AU2001276945A1 - Adhesive blends comprising hydrophilic and hydrophobic pressure sensitive adhesives - Google Patents
Adhesive blends comprising hydrophilic and hydrophobic pressure sensitive adhesivesInfo
- Publication number
- AU2001276945A1 AU2001276945A1 AU2001276945A AU2001276945A AU2001276945A1 AU 2001276945 A1 AU2001276945 A1 AU 2001276945A1 AU 2001276945 A AU2001276945 A AU 2001276945A AU 2001276945 A AU2001276945 A AU 2001276945A AU 2001276945 A1 AU2001276945 A1 AU 2001276945A1
- Authority
- AU
- Australia
- Prior art keywords
- pressure sensitive
- sensitive adhesive
- adhesive
- hydrophilic
- adhesive composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001070 adhesive effect Effects 0.000 title claims description 165
- 239000000853 adhesive Substances 0.000 title claims description 163
- 239000000203 mixture Substances 0.000 title claims description 137
- 239000004820 Pressure-sensitive adhesive Substances 0.000 title claims description 88
- 230000002209 hydrophobic effect Effects 0.000 title claims description 27
- 229920001971 elastomer Polymers 0.000 claims description 43
- 239000000178 monomer Substances 0.000 claims description 41
- 239000000758 substrate Substances 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 34
- 239000003795 chemical substances by application Substances 0.000 claims description 33
- 239000000806 elastomer Substances 0.000 claims description 33
- -1 acrylate ester Chemical class 0.000 claims description 26
- 230000002378 acidificating effect Effects 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 23
- 239000004014 plasticizer Substances 0.000 claims description 22
- 229920005989 resin Polymers 0.000 claims description 22
- 239000011347 resin Substances 0.000 claims description 22
- 238000006116 polymerization reaction Methods 0.000 claims description 17
- 229920002725 thermoplastic elastomer Polymers 0.000 claims description 17
- 206010013786 Dry skin Diseases 0.000 claims description 16
- 230000037336 dry skin Effects 0.000 claims description 16
- 229910001220 stainless steel Inorganic materials 0.000 claims description 16
- 239000010935 stainless steel Substances 0.000 claims description 16
- 239000010408 film Substances 0.000 claims description 13
- 229920001451 polypropylene glycol Polymers 0.000 claims description 13
- 239000003963 antioxidant agent Substances 0.000 claims description 11
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 10
- 229920001577 copolymer Polymers 0.000 claims description 9
- 239000004744 fabric Substances 0.000 claims description 9
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 8
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 claims description 7
- 230000003078 antioxidant effect Effects 0.000 claims description 6
- 239000012986 chain transfer agent Substances 0.000 claims description 6
- 239000006260 foam Substances 0.000 claims description 6
- 239000005060 rubber Substances 0.000 claims description 6
- 230000009477 glass transition Effects 0.000 claims description 5
- 239000000123 paper Substances 0.000 claims description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 4
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 claims description 4
- DXPPIEDUBFUSEZ-UHFFFAOYSA-N 6-methylheptyl prop-2-enoate Chemical compound CC(C)CCCCCOC(=O)C=C DXPPIEDUBFUSEZ-UHFFFAOYSA-N 0.000 claims description 4
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 claims description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 4
- 244000043261 Hevea brasiliensis Species 0.000 claims description 4
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 claims description 4
- 229920003052 natural elastomer Polymers 0.000 claims description 4
- 229920001194 natural rubber Polymers 0.000 claims description 4
- 229920013639 polyalphaolefin Polymers 0.000 claims description 4
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- 229920001195 polyisoprene Polymers 0.000 claims description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 4
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 claims description 4
- 229920002367 Polyisobutene Polymers 0.000 claims description 3
- 229920005549 butyl rubber Polymers 0.000 claims description 3
- 239000011888 foil Substances 0.000 claims description 3
- 239000011104 metalized film Substances 0.000 claims description 3
- 229920002857 polybutadiene Polymers 0.000 claims description 3
- 150000003097 polyterpenes Chemical class 0.000 claims description 3
- 235000007173 Abies balsamea Nutrition 0.000 claims description 2
- 244000018716 Impatiens biflora Species 0.000 claims description 2
- 239000005062 Polybutadiene Substances 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- 150000007513 acids Chemical class 0.000 claims description 2
- 229920006271 aliphatic hydrocarbon resin Polymers 0.000 claims description 2
- 230000000845 anti-microbial effect Effects 0.000 claims description 2
- 229920006272 aromatic hydrocarbon resin Polymers 0.000 claims description 2
- 150000002148 esters Chemical class 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 239000000025 natural resin Substances 0.000 claims description 2
- 229920001568 phenolic resin Polymers 0.000 claims description 2
- 235000013824 polyphenols Nutrition 0.000 claims description 2
- 229920006132 styrene block copolymer Polymers 0.000 claims description 2
- 150000003505 terpenes Chemical class 0.000 claims description 2
- 235000007586 terpenes Nutrition 0.000 claims description 2
- 239000003505 polymerization initiator Substances 0.000 claims 2
- 239000002202 Polyethylene glycol Substances 0.000 claims 1
- 239000004745 nonwoven fabric Substances 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 36
- 238000000576 coating method Methods 0.000 description 30
- 239000011248 coating agent Substances 0.000 description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- 229920000058 polyacrylate Polymers 0.000 description 20
- 238000012360 testing method Methods 0.000 description 18
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 16
- 239000000654 additive Substances 0.000 description 16
- 238000002156 mixing Methods 0.000 description 13
- 239000000126 substance Substances 0.000 description 12
- 101000623895 Bos taurus Mucin-15 Proteins 0.000 description 11
- 229910000831 Steel Inorganic materials 0.000 description 11
- 239000010959 steel Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 9
- 230000005855 radiation Effects 0.000 description 8
- 229920000297 Rayon Polymers 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 239000002964 rayon Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000003999 initiator Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 229920001400 block copolymer Polymers 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 239000012768 molten material Substances 0.000 description 5
- 239000000049 pigment Substances 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- 239000004416 thermosoftening plastic Substances 0.000 description 5
- IUNVCWLKOOCPIT-UHFFFAOYSA-N 6-methylheptylsulfanyl 2-hydroxyacetate Chemical compound CC(C)CCCCCSOC(=O)CO IUNVCWLKOOCPIT-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- 206010052428 Wound Diseases 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 238000011437 continuous method Methods 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229920005862 polyol Polymers 0.000 description 4
- 150000003077 polyols Chemical class 0.000 description 4
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 230000001143 conditioned effect Effects 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000012943 hotmelt Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 229920006267 polyester film Polymers 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229920003051 synthetic elastomer Polymers 0.000 description 3
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 2
- KFDVPJUYSDEJTH-UHFFFAOYSA-N 4-ethenylpyridine Chemical compound C=CC1=CC=NC=C1 KFDVPJUYSDEJTH-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- 244000028419 Styrax benzoin Species 0.000 description 2
- 235000000126 Styrax benzoin Nutrition 0.000 description 2
- 235000008411 Sumatra benzointree Nutrition 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 229960002130 benzoin Drugs 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- 150000008366 benzophenones Chemical class 0.000 description 2
- ZNAAXKXXDQLJIX-UHFFFAOYSA-N bis(2-cyclohexyl-3-hydroxyphenyl)methanone Chemical compound C1CCCCC1C=1C(O)=CC=CC=1C(=O)C1=CC=CC(O)=C1C1CCCCC1 ZNAAXKXXDQLJIX-UHFFFAOYSA-N 0.000 description 2
- WQAQPCDUOCURKW-UHFFFAOYSA-N butanethiol Chemical compound CCCCS WQAQPCDUOCURKW-UHFFFAOYSA-N 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N desyl alcohol Natural products C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 235000019382 gum benzoic Nutrition 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 239000012744 reinforcing agent Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- HJUGFYREWKUQJT-UHFFFAOYSA-N tetrabromomethane Chemical compound BrC(Br)(Br)Br HJUGFYREWKUQJT-UHFFFAOYSA-N 0.000 description 2
- 239000012745 toughening agent Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- DSTUKHPLWATFCG-UHFFFAOYSA-N (2-benzoylphenyl) prop-2-enoate Chemical group C=CC(=O)OC1=CC=CC=C1C(=O)C1=CC=CC=C1 DSTUKHPLWATFCG-UHFFFAOYSA-N 0.000 description 1
- LTYBJDPMCPTGEE-UHFFFAOYSA-N (4-benzoylphenyl) prop-2-enoate Chemical compound C1=CC(OC(=O)C=C)=CC=C1C(=O)C1=CC=CC=C1 LTYBJDPMCPTGEE-UHFFFAOYSA-N 0.000 description 1
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- OXFSTTJBVAAALW-UHFFFAOYSA-N 1,3-dihydroimidazole-2-thione Chemical compound SC1=NC=CN1 OXFSTTJBVAAALW-UHFFFAOYSA-N 0.000 description 1
- FTALTLPZDVFJSS-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl prop-2-enoate Chemical compound CCOCCOCCOC(=O)C=C FTALTLPZDVFJSS-UHFFFAOYSA-N 0.000 description 1
- PRAMZQXXPOLCIY-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethanesulfonic acid Chemical compound CC(=C)C(=O)OCCS(O)(=O)=O PRAMZQXXPOLCIY-UHFFFAOYSA-N 0.000 description 1
- CNDCQWGRLNGNNO-UHFFFAOYSA-N 2-(2-sulfanylethoxy)ethanethiol Chemical compound SCCOCCS CNDCQWGRLNGNNO-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- XFDQLDNQZFOAFK-UHFFFAOYSA-N 2-benzoyloxyethyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCCOC(=O)C1=CC=CC=C1 XFDQLDNQZFOAFK-UHFFFAOYSA-N 0.000 description 1
- OWHSTLLOZWTNTQ-UHFFFAOYSA-N 2-ethylhexyl 2-sulfanylacetate Chemical compound CCCCC(CC)COC(=O)CS OWHSTLLOZWTNTQ-UHFFFAOYSA-N 0.000 description 1
- PJEKREDJLDASAE-UHFFFAOYSA-N 2-ethylhexyl 2-sulfanylpropanoate Chemical compound CCCCC(CC)COC(=O)C(C)S PJEKREDJLDASAE-UHFFFAOYSA-N 0.000 description 1
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- NCTBYWFEJFTVEL-UHFFFAOYSA-N 2-methylbutyl prop-2-enoate Chemical compound CCC(C)COC(=O)C=C NCTBYWFEJFTVEL-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- ZVYGIPWYVVJFRW-UHFFFAOYSA-N 3-methylbutyl prop-2-enoate Chemical compound CC(C)CCOC(=O)C=C ZVYGIPWYVVJFRW-UHFFFAOYSA-N 0.000 description 1
- CYUZOYPRAQASLN-UHFFFAOYSA-N 3-prop-2-enoyloxypropanoic acid Chemical compound OC(=O)CCOC(=O)C=C CYUZOYPRAQASLN-UHFFFAOYSA-N 0.000 description 1
- BVDBXCXQMHBGQM-UHFFFAOYSA-N 4-methylpentan-2-yl prop-2-enoate Chemical compound CC(C)CC(C)OC(=O)C=C BVDBXCXQMHBGQM-UHFFFAOYSA-N 0.000 description 1
- CUXGDKOCSSIRKK-UHFFFAOYSA-N 7-methyloctyl prop-2-enoate Chemical compound CC(C)CCCCCCOC(=O)C=C CUXGDKOCSSIRKK-UHFFFAOYSA-N 0.000 description 1
- LVGFPWDANALGOY-UHFFFAOYSA-N 8-methylnonyl prop-2-enoate Chemical compound CC(C)CCCCCCCOC(=O)C=C LVGFPWDANALGOY-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- 241000010202 Catalpa speciosa Species 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical class COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 101150033824 PAA1 gene Proteins 0.000 description 1
- 239000004264 Petrolatum Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 206010039792 Seborrhoea Diseases 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000005233 alkylalcohol group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000012431 aqueous reaction media Substances 0.000 description 1
- 150000008365 aromatic ketones Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000000386 athletic effect Effects 0.000 description 1
- 239000005441 aurora Substances 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- FWLDHHJLVGRRHD-UHFFFAOYSA-N decyl prop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C=C FWLDHHJLVGRRHD-UHFFFAOYSA-N 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- YCZJVRCZIPDYHH-UHFFFAOYSA-N ditridecyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCCCCCC YCZJVRCZIPDYHH-UHFFFAOYSA-N 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920005676 ethylene-propylene block copolymer Polymers 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- GJTGYNPBJNRYKI-UHFFFAOYSA-N hex-1-ene;prop-1-ene Chemical compound CC=C.CCCCC=C GJTGYNPBJNRYKI-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000007757 hot melt coating Methods 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- OPECTNGATDYLSS-UHFFFAOYSA-N naphthalene-2-sulfonyl chloride Chemical compound C1=CC=CC2=CC(S(=O)(=O)Cl)=CC=C21 OPECTNGATDYLSS-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000037312 oily skin Effects 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 239000010690 paraffinic oil Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229940066842 petrolatum Drugs 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphonic acid group Chemical group P(O)(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 150000003509 tertiary alcohols Chemical class 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000009988 textile finishing Methods 0.000 description 1
- 230000010512 thermal transition Effects 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- WCLDITPGPXSPGV-UHFFFAOYSA-N tricamba Chemical compound COC1=C(Cl)C=C(Cl)C(Cl)=C1C(O)=O WCLDITPGPXSPGV-UHFFFAOYSA-N 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- ZTWTYVWXUKTLCP-UHFFFAOYSA-N vinylphosphonic acid Chemical compound OP(O)(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-N 0.000 description 1
- 239000003190 viscoelastic substance Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Description
Adhesive Blends Comprising Hydrophilic and Hydrophobic Pressure Sensitive Adhesives
Field of Invention
This invention relates to adhesive blends comprising a hydrophilic pressure sensitive adhesive and a hydrophobic pressure sensitive adhesive, more particularly to dry- and wet-surface adhesion, which may be present in different layers in a multilayer structure.
