+

NL2007209C2 - Latent heat storage heat exchanger assembly. - Google Patents

Latent heat storage heat exchanger assembly. Download PDF

Info

Publication number
NL2007209C2
NL2007209C2 NL2007209A NL2007209A NL2007209C2 NL 2007209 C2 NL2007209 C2 NL 2007209C2 NL 2007209 A NL2007209 A NL 2007209A NL 2007209 A NL2007209 A NL 2007209A NL 2007209 C2 NL2007209 C2 NL 2007209C2
Authority
NL
Netherlands
Prior art keywords
heat storage
latent heat
heat exchanger
storage heat
exchanger assembly
Prior art date
Application number
NL2007209A
Other languages
Dutch (nl)
Inventor
Antonius Henricus Hubertus Schmitz
Original Assignee
Autarkis B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Autarkis B V filed Critical Autarkis B V
Priority to NL2007209A priority Critical patent/NL2007209C2/en
Priority to NL2007269A priority patent/NL2007269C2/en
Priority to EP12750862.0A priority patent/EP2739912A1/en
Priority to PCT/NL2012/050544 priority patent/WO2013019113A1/en
Application granted granted Critical
Publication of NL2007209C2 publication Critical patent/NL2007209C2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • F24F5/0021Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice using phase change material [PCM] for storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0366Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/12Details or features not otherwise provided for transportable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/36Modules, e.g. for an easy mounting or transport
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0008Particular heat storage apparatus the heat storage material being enclosed in plate-like or laminated elements, e.g. in plates having internal compartments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0013Particular heat storage apparatus the heat storage material being enclosed in elements attached to or integral with heat exchange conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Nr. P100039NL00
Latent heat storage heat exchanger assembly
TECHNICAL FIELD OF THE INVENTION
The invention relates to a latent heat storage heat exchanger assembly for 5 use in a climate control system. The invention relates to a latent heat storage heat exchanger for use in a climate control system. The invention relates to the use of such a climate control system for controlling the temperature in a building. Further, the invention relates to a method of manufacturing a latent heat storage heat exchanger, the use of a latent heat storage heat exchanger in a climate control system. Furthermore, the invention 10 relates to a climate control system. The invention further relates to an insert for a latent heat storage heat exchanger, and to a latent heat storage heat exchanger provided with such an insert.
BACKGROUND OF THE INVENTION
15 Climate control systems for buildings are generally known. Some of said climate control systems use a phase change material to provide latent heat storage.
W02003102484A2 discloses a climate control unit located in the vicinity of the ceiling. The climate control unit comprises plate shaped latent heat accumulator bodies. The plate shaped bodies are parallel positioned at a predetermined distance with respect to each other 20 to form an air channel between adjacent plate shaped bodies. The plate shaped bodies comprise a cavity filled with a phase change material. A phase change material (PCM) is a substance with a high latent heat of fusion which, melting and solidifying at a certain temperature, is capable of storing and releasing large amounts of energy. Heat is absorbed or released when the material changes from solid to liquid and vice versa. Bodies filled 25 with PCMs are classified as latent heat storage (LHS) units.
The plate shaped bodies have to be manufactured separately. Subsequently, the plate shaped bodies are positioned parallel in the climate control unit. The plate shaped bodies together form a latent heat storage heat exchange device. Such a latent heat storage heat exchange device comprises a plurality of plate shaped elements. The plate shaped 30 elements are parallel positioned at a predetermined distance with respect to each other to form an air channel between adjacent plate shaped elements. Each element comprises a 2 cavity filled with a phase change material. The number of individual plate shaped elements mainly defines the costs of a climate control unit. Consequently, relative large plate shaped elements are used in climate control units instead of smaller ones.
5 SUMMARY OF THE INVENTION
The object of the invention is to provide an improved latent heat storage heat exchanger for use in a climate control system which allows to realize at least one of: reduction of manufacturing costs of climate control unit, increased latent heat storage capacity in Wh/kg or Wh/L, increased heat transfer characteristics compared with the 10 known embodiment of a climate control unit provided with parallel and horizontal positioned plate shaped latent heat storage bodies.
According to the invention, this object is achieved by a latent heat storage heat exchanger assembly comprising a support frame providing mutually parallel upper and lower support surfaces, and a frame unit for holding a latent heat storage heat exchange device between 15 said support surfaces, said frame unit mounted at an angle with respect to the lower support surface, each latent heat storage device comprises a plurality of plate shaped elements at predetermined mutual distances of each other and the plate shaped elements provided perpendicular to the support surfaces.
Thus, assemblies can be provided that are easy to build. They can be cheap. 20 Furthermore, the assemblies allow a modular system for making a climate control unit that can be designed to meat any need.
In an embodiment, the frame unit provides a device support plane for said latent heat storage heat exchange device at said angle, in an embodiment said support plane angle is at 5-45 degrees, in an embodiment at 10-30 degrees. Thus, the devices can are 25 installed in the assembly that a fluid flow flows along the plate shaped elements in an optimal way for exchanging heat with PCM.
In an embodiment, the support frame comprises a block-shaped part, in an embodiment formed by plate and/or profile elements, housing said frame unit. For instance, using metal of polymer plates and/or profiles, a rectangular channel part can be 30 provided. In an embodiment, it has rectangular fluid openings forming two opposite planes of the block-shaped support frame. In an embodiment, four rectangular closes walls define four sides of a (mathematical) block and the fluid openings form two opposite remaining 3 sides of said (mathematical) block. This allows the assemblies to be used an easy to combine modules.
In an embodiment, the support frame comprises plate walls forming a rectangular channel part, in an embodiment said frame unit is attached in and onto the 5 support frame.
In an embodiment, the plate shaped elements of the latent heat storage devices are provided mutually parallel and said latent heat storage heat exchange device has a longitudinal axis through said plate shaped elements, in an embodiment parallel to said upper and lower support surfaces.
10 In an embodiment, the heat storage heat exchanger assembly further comprises a fluid flow path between said upper end lower support planes, through said he heat storage heat exchanger device crossing said device support plane if defined. In fact, for instance in figure 11, a number of these fluid flow paths is depicted.
In an embodiment, the heat storage heat exchanger assembly has fluid 15 openings for allowing a fluid flow into and out of said assembly and past said latent heat storage heat exchange device, and an assembly longitudinal axis between said upper and lower support plates and connecting said openings. Said assembly longitudinal axis is perpendicular to said latent heat storage heat exchange device longitudinal axis. In an embodiment said latent heat storage heat exchanger assembly comprises at least two latent 20 heat storage heat exchange devices. In an embodiment in said assemblies arranged with their longitudinal axes parallel. Thus, the assembly allows easy combination of standardized devices in a further standardized assembly.
In an embodiment, the heat storage heat exchanger assembly further comprises a front plate provided to the most upstream device for controlling, in an 25 embodiment blocking, fluid flows to flow in between the plate elements coming from the upstream face of the most upstream device.
In an embodiment, the heat storage heat exchanger further comprises a rear plate provided to the most downstream device for controlling, in an embodiment blocking fluid flows to flow out between the plate elements past the downstream face of the most 30 downstream device.
According to an aspect of the invention, the object is alternatively achieved by a latent heat storage heat exchanger assembly comprising a frame with a plurality of rectangular frame units, wherein adjacent frame units are hingingly coupled to one another 4 along a coupling end, wherein each frame unit comprises a latent heat storage heat exchange device, wherein each latent heat storage heat exchange device comprises a plurality of plate shaped elements at predetermined mutual distances of each other, and wherein the plate shaped elements are configured perpendicular to the coupling end.
