenable nickel-iron-chromium alloys that are said to be very resistant to oxidation at elevated temperatures and to be suitable for fabricated parts such as aeronautical turbines or turbine casings.
- INCONEL alloy 718 as disclosed and claimed in US ⁇ A ⁇ 3 046 108, is an age-hardenable high strength alloy for service over a wide temperature range, from -250°C to 700°C, and offers good resistance to a wide variety of corrosive environments. Since the alloy also offers excellent stress rupture properties and fatigue strength, it has been used in down-hole service in oil-wells. However, the alloy has insufficient resistance to hydrogen embrittlement in the harsh environments found in "sour well” conditions and, although having high as-cold-drawn strength, has low ductility.
- the present invention is based on the discovery that certain alloy compositions, developed from alloy 718, have an excellent combination of strength and ductility in the wrought and age-hardened condition and also excellent resistance to hydrogen embrittlement and chloride stress cracking.
- an alloy consisting, by weight, of from 15 to 22% chromium, 10 to 28% iron, 6 to 9% molybdenum, 2.5 to 5% niobium, 1 to 2% titanium, and up to 1% aluminium, the balance, apart from impurities and incidental elements, being nickel in a proportion of from 45 to 55% of the alloy, is used in the form of wrought and age-hardened articles and parts in highly corrosive conditions in sour oil or sour gas wells or in sulphur dioxide gas scrubbers.
- Further elements which may be present in small amounts include up to 0.1 % carbon, up to 0.35% silicon, up to 0.35% manganese, up to 0.01% boron, and also residual small amounts of cerium, calcium, lanthanum, mischmetal, neodymium and zirconium such as can remain from additions totalling up to 0.2% of the furnace charge.
- Impurities present may include up to 0.5% copper, up to 0.015% sulphur and up to 0.015% phosphorus.
- molybdenum and niobium are often associated with tungsten and tantalum, which may be present at levels of about 0.1% tungsten and 0.1% tantalum.
- the tungsten must be controlled at a low level to avoid the formation of undesired phases such as Laves phase.
- tantalum may be substituted for niobium in equiatomic percentages, its presence is not desirable because of its high atomic weight.
- chromium iron, molybdenum, niobium, titanium, aluminium and nickel gives rise to desirable properties of strength, ductility, fabricability and durability in highly corrosive environments.
- a preferred composition for use according to the invention contains from 18.5 to 20.5% chromium, 13.5 to 18% iron, 6.5 to 7.5% molybdenum, 1.3 to 1.7% titanium, 0.05 to 0.5% aluminium, balance (apart from impurities and incidental elements) nickel.
- the titanium and niobium contents of the alloy are closely controlled such that Preferably the alloy contains 1.3% to 1.7% titanium and 3.6% to 4.4% Nb, and most preferably 1.5% Ti and 4% Nb.
- the alloy has good workability, both hot and cold, for production into wrought articles such as cold rolled strip and extruded tubing.
- Appropriate process treatments may be used to enhance the strengths of articles manufactured from the alloy. Such treatments include cold working, age-hardening and combinations of the two.
- the alloy may be annealed at a temperature of 871°C to 1149°C, and aged at 593°C to 760°C, or even 816°C. Direct aging treatments of heating the cold-worked alloy at 649°C to 760°C for from 0.5 to 5 hours directly after cold working are particularly beneficial for obtaining desirable combinations of high strength and ductility.
- Alloys of the present invention after appropriate thermomechanical processing exhibit yield strength (0.2% offset) of in excess of 1034 MN/m 2 , with an elongation of 8%, and preferred alloys have strengths of more than 1310 MN/m 2 and elongation of around 15%.
- Alloy 1 was prepared by vacuum induction melting and was cast to ingot form. Ingots of alloy 1 were heated at 1121°C for 16 hours for homogenization and then forged flat from 1121°C. Flats were hot rolled at 1121°C to reduce about 4 mm (0.16 gauge), annealed at 1066°C for 1 hour and cold rolled to 2.5 mm (0.1 gauge) strip, which was again annealed at 1066°C for 1 hour.