Background of the Invention
Pressure-sensitive adhesive (PSA) tapes have been used for more than half a century for a variety of marking, holding, protecting, sealing and masking purposes. Pressure-sensitive adhesive tapes comprise a backing or substrate, and a pressure-sensitive adhesive. Pressure-sensitive adhesives require no activation other than finger pressure, exert a strong holding force and should be removable from a smooth surface without leaving a residue.
Adhering to skin presents challenges to adhesive manufacturers due to the inherent variability of the properties of skin. Adhesion to skin is dependent upon many factors. These factors include but are not limited to the environment in which the recipient is located. For instance, adhesion to skin will vary on the same person depending upon the humidity. If the same person were tested for skin adhesion using a given adhesive in different climates, different adhesion results would be obtained depending upon if the person were located in an arid versus in a humid environment. Furthermore, skin varies from individual to individual. One person may have extremely dry skin whereas another person may have oily skin. As well as varying from individual to individual, skin properties may vary on a given individual depending upon the location on the body. For instance, skin located on a hand may be considerably drier than skin located on a back or face. Therefore, it is very difficult to manufacture a skin adhesive that is suitable for environmental and individual variabilities.
Adhesive composition and performance are also dependent upon the intended use of the adhesive. Use of PSAs for masking tape, or pavement markings will differ from uses for medical applications. While all applications require some wet-stick capabilities, there will be different requirements for the applications. For example, some uses require a gentle adhesive, such as adherence to a sensitive area whereas other uses require a more aggressive adhesive, such as when it is necessary that the adhesive remain adhered for an extended period of time or if the adhesive is adhered to an area which is very mobile.
Medical adhesives are generally used in wound dressings, surgical drapes, bandages and tapes. These items are generally constructed of a backing coated with an adhesive. The performance of the adhesive is in part dependent upon the occlusivity of the backing. Backings are generally categorized by their porosity into either nonocclusive or occlusive backings. When occlusive backings are used to prepare bandages or the like for medical applications the resulting bandage typically does not adhere well to skin over extended time periods. This probably occurs because the bandage cannot release water vapor that causes retention of moisture and in turn causes the adhesive to lift from the skin.
Conformability and cohesiveness are inversely related properties and are considered when preparing or selecting adhesives for end-uses, particularly for medical articles and medical applications. It is desirable for a medical adhesive to conform to the terrain of the skin to which it is adhered. This enhances comfort to the wearer and also ensures a higher initial adhesion to the skin because the adhesive is able to flow into the skin's topography. However, if an adhesive is too conformable it may lack the necessary cohesiveness necessary to remove the article with the adhesive intact. If an adhesive lacks cohesive strength the adhesive on a bandage may split upon an attempt to remove the article leaving some adhesive residue adhered to the skin and some adhesive removed along with the bandage backing. This is unacceptable to most medical professionals and patients.
Pressure-sensitive adhesives require a delicate balance of viscous and elastic properties that result in a four-fold balance of adhesion, cohesion, stretchiness and elasticity. Pressure-sensitive adhesives generally comprise a polymer that is either inherently tacky or can be tackified with the addition of tackifying resins. They can be
coated in solvent or as water-based emulsions to reduce the material viscosity to a level that is easily applied to a substrate of choice.
Generally, when additives are used to enhance properties of pressure-sensitive adhesives they are required to be miscible with the pressure-sensitive adhesive or to have some common blocks or groups to permit homogeneous blends to form at the molecular level. Pressure-sensitive adhesives have been modified to extend their applicability into new areas. Tackified thermoplastic elastomers have been dissolved in acrylic monomers and subsequently cured. Tackified thermoplastic elastomers have also been added to polymerized acrylic pressure-sensitive adhesives in solvent where each component contains a common segment to permit compatibility. Natural rubber has been added to polymerized acrylic pressure-sensitive adhesives in solvent and subsequently thermally cured. The general purpose is to combine the high shear properties of elastomers with the high tack performance of acrylics to achieve adhesion to both polar and nonpolar surfaces. Further improvements and better balance of properties continue to be sought. Pressure sensitive adhesives that adhere to wet or moist surfaces, so-called hydrophilic or "wet-stick" adhesives, are useful in many industrial, commercial and consumer applications. In pharmaceutical and other medical fields, such hydrophilic adhesives are typically used for adhering articles such as tapes, bandages, dressings, and drapes to moist skin surfaces such as wounds or areas of the body prone to moistness. Hydrophilic adhesives also find use in outdoor or exterior applications, such as on roadway materials, traffic control signage, and marine or automotive coatings and surfaces. Labels for food containers and other products that are exposed to moisture due to condensation or subjected to water or ice immersion also must be coated with hydrophilic adhesives. (Meth)acrylate pressure sensitive adhesives are attractive materials for many tape and label applications because of their hydrophilic character. Copolymerization of (meth)acrylate monomers with hydrophilic acidic comonomers can increase hydrophilic characteristics and can enhance the cohesive strength of the PSA. However, this increased cohesive strength generally diminishes the tack of the hydrophilic acidic comonomer- containing (meth)acrylate copolymer.
At higher acidic comonomer levels, (meth)acrylate copolymers can dramatically lose their tack and become highly hydrophilic. When exposed to water, the moisture helps
to transform these highly acidic, low tack compositions into tacky materials that are suitable as wet-stick adhesives used in many medical applications. When the water is allowed to evaporate, these adhesives lose their pressure-sensitive tack. Such compositions can also be useful as water-soluble or water dispersible adhesives. Water- dispersible or soluble (meth)acrylate copolymers can be formulated as repulpable adhesives used to splice dry paper rolls and designed to lose adhesive integrity and fully degrade when undergoing paper recycling operations.
When using high levels of acidic comonomers, it is difficult to effectively copolymerize these materials without a solvent, an aqueous reaction medium, or additives that promote interpolymerization of these monomers. Attempts to copolymerize these monomers in the absence of compatibilizing reaction media often results in heterogeneous materials dominated by glassy regions formed by the polymerization of the acidic comonomers and softer domains comprising the polymerized (meth)acrylate monomers. Thus, (meth)acrylate copolymers having high levels of acidic comonomers have traditionally been made using either solvent or water-based polymerization methods.
Summary of the Invention
Briefly, in one aspect of the present invention an adhesive composition is provided comprising a blend of a hydrophilic pressure sensitive adhesive (PSA) (Component I) and a hydrophobic PSA (Component II). Suitable adhesive blend compositions of the present invention comprise a Component I to Component II weight ratio of from about 1 : 19 to about 19:1 (approximately 5/95 and 95/5 weight percent); preferable adhesive compositions comprise a Component I to Component II weight ratio of from about 1:9 to about 9:1 (approximately 10/90 and 90/10 weight percent); more preferable adhesive compositions comprise a Component I to Component II weight ratio of from about 1 :4 to about 4: 1 (approximately 20/80 and 80/20 weight percent); and most preferable adhesive compositions comprise a Component I to Component II weight ratio of from about 1:3 to about 3:1 (approximately 25/75 and 75/25 weight percent).
The present invention provides an adhesive composition comprising a blend of a hydrophilic PSA and a hydrophobic PSA, wherein the hydrophilic component comprises the polymerization product of (a) about 15 to about 85 parts by weight of an
(meth)acrylate ester monomer wherein the (meth)acrylate ester monomer, when polymerized, has a glass transition temperature (Tg) of less than about 10°C; (b) about 85
to about 15 parts by weight of a hydrophilic acidic comonomer; and (c) at least about 10 parts based on 100 parts of the sum of components (a) + (b) of a non-reactive plasticizing agent and wherein the hydrophobic component is an elastomer or thermoplastic elastomer including but not limited to styrene block copolymers (e.g., linear, radial, tapered, star) consisting of copolymerized styrene and isoprene, butadiene or ethylene-butylene; polyisoprene; polybutadiene; polyisobutylene; butyl rubber; styrene-butadiene rubber; natural rubber; and poly- -olefins (e.g., polyhexene, polyoctene and propylene-hexene).
Inherently tacky elastomers and thermoplastic elastomers do not require the addition of a tackifying resin or plasticizer, although tackifying resins and plasticizers could be added to the elastomers or thermoplastic elastomer. On the other hand, tackifying resins and/or plasticizers are added to non-tacky elastomers and thermoplastic elastomers to provide the hydrophobic adhesive (Component II). Preferably, when used, tackifying resins and plasticizers are soluble in the elastomers or thermoplastic elastomers of Component II. Potential additives that may be added to Component I, Component II, or to the blend of components I and II include initiators, chain transfer agents, pigments, fillers, medicinal additives, hollow or solid microspheres (expandable and non-expandable), as well as compatibilizing agents including block copolymers and homopolymers.
In another aspect, adhesive coated articles are provided, such as medical tapes, pavement marking tapes, labels, duct tapes, masking tapes, and other articles useful for dry- and wet-surfaces, such as wound dressings, and surgical drapes.
Advantageously, the blend of hydrophilic PSAs with hydrophobic PSAs provides for an improved balance of adhesion performance to both dry and wet surfaces, particularly for skin surfaces. Preferably, as measured by the Test Protocols described herein, the adhesive articles of the present invention have an initial (To) adhesion to wet skin and to dry skin of at least about 0.8 N/dm and no greater than about 8.0 N/dm; and have an extended (24 to 48 hours, T2 .48) of no greater than about 15 N/dm. Further, the adhesive compositions of the present invention may also have an initial peel adhesive (bond between the adhesive layer and the testing surface) to stainless steel underwater that is at least 16 N/dm, while the two-bond (bond between the adhesive layer and the substrate) is at least 25 N/dm.