5 The latent heat storage device can be constructed and installed easily.
In case of defects, some of the latent heat storage heat exchangers can be replaced.
According to a further aspect of the invention, the above-referred object is achieved by a latent heat storage heat exchanger for use in a climate control system, the 10 latent heat storage heat exchanger comprises a plurality of plate shaped elements, wherein the plate shaped elements are parallel positioned at a predetermined distance with respect to each other to form a fluid channel between adjacent plate shaped elements and each element comprises a cavity filled with a phase change material, wherein the latent heat storage heat exchanger comprises a coupling structure configured to coupled the cavities of 15 the plurality of plate shaped elements to form one coupled cavity filled with phase change material.
In fact, in an embodiment of the invention, the latent heat storage devices can comprise one or more of the latent heat storage heat exchangers.
According to an aspect of the invention, the latent heat storage heat 20 exchanger comprises a coupling structure configured to couple the cavities of the plurality of plate shaped elements to form one coupled cavity filled with phase change material.
The invention is in an aspect based on the recognition that the manufacturing costs of a climate control unit provided with a latent heat storage heat exchanger comprising a plurality of plate shaped elements comprising a PCM-material is 25 linear to the number of elements. Each of the known plate shaped elements is obtained by the following process steps: manufacturing the body; filling the body with a PCM-material via an opening in the body; sealing the body. Subsequently, each element has to be positioned in the climate control unit. By manufacturing a body which comprises the coupling structure according to the invention, one latent heat storage heat exchanger is 30 obtained having the features of a plurality of plate shaped elements when positioned in a climate control unit, but which could be obtained be much less processing steps, namely manufacturing the body with the coupling structure; filling the body, i.e. all plate shaped elements, in one run, and sealing the body. Subsequently only one body instead of a 5 plurality of plate shaped elements has to be positioned in the climate control unit. In this way, the manufacturing costs of a climate control unit are reduced. Furthermore, the coupling structure enables us to provide a latent heat storage heat exchanger provided with a multitude of smaller plate shaped elements without increasing the amount of processing 5 steps and thus the manufacturing costs of a latent heat storage heat exchanger. Further, the coupling structure functions as a spacer to position the plate shaped elements parallel and at a predetermined distance to each other.
Further aspects of the invention are amongst others provided in the dependent claims.
10 In an embodiment, the coupling structure divides the fluid channel between adjacent plate shaped elements in two channel parts.
In an embodiment, the coupling structure divides the fluid channel between adjacent plate shaped elements symmetrically in two equal channel parts.
In an embodiment, the coupling structure forms a plate shaped cavity which 15 is perpendicular to the plurality of plate shaped elements.
In an embodiment, the coupling structure has a length axis which is larger than a length axis of the plate shaped elements.
In an embodiment, the latent heat storage heat exchanger comprises a housing of one material to form the one coupled cavity.
20 In an embodiment, the housing comprises a bin part and a cover part, wherein the bin part forms essentially the one coupled cavity.
In an embodiment, the bin part and the cover part are injection moulded parts.
In an embodiment, the cover part comprises at least one opening for filling 25 the one coupled cavity with the PCM material.
In an embodiment, the openings are configured for receiving a sealing member.
In an embodiment, the opening and sealing member are coupled by means of a screwed connection.
30 In an embodiment, housing is made from an injection-mouldable polymer material, in an embodiment a thermoplastic polymer material, in an embodiment from HDPE.
6
In an embodiment, the bin part and the cover part are coupled by means of one continuous circular weld.
In an embodiment of the invention, the coupling structure divides the fluid channel between adjacent plate shaped elements in two channel parts. In an advantageous 5 embodiment, the coupling structure divides the fluid channel between adjacent plate shaped elements symmetrically in two equal channel parts. These features provide a robust structure, wherein the coupling structure extends along the complete length of the fluid channel between two adjacent plate shaped elements.
In an embodiment of the invention, the coupling structure forms a plate 10 shaped cavity which is perpendicular to the plurality of plate shaped elements. This feature provides a structure which makes it easy to fill each of the plate shaped elements of the latent heat storage heat exchanger with a PCM-material.
In an embodiment of the invention, the coupling structure has a length axis which is larger than a length axis of the plate shaped elements. This feature provides a 15 latent heat storage heat exchanger with relative small plate shaped elements. This allows us the provide a latent heat storage heat exchanger with improved characteristics without increasing the flow rate through the latent heat storage heat exchanger. An improved characteristic could be an increased latent heat storage capacity, an increase in the total surface of the plate shaped elements along the air channels, a reduced air resistance as the 20 air channels can be shorter, or any other combination of improved characteristics.
In an embodiment of the invention, the latent heat storage heat exchanger comprises a housing of one material to form the one coupled cavity. The housing comprises a bin part and a cover part, wherein the bin part forms essentially the one coupled cavity. This feature enables one to design a housing that could be manufactured 25 by means of an injection moulding process. The housing could be made from HDPE (High Density Poly Ethylene).
In an embodiment of the invention, the cover part comprises at least one opening for filling the one coupled cavity with the PCM-material. In an embodiment of the invention, the openings are configured for receiving a sealing member. In an 30 advantageous embodiment, the opening and the sealing member are coupled by means of a screwed connection. In another embodiment, the opening and sealing members are coupled by means of gluing or welding.
7
In a further embodiment, the bin part and the cover part are coupled by means of one continuous circular weld. After the bin part and the cover part are positioned on each other, a heating element having a shape complementary to the exterior shape of the body where the bin part and cover part touches is positioned along the exterior where the 5 cover part and bin part touches. The touching ends of the bin part and cover part will fuse together to form the one continuous circular weld.
It is a further aspect of the invention to provide an improved method of manufacturing a latent heat storage heat exchanger. The method comprises the steps: - manufacturing a bin part for a latent heat storage unit according to the 10 invention; - manufacturing a cover part for a latent heat storage heat exchanger according to the invention; - welding the bin part and the cover part together to form a body with one coupled cavity according to the invention; and, 15 - filling the one coupled cavity with a PCM-material.
It is a further aspect of the invention to use a latent heat storage heat exchanger in a climate control system. Furthermore, an aspect of the invention is a reduction in manufacturing costs of a climate control system by including at least one latent heat storage heat exchanger according to the invention in the system.
20 The invention further pertains to a latent heat storage heat exchanger for holding PCM-material having in at least two of its dimensions and a inside wall spacing of not more than 1 cm and comprising an insert.
It will be evident that the various aspects mentioned in this patent application may be combined and may each be considered separately for a divisional 25 patent application. Other features and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, various features of preferred embodiments of the invention.
30 BRIEF DESCRIPTION OF THE FIGURES
These and other aspects, properties and advantages of the invention will be explained hereinafter based on embodiments shown in the following description with 8 reference to the drawings, wherein like reference numerals denote like or comparable parts, and illustrating in:
Figure 1 a perspective view of a bin part and cover part of a latent heat storage heat exchanger according to an illustrative embodiment of the invention; 5 Figure 2 top view of the embodiment shown in Figure 1;
Figure 3 a sectional view of the embodiment along the line III - III in Figure 2;
Figure 4 an enlarged view from Figure 3 showing the coupling part between the bin part and the cover part before the fusing process; 10 Figure 5 a sectional view of the embodiment along line V -V in Figure 2;
Figure 6 in more detail an embodiment of an opening structure and sealing member;
Figure 7 a perspective view of an insert for a bin part, in particular the heat exchanger of figure 1; 15 Figure 8 a side view of figure 7;
Figure 9 a top view of figure 7;
Figure 10 a detail of figure 8;
Figure 11a latent heat storage heat exchanger assembly in use in a rectangular channel and comprising a series of latent heat storage heat exchangers shown 20 in figures 1 -10 in a side view,
Figure 12 the assembly of figure 11 in front view, looking into the channel in flow direction,
Figure 13 a frame unit of figure 11 without latent heat storage heat exchange devices, 25 Figure 14 a cross section of figure 13 as indicated,
Figure 15 the frame unit of figure 13 with seven latent heat storage heat exchange devices,
Figure 16 a 3D view looking into a channelwith an assembly,
Figure 17 a perspective view of yet another assembly, and 30 Figure 18 a front view of the assembly of figure 17.