- Hardenability, including work hardenability and age hardenability, of alloy 1 was confirmed with hardness measurements, as shown in Table II, on specimens of the 1.27 mm (0.05 gauge) strip before and after heat treatments with temperatures and times referred to in the Heat Treatment Schedule (Table III).
- Annealed hardnesses of 20% CR strip on Rockwell B scale after treatments of 954°C for hour, 1038°C for 1 hour and 1149°C for hour were 97, 93 and 78.
- Corresponding results with 40% CR strip were 23.5 Rc, 94 Rb and 78 Rb.
- Alloy 2 and alloy 3 were air induction melted and centrifugally cast with protection of an argon shroud in a metal mould having a 10.8 cm I.D. and 1300 rpm rotation speed to produce cast centrifugally solidified tube shells of alloy 2 and 3. Cast dimensions were 10.8 cm O.D. and 1.9 cm wall thickness. The shell was cleaned up to 10.2 cm O.D. and 1.11 cm wall thickness.
- a leader tube was welded onto the shell and processing proceeded as follows.
- the tube shell was annealed at 1149°C, pickled and cold drawn (about 15.8%) to 9.525 cm O.D. x 0.99 cm wall, re-annealed at 1149°C and pickled, then cold drawn to 8.89 cm O.D. x 0.889 cm wall (also 15.8% reduction), re-annealed at 1149°C and pickled, then tube reduced to 6.668 cm O.D. x 0.762 cm wall (about 36.7% reduction in area).
- a transverse specimen taken from the extruded and 704°C direct aged product of alloy 3 was of ASTM grain size No. 3 ; optical microscopy of the specimen showed an absence of intergranular carbides and indicated that the extruded, cold-reduced and heat-treated microstructure did not contain any intragranular phases resolvable at 1000x.
- Alloys 2, 3 and E were melted, and centrifugally cast to tube shells and processed to 6.67 cm O.D. tube with 0.762 cm wall thickness by the process described in Example 2.
- Table VI compares chloride stress corrosion cracking data for these alloys at 177°C and 204°C.
- the alloy samples were prepared as stressed C-ring specimens and subjected to a simulated deep sour gas well environment comprising a 25% solution of sodium chloride plus 0.5% acetic acid and 1 g/I sulphur, the solution saturated with hydrogen sulphide to an H 2 S overpressure of 861 KN/m 2 .
- test conditions chosen for alloy E were those considered to be less prone to hydrogen embrittlement than the cold worked+aged samples of alloys 2 and 3. Despite testing at lower stress the comparative alloy failed earlier than alloys of the invention.
- the room temperature tensile data corresponding to the above corrosion data is summarised in Table VIII.
- alloys 2, 3 of the present invention exhibit a desirable combination of strength and ductility.
- Alloys of the present invention are useful for tubes, vessels, casings and supports, needed for sustaining heavy loads and shocks in rough service while exposed to corrosive media, and particularly for production tubing to tap deep natural reservoirs of hydrocarbon fuels.
- the alloys are beneficial for resistance to media such as hydrogen sulphide, carbon dioxide, organic acids and concentrated brine solutions sometimes present with petroleum.
- the alloys provide good resistance to corrosion in sulphur dioxide gas scrubbers and are useful for seals, ducting, fans and stack lines in such environments.
- Articles of the alloy can provide useful strength at elevated temperatures up to 648°C and possibly higher.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Gas Separation By Absorption (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Adornments (AREA)
- Conductive Materials (AREA)
Abstract
Description
- The present invention relates to the use of nickel based alloys which have a combination of high strength and corrosion resistance.
- Alloys having high strength, for example 689.5 MN/m2, or advantageously even 1034 MN/m2, are required in some applications for sustaining stress in load-bearing service in chemically adverse environments. Some plastic ductility is also needed for enduring or permitting modest amounts of deformation without sudden fracture, for example to safeguard against accidental bending, or to enable cold forming to be carried out. Alloys having this desirable combination of properties are particularly useful for use in petroleum production tubing for oil wells, in contact with chemically adverse media such as chlorides, acids and such compounds as hydrogen sulphide. The alloys must therefore exhibit resistance to corrosive pitting, stress corrosion cracking and hydrogen embrittlement, as well as high strength.