In another aspect of the present invention, a method of using the adhesive blends of the present invention is provided comprising the steps of: (a) applying a layer of the adhesive blend to a predetermined thickness onto a substrate, and (b) applying the layered substrate onto a wet or dry surface. Further, the wet or dry surface is wet or dry skin. In yet another aspect of the present invention, a pressure sensitive adhesive article is provided comprising a substrate and a pressure sensitive adhesive composition disposed thereon, wherein the pressure sensitive adhesive composition comprises a blend of (I) a hydrophilic pressure sensitive adhesive and (II) a hydrophobic pressure sensitive adhesive, wherein the substrate is selected from the group of cloth, metallized foil, metallized film, polymeric film, nonwoven polymeric material, paper, foam, and combinations thereof. As used herein in this application:
"pressure-sensitive adhesive" or "PSA" refers to a viscoelastic material that possesses the following properties: (1) aggressive and permanent tack, (2) adherence with no more than finger pressure, (3) sufficient ability to hold onto a substrate, and (4) sufficient cohesive strength to be removed cleanly from the substrate;
"hydrophilic adhesive" refers to a material that exhibits pressure-sensitive adhesive properties when adhered to a wet substrate. Hydrophilic adhesives may or may not demonstrate pressure-sensitive adhesive properties under dry conditions;
" (meth)acrylate monomers" are acrylic acid esters or methacrylic acid esters of non-tertiary alcohols, the alcohols preferably having about 4 to 12 carbon atoms;
"hydrophilic acidic comonomers" are water soluble ethylenically unsaturated, free radically reactive monomers having carboxylic, sulfonic or phosphonic acid functionality and are copolymerizable with the (meth)acrylate monomers;
"compatible" when referring to plasticizing agents (as used in Component I) means plasticizing agents that:
1) exhibit no gross phase separation from the hydrophilic adhesive when present in the prescribed amounts,
2) once mixed with the hydrophilic adhesive, do not significantly phase separate from the hydrophilic adhesive upon aging, 3) function as a rheological modification agent for the hydrophilic adhesive, such that this plasticized adhesive exhibits pressure-sensitive properties as defined above, and
4) promote high conversion polymerization, that is greater than 98% polymerization of the comonomers; "non-reactive" refers to plasticizing agents that do not contain free radically reactive ethylenically unsaturated groups that could co-react with the comonomers or functionalities that significantly inhibit the polymerization of these monomers;
"non-volatile" refers to plasticizing agents that, when present in the hydrophilic adhesive, generate less than 3% VOC (volatile organic content). The VOC content can be determined analogously to ASTM D 5403-93 by exposing the coated hydrophilic adhesive to 100°± 5°C in a forced draft oven for 1 hour. If less than 3% plasticizing agent is lost from the plasticized pressure-sensitive adhesive, then the plasticizing agent is considered "non- volatile";
"solventless" refers to hydrophilic adhesive polymerizable mixtures that are essentially 100% solid systems. Usually, such polymerizable mixtures have no more than about 5% organic solvents or water, more typically no more than about 3% organic solvents or water. Most typically, such polymerizable mixtures are free of organic solvents and water.
Description of the Preferred Embodiment(s)
Adhesives blends of the present invention uniquely balance dry- and wet-surface adhesion characteristics and comprise a hydrophilic PSA (Component I) and a hydrophobic PSA (Component II). The adhesive blends can optionally include additives.
Component I - Hydrophilic Pressure Sensitive Adhesive
Component I comprises a hydrophilic wet-stick polyacrylate PSA comprising the polymerization product of: at least one (meth)acrylate monomer, at least one hydrophilic acidic comonomer, and at least one plasticizing agent. Furthermore, the polymerizable mixture typically contains additional additives, including initiators, chain transfer agents, and/or other additives, such as pigments, glass or polymeric bubbles or beads (which may be expanded or unexpanded), fibers, reinforcing agents, hydrophobic or hydrophilic silica, toughening agents, fire retardants, antioxidants, finely ground polymeric particles such as polyester, nylon, and polypropylene, and stabilizers.
(Meth)acrylate Monomer
The hydrophilic PSAs used as a component of the adhesive blends of the present invention contain at least one monofunctional unsaturated monomer selected from the group consisting of (meth)acrylate esters of non-tertiary alkyl alcohols, the alkyl groups of which preferably comprise from about 4 to about 12 carbon atoms, more preferably about 4 to about 8 carbon atoms; and mixtures thereof. Preferred (meth) acrylate monomers have the following general Formula (I):
Formula (I) wherein R1 is H or CH3. R2 is selected from linear or branched hydrocarbon groups and may contain one or more heteroatoms. The number of carbon atoms in the hydrocarbon group is preferably about 4 to about 12, and more preferably about 4 to about 8.
Examples of suitable (meth)acrylate monomers useful in the present invention include, but are not limited to, n-butyl acrylate, decyl acrylate, 2-ethylhexyl acrylate, hexyl acrylate, isoamyl acrylate, isodecyl acrylate, isononyl acrylate, isooctyl acrylate, lauryl acrylate, 2-methyl butyl acrylate, 4-methyl-2-pentyl acrylate, ethoxy ethoxyethyl acrylate and mixtures thereof. Particularly preferred are n-butyl acrylate, 2-ethylhexyl acrylate, isooctyl acrylate, lauryl acrylate, and mixtures thereof.
Hydrophilic Acidic Comonomer Useful hydrophilic acidic comonomers include, but are not limited to, those selected from ethylenically unsaturated carboxylic acids, ethylenically unsaturated sulfonic acids, ethylenically unsaturated phosphonic acids, and mixtures thereof. Examples of such comonomers include those selected from acrylic acid, methacrylic acid, itaconic acid, fumaric acid, crotonic acid, citraconic acid, maleic acid, β-carboxyethyl acrylate, 2-sulfoethyl methacrylate, styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, vinyl phosphonic acid, and the like, and mixtures thereof. Particularly preferred hydrophilic acidic monomers are ethylenically unsaturated carboxylic acids, most preferably, acrylic acid.
Minor amounts (e.g., not greater than about 10% by weight) of monomers copolymerizable with both the (meth) acrylate monomers and hydrophilic acidic monomers
can be used. Examples of such monomers include (meth)acrylamides, vinyl esters and N- vinyl lactams.
The copolymerizable mixture used to make the hydrophilic adhesive comprises, based upon 100 parts by weight total, about 15 to about 85 parts by weight of at least one (meth)acrylate monomer and about 85 to about 15 parts by weight of a hydrophilic acidic comonomer. Preferably, the copolymerizable mixture comprises about 20 to about 80 parts by weight of at least one (meth)acrylate monomer and about 80 to about 20 parts by weight of a hydrophilic acidic comonomer. More preferably, the copolymerizable mixture comprises about 40 to about 60 parts by weight of at least one (meth)acrylate monomer and about 60 to about 40 parts by weight of a hydrophilic acidic comonomer. The ratio of each comonomer in the hydrophilic adhesive can be chosen to optimize the performance.
Plasticizing Agent
Useful plasticizing agents are compatible with the starting monomers and the resultant polymers of the hydrophilic pressure sensitive adhesive, such that once the plasticizing agent is mixed with the monomers or the resulting polymers, the plasticizing agent does not phase separate. By "phase separation" or "phase separate", it is meant that by differential scanning calorimetry (DSC) no detectable thermal transition, such as a melting or glass transition temperature, can be found for the pure plasticizing agent in the wet stick adhesive composition. Preferably, the plasticizing agent is non-volatile and non-reactive. Particularly useful plasticizing agents include polyalkylene oxides having weight average molecular weights of about 150 to about 5,000, preferably of about 150 to about 1,500, such as polyethylene oxides, polypropylene oxides, polyethylene glycols, and copolymers thereof; alkyl or aryl functionalized polyalkylene oxides, such as PYCAL 94 (a phenyl ether of polyethylene oxide, commercially available from ICI Chemicals); benzoyl functionalized polyethers, such as Benzoflex 400 (polypropylene glycol dibenzoate, commercially available from Velsicol Chemicals) and monomethyl ethers of polyethylene oxides, and mixtures thereof. Examples of other useful plasticizing agents include CARBOWAX™ MPEG 550, a methoxypolyethylene glycol plasticizer having a molecular weight of approximately 550 and available from Union Carbide Corp.; Polyol PPG 1025, a polypropylene glycol plasticizer having a molecular weight of approximately 1025 and available from Lyondell Chemical Worldwide, Inc.; Polyol PPG 425, a polypropylene
glycol plasticizer having a molecular weight of approximately 425 and available from Lyondell Chemical Worldwide, Inc.; and PLURONIC™ 25R4, an ethylene oxide/propylene oxide block copolymer plasticizer available from BASF Company.
The plasticizing agent can be used in amounts of at least about 10 pph (parts by weight per 100 parts of the (meth)acrylate monomers and hydrophilic acidic comonomers). Typically, the plasticizing agent is present in the adhesive in amounts from about 15 to 100 pph. Preferably, the plasticizing agent is present in amounts from about 20 to 80 pph. The amount of plasticizer required depends upon the type and ratios of the (meth)acrylate monomers and hydrophilic acidic comonomers employed in the polymerizable mixture and the chemical class and molecular weight of the plasticizing agent.
Additives
A. Initiators
A free radical initiator is preferably added to aid in the copolymerization of (meth) acrylate comonomers and acidic comonomers. The type of initiator used depends on the polymerization process. Photoinitiators which are useful for polymerizing the polymerizable mixture monomers include benzoin ethers such as benzoin methyl ether or benzoin isopropyl ether, substituted benzoin ethers such as 2-methyl-2- hydroxypropiophenone, aromatic sulfonyl chlorides such as 2-naphthalenesulfonyl chloride, and photoactive oxides such as l-phenyl-l,l-propanedione-2-(o- ethoxycarbonyl)oxime. Examples of commercially available photoinitiators are IRGACURE™ 651 (2,2-dimefhoxy-l,2-diphenylethane-l-one) and IRGACURE™ 184 (a hydroxycyclohexyl phenyl ketone), both commercially available from Ciba-Geigy Corporation. Generally, the photoinitiator is present in an amount of about 0.005 to 1 weight percent based on the weight of the copolymerizable monomers. Examples of suitable thermal initiators include AIBN (2,2'-azobis(isobutyronitrile), hydroperoxides, such as tert-butyl hydroperoxide, and peroxides, such as benzoyl peroxide and cyclohexane peroxide.
B. Chain transfer agents Preferably, the polymerizable mixture also includes a chain transfer agent to control the molecular weight of the polymerized compositions. Chain transfer agents are
materials that regulate free radical polymerization and are generally known in the art. Suitable chain transfer agents include halogenated hydrocarbons such as carbon tetrabromide; sulfur compounds such as lauryl mercaptan, butyl mercaptan, ethanethiol, isooctylthioglycolate (IOTG), 2-ethylhexyl thioglycolate, 2-ethylhexyl mercaptopropionate, 2-mercaptoimidazole, and 2-mercaptoethyl ether and mixtures thereof.
The amount of chain transfer agent that is useful depends upon the desired molecular weight and the type of chain transfer agent. The chain transfer agent is typically used in amounts from about 0.001 part to about 10 parts by weight per 100 parts of total monomer, and preferably from about 0.01 part to about 0.5 part, and most preferably from about 0.02 part to about 0.20 part.
C. Other additives
Other additives can be included in the polymerizable mixture to change the properties of the adhesive. Such additives include fillers, pigments, chemical or physical blowing agents, anti-microbials, antibiotics, medicinal additives, glass or polymeric bubbles or beads (which may be expanded or unexpanded), fibers, reinforcing agents, hydrophobic or hydrophilic silica, toughening agents, fire retardants, antioxidants, finely ground polymeric particles such as polyester, nylon, and polypropylene, and stabilizers. Crosslinking agents could also be added, such as copolymerizable mono-ethylenically unsaturated aromatic ketone comonomers free of ortho-aromatic hydroxyl groups such as those disclosed in U.S. Patent No. 4,737,559. Specific examples of useful crosslinking agents include para-acryloxybenzophenone, para-acryloxyethoxybenzophenone, para-N- (methylacryloxyethyl)-carbamoylethoxybenzophenone, para-acryloxyacetophenone, ortho-acrylamidoacetophenone, acrylated anthraquinones, and the like. A preferred crosslinking agent is acryloyloxybenzophenone. When used, additives are added in amounts sufficient to affect the desired end properties, as known to those skilled in the art.