9
DESCRIPTION OF EMBODIMENTS
First, below and regarding figures 1-10 a particular latent heat storage heat exchanger will be described that can be used in an embodiment of the latent heat storage heat exchanger assembly. That latent heat storage heat exchanger will also be called 5 compact heat exchanger. In combination with that compact heat exchanger, the assembly that is depicted in figures 11 and 18 can be build from modules very quickly and adapted to a particular need. In fact, an air treatment system can be provided with an air treatment module that is flexible and can easily be adapted to a specific need. In a particular embodiment, a housing unit like for instance a standard sea container can be provided with 10 an air inlet and an air outlet and an air channel in the housing coupling said inlet and said outlet. In the air channel, a rectangular channel part can be provided. That rectangular channel part can be provided with the latent heat storage heat exchanger assembly.
In the current application, when using for instance the terms “parallel”, “rectangular”, “perpendicular”, it should be evident that small deviations from the absolute 15 mathematical definitions can be possible. In fact, a deviation of the absolute mathematical definition can be possible as long as the parts are allowed to fulfil their functional role. In some of the current designs, a deviation of as much as 10 % is possible. In most of the current designs a deviation of 1-5 % can be possible.
Figure 1 illustrates a perspective view of a bin part 4 and cover part 2 of a 20 latent heat storage heat exchanger 1 according to an illustrative embodiment of the invention. Figure 1 shows the cover part 2 positioned above and at distance from the bin part 4. The bin part 4 and cover part 2 could be made by an injection moulding process.
The material could be any suitable injection moulding material. High Density Poly Ethylene (HDPE) has been found a very suitable material for both the bin part and the 25 cover part. The bin part 4 and the cover part form together a housing with one coupled cavity. The cavity could be filled with a phase change material (PCM). Therefore, the cover part 2 comprises two openings 9 positioned at opposite ends of the cover part 2. One opening is used to supply the PCM in the cavity and the other opening is used to release air when filling the cavity with PCM. After filling the housing 2,4, formed by bin part 4 and 30 cover part 2, the openings 9 are closed with a sealing number 10.
The housing formed by the bin part 4 and the cover part 2, comprises a plurality of plate shaped elements 6. Each plate shaped element 6 comprises a cavity for receiving PCM. The plate shaped elements 6 are positioned parallel to each other. A
10 predefined spacing 7 is provided between the plate shaped elements 6 to form a fluid channel 7. It should be noted that the invention is not limited to plate shaped elements with a flat surface. For example, the surface could be enlarged, for instance by making the surface curved or corrugated. The plate shaped elements 6 are coupled together to form 5 one housing by means of a coupling structure 8. In the embodiment shown in figure 1, in the middle of two adjacent plate shaped elements 6, a passage between the cavities of two adjacent plate shaped element 6 is provided. The walls of the passage form a rigid coupling structure to keep the two adjacent plate shaped elements parallel to each other and at a predefined distance to form a fluid channel between the plate shaped elements. The 10 passages together form the coupling structure 8. The coupling structure 8 divides the fluid channel between adjacent plate shaped elements in two channel parts. In the embodiment, the passage extends from the bottom of the bin part 4 to the cover part 2. Consequently, in the embodiment the height of the passage is essentially equal to the height of the cavity of the plate shaped elements. The height is defined as the distance between the bottom side 15 and top side of the housing. It should be noted that it is not essential to have a passage between two adjacent plate shaped elements which extends from the bottom to the top side. It might be possible to have two passages, one at the bottom side between two plate shaped elements and one at the top side between two plate shaped elements. In such an embodiment, the passage at the bottom side is used to supply the PCM in all the cavities of 20 the plate shaped elements and the passages at the top side allows to release the air from a plate shaped element when filling the cavity. In this way, each cavity of a plate shaped element could be filled completely with a PCM.
The housing of the latent heat storage heat exchanger 1 could also be described in the following way. A plate shaped coupling structure 8 provided with a 25 plurality of plate shaped elements 6 or ribs at both sides of the coupling structure 8. The plate shaped elements 6 extending essentially perpendicular from the plate shaped coupling structure 8. The plate shaped elements 7 are positioned parallel to each other at a predetermined distance. The space between the plate shaped elements 6 forming a fluid channel 7 configured for passing a flow of fluid along the surface of the plate shaped 30 elements 6 to exchange heat between the PCM in the latent heat storage heat exchanger and the fluid passing along the fluid channel 7. A fluid could be a gas or a liquid. In an air ventilation system it is likely that the fluid is a cooled or heated air flow.
11 A cross section of two adjacent plate shaped elements 6 and the coupling structure 8 between said elements form the shape of a letter H. The two adjacent plate shaped elements 6 correspond to the legs of the letter H and the coupling stmcture corresponds to the cross of the letter H. The space between the legs of the letter H 5 corresponds to the fluid channel. A latent heat storage as a whole comprises a plurality of H-shaped parts. Figure 2 illustrates top view of the embodiment shown in figure 1 and shows the plurality of H-shaped parts. Similarly, a cross section of the cavity formed by the housing of a combination of two adjacent plate shaped elements and the coupling structure between said adjacent elements form the shaped of a letter H.
10 Figure 2 further shows two filling openings 10 for filling the cavity of the housing of the latent heat storage heat exchanger with a PCM. The coupling structure 8 comprises a length axis, which is indicated by the line V-V. The openings 10 are positioned preferably near both ends of the coupling structure along the length axis.
Figure 3 illustrates a sectional view of the embodiment along the line III -15 III in figure 2. Reference 8a indicates the cavity formed by the coupling structure 8.
Assume that the latent heat storage heat exchanger has an outer profile with the geometry of a rectangular cube. The cube having a length L, a height H and a depth D, wherein L > H > D. It thus has a longitudinal axis running through the centre of the plates. To obtain an optimal ratio with respect to contact surface between PCM and fluid channel, 20 cross section of the fluid channel and amount of PCM-material, the coupling structure 8 is parallel to the side having a length L and a width H of the cube. The plurality of plate shaped elements 6 are parallel to the side having a length H and a width D of the cube. Compared with known latent heat storage heat exchangers with a predefined size of for example L = 570mm, H = 160mm and D = 148mm and plate shaped elements parallel to 25 the side having a length L and a width D a significant increase of contact surface and volume of PCM is possible. Furthermore, as the length of the air channel through the latent heat storage heat exchanger decreases and the cross section of the air channel through the unit increases, the air resistance of the latent heat storage heat exchanger when applied in a ventilation system decreases. In the invention, the latent heat storage heat 30 exchange devices have equal dimensions in order to make a modular system. As for the dimensions L, H, B, for instance L = 500-600 mm, H = 100-200 mm and D = 100-200 mm can be used. In some embodiments, latent heat storage heat exchange devices of halve seize can be used to provide even more flexibility. Usually, the length L is halve of the full 12 seize device. The dimensions above allow an optimal load for a throughput of air of 50 m3/h for the full seize devices and thus 25 m3/h for the halve-seize devices.