- The prior art includes numerous disclosures, for example in GB-A-1 385 755 and GB-A-1 514 241, of age-hardenable nickel-iron-chromium alloys that are said to be very resistant to oxidation at elevated temperatures and to be suitable for fabricated parts such as aeronautical turbines or turbine casings.
- INCONEL alloy 718, as disclosed and claimed in US―A―3 046 108, is an age-hardenable high strength alloy for service over a wide temperature range, from -250°C to 700°C, and offers good resistance to a wide variety of corrosive environments. Since the alloy also offers excellent stress rupture properties and fatigue strength, it has been used in down-hole service in oil-wells. However, the alloy has insufficient resistance to hydrogen embrittlement in the harsh environments found in "sour well" conditions and, although having high as-cold-drawn strength, has low ductility.
- The present invention is based on the discovery that certain alloy compositions, developed from alloy 718, have an excellent combination of strength and ductility in the wrought and age-hardened condition and also excellent resistance to hydrogen embrittlement and chloride stress cracking.
- According to the invention an alloy consisting, by weight, of from 15 to 22% chromium, 10 to 28% iron, 6 to 9% molybdenum, 2.5 to 5% niobium, 1 to 2% titanium, and up to 1% aluminium, the balance, apart from impurities and incidental elements, being nickel in a proportion of from 45 to 55% of the alloy, is used in the form of wrought and age-hardened articles and parts in highly corrosive conditions in sour oil or sour gas wells or in sulphur dioxide gas scrubbers. Further elements which may be present in small amounts include up to 0.1 % carbon, up to 0.35% silicon, up to 0.35% manganese, up to 0.01% boron, and also residual small amounts of cerium, calcium, lanthanum, mischmetal, neodymium and zirconium such as can remain from additions totalling up to 0.2% of the furnace charge. Impurities present may include up to 0.5% copper, up to 0.015% sulphur and up to 0.015% phosphorus.
- Commercial sources of molybdenum and niobium are often associated with tungsten and tantalum, which may be present at levels of about 0.1% tungsten and 0.1% tantalum. The tungsten must be controlled at a low level to avoid the formation of undesired phases such as Laves phase. Although tantalum may be substituted for niobium in equiatomic percentages, its presence is not desirable because of its high atomic weight.
- The particular combination of the proportions of chromium, iron, molybdenum, niobium, titanium, aluminium and nickel gives rise to desirable properties of strength, ductility, fabricability and durability in highly corrosive environments. To optimise these properties, a preferred composition for use according to the invention contains from 18.5 to 20.5% chromium, 13.5 to 18% iron, 6.5 to 7.5% molybdenum, 1.3 to 1.7% titanium, 0.05 to 0.5% aluminium, balance (apart from impurities and incidental elements) nickel.
-
- The alloy has good workability, both hot and cold, for production into wrought articles such as cold rolled strip and extruded tubing. Appropriate process treatments may be used to enhance the strengths of articles manufactured from the alloy. Such treatments include cold working, age-hardening and combinations of the two. The alloy may be annealed at a temperature of 871°C to 1149°C, and aged at 593°C to 760°C, or even 816°C. Direct aging treatments of heating the cold-worked alloy at 649°C to 760°C for from 0.5 to 5 hours directly after cold working are particularly beneficial for obtaining desirable combinations of high strength and ductility.
- Alloys of the present invention, after appropriate thermomechanical processing exhibit yield strength (0.2% offset) of in excess of 1034 MN/m2, with an elongation of 8%, and preferred alloys have strengths of more than 1310 MN/m2 and elongation of around 15%.
- Some examples will now be given.
-
- Alloy 1 was prepared by vacuum induction melting and was cast to ingot form. Ingots of alloy 1 were heated at 1121°C for 16 hours for homogenization and then forged flat from 1121°C. Flats were hot rolled at 1121°C to reduce about 4 mm (0.16 gauge), annealed at 1066°C for 1 hour and cold rolled to 2.5 mm (0.1 gauge) strip, which was again annealed at 1066°C for 1 hour. Separate portions of the annealed 2.5 mm strip were cold rolled different amounts to make 1.57, 1.8 and 2.11 mm sizes (0.062, 0.071 and 0.083 gauge respectively) and then each size (including the 2.5 mm size was again annealed at 1066°C for 1 hour and cold rolled down to final gauge of about 1.27 mm (0.05 gauge) resulting in cold work reduction of about 20%, 30%, 40% and 50%.