Methods
A method for preparing a hydrophilic pressure sensitive adhesive comprises the steps of: (a) combining a polymerizable mixture comprising:
(i) about 15 to about 85 parts by weight of an (meth)acrylate ester monomer wherein the (meth) acrylate ester monomer, when homopolymerized, has a Tg of less than about 10°C;
(ii) about 85 to about 15 parts by weight of a hydrophilic acidic comonomer; and
(iii) at least about 10 parts based on 100 parts of the sum of components
(a) + (b) of a non-reactive plasticizing agent; and
(b) polymerizing the polymerizable mixture to form a pressure sensitive adhesive that adheres to wet substrate surfaces. An alternative method for preparing a hydrophilic pressure sensitive adhesive comprises the steps of:
(a) combining a polymerizable mixture comprising:
(i) about 15 to about 85 parts by weight of an (meth)acrylate ester monomer wherein the (meth) acrylate ester monomer, when homopolymerized, has a Tg of less than about 10°C;
(ii) about 85 to about 15 parts by weight of a hydrophilic acidic comonomer; and
(iii) at least about 10 parts based on 100 parts (a) + (b) of a non-reactive plasticizing agent; (b) enveloping the polymerizable mixture in a packaging material; and
(c) exposing the enveloped polymerizable mixture to radiation sufficient to polymerize the polymerizable mixture and to form a pressure sensitive adhesive that adheres to wet substrate surfaces .
Yet another method for preparing a hydrophilic pressure sensitive adhesive comprises the steps of:
(a) preparing a prepolymeric syrup comprising:
(i) about 15 to about 85 parts by weight of an (meth)acrylate ester monomer wherein the (meth) acrylate ester monomer, when homopolymerized, has a Tg of less than about 10°C; and (ii) about 85 to about 15 parts by weight of a hydrophilic acidic comonomer;
(b) combining the prepolymeric syrup with at least about 10 parts based on 100 parts of the sum of components (i) + (ii) of a non-reactive plasticizing agent to form a polymerizable mixture; and
(c) exposing the polymerizable mixture to radiation sufficient to polymerize the polymerizable mixture and to form a pressure sensitive adhesive that adheres to wet substrate surfaces.
Polymerization Processes
Polymerization methods, such as the continuous free radical polymerization method described in U.S. Patent Nos. 4,619,979 and 4,843,134; the essentially adiabatic polymerization methods using a batch reactor described in U.S. Patent No. 5,637,646; and, the methods described for polymerizing packaged polymerizable mixtures described in U.S. Patent No. 5,804,610 may be utilized to prepare the polymers.
Polymerization can also be effected by exposure to ultraviolet (UV) radiation as described in U.S. Patent No. 4,181,752.
Component II - Hydrophobic Pressure Sensitive Adhesive
Component II comprises a hydrophobic PSA that includes an elastomer or thermoplastic elastomer and, optionally, a tackifying resin and/or plasticizer.
Thermoplastic Elastomer
Thermoplastic elastomeric materials are generally defined as materials that behave as elastomers at ambient temperatures, but are thermoplastic at elevated temperatures where they can be molded and remolded. Thermoplastic elastomeric materials useful in the present invention include, for example, linear, radial, star and tapered styrene-isoprene block copolymers such as Kraton™ D 1107 and Kraton™ Dl 113, both available from Shell Chemical Co., Houston, TX; EUROPRENE™ SOL TE 9110, available from EniChem Elastomers Americas, Inc., Houston, TX; linear styrene-(ethylene-butylene) block copolymers such as Kraton™ G1657, available from Shell Chemical Co.; linear styrene-(ethylene-propylene) block copolymers such as Kraton™ G1701, available from Shell Chemical Co.; linear, radial, and star styrene-butadiene block copolymers such as Kraton™ D 1118X, available from Shell Chemical Co.; EUROPRENE™ SOL TE 6205, available from EniChem Elastomers Americas, Inc.; polyetheresters, such as HYTREL™ G3548, available from DuPont; poly-alpha-olefin-based thermoplastic elastomeric
materials such as those represented by the formula -(CH2-CHR)-, where R is an alkyl group containing 2 to 10 carbon atoms; and poly-alpha-olefins based on metallocene catalysis, such as ENGAGE™ EG8200, an ethylene/poly-alpha-olefin copolymer available from Dow Plastics Co., Midland, MI. B. Elastomer
Elastomeric materials are materials that generally form one phase at 21°C, have a glass transition temperature less than about 0°C, and exhibit elastic properties. Elastomers are among the group of polymers that can easily undergo very large, reversible elongations (up to 500 to 1000%) at relatively low stresses. Elastomeric materials useful in the present invention include, for example, natural rubbers such as CV-60, a controlled viscosity grade, and SMR-5, a ribbed smoked sheet rubber; butyl rubbers, such as Exxon Butyl 268 available from Exxon Chemical Co.; synthetic polyisoprenes such as Kraton™ IR305, available from Shell Chemical Co.; NATSYN™ 2210, available from Goodyear Tire and Rubber Co.; ethylene-propylenes; polybutadienes; polyisobutylenes, such as VISTANEX™ MM L-80, available from Exxon Chemical Co.; and styrene-butadiene random copolymer rubbers such as AMERIPOL™ 1011 A, available from BF Goodrich, Akron, OH.
C. Tackifying Resin or Plasticizer
Optionally, these thermoplastic elastomeric or elastomeric materials can be modified with tackifying resins or plasticizers.
The tackifying resins or plasticizers may or may not be miscible with Component I. A tackifying resin or plasticizer, when present generally comprises about 5 to 300 parts by weight, more typically up to about 200 parts by weight, based on 100 parts by weight of the elastomer or the thermoplastic elastomer. Useful examples of tackifying resins suitable for the invention include but are not limited to liquid rubbers, aliphatic and aromatic hydrocarbon resins, rosin, natural resins such as dimerized or hydrogenated balsams and esterified abietic acids, polyterpenes, terpene phenolics, phenol-formaldehyde resins, and rosin esters. Preferred tackifying resins include Escorez™ 1310LC available from Exxon Chemical Co. and Wingtack™ 95 available from Goodyear Tire and Rubber Co. Useful examples of plasticizers include but are not limited to polybutene, paraffinic oils, naphthenic oils, petrolatum, and certain phthalates with long aliphatic side chains such as ditridecyl phthalate.
Additives
Additives such as pigments, fillers, medicinals (e.g., antimicrobials and other biologically active agents), crosslinkers, and antioxidants may be used in the adhesive blends of the present invention. Examples of fillers include but are not limited to inorganic fillers such as zinc oxide, alumina trihydrate, talc, titanium dioxide, aluminum oxide and silica. Other additives such as amorphous polypropylene or various waxes may also be used. Pigments and fillers may be incorporated into the adhesive blend in order to manipulate the properties of the adhesive according to its intended use. Radiation crosslinkers such as benzophenone, derivatives of benzophenone, and substituted benzophenones may be added to the adhesive blends of the invention. Finally, antioxidants may be used to protect against severe environmental aging caused by ultraviolet light or heat. Antioxidants include, for example, hindered phenols, amines, and sulfur and phosphorous hydroxide decomposers. A preferred antioxidant is IRGANOX™ 1010 available from Ciba-Geigy Corp.
Method of Making the Adhesive Blends
Although Components I and II are preferably blended and coated using melt extrusion techniques or by solvent coating, blending can be done by any method that results in a substantially homogeneous distribution of Components I and II.
If a hot melt coating is desired, a blend is prepared by melt mixing the components in the molten or softened state using devices that provide dispersive mixing, distributive mixing, or a combination of dispersive and distributive mixing. Both batch and continuous methods of blending may be used. Examples of batch methods include Brabender™ or Banbury™ internal mixing, and roll milling. Examples of continuous methods include single screw extruding, twin screw extruding, disk extruding, reciprocating single screw extruding, and pin barrel single screw extruding. The continuous methods can include both distributive elements such as cavity transfer elements such as CTM™, available from RAPRA Technology, Ltd., Shrewsbury, England, pin mixing elements, and static mixing elements and dispersive elements such as Maddock mixing elements or Saxton mixing elements. An example of a batch process is the placement of a portion of the blend between the desired substrate to be coated and a release liner, pressing this composite structure in a
heated platen press with sufficient temperature and pressure to form a pressure-sensitive coating of the desired thickness and cooling the resulting coating.
Continuous forming methods include drawing the pressure-sensitive adhesive composition out of a film die and subsequently contacting a moving plastic web or other suitable substrate. A related continuous method involves extruding the pressure-sensitive adhesive composition and a coextruded backing material from a film die and subsequently cooling to form a pressure-sensitive adhesive tape.
Other continuous forming methods involve directly contacting the pressure- sensitive adhesive blend to a rapidly moving plastic web or other suitable substrate. In this method, the pressure-sensitive adhesive blend can be applied to the moving web using a die having flexible die lips such as a reverse orifice-coating die. After forming, the pressure-sensitive adhesive coatings are solidified by quenching using both direct methods, such as chill rolls or water baths, and indirect methods, such as air or gas impingement. Optionally, Components I and II are blended and coated using solvent blending and solvent coating techniques. However, it is preferable that Components I and II be substantially soluble in the solvents used. Mixing can be done by any method that results in a substantially homogeneous distribution of Component I and Component LT.
Laminate Constructions - Substrates The adhesive blends of the present invention are useful to prepare adhesive coated articles. The present invention provides adhesives that are skin-compatible and thus are particularly suitable for medical applications, such as surgical tapes and drapes, bandages, athletic tapes, wound dressings and the like. The adhesive blends may be coated onto any backing suitable for medical applications including occlusive (substantially non- breathable) and non-occlusive backings (breathable). Occlusive backings are also known as low porosity backings. Nonlimiting examples of occlusive backings include films, foams and laminates thereof. Nonlimiting examples of non-occlusive backings include woven substrates, knit substrates, nonwoven substrates such as hydroentangled materials or melt blown webs, foams and thermally embossed nonwoven substrates. The coated adhesive blends of the present invention can be crosslinked by exposure to ultraviolet radiation from, for example, medium pressure mercury arc lamps, or by exposure to an electron beam (e-beam). For example, coated adhesive blends can be
irradiated with E-beam radiation at a level of 2 Mrad dosage at 175 kV directly after and in-line with the coating process using an ELECTOCURTAIN™ CB-175 electron beam system available from Energy Sciences, Inc., Wilmington, MA.
This invention is further illustrated by the following examples that are not intended to limit the scope of the invention. In the examples, all parts, ratios and percentages are by weight unless otherwise indicated. The following test methods were used to evaluate and characterize the adhesive compositions and blends produced in the examples. All materials are commercially available, for example from Aldrich Chemicals, unless otherwise indicated or described.
Examples
Test Protocols
Adhesion to Steel
Adhesion to steel was determined without any sample dwell on the steel according to this procedure. Tape samples were cut into 2.5-cm by 30.5-cm strips. The samples were adhered to the center of a cleaned steel surface (cleaned with 50% n-heptane/50% isopropyl alcohol) adhesive side down, so that 12.7 to 17. 8 cm of sample extended beyond the steel surface. The tape was rolled once in each direction with a 2.0-kg roller at a rate approximately 5.1 cm per second. The free end of the sample was then doubled back on itself and approximately 2.5 cm was peeled from the steel plate. The end of the panel from which the sample had been removed was placed in the lower jaw of an Instron tester. The free end was folded to form a small tab and was placed in the upper jaw as above. The sample was mechanically removed from the plate by activating the Instron at a crosshead speed of 30.5 cm per minute and data were recorded. The average of three peel values were reported in units of Newtons/decimeter (N/dm). Adhesion to Dry and Wet Skin
Initial skin adhesion (To) and adhesion after varying dwell times (T24, T48) was measured by applying tape samples to wet and dry skin of human subjects. For dry skin adhesion testing, two samples (one for T0 and one for T24 or T48), each measuring 2.5-cm wide by 7.6-cm long, were applied to the back of each of six human subjects. The subjects were placed in a prone position with arms at their sides and heads turned to one side.