In an embodiment, the plate shaped elements have a thickness that is larger than two times the width of the air channel between two adjacent plate shaped elements, 5 for example a thickness of between 8 and 13 mm, in particular 9-12 mm, for instance around 11 mm. The air channel thus has a width of 3-7 mm, in particular 3-5 mm, for instance around 4 mm. It should be noted that the dimensions of the plate shaped elements and the distance between the plate shaped elements depend on the application of the latent heat storage heat exchanger and relate to parameters such as flow, desired latent heat 10 storage capacity, daily cycles, cooling/heating capacity, medium, etc.
Figure 4 illustrates an enlarged view from figure 3 showing the coupling part between the bin part 4 and the cover part 2 before the fusing process. The bin part comprises a rim 4a, which can be positioned in a groove between a first rim 2a and a second rim 2b on the edge of the cover part 2. By heating the material of the first rim 2a 15 and rim 4a, the material of the first rim 2a and the rim 4a will fuse and form one continuous circular weld. This could be done with a heating device with a heating profile which is congruent to the outline of the housing at the location of the coupling part. It might be clear that the heating profile comprises a plurality of parts having the shape of the letter H.
20 Figure 5 illustrates a sectional view of the embodiment along line V -V in figure 2 and figure 6 illustrates in more detail an embodiment of an opening structure 9 and sealing member 10. The opening structure 9 comprises a thread 9a at the inner surface of the opening 9. The sealing member 10 comprises a threaded outer surface 10a for forming a screwed connection with the opening structure 9. It might be clear that other sealing 25 constructions are possible. In an alternative embodiment the material of the opening structure and sealing member are fused together. In another embodiment, glue is used to secure the sealing member 10 in the opening 9.
The present invention enables one to manufacture a latent heat storage heat exchanger comprising a plurality of parallel positioned plate shaped elements by means of 30 the following process steps: 1) Produce a bin part with feature described above by means of an injection moulding process from a material such as HDPE; 13 2) Produce a cover part with features described above by means of an injection moulding process from the similar material as the bin part; 3) Position the cover part on the bin part; 4) Position a heating device along the contour defined by the outer 5 profile of the surface where the cover part is positioned on the bin part; 5) Heat the material of the bin part and the cover part near the touching location; 6) Fuse the bin part and the cover part in one go to obtain one continuous circular weld (corresponds to the profile of the upper edge of 10 the bin part and the lower part of the cover part) to obtain a housing with one coupled cavity including the cavity formed by the coupling structure and the cavities of the plurality of plate shaped elements; 7) Fill in one go the one coupled cavity with a PCM though one or more filling openings; and 15 8) Seal the one or more filling openings with a sealing member.
The method according to the invention enables one to manufacture a plurality of parallel positioned plate shaped elements for use in a climate control system by performing each of the steps 1-8 only once. This has been made possible by providing a coupling structure between the plate shaped elements and which structure comprises a 20 cavity which provides a fluid passage between cavities of the plate shaped elements.
In figure 7, an embodiment of another aspect of the invention is shown, in an embodiment specifically designed for the heat exchanger of figure 1. It was found that when filling the storage unit of figure 1 with PCM material, for instance PCM material based upon CaCf-b^O, that the crystal material tends to precipitate under the influence of 25 gravity. When this happens, the PCM material largely loses its ability to store heat and it effects the under cooling. It was found that when inserting the insert of figure 7, the precipitation can be prevented. In fact, the particular insert even allows the heat exchanger of figure 1 to be used in any spatial orientation.
The insert in fact divides the larger volume of the storage unit into smaller 30 sub spaces. In fact, in this embodiment it divides a larges space into sub spaces with each dimension smaller than 2.5 cm.
In the embodiment or figure 7, the insert has interconnected strips of material having a width to fit between two opposite walls of the storage unit. The strips are 14 provided with openings to allow the storage unit to be filled with PCM material after the insert 20 is inserted into the storage unit 1. With holes having a diameter smaller than 2 mm, it prevents the crystal material to precipitate. In fact, it was surprisingly found that the material tends to stick to the material of the insert, even if it is made, for instance via an 5 injection moulding process, from a plastic material. In examples, the insert is made of PE (polyethylene). The insert can be made of another, similar material like PP (polypropylene).
In this embodiment, the insert comprises strips that have a width corresponding to the width of the storage unit. Thus, it divides the storage unit in 10 compartments. In this embodimen, strips 21 have a series of crosswise attaches strip parts 21 that are arranged to fit together to functionally form single cross strips 22, Thus, the insert can be formed as series af sub-inserts that are connected via transvers strips 23 . In this embodiment for the heat exchanger of figure 1, these strips 23 are provided to close off coupling structure 8.
15 The cross strips 22 are usually perperdicular with respect to the strips 21.
The strips 21 in one level are connected via bridging parts 26. Thes bridging parts can be provided with slots for the transverse strips 23. In yet another embodiment, the entire insert can be formed as one single injection moulding part.
In another embodiment, a similar insert can also be used in order to divide 20 another shaped heat exchanger into sub compartments. Thus, the storage unit can be used in any desired orientation.
In figure 10, a detail of the insert is shown. A strip or fin has holes in order to allow the PCM material to fill the spaced defined by the strips and the further walls of a storage unit.
25 In an embodiment, the latent heat storage heat exchange unit has another shape than the shown block shape. For instance, in some applications a trapeziod shape is preferred, in order to have heat transfer properties tailored to the need. In another application, when tubes are used, a cylinder shape is perferred. In such a shape, the plates are disks and are essentially parallel with respect to one another. It may even be possible to 30 position the plates of the latent heat exchanger a little off parallel, in order to modify the flow chanel.
Figure 11 and 12 show a latent heat storage heat exchanger assembly 100 mounted in a channel 110, in longitudinal cross sectional view in figure 11 and a front 15 view looking in the fluid flow direction in figure 12. That latent heat storage heat exchanger assembly 100 can for instance hold a plurality of latent heat exchangers 1 described above. In this channels 110, air is introduced with a flow speed of usually below 2.5 m/s. In fact, in most embodiments the flow speed will be on the order of 1-2 m/s.
5 Often, the cross sectional area of the flow channel will be up to 5 m2. Thus, about up to 36000 m3/h can be treated. Often, the channel has a cross sectional area of at least 1 m2. In some of the embodiments, some of the latent heat storage heat exchanger devices in the assembly can be replaced with one or more closed plates in order to modify the capacity of the assembly. Thus, usually at least 100 m3/h will be treated using the assembly. In some 10 specific designs, the assembly is used for treating 500-5000 m /h.
The assembly has in this embodiment four frame units 101. Each frame unit 101 is coupled using a hinge 104 to a nex unit 101. At the top of channel 110, the last frame unit is provided with a coupling end 105 to couple it to the ceiling of channel 110. The last frame unit rests with one end opposite the coupling end on the bottom of the 15 channel 110. The hinges are subsequently fixed it a position to provided each of the frame units 101 at an angle a that can be between 5 and 40 degrees. Usually, the frame units are positioned at about the same angle.
The latent heat storage heat exchange devices are usually free standing provided on the frame units 101. Thus, the devices have some freedom to expand. The 20 frame units 101 are often made from L-profile elements that provided as little front area in the channel as possible. Usually, a rectangular carrying frame using profile elements 103 is produced, and using some elements this is coupled to the hinges 104. In another embodiment, the side surrounding ends of the frame units are as heigh as the latent heat storage heat exchange devices. In this way, air is forced to flow between the plates.