- Hardenability, including work hardenability and age hardenability, of alloy 1 was confirmed with hardness measurements, as shown in Table II, on specimens of the 1.27 mm (0.05 gauge) strip before and after heat treatments with temperatures and times referred to in the Heat Treatment Schedule (Table III).
-
- Tensile specimens about 1.27 mm (0.05 gauge) strip of alloy 1 were evaluated for mechanical properties at room temperature in preselected thermomechanically processed conditions, including as cold-rolled conditions and cold-rolled plus heat-treated conditions, with results set forth in the following Table IV. With cold-worked embodiments of the alloy of the invention, "direct aging", whereby the alloy is heat treated at age-hardening temperature directly (without other heat treatment intervening between cold working and aging) following cold working, gave increased yield strengths of 1034 MN/m2 and higher, with good retention of ductility; moreover, the 649°C direct age provided benefits of increase in both strength and ductility exceeding 1103 MN/M 2 and 20% elongation.
- The endurance of ductility of alloy 1 in a variety of conditions when subjected to hydrogen charging was tested by holding restrained 25.4 mm width cold-formed U-bend specimens at stresses greater than 100% of yield stress while being cathodically charged in a 5% sulphuric acid solution at 10 milliamps total current for 500-hour periods. Successful survival throughout the 500-hour charging periods was shown with alloy 1 in twelve processing treatment conditions, as briefly stated below,
- ACR 20%, 30%, 40% and 50%;
- HT-1 following 20%, 30%, 40% and 50% CR;
- 20% CR plus HT-8; 20% CR plus HT-9;
- 20% CR plus HT-10; 20% CR plus HT-11.
- In contrast, two restrained U-bend specimens of 20% cold rolled strip of alloy 1 in conditions resulting from long-time (in these instances, over 16 hours) direct age treatments HT-5 and HT-6 failed after unsatisfactorily brief survivals of 5 hours and 2 hours, respectively, when subjected to the same hydrogen charging conditions.
- Good resistance to contact with acid chloride media at elevated temperature was confirmed with evaluations of weight loss and visual appearance of specimens of alloy 1 of 10.2 cm x 7.62 cm in the 40% cold-rolled condition. Two specimens were immersed in aqueous 10% FeCl3+0.5 HCI solutions at 66°C for 24 hours. The weight losses were satisfactorily low values of 0.03 and 0.52 mg/cm2. Visual inspection for appearances of pitting showed that only one pit occurred and confirmed that the alloy metal provided good resistance to the acid media.
- Capability of the alloy to provide resistance against stress-corrosion cracking was shown by satisfactory survival of a cold formed, restrained, U-bed specimen of 50% cold-rolled alloy 1 during a 720- hour exposure in boiling 42% MgC12.
- Alloy 2 and alloy 3 were air induction melted and centrifugally cast with protection of an argon shroud in a metal mould having a 10.8 cm I.D. and 1300 rpm rotation speed to produce cast centrifugally solidified tube shells of alloy 2 and 3. Cast dimensions were 10.8 cm O.D. and 1.9 cm wall thickness. The shell was cleaned up to 10.2 cm O.D. and 1.11 cm wall thickness.
- A leader tube was welded onto the shell and processing proceeded as follows. The tube shell was annealed at 1149°C, pickled and cold drawn (about 15.8%) to 9.525 cm O.D. x 0.99 cm wall, re-annealed at 1149°C and pickled, then cold drawn to 8.89 cm O.D. x 0.889 cm wall (also 15.8% reduction), re-annealed at 1149°C and pickled, then tube reduced to 6.668 cm O.D. x 0.762 cm wall (about 36.7% reduction in area).
-
- Good combinations of strength and ductility are achieved with cold-worked and direct-aged articles of alloys 2 and 3, especially with one to two hour direct ages at 704°C to 760°C.