Samples were applied without tension or pulling of skin to both sides of the spinal column with the length of each sample positioned at a right angle to the spinal column.
For initial (T0) wet skin adhesion testing, samples were applied in the manner described above to skin which had been sprayed with a measured amount of water (about 20 microliters), so that the skin was visibly wet, immediately before application of the sample.
The samples were pressed into place with a 2-kg roller moved at a rate of approximately 2.5 cm/sec with a single forward and reverse pass. No manual pressure was applied to the roller during application. The samples were then removed five minutes (To wet or dry), or 24 or 48 +/- 2 hours (T2 /T48) after application at a removal angle of 180° and at a removal rate of 15 cm/min using a conventional adhesion tester equipped with a 11.3-kg test line attached to a 2.5-cm clip. The clip was attached to the edge of the sample furthest from the spinal column by manually lifting about 1 cm of the sample from the skin and attaching the clip to the raised edge. The adhesion tester was a strain gauge mounted on a motor-driven carriage.
The measured force required to effect removal of each tape sample was reported (as an average of 6 sample replications) in Newtons per dm. Preferably, initial adhesion to wet or dry skin is at least 0.8 N/dm and no greater than 8.0 N/dm. Extended (i.e., 24 to 48 hours) adhesion is preferably no greater than 15 N/dm.
Porosity
Porosity was evaluated by a procedure wherein the time (in seconds) necessary for an inner cylinder of a Gurley densometer to force 100 cc of air through a 25-mm circular sample of the sample is determined in a manner analogous to that described in ASTM D737-75. Samples with Gurley porosity values of >100 sec are considered occlusive.
Moisture Vapor Transmission Rate (MVTR)
MVTR was evaluated in a manner analogous to that described in ASTM E 96-80 at 40°C and expressed in grams transmitted per square meter per day (g/m2/24 hr). A tape sample must exhibit an MVTR value of not less than 500 g/m2/24 hr to be considered permeable to water vapor.
Two-Bond Adhesion
The two-bond adhesion method was used to measure the force necessary to remove a pressure sensitive adhesive coating from its backing. Specimens were cut into 2.5-cm wide x 20-cm long strips. Using a clean steel plate, a 5-cm wide strip of double-coated adhesive tape (3M Brand Double Stick Tape, 3M Co., St. Paul, MN) with liner removed was centered and attached to the plate. With its adhesive side face-up, a tape specimen was applied to the double-coated tape. A 24-cm long x 1.27-cm wide strip of a test tape (Scotch™ No. 56 Electrical Tape, 3M Co.) was then centered and applied adhesive side down onto the tape specimen. The construction was then rolled down by 1 pass of a 2.0-kg roller at a rate of 230 cm/min. The remaining length of the test tape (approximately 4 cm) was then secured to a stationary load cell such that with the movement of the carriage, a 180° peel angle would be attained. The carriage moved at a rate of 230 cm/min. The force required to remove the adhesive from the tape specimen was reported in Newtons/decimeter (average of 2 replicas) and observations of any tape adhesion failures were noted.
Peel Adhesion to Glass (21°C and 4°C) and Stainless Steel (21°C)
The peel adhesion method was used to measure the force required to remove an adhesive-coated sample from a test substrate surface at a specific angle and rate of removal. The room temperature peel adhesion was measured at 21°C and 50% RH against either a clean glass or stainless steel plate. A tape sample (1.25-cm wide x 15-cm long) was adhered to the test substrate using one pass of 2.1-kg rubber-faced roller and tested using a Model 3M90 Slip/Peel tester (IMASS, Inc., Accord, MA) at an angle of 180° and a rate of 229 cm/min. For 4°C peel adhesion to glass, tape samples were conditioned at 4°C for 24 hours before testing. Two replicas were run and an average result was recorded in N/dm.
Shear to Stainless Steel (SS)
Shear strength, as determined by holding time, was measured for adhesive-coated tape samples against a clean stainless steel substrate. A tape sample (12.5-cm wide x 25- cm long) was conditioned for greater than 24 hours at approximately 21°C and 50% RH and adhered to the steel substrate surface using four passes of a 2.1-kg rubber-faced roller. The taped substrate was placed in a vertical holding rack, a static 500-gram load was
attached to the tape at an angle of 180°, and the time for the load to drop was measured in minutes. For those samples still adhering to the substrate after 4000 minutes, the test was discontinued. Two replicas were run and an average result was recorded in minutes.
Under-Water Adhesion to SS (1.0-Minute and 960-Minute Dwell Times)
The under-water peel adhesion method was used to measure the force required to remove an adhesive-coated sample from an under-water test substrate surface at a specific angle and rate of removal. A tape sample (1.25-cm wide x 15-cm long) was conditioned for greater than 24 hours at approximately 21° C and 50% relative humidity. The adhesive side of the sample was immersed in water for 1.0 minute and then rolled down using one pass of a 2.1-kg rubber-faced roller on a clean stainless steel (SS) plate under about a 2.5- cm thick layer of water. After a defined under-water dwell time of 1.0 or 960 minutes, the tape sample was tested using a Model 3M90 Slip/Peel tester (from MASS, Inc.) at an angle of 180° and at a peel rate of 229 cm min at a temperature of approximately 21° C and 50% RH. Two replicas were run at each dwell time and the average results were recorded in N/dm.
Glossary
2EHA 2-ethylhexyl acrylate AA acrylic acid IOA isooctyl acrylate MPEG 550 CARBOWAX MPEG 550 is a methoxypolyethylene glycol plasticizer having a molecular weight of approximately 550
(commercially available from Union Carbide Corp.,
Tarrytown, NY)
PPG 1025 Polyol PPG 1025 is a polypropylene glycol plasticizer having a molecular weight of approximately 1025
(commercially available from Lyondell Chemical
Worldwide, Inc., Houston, TX)
PPG 425 Polyol PPG 425 is a polypropylene glycol plasticizer having a molecular weight of approximately 425 (commercially available from Lyondell Chemical Worldwide, Inc.)
25R4 PLURONIC™ 25R4 is an ethylene oxide/propylene oxide block copolymer plasticizer (commercially available from BASF Company, Parsippany, NJ)
PYCAL™ 94 a polyethylene oxide phenyl ether plasticizer (commercially available from ICI Chemicals, Inc., Wilmington, DE)
Kraton™ Dl 107 a styrene-isoprene copolymer thermoplastic elastomer containing 14 wt.% polystyrene and 86 wt.% polyisoprene (commercially available from Shell Chemical Co., Houston, TX) Kraton™ Dl 113 a styrene-isoprene copolymer thermoplastic elastomer containing 16 wt.% polystyrene and 84 wt.% polyisoprene (commercially available from Shell Chemical Co.)
NATSYN™ 2210 a synthetic polyisoprene rubber (commercially available from Goodyear Tire and Rubber Co., Akron, OH) IR305 Kraton™ IR305, a synthetic polyisoprene rubber (commercially available from Shell Chemical Co.)
Elastomer A Styrene/isoprene block copolymer having a styrene content of 9.4 % by weight as described for Polymer B in Table 2 of U.S. Pat. No. 5,296,547 (Nestegard et al.) Escorez™ 1310 LC a tackifier aliphatic resin (commercially available from Exxon Chemical Co., Houston, TX)Wingtack™ 95 a tackifier of a synthetic polyterpene resin (commercially available from Goodyear Tire and Rubber Co., Akron, OH)
COMP A PS-PVPy (5%) compatabilizer made of poly(styrene-co- vinylpyridine) with 5% vinylpyridine (PVPy) block was made similar to the procedure described for Compatibilizer B in U.S. patent application No.09/499,831 (Cernohous, et al), except in zone 4, purified 4-vinylpyridine was added (at a rate of 7.5 g/min instead of 15.0 g/min) COMP B PS-PVPy (30%) compatabilizer made of poly(styrene-co- vinylpyridine) with 30% vinylpyridine (PVPy) block was made similar to the procedure described for Compatibilizer
B in U.S. patent application No.09/499,831 (Cernohous, et al), except in zone 4, purified 4-vinylpyridine was added (at a rate of 45.0 g/min instead of 15.0 g/min)
IRGANOX™ 1010 an antioxidant, tetrakis[methylene-3-(3',5'-di-tert-butyl-4'- hydroxyphenyl)propionate]methane (commercially available from Ciba-Geigy Corp., Switzerland)
IRG 184 IRGACURE™ 184, a hydroxycyclohexyl phenyl ketone photoinitiator (commercially available from Ciba-Geigy Corp., Switzerland) IRG 651 IRGACURE™ 651 (2,2-dimethoxy- 1 ,2-diphenylethane- 1 - one) photoinitiator (commercially available from Ciba- Geigy Corp., Switzerland)
IOTG a chain transfer agent, isooctyl thioglycolate (commercially available from Hampshire Chemical, a subsidiary of the Dow Chemical Company, Lexington, MA)
Hydrophilic Adhesive Starting Materials
The compositions of the hydrophilic, wet-stick, polyacrylate adhesives (PAA) used to prepare the adhesive blends of the invention are provided in Table 1. Adhesives PAA-1 to PAA-11 were prepared by a solventless polymerization process and packaged in acrylic pouches as described in Examples 1-13 of U.S. patent application Ser. No. 09/367,455. The UV exposure time was 9 minutes.
A traditional, nonhydrophilic, non wet-stick, polyacrylate PSA (CA-1) was used to prepare an adhesive blend as a comparative example. CA-1 is an IOA methacrylic acid (MAA) 96/4 copolymer PSA, prepared as described in US Pat. No. 4,833,179 (Young et al).
Table 1
* IRG 651 was used in place of IRG 184 for Adhesive Nos. PAA-10 and PAA- 11
Examples 1-27 and Comparative Examples 1-9
Adhesive Blends Prepared by Hot Melt Process The adhesive blends of Examples 1-27 were prepared by combining together hydrophilic PAA, elastomer, and tackifier components according to the following procedure. The acrylic pouches of PAA were melted, masticated, and fed into barrel 7 of a fully intermeshing and co-rotating twin screw extruder (TSE) (Model ZSK 30, available from Werner & Pfleiderer, Ramsey, NJ, having a 30-mm diameter, 36 to 1 length to diameter and 12 barrel sections) using a 5.08-cm Bonnot extruder (available from the Bonnot Company, Uniontown, OH). The Bonnot temperatures were controlled between 76-93° C and fitted with a metering Zenith gear pump (available from Zenith Products Company, West Newton, MA). The elastomer component (e.g., Kraton™ D1107 or pre- pelletized Natsyn™ 2210) was dry-fed using a K-TRON™ gravimetric feeder (available from K-TRON™ International, Incorporated, Pitman, NJ) into an open port of barrel 1 of the TSE. The tackifying resin component (e.g., Escorez™ 1310 or Wingtack™ 95) was optionally dry-blended with an antioxidant (e.g., IRGANOX™ 1010). The tackifying resin (or blend of resin and antioxidant) was fed as a dry powder to open ports at barrels 3 and 5 using a K-TRON™ gravimetric feeder. After compounding in the TSE, the molten composition was discharged out of the TSE through a Zenith gear pump into a flexible hose and subsequent contacting die for coating on an appropriate backing material.
The wt.% of the individual components comprising these adhesives blends (Examples 1-27) plus Comparative Examples (CE) 1-7 that comprised 100% hydrophilic PAA, Comparative Example 8 that comprised only elastomer and tackifier (no polyacrylate), and Comparative Example 9 that comprised a blend of nonhydrophilic polyacrylate, elastomer, and tackifier are provided in Table 2.