25 The frame units 101 provide a support for the latent heat storage heat exchange devices. Thus, the L profile ends provide an open frame allowing the air to flow to the latent heat storage heat exchange devices. Figure 13 clearly shows an open rectangular frame, with figure 14 a cross section of figure 13 as indicated. In figure 15, the frame unit 101 of figure 13 is provided with latent heat storage heat exchange devices 1.
30 As mentioned above, the front parts of the frame units 101 facing the incomming flow of air can in an embodiment be as high as the latent heat storage heat exchange devices 1 in order to force the air to fully flow around the devices.
16
In figure 16, a 3D view looking into an air channel 110 is depicted. In this embodiment, the assembly has two latent heat storage heat exchange devices 1 on each frame unit 101. Furthermore, the front part for the frane units facing the air flow are in this embodiment closed in order to further force the air through the between the plates of the 5 devices 1. In a further embodiment, also the rear parts of the frame units facing away from the incoming flow of ais are closed. In figure 12, the resulting flow of air is depicted.
In order to fix the frame units 101 in their mutual position as for instance indicated in figure 11, the hinges 104 have a locking provision to lock the hinges in a desired angular position.
10 As mentioned before, the flow channel 110 can be provided in a removeable unit, for instance a container that can be coupled to an inlet of an existing climate control system of a building.
The latent heat storage heat exchanger assembly is usually mounted in a rectangular channel in the following way. The frame with frame units 101, for instance 15 four frame units 101, is provided with each for instance 14 latent heat storage heat exchange devices, for instance of the type described in detail above, and that are filled with PCM material. The assembly is in a folded position provided in channel 110. There, the upper frame unit 101 is lifted at the end provided with the channel attachment part 105 and attached to the ceiling of the channel 110. Then, the next frame units are set to their 20 angular positions and the hinges are fixed at their positions to result in the situation shown in figure 11. Thus, mounting of the assembly in a channel can be done quick and easily.
In figures 17 and 18, another embodiment of an assembly holding several latent heat storage heat exchange devices is shown. Again, it can hold plate shaped members that are positioned at an interval and that form the latent heat storage heat 25 exchange devices. In an embodiment that allows a very fast and cheap building, the latent heat storage heat exchange devices are the latent heat storage heat exchangers described in figures 1-6. The assembly shown in figures 17 and 18 can be used as such in a channel. In an embodiment, at least two of the assemblies as shown in figures 17 and 18 are combined in a channel in order to increase the capacity of a climate control system comprising the 30 assemblies. For instance, two of more assemblies van be placed next to one another of stacked on top of one another. In an embodiment, at least four of the assemblies are placed next to one another and on top of one another. They can be placed in the same orientation 17 with respect to one another, or 180 degrees rotated in order to provide a V-shaped entrance as shown in the earlier assembly of figures 11-16.
The assembly of figures 17 and 18 has a frame 121 unit for holding at least two latent heat storage heat exchange devices. In figure 18, one in fact views in the 5 direction and along the longitudinal axis of the assembly. The devices can be at least two of the specific heat exchangers 1 described in figures 1-6. Alternatively, a device can comprise a series of plate elements holding PCM and positioned and maintained at a regular spacing, in a way providing largely the setting obtained using the heat exchangers of figures 1-6. The frame unit 121 is set at an angle of between 10 and 30 degrees with 10 respect to a lower support surface 123 of the assembly. The assembly further comprises an upper support surface 124 arranged for supporting one or more further similar assemblies. Preferably, in order to allow stacking of assemblies in a channel, the support surfaces 123 and 124 are parallel and form opposite planes of (virtual) box. In an assembly, an outer frame is provided by series of 12 L-profile parts form the ribs of a box holding frame 121 15 within. In another embodiment, that allows an even simpler and easier building of a channel like an air channel, the outer frame is provided by a set of four interconnected plates, for instance closed plates, that form four walls of a box, thus forming a channel part. Thus, the channel part has an upper wall 124, a lower wall 123, and side walls 120. Thus, a front and rear wall are left out. Two L-profile parts 121 are attaches at an angle to 20 two opposite walls 120. In order to hold the devices onto the frame, a front and rear L-profile 125, 126 can be provided.
In order to force a flow of air between the plate elements of the devices, a front plate 122 and a rear plate 126 are provided to the most upstream and the most downstream device. Plate 122 blocks fluid flows between the plate elements coming from 25 the upstream face of the most upstream device. Plate 126 blocks fluid flows to flow out between the plate elements past the downstream face of the most downstream device. The plates 122, 126 may have openings in order to further control the fluid flow.
These plates 122, 126 can be clipped on the devices, or alternatively be coupled to or attached to the outer frame or to the frame unit. Thus, when stacking 30 assemblies of figures 17 and 18, the effective flow of fluid of figure 11 can be obtained.
In the embodiment of figures 17 and 18, the channel length provided by the walls 120, 123 and 124 leaves o small part of the downstream (or upstream if placed 18 reverse) device extend beyond the channel. In an embodiment, the walls or support box fully hold the devices.
Usually, as mentioned above, a design limit the flow speed of air is limited to 2 m/s. Then, a design is made regarding the amount of fresh air that is needed in for 5 instance a building or a space. Furthermore, in the design the amount of heat storage is set. Thus, the required temperatures during for instance a 24 hour cycle us determined.
Isolation conditions of a building can be taken into account, as well as the climate outdoors temperature during the year.
For instance, the heat storage capacity is selected to be able to heat or cool a 10 building for 2 working days (for instance 9-11 hours) to a set temperature cycle. That set temperature can be for instance 18 degrees Celsius between 8:00 and 18:00. That set temperature should be maintained with respect to an outside temperature of for instance 2-10 degrees difference (higher and lower) with respect to that set temperature. Furthermore, the required fresh air flow is determined. From these values, a required volume of PCM 15 can be calculated, and the amount of latent heat storage hear exchangers. With am air flow of below 2 m/s passed a latent heat storage heat exchanger, the configuration of a climate system using for instance assemblies of figures 17 and 18 can be determined.
Usually, the invention is used for air flows. However, it may also be used for flows of other fluids. For instance, other gases of mixtures of gases, but also for liquids, 20 for instance water.
The measures described hereinbefore for embodying the invention can obviously be carried out separately or in parallel or in a different combination or, if appropriate, can be supplemented with further measures; it will in this case be desirable for the implementation to depend on the field of application of the device. The invention is 25 not limited to the illustrated embodiments. Changes can be made without departing from the idea of the invention.