- A transverse specimen taken from the extruded and 704°C direct aged product of alloy 3 was of ASTM grain size No. 3; optical microscopy of the specimen showed an absence of intergranular carbides and indicated that the extruded, cold-reduced and heat-treated microstructure did not contain any intragranular phases resolvable at 1000x.
- Alloys 2, 3 and E were melted, and centrifugally cast to tube shells and processed to 6.67 cm O.D. tube with 0.762 cm wall thickness by the process described in Example 2. Table VI compares chloride stress corrosion cracking data for these alloys at 177°C and 204°C. The alloy samples were prepared as stressed C-ring specimens and subjected to a simulated deep sour gas well environment comprising a 25% solution of sodium chloride plus 0.5% acetic acid and 1 g/I sulphur, the solution saturated with hydrogen sulphide to an H2S overpressure of 861 KN/m2.
- The test conditions chosen for alloy E were those considered to be less prone to hydrogen embrittlement than the cold worked+aged samples of alloys 2 and 3. Despite testing at lower stress the comparative alloy failed earlier than alloys of the invention.
-
-
- It will be observed that the commercial alloy E has very high as cold drawn strength and low ductility, and this was why alloy E was tested in corrosion tests at a stress less than 100% of RT yield strength.
- It will be noted from the comparison between alloys 2, 3 of the present invention and the commercial alloy E that the special correlation of composition of the present invention gives rise to enhanced corrosion resistance in respect of chloride stress corrosion cracking and hydrogen embrittlement. At the same time however the alloys of the invention exhibit a desirable combination of strength and ductility.
- Alloys of the present invention are useful for tubes, vessels, casings and supports, needed for sustaining heavy loads and shocks in rough service while exposed to corrosive media, and particularly for production tubing to tap deep natural reservoirs of hydrocarbon fuels. In deep oil or gas well service, possibly in off-shore installations, the alloys are beneficial for resistance to media such as hydrogen sulphide, carbon dioxide, organic acids and concentrated brine solutions sometimes present with petroleum. Also, the alloys provide good resistance to corrosion in sulphur dioxide gas scrubbers and are useful for seals, ducting, fans and stack lines in such environments. Articles of the alloy can provide useful strength at elevated temperatures up to 648°C and possibly higher.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT82301929T ATE18260T1 (en) | 1981-04-17 | 1982-04-14 | CORROSION RESISTANT HIGH STRENGTH NICKEL ALLOY. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25515881A | 1981-04-17 | 1981-04-17 | |
US255158 | 1981-04-17 |
Publications (4)
Publication Number | Publication Date |
---|---|
EP0066361A2 EP0066361A2 (en) | 1982-12-08 |
EP0066361A3 EP0066361A3 (en) | 1983-01-19 |
EP0066361B1 EP0066361B1 (en) | 1986-02-26 |
EP0066361B2 true EP0066361B2 (en) | 1990-10-10 |
Family
ID=22967096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP82301929A Expired - Lifetime EP0066361B2 (en) | 1981-04-17 | 1982-04-14 | Corrosion resistant high strength nickel-based alloy |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0066361B2 (en) |
JP (1) | JPS57203741A (en) |
AT (1) | ATE18260T1 (en) |
CA (1) | CA1194346A (en) |
DE (1) | DE3269304D1 (en) |
ES (1) | ES511490A0 (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58174538A (en) * | 1982-04-02 | 1983-10-13 | Hitachi Ltd | Ni-based alloy member and manufacture thereof |
US4788036A (en) * | 1983-12-29 | 1988-11-29 | Inco Alloys International, Inc. | Corrosion resistant high-strength nickel-base alloy |
JP2554048B2 (en) * | 1986-01-20 | 1996-11-13 | 三菱重工業株式会社 | Ni-based alloy and method for producing the same |
JP2554049B2 (en) * | 1986-01-20 | 1996-11-13 | 三菱重工業株式会社 | Ni-based alloy and method for producing the same |