Table 2
*Examples 19, 20, 21, 24-27, CE-8, and CE-9 included IRGANOX™ 1010 antioxidant (1.0 wt.%) pre-blended with the tackifier component.
Examples 28-33 and Comparative Examples 10-11 Adhesive Blends Prepared by Hot Melt Process
The adhesive blends of Examples 28-33 were prepared by combining together hydrophilic PAA, elastomer, and tackifier components as described for Examples 1-27, except for the following. The Bonnot extruder temperatures were controlled between 79- 95°C. The elastomer component was dry fed into an open port of barrel 1 of the TSE, the tackifying resin was fed as a 30/70 split (by weight) into open ports at barrels 3 and 5, respectively, and the acrylic pouches of hydrophilic PAA were melted, masticated, and fed into barrel 9 of the TSE.
The wt.% of the individual components comprising these adhesive blends (Examples 28-33) plus Comparative Example CE-10 that comprised only elastomer and tackifier (no polyacrylate) and Comparative Example CE-11 that comprised 100% hydrophilic PAA are provided in Table 3.
Table 3
Examples 34-41 and Comparative Example 12 Adhesive Blends Prepared by Hot Melt Process
The adhesive blends of Examples 34-41 were prepared by combining together hydrophilic PAA, elastomer, and tackifier components as described for Examples 28-33,
except that a compatibilizing agent was optionally blended with the first part of the tackifier resin (30%) and added into an open port at barrel 3 of the TSE.
The wt.% of the individual components comprising these adhesives blends (Examples 34-41) plus Comparative Example CE-12 that comprised 100% hydrophilic PAA are provided in Table 4.
Table 4
Examples 42-53 and Comparative Examples 13-17
Taffeta Backing Coated with Adhesive Blends
The adhesive blends of Examples 1-12 and comparative adhesive samples CE-1 to CE-4 and CE-9 (molten materials as listed in Table 2) were coated onto an acetate taffeta backing. Coating conditions involved setting the gear pump, flexible hose and coating die to the same temperature that was in the range of 149-184°C. The gear pump and film take- away speeds were adjusted to provide a coating weight of 58 g/m . The backing was a 180 x 48 plain weave acetate taffeta cloth, 75-denier fiber in the warp direction, 150-denier fiber in the weft direction as available from Milliken & Co., Spartanburg, GA.
Samples of the resulting adhesive-coated backings were evaluated for adhesion to steel, initial (T0) adhesion to wet and dry skin, adhesion to skin after 48 hours (T48), MVTR, and porosity. The test results for Examples 42-53 (backing coated with adhesive
blends) are provided in Table 5 and are compared to Comparative Examples 13-16 (backing coated only with hydrophilic polyacrylate adhesive) and Comparative Example 17 (backing coated with a polyacrylate/elastomer/tackifier blend made with the nonhydrophilic polyacrylate PSA CA-1).
The results from Table 5 show that the taffeta backings coated with adhesive blends of the invention (e.g., Examples 42, 45, 48, and 51) possessed greater dry skin adhesion with little or no loss in wet skin adhesion when compared to backings coated only with a hydrophilic wet-stick polyacrylate adhesive (Comparative Examples CE-13 to CE-16). Compared to the backing coated with an adhesive blend of nonhydrophilic polyacrylate/elastomer/tackifier (Comparative Example CE-17), backings coated with adhesive blends of the invention possessed significantly greater wet skin adhesion.
Examples 54-59 and Comparative Examples 18-20
Nonwoven Rayon Backing Coated with Adhesive Blends
The adhesive blends of Examples 13-18 and comparative adhesive samples CE-2, CE-3 and CE-5 (molten materials as listed in Table 2) were coated onto a nonwoven rayon backing. Coating conditions involvqd setting the gear pump, flexible hose and coating die to the same temperature that was in the range of 142-163°C. The gear pump and film take-away speeds were adjusted to provide a coating weight of 25 g/m2. The backing was formed from an embossed polyester-rayon carded web as described in Example 3 of U.S. patent application No. 09/367,509.
Samples of the resulting adhesive-coated backings were evaluated for adhesion to steel, initial (To) adhesion to wet and dry skin, adhesion to skin after 24 hours (T24), MVTR, and porosity. The test results for Examples 54-59 (backing coated with adhesive blends) are provided in Table 6 and are compared to Comparative Examples 18-20 (backing coated only with hydrophilic polyacrylate adhesive) and the commercial MICROPORE™ medical tape (3M Co., St. Paul, MN).
The results from Table 6 show that the nonwoven rayon backings coated with adhesive blends of the invention (Examples 54-59) possessed greater dry skin adhesion and maintained adequate wet skin adhesion when compared to backings coated only with a
hydrophilic wet-stick polyacrylate adhesive (Comparative Examples CE-18 to CE-20) or compared to the commercial MICROPORE™ medical tape.
Examples 60-70 and Comparative Examples 21-23
Woven Cotton Cloth Backing Coated with Adhesive Blends
The adhesive blends of Examples 19-27 and comparative adhesive samples CE-6 to CE-8 (molten materials as listed in Table 2) were coated onto a woven bleached cotton cloth backing with a non-wick finish (Weave No. 63 x 46 or No. 63 x 54, Aurora Textile Finishing Company, Catawba, NC). Coating conditions involved setting the gear pump, flexible hose and coating die to the same temperature that was in the range of 120-140° C. The gear pump and film take-away speeds were adjusted to provide a coating weight of 62-74 g/m2.
Samples of the resulting adhesive-coated backings were evaluated for adhesion to steel, initial (To) adhesion to wet and dry skin, adhesion to skin after 24 hours (T2 ), MVTR, and porosity. The test results for Examples 60-70 (backing coated with adhesive blends) are provided in Table 7 and are compared to Comparative Examples 21-22 (backings coated only with hydrophilic polyacrylate adhesives) and Comparative Example 23 (backing coated only with elastomer and tackifier).
Table 7
*Examples 61, 62, 63 and CE-23 were post-coating irradiated with E-beam radiation at a level of 2 Mrad dosage at 175 kV directly after and in-line with the coating process using an ELECTOCURTATN™ CB-175 electron beam system (Energy Sciences, Inc., Wilmington, MA).
The results from Table 7 show that the cotton cloth backings coated with adhesive blends of the invention (Examples 60-70) possessed generally greater dry skin adhesion and maintained adequate wet skin adhesion when compared to backings coated only with a hydrophilic wet-stick polyacrylate adhesive (Comparative Examples CE-21 to CE-22) and possessed much more desirable initial (wet and dry) and 24-hour skin adhesion values than a backing coated only with a tackified elastomer (no hydrophilic polyacrylate) adhesive (Comparative Example CE-23). The more desirable skin adhesion values of the present invention examples show good adhesion to both wet and dry skin, while not having the undesirably high levels of wet and dry skin adhesion possessed by Comparative Example 23.
Example 71-76 and Comparative Examples 24-25
Polycoated Rayon Cloth Backing Coated with Adhesive Blends
The adhesive blends of Examples 28-33 and comparative adhesive samples CE-10 and CE-11 (molten materials as listed in Table 3) were coated onto a polycoated rayon cloth backing. Coating conditions involved setting the gear pump, flexible hose and coating die to the same temperature that was in the range of 160-170° C. The gear pump and film take-away speeds were adjusted to provide a coating weight of 126 g/m2 and a dry coating thickness of 19.7 micrometers. The backing was a rayon cloth laminated with polyethylene (40 x 30 thread count, No. 30 Rayon/70P, Itochu International, Inc. New York, NY). The adhesive sides of all coated backings were irradiated with E-Beam radiation at a level of 4 Mrad at 175 kV using an ELECTROCURTAIN™ CB-300 electron beam system (Energy Sciences, Inc.)
Samples of the resulting adhesive-coated backings were evaluated for two-bond adhesion, peel adhesion to stainless steel, shear to SS, peel adhesion to glass (21° C and 4° C samples), and under-water peel adhesion to SS (1.0-minute and 960-minute dwell times). The test results for Examples 71-76 (backing coated with adhesive blends) are provided in Table 8 and are compared to Comparative Example 24 (backing coated only
with elastomer and tackifier) and 25 (backing coated only with hydrophilic polyacrylate adhesive).
Table 8
The results from Table 8 show that the comparative tape sample (CE-24) made from an adhesive (CE-10) containing only elastomer and tackifier components had high dry adhesion and excellent shear, but very poor wet (under-water) adhesion because of its hydrophobic nature. The comparative tape sample (CE-25) made from the hydrophilic wet-stick polyacrylate adhesive (CE-11) had good wet adhesion, but generally low two- bond adhesion, peel adhesion and poor shear. In contrast, the cloth backings coated with the adhesive blends of the invention (Examples 71-76) showed significantly improved wet adhesion versus CE-24 and generally had improved two-bond adhesion, dry adhesion, and shear holding power versus CE-25.
Examples 77-84 and Comparative Example 26 Polyester Film Backing Coated with Adhesive Blends
The adhesive blends of Examples 34-41 and comparative adhesive sample CE-12 (molten materials as listed in Table 4) were coated onto a polyester film backing. Coating conditions involved setting the gear pump, flexible hose and coating die to the same temperature that was in the range of 160-170°C. The gear pump and film take-away speeds were adjusted to provide a coating weight of 126 g/m2 and a dry coating thickness
of 19.7 micrometers. The backing was a 1.5-mil polyester (PET) film that was corona treated on both sides and treated on one side with an acrylic-polyurethane low adhesion backsize (LAB) before coating with the adhesive.
Samples of the resulting adhesive-coated backings were evaluated for peel adhesion to stainless steel, shear to SS, peel adhesion to glass (21°C and 4°C samples), and under-water peel adhesion to SS (1.0-minute and 960-minute dwell times). The test results for Examples 77-84 (backing coated with adhesive blends) are provided in Table 9 and are compared to Comparative Example 26 (backing coated only with hydrophilic polyacrylate adhesive).
Table 9
The results from Table 9 show that the comparative tape sample (CE-26) made from the hydrophilic wet-stick polyacrylate adhesive (CE-12) had good wet adhesion, but generally low two-bond adhesion, peel adhesion and poor shear. In contrast, the polyester film backings coated with the adhesive blends of the invention (Examples 77-84) generally showed improved two-bond adhesion, dry adhesion, and shear holding power versus CE-26.
Various modifications and alterations of this invention will become apparent to those skilled in the art without departing from the scope and principles of this invention, and it should be understood that this invention is not to be unduly limited to the illustrative embodiments set forth hereinabove.
Claims (20)
1. An adhesive composition comprising a blend of (I) a hydrophilic pressure sensitive adhesive and (II) a hydrophobic pressure sensitive adhesive.
2. The adhesive composition according to claim 1 wherein the blend comprises (I) 5-95 parts by weight of the hydrophilic pressure sensitive adhesive and (JJ) 95-5 parts by weight of the hydrophobic pressure sensitive adhesive.
3. The adhesive composition according to claim 1 wherein the hydrophobic pressure sensitive adhesive is an elastomer or thermoplastic elastomer.
4. The adhesive composition according to claim 1 wherein the initial peel adhesion (To) to wet or dry skin is at least 0.8 N/dm and not greater than 15 N/dm.
5. The adhesive composition according to claim 1 wherein the initial peel adhesive to stainless steel underwater is at least 16 N/dm and the two-bond is at least 25 N/dm.
6. The adhesive composition according to claim 1 further comprising antimicrobial compositions or antioxidant compositions.