Claims (43)

1. Een latente warmte opslag warmtewisselaarsamenstel omvattende een draagframe voor welke onderling parallelle boven- en ondersteunvlakken verschaft, en een frame eenheid voor het houden van een latente warmte opslag warmtewisselinrichting tussen 5 die steunvlakken, waarbij de frame eenheid gemonteerd is onder een hoek ten opzichten van het ondersteunvlak, en waarbij elke latente warmte opslaginrichting plaatvormige delen omvat op een voorafbepaalde onderlinge afstand van elkaar en waarbij de plaatvormige delen loodrecht ten opzichte van de steunvlakken voorzien zijn.A latent heat storage heat exchanger assembly comprising a support frame for which mutually parallel upper and support surfaces provides, and a frame unit for holding a latent heat storage heat exchanger device between said support surfaces, the frame unit being mounted at an angle to the supporting surface, and wherein each latent heat storage device comprises plate-shaped parts at a predetermined mutual distance from each other and wherein the plate-shaped parts are provided perpendicular to the supporting surfaces. 2. Het latente warmte opslag warmtewisselaarsamenstel volgens conclusie 1, waarbij de frame eenheid een inrichtingssteunvlak voor de latente warmte opslag warmtewisselinrichting verschaft onder die hoek, in een uitvoeringsvorm is die steunvlakhoek 5-45 graden, in een uitvoeringsvorm 10-30 graden.The latent heat storage heat exchanger assembly according to claim 1, wherein the frame unit provides a device support surface for the latent heat storage heat exchanger device at that angle, in one embodiment that support surface angle is 5-45 degrees, in an embodiment 10-30 degrees. 3. Het warmte opslag warmtewisselaarsamenstel volgens conclusie 1 of 2, waarbij het draagframe een blokvormig deel omvat, in een uitvoeringsvorm gevormd door plaat-en/of profïeldelen, die de frame eenheid huizen.The heat storage heat exchanger assembly according to claim 1 or 2, wherein the support frame comprises a block-shaped part, in an embodiment formed by plate and / or profile parts, which houses the frame unit. 4. Het warmte opslag warmtewisselaarsamenstel volgens een of meer der voorgaande 20 conclusies, waarbij het draagframe plaatwanden omvat die een rechthoekig kanaal deel vormen, in een uitvoeringsvorm is de frame eenheid verbonden in en aan het draagframe.4. The heat storage heat exchanger assembly according to one or more of the preceding claims, wherein the support frame comprises plate walls which form a rectangular channel part, in one embodiment the frame unit is connected in and to the support frame. 5. Het warmte opslag warmtewisselaarsamenstel volgens een of meer der voorgaande conclusies, waarbij plaatvormige delen van de latente warmte 25 opslagwarmtewisselinrichting onderling parallel voorzien zijn en de latente warmte opslag warmtewisselinrichting een lengteas door de plaatvormige elementen heeft, in een uitvoeringsvorm parallel aan de boven- en ondersteunvlakken.5. The heat storage heat exchanger assembly as claimed in one or more of the foregoing claims, wherein plate-shaped parts of the latent heat storage heat exchange device are mutually provided in parallel and the latent heat storage heat exchange device has a longitudinal axis through the plate-shaped elements, in an embodiment parallel to the top and bottom supporting surfaces. 6. Het warmte opslag warmtewisselaarsamenstel volgens een der voorgaande conclusies, 30 verder omvattende een fluïdum stromingspad tussen de boven- en ondersteunvlakken, door de warmte opslag warmtewisselinrichting en het inrichtingssteunvlak kruisend wanneer gedefinieerd.6. The heat storage heat exchanger assembly according to any one of the preceding claims, further comprising a fluid flow path between the upper and support surfaces, crossing through the heat storage heat exchange device and the device support surface when defined. 7. Het warmte opslag warmtewisselaarsamenstel volgens conclusie 5 en 6, voorzien van fluïdumopeningen om fluïdum in en uit het samenstel te kunnen laten stromen en langs de latente warmte opslag warmtewisselinrichting, en een lengteas van het samenstel 5 tussen de boven- en ondersteunplaten en die de openingen onderling verbindt, waarbij de lengteas van het samenstel loodrecht op de lengteas van de latente warmte opslag warmtewisselinrichting is, in een uitvoeringsvorm omvat het latente warmte opslag warmtewisselaarsamenstel ten minste twee latente warmte opslag warmtewisselinrichtingen, in een uitvoeringsvorm in de samenstellen gerangschikt met 10 hun lengteassen parallel.The heat storage heat exchanger assembly according to claims 5 and 6, provided with fluid openings to allow fluid to flow in and out of the assembly and along the latent heat storage heat exchange device, and a longitudinal axis of the assembly 5 between the upper and support plates and the interconnects openings, wherein the longitudinal axis of the assembly is perpendicular to the longitudinal axis of the latent heat storage heat exchanger, in one embodiment the latent heat storage heat exchanger assembly comprises at least two latent heat storage heat exchangers, in one embodiment arranged in the assemblies with their longitudinal axes parallel. 8. Het warmte opslag warmtewisselaarsamenstel volgens een der voorgaande conclusies, verder omvattende een voorplaat voorzien aan de meest stroomopwaarts gelegen inrichting, voor het regelen, in een uitvoeringsvorm blokkeren, van fluïdumstromen om 15 tussen de plaatdelen en komende vanaf het meest stroomopwaartse vlak van de meest stroomopwaartse inrichting te stromen.8. The heat storage heat exchanger assembly according to any one of the preceding claims, further comprising a face plate provided on the most upstream device, for controlling, in one embodiment blocking, fluid flows between the plate parts and coming from the most upstream surface of the most upstream device. 9. Het warmteopslag warmtewisselaarsamenstel volgens een der voorgaande conclusies, verder omvattende een achterplaat aan de meest stroomafwaarts gelegen inrichting, voor 20 het regelen, in een uitvoeringsvorm blokkeren, van fluïdumstromen om uit te stromen tussen de plaatdelen voorbij het stroomafwaartse vlak van de meest stroomafwaarts gelegen inrichting.9. The heat storage heat exchanger assembly according to any one of the preceding claims, further comprising a back plate on the most downstream device, for controlling, in one embodiment blocking, fluid flows to flow out between the plate parts beyond the downstream surface of the most downstream design. 10. Een klimaatregelsamentstel, omvattende ten minste twee latente warmte opslag 25 warmtewisselaarsamenstellen volgens een der voorgaande conclusies, gestapeld in een rechthoekig kanaal of die een rechthoekig kanaaldeel vormen.10. A climate control assembly comprising at least two latent heat storage heat exchanger assemblies according to any one of the preceding claims, stacked in a rectangular channel or forming a rectangular channel part. 11. Een latente warmte opslag warmtewisselaarsamenstel, in het bijzonder volgens een der voorgaande conclusies, omvattende een frame met rechthoekige frame eenheden, 30 waarbij naastgelegen frame eenheden scharnierend met elkaar gekoppeld zijn langs een koppeleind, waarbij elk frame eenheid een latente warmte opslag warmtewisselinrichting omvat, waarbij elke latente warmte opslag warmtewisselinrichting plaatvormige delen omvat op voorafbepaalde onderlinge afstanden van elkaar, en waarbij de plaatvormige delen loodrecht opgesteld zijn ten opzichte van het koppeldeel.11. A latent heat storage heat exchanger assembly, in particular according to any one of the preceding claims, comprising a frame with rectangular frame units, wherein adjacent frame units are hingedly coupled to each other along a coupling end, each frame unit comprising a latent heat storage heat exchanger device, wherein each latent heat storage heat exchanger comprises plate-shaped parts at predetermined mutual distances from each other, and wherein the plate-shaped parts are arranged perpendicular to the coupling part. 12. Het latente warmte opslag warmtewisselaarsamenstel volgens conclusie 11, waarbij 5 de latente warmte opslag warmtewisselinrichtingen elk plaatvormige delen omvatten op een voorafbepaalde onderlinge afstand parallel ten opzichte van elkaar om een fluïdumkanaal te vormen tussen naastgelegen plaatvormige delen en elk deel een holte omvat die gevuld is met een faseveranderend materiaal (phase change material, PCM).12. The latent heat storage heat exchanger assembly according to claim 11, wherein the latent heat storage heat exchange devices each comprise plate-shaped parts at a predetermined mutual distance parallel to each other to form a fluid channel between adjacent plate-shaped parts and each part comprises a cavity that is filled with a phase-changing material (phase change material, PCM). 