US5556594A (en) * | 1986-05-30 | 1996-09-17 | Crs Holdings, Inc. | Corrosion resistant age hardenable nickel-base alloy |
IL82587A0 (en) * | 1986-05-27 | 1987-11-30 | Carpenter Technology Corp | Nickel-base alloy and method for preparation thereof |
JPS63137133A (en) * | 1986-11-28 | 1988-06-09 | Sumitomo Metal Ind Ltd | Highly corrosion-resistant precipitation hardening-type ni-base alloy |
FR2653451B1 (en) * | 1989-10-20 | 1993-08-13 | Tecphy | METHOD FOR IMPROVING THE CORROSION RESISTANCE OF A NICKEL-BASED ALLOY AND ALLOY THUS PRODUCED. |
FR2820197B1 (en) * | 2001-01-30 | 2006-01-06 | Elf Antar France | DEVICE REDUCING THE ENCRASSMENT OF A TUBULAR THERMAL EXCHANGER |
US7837812B2 (en) | 2004-05-21 | 2010-11-23 | Ati Properties, Inc. | Metastable beta-titanium alloys and methods of processing the same by direct aging |
US10053758B2 (en) | 2010-01-22 | 2018-08-21 | Ati Properties Llc | Production of high strength titanium |
US9255316B2 (en) | 2010-07-19 | 2016-02-09 | Ati Properties, Inc. | Processing of α+β titanium alloys |
US8499605B2 (en) | 2010-07-28 | 2013-08-06 | Ati Properties, Inc. | Hot stretch straightening of high strength α/β processed titanium |
US9206497B2 (en) | 2010-09-15 | 2015-12-08 | Ati Properties, Inc. | Methods for processing titanium alloys |
US8613818B2 (en) | 2010-09-15 | 2013-12-24 | Ati Properties, Inc. | Processing routes for titanium and titanium alloys |
US10513755B2 (en) | 2010-09-23 | 2019-12-24 | Ati Properties Llc | High strength alpha/beta titanium alloy fasteners and fastener stock |
US8652400B2 (en) * | 2011-06-01 | 2014-02-18 | Ati Properties, Inc. | Thermo-mechanical processing of nickel-base alloys |
US10253382B2 (en) | 2012-06-11 | 2019-04-09 | Huntington Alloys Corporation | High-strength corrosion-resistant tubing for oil and gas completion and drilling applications, and process for manufacturing thereof |
US9050647B2 (en) | 2013-03-15 | 2015-06-09 | Ati Properties, Inc. | Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys |
US9869003B2 (en) | 2013-02-26 | 2018-01-16 | Ati Properties Llc | Methods for processing alloys |
US9192981B2 (en) | 2013-03-11 | 2015-11-24 | Ati Properties, Inc. | Thermomechanical processing of high strength non-magnetic corrosion resistant material |
US9777361B2 (en) | 2013-03-15 | 2017-10-03 | Ati Properties Llc | Thermomechanical processing of alpha-beta titanium alloys |
US11111552B2 (en) | 2013-11-12 | 2021-09-07 | Ati Properties Llc | Methods for processing metal alloys |
US10094003B2 (en) | 2015-01-12 | 2018-10-09 | Ati Properties Llc | Titanium alloy |
US10502252B2 (en) | 2015-11-23 | 2019-12-10 | Ati Properties Llc | Processing of alpha-beta titanium alloys |
CN107541618A (en) * | 2017-10-12 | 2018-01-05 | 河钢股份有限公司 | A kind of hot pressed sintering mould alloy material |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1250642B (en) * | 1958-11-13 | 1967-09-21 | ||
US2994605A (en) * | 1959-03-30 | 1961-08-01 | Gen Electric | High temperature alloys |
GB999439A (en) * | 1962-05-10 | 1965-07-28 | Allegheny Ludlum Steel | Improvements in or relating to an austenitic alloy |
GB1083432A (en) * | 1963-12-26 | 1967-09-13 | Gen Electric | Improvements in nickel-iron-chromium base alloy |
FR2154871A5 (en) * | 1971-09-28 | 1973-05-18 | Creusot Loire | |
JPS57123948A (en) * | 1980-12-24 | 1982-08-02 | Hitachi Ltd | Austenite alloy with stress corrosion cracking resistance |
-
1982
- 1982-03-29 CA CA000399590A patent/CA1194346A/en not_active Expired
- 1982-04-14 DE DE8282301929T patent/DE3269304D1/en not_active Expired
- 1982-04-14 EP EP82301929A patent/EP0066361B2/en not_active Expired - Lifetime
- 1982-04-14 AT AT82301929T patent/ATE18260T1/en not_active IP Right Cessation
- 1982-04-16 JP JP57063783A patent/JPS57203741A/en active Granted
- 1982-04-16 ES ES511490A patent/ES511490A0/en active Granted
Also Published As
Publication number | Publication date |
---|---|
ES8306801A1 (en) | 1983-06-01 |
ATE18260T1 (en) | 1986-03-15 |