7. " An adhesive composition comprising a blend of a hydrophilic pressure sensitive adhesive wherein the hydrophilic pressure sensitive adhesive comprises the polymerization product of (a) about 15 to about 85 parts by weight of an (meth)acrylate ester monomer wherein the (meth)acrylate ester monomer, when polymerized, has a glass transition temperature (Tg) of less than about 10°C; (b) about 85 to about 15 parts by weight of a hydrophilic acidic comonomer; and (c) at least about 10 parts based on 100 parts of the sum of components (a) + (b) of a non-reactive plasticizing agent and a hydrophobic pressure sensitive adhesive, wherein the hydrophobic pressure sensitive adhesive is an elastomer or thermoplastic elastomer.
8. The adhesive composition according to claim 7 wherein the polymerization product further comprises (d) a residue of a polymerization initiator.
9. The adhesive composition according to claim 7 wherein the hydrophobic pressure sensitive adhesive is a non-tacky elastomer or thermoplastic elastomer and a tackifying resin or plasticizer.
10. The adhesive composition according to claim 7 wherein the hydrophobic pressure sensitive adhesive is a tacky elastomer or thermoplastic elastomer and optionally, a tackifying resin or plasticizer.
11. The adhesive composition according to claim 7 wherein the hydrophilic pressure sensitive adhesive is the polymerization product of (a) isooctyl acrylate or 2- ethylhexyl acrylate, (b) acrylic acid, (c) polyethylene glycol, polypropylene glycol, polyethylene glycols, copolymers and derivatives thereof, (d) at least one polymerization initiator, and (e) at least one chain transfer agent.
12. The adhesive composition according to claim 7 wherein the hydrophobic pressure sensitive adhesive is selected from the group consisting of styrene block copolymers of styrene and isoprene, butadiene or ethylene-butylene; polyisoprene; polybutadiene; polyisobutylene; butyl rubber; styrene-butadiene rubber; natural rubber; and poly-α-olefins.
13. The adhesive composition according to claim 12 wherein the hydrophobic pressure sensitive adhesive further comprises a tackifying resin selected from the group consisting of liquid rubbers, aliphatic and aromatic hydrocarbon resins, rosin, natural resins such as dimerized or hydrogenated balsams and esterified abietic acids, polyterpenes, terpene phenolics, phenol-formaldehyde resins, and rosin esters.
14. A method of using the adhesive composition of claim 1 on wet or dry surfaces comprising the steps of: (a) applying a layer of the adhesive blend to a predetermined thickness onto a substrate, and
(b) applying the layered substrate onto a wet or dry surface.
15. The method according to claim 14, wherein the step of applying the layered substrate comprises applying the layered substrate to wet or dry skin.
16. The method according to claim 14, wherein the substrate is selected from the group consisting of films, foams, wovens, nonwovens, knits, and laminates thereof.
17. A pressure sensitive adhesive article comprising a substrate and a pressure sensitive adhesive composition disposed thereon, wherein the pressure sensitive adhesive composition comprises a blend of (I) a hydrophilic pressure sensitive adhesive and (II) a hydrophobic pressure sensitive adhesive.
18. The pressure sensitive adhesive article of claim 17 wherein the substrate is selected from the group of cloth, metallized foil, metallized film, polymeric film, nonwoven polymeric material, paper, foam, and combinations thereof.
19. A pressures sensitive adhesive article comprising a substrate and a pressure sensitive adhesive composition disposed thereon, wherein the pressure sensitive adhesive composition comprises a blend of a hydrophilic pressure sensitive adhesive wherein the hydrophilic pressure sensitive adhesive comprises the polymerization product of (a) about 15 to about 85 parts by weight of an (meth)acrylate ester monomer wherein the (meth) acrylate ester monomer, when polymerized, has a glass transition temperature (Tg) of less than about 10°C; (b) about 85 to about 15 parts by weight of a hydrophilic acidic comonomer; and (c) at least about 10 parts based on 100 parts of the sum of components (a) + (b) of a non-reactive plasticizing agent and a hydrophobic pressure sensitive adhesive, wherein the hydrophobic pressure sensitive adhesive is an elastomer or thermoplastic elastomer.
20. The pressure sensitive adhesive article of claim 19 wherein the substrate is selected from the group of cloth, metallized foil, metallized film, polymeric film, nonwoven polymeric material, paper, foam, and combinations thereof.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/638,213 | 2000-08-11 | ||
US09/638,213 US6497949B1 (en) | 2000-08-11 | 2000-08-11 | Adhesive blends comprising hydrophilic and hydrophobic pressure sensitive adhesives |
PCT/US2001/022417 WO2002014448A2 (en) | 2000-08-11 | 2001-07-17 | Adhesive blends comprising hydrophilic and hydrophobic pressure sensitive adhesives |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2001276945A1 true AU2001276945A1 (en) | 2002-05-23 |
AU2001276945B2 AU2001276945B2 (en) | 2007-01-04 |
Family
ID=24559090
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU7694501A Pending AU7694501A (en) | 2000-08-11 | 2001-07-17 | Adhesive blends comprising hydrophilic and hydrophobic pressure sensitive adhesives |
AU2001276945A Ceased AU2001276945B2 (en) | 2000-08-11 | 2001-07-17 | Adhesive blends comprising hydrophilic and hydrophobic pressure sensitive adhesives |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU7694501A Pending AU7694501A (en) | 2000-08-11 | 2001-07-17 | Adhesive blends comprising hydrophilic and hydrophobic pressure sensitive adhesives |
Country Status (11)
Country | Link |
---|---|
US (1) | US6497949B1 (en) |
EP (1) | EP1313820B1 (en) |
JP (1) | JP2004516338A (en) |
AT (1) | ATE450586T1 (en) |
AU (2) | AU7694501A (en) |
BR (1) | BR0113154A (en) |
CA (1) | CA2415386C (en) |
DE (1) | DE60140678D1 (en) |
ES (1) | ES2337022T3 (en) |
TW (1) | TWI257943B (en) |
WO (1) | WO2002014448A2 (en) |
Families Citing this family (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040237166A1 (en) * | 2000-07-24 | 2004-12-02 | Jerry Potts | Apparel item and method of making and using same |
WO2002007549A1 (en) * | 2000-07-24 | 2002-01-31 | Holden Perriann M | Protective attachment |
US6780922B2 (en) * | 2002-01-17 | 2004-08-24 | Honeywell International Inc. | Adhesion promoters with epoxy-reactive groups |
US20040247654A1 (en) * | 2003-06-05 | 2004-12-09 | 3M Innovative Properties Company | Hydrophilic adhesives for delivery of herbal medicines |
US9278155B2 (en) * | 2003-06-05 | 2016-03-08 | 3M Innovative Properties Company | Adhesive compositions, articles incorporating same and methods of manufacture |
EP1692240A2 (en) * | 2003-12-12 | 2006-08-23 | 3M Innovative Properties Company | Pressure sensitive adhesive composition and article |
JP5026666B2 (en) * | 2003-12-12 | 2012-09-12 | スリーエム イノベイティブ プロパティズ カンパニー | Adhesive composition |
US7648771B2 (en) * | 2003-12-31 | 2010-01-19 | Kimberly-Clark Worldwide, Inc. | Thermal stabilization and processing behavior of block copolymer compositions by blending, applications thereof, and methods of making same |
CN1930246A (en) * | 2004-03-10 | 2007-03-14 | 株式会社吴羽 | Solubilizer and composition containing same |
US20060036138A1 (en) * | 2004-08-06 | 2006-02-16 | Adam Heller | Devices and methods of screening for neoplastic and inflammatory disease |
US8592035B2 (en) * | 2004-12-13 | 2013-11-26 | 3M Innovative Properties Company | Adhesive composition, adhesive tape and adhesion structure |
US7769551B2 (en) * | 2005-01-03 | 2010-08-03 | 3M Innovative Properties Company | Method and system for determining a gap between a vibrational body and fixed point |
US7828192B2 (en) | 2005-01-03 | 2010-11-09 | 3M Innovative Properties Company | Amplitude adjustment of an ultrasonic horn |
US7775413B2 (en) * | 2005-01-03 | 2010-08-17 | 3M Innovative Properties Company | Cantilevered bar gap adjustment for an ultrasonic welding system |
US7442438B2 (en) * | 2005-05-04 | 2008-10-28 | 3M Innovative Properties Company | Wet and dry stick adhesive, articles, and methods |
US20070010777A1 (en) * | 2005-07-06 | 2007-01-11 | 3M Innovative Properties Company | Medical tape and bandages |
US20070054081A1 (en) * | 2005-08-18 | 2007-03-08 | Demarco Jill R | Double-Sided Adhesive Anchoring Device For A Garment |
US20100276061A1 (en) * | 2005-12-30 | 2010-11-04 | 3M Innovative Properties Company | Cantilevered bar gap adjustment for an ultrasonic welding system |
US7754327B2 (en) * | 2006-05-11 | 2010-07-13 | Henkel Ag & Co. Kgaa | Absorbent articles comprising a radiation cured hot melt positioning adhesive |
USD578651S1 (en) | 2006-06-12 | 2008-10-14 | 3M Innovative Properties Company | Bandage |
USD611156S1 (en) | 2006-06-12 | 2010-03-02 | 3M Innovative Properties Company | Bandage |
USD573260S1 (en) | 2006-06-12 | 2008-07-15 | 3M Innovative Properties Company | Bandage |
USD604423S1 (en) | 2006-06-12 | 2009-11-17 | 3M Innovative Properties Company | Bandage |
EP2061852A1 (en) * | 2006-09-13 | 2009-05-27 | Lubrizol Advanced Materials, Inc. | Label adhesive and activation method for polymeric label |
WO2008128246A1 (en) * | 2007-04-16 | 2008-10-23 | Adco Product, Inc. | Radiation curable pressure senstitive adhesive roofing system |
EP2212395B1 (en) * | 2007-11-08 | 2018-06-13 | 3M Innovative Properties Company | Optical adhesive with diffusive properties |
DE102008012185A1 (en) * | 2008-03-03 | 2009-09-10 | Tesa Se | Process for the preparation of a highly cohesive PSA |
WO2009133175A1 (en) * | 2008-04-30 | 2009-11-05 | Tesa Se | Adhesive tape |
JP5581531B2 (en) * | 2008-06-19 | 2014-09-03 | アルケア株式会社 | Composition, patch material using the composition, and production method thereof |
DE102008037845A1 (en) * | 2008-08-15 | 2010-02-18 | Tesa Se | PSA |
US8765217B2 (en) | 2008-11-04 | 2014-07-01 | Entrotech, Inc. | Method for continuous production of (meth)acrylate syrup and adhesives therefrom |
JP2010126697A (en) * | 2008-11-28 | 2010-06-10 | Three M Innovative Properties Co | Pressure-sensitive adhesive composition and pressure-sensitive adhesive tape |
JP5706882B2 (en) * | 2009-04-17 | 2015-04-22 | スリーエム イノベイティブ プロパティズ カンパニー | Silicone gel adhesive composition |
US8329079B2 (en) | 2009-04-20 | 2012-12-11 | Entrochem, Inc. | Method and apparatus for continuous production of partially polymerized compositions and polymers therefrom |
CN102666714B (en) | 2009-11-19 | 2015-04-29 | 3M创新有限公司 | Pressure sensitive adhesive comprising blend of synthetic rubber and functionalized synthetic rubber bonded to an acylic polymer |