13. Het latente warmte opslag warmtewisselaarsamenstel volgens een of meer der voorgaande conclusies, waarbij elk van de frame eenheden ten minste twee latente warmte opslag warmtewisselinrichtingen omvat die parallel zijn ten opzichte van elkaar op het frame, in het bijzonder met hun lengteassen onderling parallel, in het bijzonder parallel ten opzichte van het koppeleind van de frame eenheden. 15The latent heat storage heat exchanger assembly according to one or more of the preceding claims, wherein each of the frame units comprises at least two latent heat storage heat exchange devices that are parallel to each other on the frame, in particular with their longitudinal axes mutually parallel, in particularly parallel to the coupling end of the frame units. 15 14. Het latente warmte opslag warmtewisselaarsamenstel volgens een of meer der voorgaande conclusies, waarbij het frame ten minste drie rechthoekige framedelen omvat die onderling verbonden zijn in een zigzag wijze, met een boven frame eenheid, een onder frame eenheid, en ten minste een centrale frame eenheid. 20The latent heat storage heat exchanger assembly as claimed in one or more of the preceding claims, wherein the frame comprises at least three rectangular frame parts interconnected in a zigzag manner, with an upper frame unit, a lower frame unit, and at least one central frame unit. 20 15. Het latente warmte opslag warmtewisselaarsamenstel of claim 14, waarbij de boven frame eenheid een koppeldeel omvat om een eind gelegen tegenover het koppeldeel te koppelen aan een kanaalwand.15. The latent heat storage heat exchanger assembly or claim 14, wherein the upper frame unit comprises a coupling part for coupling an end opposite the coupling part to a channel wall. 16. Het latente warmte opslag warmtewisselaarsamenstel volgens een of meer der voorgaande conclusies, waarbij de frame eenheden opgebouw zijn onder gebruikmaking van L-profïeldelen die gerangschikt zijn in een rechthoekig onderffame voorzien van afstandhouders voor het op een ingestelde afstand ten opzichte van elkaar houden van de plaatvormige delen van een latente warmte opslag warmtewisselinrichting.The latent heat storage heat exchanger assembly as claimed in one or more of the preceding claims, wherein the frame units are built up using L-profile parts arranged in a rectangular bottom frame provided with spacers for keeping the set at a set distance from each other. plate-shaped parts of a latent heat storage heat exchanger. 17. Het latente warmte opslag warmtewisselaarsamenstel volgens een of meer der voorgaande conclusies, waarbij in gemonteerde positie van het samenstel een eerste 30 frame eenheid gekoppeld is aan een wand van de rechthoekige doorgang, in het bijzonder de bovenwand van een rechthoekige doorgang.17. The latent heat storage heat exchanger assembly according to one or more of the preceding claims, wherein in mounted position of the assembly a first frame unit is coupled to a wall of the rectangular passage, in particular the upper wall of a rectangular passage. 18. Een luchtbehandelsamenstel omvattende een rechthoekig luchtkanaaldeel en het 5 latente warmte opslag warmtewisselaarsamenstel volgens een der voorgaande conclusies in het rechthoekige luchtkanaaldeel.18. An air treatment assembly comprising a rectangular air duct part and the latent heat storage heat exchanger assembly according to any one of the preceding claims in the rectangular air duct part. 19. Een werkwijze voor het produceren van een luchtbehandelsamenstel, omvattende het verschaffen van een rechthoekig luchtkanaaldeel en het latente warmte opslag 10 warmtewisselaarsamenstel volgens een of meer der voorgaande conclusies, waarbij het samenstel geplaatst is in het luchtkanaal deel in een gevouwen toestand waarbij de frame eenheden op elkaar rusten, een boven frame eenheid opgetild wordt bij zijn eind tegenover het koppeleind terwijl de scharnier scharniert, en het eerste eind gekoppeld wordt aan een plafond van het luchtkanaal. 15A method of producing an air treatment assembly, comprising providing a rectangular air duct part and the latent heat storage heat exchanger assembly according to one or more of the preceding claims, wherein the assembly is placed in the air duct part in a folded state with the frame units resting on top of each other, an upper frame unit is lifted at its end opposite the coupling end while the hinge pivots, and the first end is coupled to a ceiling of the air duct. 15 20. Het latente warmte opslag warmtewisselaarsamenstel volgens een of meer der voorgaande conclusies, waarbij de latente warmte opslag warmtewisselinrichting verder een koppelstructuur omvat om de holten van de plaatvormige delen te koppelen om een gekoppelde holte te vormen die gevuld is met faseveranderingsmateriaal (phase change 20 material, PCM).The latent heat storage heat exchanger assembly according to one or more of the preceding claims, wherein the latent heat storage heat exchanger further comprises a coupling structure for coupling the cavities of the plate-shaped parts to form a coupled cavity filled with phase change material , PCM). 21. Het latente warmte opslag warmtewisselaarsamenstel volgens een der voorgaande conclusies, waarbij de koppelstructuur aangepast is om het fluïdumkanaal tussen twee aangrenzende plaatvormige delen onder te verdelen in twee kanaaldelen. 25The latent heat storage heat exchanger assembly according to any one of the preceding claims, wherein the coupling structure is adapted to subdivide the fluid channel between two adjacent plate-shaped parts into two channel parts. 25 22. Het latente warmte opslag warmtewisselaarsamenstel volgens conclusie 21, waarbij de koppelstructuur aangepast is om het fluïdumkanaal tussen aangrenzende plaatvormige delen symmetrisch te verdelen in twee gelijke kanaaldelen.The latent heat storage heat exchanger assembly according to claim 21, wherein the coupling structure is adapted to symmetrically divide the fluid channel between adjacent plate-shaped parts into two equal channel parts. 23. Het latente warmte opslag warmtewisselaarsamenstel volgens een der voorgaande conclusies, waarbij de koppelstructuur een plaatvormige holte vormt die loodrecht is ten opzichte van de plaatvormige delen.The latent heat storage heat exchanger assembly according to any one of the preceding claims, wherein the coupling structure forms a plate-shaped cavity that is perpendicular to the plate-shaped parts. 24. Het latente warmte opslag warmtewisselaarsamenstel volgens een der voorgaande conclusies, waarbij de koppelstructuur een lengteas heeft die groter is dan een lengteas van de plaatvormige delen.The latent heat storage heat exchanger assembly according to any one of the preceding claims, wherein the coupling structure has a longitudinal axis that is larger than a longitudinal axis of the plate-shaped parts. 25. De latente warmte opslag warmtewisselaarsamenstel volgens een der voorgaande conclusies, met het kenmerk, dat de latente warmte opslag warmtewisselinrichting een behuizing omvat van één materiaal om één gekoppelde holte te vormen.The latent heat storage heat exchanger assembly according to any one of the preceding claims, characterized in that the latent heat storage heat exchange device comprises a housing of one material to form one coupled cavity. 26. De latente warmte opslag warmtewisselaarsamenstel volgens de voorgaande 10 conclusie, met het kenmerk, dat de behuizing een bakdeel en een dekseldeel omvat, waarbij het bakdeel in hoofdzaak één gekoppelde holte vormt.26. The latent heat storage heat exchanger assembly according to the preceding claim, characterized in that the housing comprises a baking part and a cover part, the baking part forming substantially one coupled cavity. 