CA1194346A (en) | 1985-10-01 |
JPS6134498B2 (en) | 1986-08-08 |
EP0066361A2 (en) | 1982-12-08 |
ES511490A0 (en) | 1983-06-01 |
EP0066361A3 (en) | 1983-01-19 |
EP0066361B1 (en) | 1986-02-26 |
DE3269304D1 (en) | 1986-04-03 |
JPS57203741A (en) | 1982-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0066361B2 (en) | Corrosion resistant high strength nickel-based alloy | |
US4788036A (en) | Corrosion resistant high-strength nickel-base alloy | |
Eiselstein et al. | The invention and definition of alloy 625 | |
EP0052941B1 (en) | Tube material for sour wells of intermediate depths | |
JP6278896B2 (en) | High strength corrosion resistant austenitic alloy | |
JP6076472B2 (en) | Nickel-chromium-aluminum alloy with good workability, creep strength and corrosion resistance | |
US5019184A (en) | Corrosion-resistant nickel-chromium-molybdenum alloys | |
WO2003044238A1 (en) | Super-austenitic stainless steel | |
JP2015520300A (en) | Nickel-chromium alloy with good workability, creep strength and corrosion resistance | |
US5424029A (en) | Corrosion resistant nickel base alloy | |
US6004408A (en) | Nickel-chrome-iron based alloy composition | |
EP0247577B1 (en) | Corrosion resistant age hardenable nickel-base alloy | |
CA1076396A (en) | Matrix-stiffened heat and corrosion resistant alloy | |
CA3066336C (en) | Ni-based alloy pipe for nuclear power | |
EP0091308B1 (en) | Corrosion resistant nickel base alloy | |
EP0092397A1 (en) | Nickel-chromium-molybdenum alloy | |
US4033767A (en) | Ductile corrosion resistant alloy | |
EP0155011B1 (en) | High-strength alloy for industrial vessels | |
US4816217A (en) | High-strength alloy for industrial vessels | |
Bassford et al. | Nickel and its Alloys | |
US5429690A (en) | Method of precipitation-hardening a nickel alloy | |
JP2623826B2 (en) | High-strength β-based titanium alloy with excellent corrosion resistance and stress corrosion cracking resistance | |
Crook | Development of a new Ni-Cr-Mo alloy | |
JPH0372699B2 (en) | ||
Smith et al. | Nickel and its alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): AT BE DE FR GB IT SE |
|
AK | Designated contracting states |
Designated state(s): AT BE DE FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19830707 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: INCO ALLOYS INTERNATIONAL, INC. |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Designated state(s): AT BE DE FR GB IT SE |
|
REF | Corresponds to: |
Ref document number: 18260 Country of ref document: AT Date of ref document: 19860315 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3269304 Country of ref document: DE Date of ref document: 19860403 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: THYSSEN EDELSTAHLWERKE AG Effective date: 19861126 Opponent name: VEREINIGTE DEUTSCHE METALLWERKE AG Effective date: 19861125 |
|
ITF | It: translation for a ep patent filed | ||
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 19901010 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE DE FR GB IT SE |
|
ET3 | Fr: translation filed ** decision concerning opposition | ||
ITTA | It: last paid annual fee | ||
EAL | Se: european patent in force in sweden |
Ref document number: 82301929.4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19990416 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000430 |
|
BERE | Be: lapsed |
Owner name: INCO ALLOYS INTERNATIONAL INC. Effective date: 20000430 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20010309 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010312 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20010319 Year of fee payment: 20 Ref country code: GB Payment date: 20010319 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010321 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20020413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20020414 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Effective date: 20020413 |
|
EUG | Se: european patent has lapsed |
Ref document number: 82301929.4 |