JP5695658B2 (en) | 2009-11-19 | 2015-04-08 | スリーエム イノベイティブ プロパティズ カンパニー | Pressure sensitive adhesives containing functionalized polyisobutylene hydrogen bonded to acrylic polymers |
DE102010043152A1 (en) | 2010-10-29 | 2012-05-03 | Tesa Se | Adhesive mass useful in single- or double sided adhesive tapes, comprises poly(1,4-cis-butadiene) with a specific cis content |
US8334335B2 (en) * | 2011-02-07 | 2012-12-18 | Nulabel Technologies, Inc. | Fluid activatable adhesives and fluids for activating same for use with liner-free labels |
US8716389B2 (en) | 2011-02-07 | 2014-05-06 | Nulabel Technologies, Inc. | Fluid activatable adhesives and fluids for activating same for use with liner-free labels |
US8716372B2 (en) | 2011-02-07 | 2014-05-06 | Nulabel Technologies, Inc. | Fluid activatable adhesives and fluids for activating same for use with liner-free labels |
US8334336B2 (en) * | 2011-02-07 | 2012-12-18 | Nulabel Technologies, Inc. | Fluid activatable adhesives and fluids for activating same for use with liner-free labels |
US9051495B2 (en) | 2011-02-07 | 2015-06-09 | Nulabel Technologies, Inc. | Fluid activatable adhesives and fluids for activating same for use with liner-free labels |
ES2808700T3 (en) | 2011-04-27 | 2021-03-01 | Henkel IP & Holding GmbH | Curable elastomer compositions with low temperature sealability |
JP5936699B2 (en) | 2011-09-29 | 2016-06-22 | スリーエム イノベイティブ プロパティズ カンパニー | Amino-substituted organosilane ester catalyst primer |
US8272507B1 (en) | 2011-12-02 | 2012-09-25 | Visionary Products, Inc. | Kit of a plurality of detachable pockets, a detachable pocket, and associated methods |
WO2014043342A1 (en) | 2012-09-12 | 2014-03-20 | Nulabel Technologies, Inc. | Labeling system and method for repeat labeling |
MX2015004606A (en) | 2012-10-09 | 2017-04-04 | Avery Dennison Corp | Adhesives and related methods. |
JP5628884B2 (en) * | 2012-11-26 | 2014-11-19 | 日東電工株式会社 | Water-dispersed pressure-sensitive adhesive composition, pressure-sensitive adhesive layer, pressure-sensitive adhesive sheet, and laminate comprising the pressure-sensitive adhesive layer or pressure-sensitive adhesive sheet |
US8840994B2 (en) | 2013-01-10 | 2014-09-23 | Nulabel Technologies, Inc. | Fluid activatable adhesive for glue-free, liner-free, labels for glass and plastic substrates and methods of use thereof |
US10307507B2 (en) | 2013-03-14 | 2019-06-04 | 3M Innovative Properties Company | Hydrocolloid wound dressings with increased WVTR |
DE102013215296A1 (en) * | 2013-08-02 | 2015-02-05 | Tesa Se | PSA |
DE102013215297A1 (en) * | 2013-08-02 | 2015-02-05 | Tesa Se | PSA |
WO2015073566A1 (en) | 2013-11-12 | 2015-05-21 | Nulabel Technologies, Inc. | Resealable packaging articles and methods of making and using thereof |
WO2015153987A1 (en) * | 2014-04-04 | 2015-10-08 | 3M Innovative Properties Company | Wet and dry surface adhesives |
US9254936B2 (en) | 2014-06-20 | 2016-02-09 | Nulabel Technologies, Inc. | Fluid activatable adhesive for glue-free, liner-free, labels for glass and plastic substrates and methods of use thereof |
JP6405772B2 (en) * | 2014-07-31 | 2018-10-17 | 住友化学株式会社 | Composition and organic thin film transistor using the same |
US9980659B2 (en) * | 2014-09-26 | 2018-05-29 | NeuroRex Inc. | Bio-potential sensing materials as dry electrodes and devices |
KR102264107B1 (en) * | 2014-12-26 | 2021-06-10 | 니찌방 가부시기가이샤 | Adhesive patch |
WO2016114100A1 (en) * | 2015-01-16 | 2016-07-21 | 日東電工株式会社 | Masking tape |
WO2016127056A1 (en) | 2015-02-05 | 2016-08-11 | Avery Dennison Corporation | Label assemblies for adverse environments |
US9663686B2 (en) | 2015-05-11 | 2017-05-30 | Nulabel Technologies, Inc. | Shear stress-resistant systems and uses thereof |
US9911367B2 (en) | 2015-05-12 | 2018-03-06 | Actega North America Technologies, Inc. | Thin film adhesive labels and methods of making thereof |
EP3636290B1 (en) * | 2015-08-24 | 2023-07-12 | Coloplast A/S | An adhesive composition |
US9777196B2 (en) | 2015-12-22 | 2017-10-03 | Nulabel Technologies, Inc. | Fluid activatable adhesives for glue-free, liner-free, labels for glass and plastic substrates and methods of use thereof |
CN106318239A (en) * | 2016-08-30 | 2017-01-11 | 无锡万能胶粘剂有限公司 | Anticorrosive all-purpose adhesive |
US10526511B2 (en) | 2016-12-22 | 2020-01-07 | Avery Dennison Corporation | Convertible pressure sensitive adhesives comprising urethane (meth)acrylate oligomers |
US20190161653A1 (en) * | 2017-11-28 | 2019-05-30 | Tesa Se | Sealing tape and methods of making the same |
KR102191813B1 (en) * | 2018-12-31 | 2020-12-17 | 서울대학교산학협력단 | Solvent type adhesive composition improved heat resistance, manufacturing method of the same and adhesive film including the same |
MX2022002299A (en) * | 2019-08-26 | 2022-03-25 | Bostik Inc | Roofing underlayment using a pressure sensitive adhesive and methods for making and using the same. |
JP7614221B2 (en) | 2020-04-22 | 2025-01-15 | ザ プロクター アンド ギャンブル カンパニー | Improved adhesives for absorbent articles - Patents.com |
US20230404074A1 (en) * | 2020-10-22 | 2023-12-21 | 3M Innovative Properties Company | Novel antimicrobial compositions and articles made therefrom |
CN113462323A (en) * | 2021-07-30 | 2021-10-01 | 江苏斯迪克新材料科技股份有限公司 | Acrylic acid-based adhesive capable of deformation recovery and preparation method thereof |
EP4532573A1 (en) * | 2022-05-26 | 2025-04-09 | 3M Innovative Properties Company | Acrylate-based pressure-sensitive adhesives including hydrophobic oil |
CN116333650A (en) * | 2022-12-31 | 2023-06-27 | 福建蓝海黑石新材料科技有限公司 | A water-based binder for hard carbon negative electrode materials of sodium-ion batteries |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4181752A (en) | 1974-09-03 | 1980-01-01 | Minnesota Mining And Manufacturing Company | Acrylic-type pressure sensitive adhesives by means of ultraviolet radiation curing |
JPS5844711B2 (en) * | 1979-07-04 | 1983-10-05 | 日東電工株式会社 | Water-soluble pressure-sensitive adhesive composition |
US4619979A (en) | 1984-03-28 | 1986-10-28 | Minnesota Mining And Manufacturing Company | Continuous free radial polymerization in a wiped-surface reactor |
US4843134A (en) | 1984-03-28 | 1989-06-27 | Minnesota Mining And Manufacturing Company | Acrylate pressure-sensitive adhesives containing insolubles |
US4737559A (en) | 1986-05-19 | 1988-04-12 | Minnesota Mining And Manufacturing Co. | Pressure-sensitive adhesive crosslinked by copolymerizable aromatic ketone monomers |
JPS63311960A (en) * | 1987-06-16 | 1988-12-20 | Sekisui Chem Co Ltd | Medical adhesive composition and its preparation |
US4833179A (en) | 1987-07-27 | 1989-05-23 | Minnesota Mining And Manufacturing Company | Suspension polymerization |
DE3913734C2 (en) * | 1989-04-26 | 1998-08-20 | Roehm Gmbh | Use of an aqueous skin pressure sensitive adhesive solution for producing an adhesive layer which can be easily washed off with water |
EP0616505B1 (en) | 1991-11-15 | 1996-09-11 | Minnesota Mining And Manufacturing Company | Biomedical electrode provided with two-phase composites conductive, pressure-sensitive adhesive |
US6048611A (en) | 1992-02-03 | 2000-04-11 | 3M Innovative Properties Company | High solids moisture resistant latex pressure-sensitive adhesive |
US5670557A (en) | 1994-01-28 | 1997-09-23 | Minnesota Mining And Manufacturing Company | Polymerized microemulsion pressure sensitive adhesive compositions and methods of preparing and using same |
US5532306A (en) | 1994-08-31 | 1996-07-02 | National Starch And Chemical Investment Holding Corporation | Water-sensitive rubber-based hot melt adhesives |
US5804610A (en) | 1994-09-09 | 1998-09-08 | Minnesota Mining And Manufacturing Company | Methods of making packaged viscoelastic compositions |
US5648166A (en) | 1995-02-21 | 1997-07-15 | Minnesota Mining And Manufacturing Company | Pressure-sensitive adhesives and tape articles |
US5637646A (en) | 1995-12-14 | 1997-06-10 | Minnesota Mining And Manufacturing Company | Bulk radical polymerization using a batch reactor |
US5876855A (en) | 1995-12-22 | 1999-03-02 | Minnesota Mining And Manufacturing Company | Pressure-sensitive adhesive suitable for skin and method of preparing |
FR2753380B1 (en) | 1996-09-16 | 1998-12-04 | Lhd Lab Hygiene Dietetique | NEW HYDROPHILIC ADHESIVE MASS |
US5891957A (en) | 1996-10-24 | 1999-04-06 | Shell Oil Company | Adhesive composition for skin adhesion and bandage applications |
AU3011699A (en) | 1999-03-19 | 2000-10-09 | Minnesota Mining And Manufacturing Company | Wet surface adhesives |
-
2000
- 2000-08-11 US US09/638,213 patent/US6497949B1/en not_active Expired - Lifetime
-
2001
- 2001-07-17 EP EP01954719A patent/EP1313820B1/en not_active Expired - Lifetime
- 2001-07-17 DE DE60140678T patent/DE60140678D1/en not_active Expired - Lifetime
- 2001-07-17 CA CA002415386A patent/CA2415386C/en not_active Expired - Fee Related
- 2001-07-17 WO PCT/US2001/022417 patent/WO2002014448A2/en active Application Filing
- 2001-07-17 BR BR0113154-0A patent/BR0113154A/en not_active Application Discontinuation
- 2001-07-17 ES ES01954719T patent/ES2337022T3/en not_active Expired - Lifetime
- 2001-07-17 AU AU7694501A patent/AU7694501A/en active Pending
- 2001-07-17 JP JP2002519578A patent/JP2004516338A/en active Pending
- 2001-07-17 AU AU2001276945A patent/AU2001276945B2/en not_active Ceased
- 2001-07-17 AT AT01954719T patent/ATE450586T1/en not_active IP Right Cessation
- 2001-07-24 TW TW090118047A patent/TWI257943B/en active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2415386C (en) | Adhesive blends comprising hydrophilic and hydrophobic pressure sensitive adhesives | |
AU2001276945A1 (en) | Adhesive blends comprising hydrophilic and hydrophobic pressure sensitive adhesives | |
JP4787397B2 (en) | Adhesive composition and adhesive tape or sheet | |
US6518343B1 (en) | Wet-stick adhesives, articles, and methods | |
AU701664B2 (en) | Pressure-sensitive adhesive suitable for skin and method of preparing | |
US6441092B1 (en) | Wet-stick adhesives | |
KR100732927B1 (en) | Pressure sensitive adhesives and articles containing radial blocks and acrylic polymers | |
EP3402854B1 (en) | Pressure-sensitive adhesive composition and article thereof | |
US6855386B1 (en) | Wet surface adhesives | |
EP1877510B1 (en) | Wet and dry stick adhesive, articles, and method | |
CA2303262A1 (en) | Blended pressure-sensitive adhesives | |
JPH084609B2 (en) | Diaper stop tab and adhesive composition | |
EP1856223A1 (en) | Adhesive compositions comprising mixtures of block copolymers | |
EP1163307B1 (en) | Wet surface adhesives | |
JP4108499B2 (en) | Water-dispersed pressure-sensitive adhesive composition and pressure-sensitive adhesive product | |
EP3126413A1 (en) | Wet and dry surface adhesives | |
EP1194496B1 (en) | Wet-stick adhesives | |
EP1190010B1 (en) | Wet-stick adhesives, articles, and methods | |
ZA200109978B (en) | Wet-stick adhesives, articles, and methods. |