27. De latente warmte opslag warmtewisselaarsamenstel volgens de voorgaande conclusie, waarbij het bakdeel en het dekseldeel middels spuitgieten verkregen delen 15 zijn.27. The latent heat storage heat exchanger assembly according to the preceding claim, wherein the baking part and the cover part are injection-molded parts. 28. De latente warmte opslag warmtewisselaarsamenstel volgens een der voorgaande twee conclusies, waarbij het dekseldeel ten minste een opening omvat voor het vullen van de gekoppelde holte met het PCM materiaal. 20The latent heat storage heat exchanger assembly according to any one of the preceding two claims, wherein the cover part comprises at least one opening for filling the coupled cavity with the PCM material. 20 29. De latente warmte opslag warmtewisselaarsamenstel volgens de voorgaande conclusie, waarbij de openingen gevormd zijn om een afsluitdeel te ontvangen.The latent heat storage heat exchanger assembly according to the preceding claim, wherein the openings are formed to receive a closure member. 30. De latente warmte opslag warmtewisselaarsamenstel volgens de voorgaande 25 conclusie, waarbij de opening en afsluitdeel gekoppeld zijn middels een schroefverbinding.30. The latent heat storage heat exchanger assembly according to the preceding claim, wherein the opening and closing part are coupled by means of a screw connection. 31. De latente warmte opslag warmtewisselaarsamenstel volgens een der voorgaande conclusies waarin de latente warmte opslag warmtewisselinrichting een behuizing heeft, 30 waarbij de behuizing gemaakt is van HDPE.31. The latent heat storage heat exchanger assembly according to any one of the preceding claims, wherein the latent heat storage heat exchange device has a housing, the housing being made of HDPE. 32. De latente warmte opslag warmtewisselaarsamenstel volgens een der voorgaande conclusies 26-31, waarbij het bakdeel en het dekseldeel gekoppeld zijn middels een continue omlopende las.The latent heat storage heat exchanger assembly according to any of the preceding claims 26-31, wherein the baking part and the cover part are coupled by means of a continuous circulating weld. 33. Een latent warmte opslag warmtewisselinrichting voor het houden van faseveranderingsmateriaal (phase change material, PCM), in het bijzonder een latente warmte opslag warmtewisselinrichting volgens een der voorgaande conclusies, waarbij de latente warmte opslag warmtewisselinrichting plaatvormige elementen omvat die elk een holte voor PCM vormen, waarbij de latente warmte opslag warmtewisselinrichting 10 een invoegdeel omvat met gekruiste ribben voor het onderverdelen van de latente warmte opslag warmtewisselaar in onderruimten die in fluïdumverbinding staan.A latent heat storage heat exchange device for holding phase change material (phase change material, PCM), in particular a latent heat storage heat exchange device according to any one of the preceding claims, wherein the latent heat storage heat exchange device comprises plate-shaped elements which each form a cavity for PCM wherein the latent heat storage heat exchanger device 10 comprises an insertion part with crossed ribs for subdividing the latent heat storage heat exchanger into subspaces in fluid communication. 34. De latente warmte opslag warmtewisselinrichting volgens de voorgaande conclusie, waarbij het invoegdeel de latente warmte opslag warmtewisselinrichting in onderruimten 15 verdeelt met wanden die minder dan 3 cm, in het bijzonder minder dan 2,5 cm gescheiden zijn.The latent heat storage heat exchange device according to the preceding claim, wherein the insertion part divides the latent heat storage heat exchange device into spaces with walls separated by less than 3 cm, in particular less than 2.5 cm. 35. De latente warmte opslag warmtewisselinrichting volgens een der voorgaande twee conclusies, waarbij het invoegdeel fluïdumverbindingen heeft die aangrenzende 20 ondermimen onderling in fluidumverbinding verbindt.35. The latent heat storage heat exchange device according to any one of the preceding two claims, wherein the insertion part has fluid connections that interconnect adjacent lower mums in fluid communication. 36. De latente warmte opslag warmtewisselinrichting volgens een der voorgaande drie conclusies, waarbij de ribben van het invoegdeel stroken omvat met een breedte om te passen tussen twee tegenovergelegen wanden van het plaatvormige deel, in het bijzonder 25 afsluitend te passen tussen de tegenovergelegen wanden.36. The latent heat storage heat exchange device as claimed in any of the foregoing three claims, wherein the ribs of the insert part comprise strips with a width to fit between two opposite walls of the plate-shaped part, in particular to fit sealingly between the opposite walls. 37. De latente warmte opslag warmtewisselinrichting volgens een der voorgaande vier conclusies, waarbij de ribben stroken omvat die onderling kruislings verbonden zijn om onderruimten te vormen. 30The latent heat storage heat exchanger according to any one of the preceding four claims, wherein the ribs comprise strips that are mutually connected to form subspaces. 30 38. De latente warmte opslag warmtewisselinrichting volgens een der voorgaande vijf conclusies, waarbij de tegenovergelegen wanden van het plaatvormige element van de warmtewisselinrichting minder dan 20 mm gescheiden zijn, in een uitvoeringsvorm minder dan 10 mm gescheiden, in een verdere of aanvullende uitvoeringsvorm zijn de wanden in hoofdzaak parallel, en in een verdere of aanvullende uitvoeringsvorm omvatten de ribben stroken met een breedte die overeenkomt met de ruimte tussen de tegenovergelegen wanden, in het bijzonder afsluitend overeenkomend, en in een verdere 5 of aanvullende uitvoeringsvorm zijn de stroken onderling verbonden om rechthoeken te vormen met zijden die onderling minder dan 3 cm gescheiden zijn, in een uitvoeringsvorm minder dan 1 cm gescheiden.The latent heat storage heat exchanger device according to any one of the preceding five claims, wherein the opposite walls of the plate-shaped element of the heat exchanger device are separated by less than 20 mm, in an embodiment separated by less than 10 mm, in a further or additional embodiment the walls are substantially parallel, and in a further or additional embodiment, the ribs comprise strips with a width corresponding to the space between the opposite walls, in particular correspondingly closing, and in a further or additional embodiment the strips are mutually connected to form rectangles shapes with sides separated by less than 3 cm, in one embodiment separated by less than 1 cm. 39. De latente warmte opslag warmtewisselinrichting volgens een der voorgaande zes 10 conclusies, waarbij bij het invoegdeel gemaakt is van plastic, in het bijzonder van polyethyleen, in een uitvoeringsvorm verkregen middels spuitgieten, in een uitvoeringsvorm daarvan verkregen middels spuitgieten als een enkel deel.The latent heat storage heat exchange device according to any one of the preceding six claims, wherein at the insertion part is made of plastic, in particular of polyethylene, in an embodiment obtained by injection molding, in an embodiment thereof obtained by injection molding as a single part. 40. Een werkwijze voor het fabriceren van een latent warmte opslag 15 warmtewisselinrichting, waarbij de werkwijze de stappen omvat: - verschaffen van een eerste deel omvattende de kenmerken van een bakdeel volgens een van de conclusies 26-31; - verschaffen van een tweede deel omvattende de kenmerken van een dekseldeel volgens een van de conclusies 26-31; 20. het aan elkaar lassen van het eerste en tweede deel om de enkele holte te vormen volgend conclusie 20; - het vullen van de enkele gekoppelde holte met een PCM-materiaal.A method of manufacturing a latent heat storage heat exchange device, the method comprising the steps of: - providing a first part comprising the features of a baking part according to any of claims 26-31; - providing a second part comprising the features of a cover part according to any of claims 26-31; 20. welding the first and second part together to form the single cavity following claim 20; - filling the single coupled cavity with a PCM material. 41. Werkwijze volgens conclusie 40, verder omvattende het invoegen van het invoegdeel 25 de van conclusies 33-39 in het bakdeel vóór het verschaffen van het dekseldeel op het bakdeel.A method according to claim 40, further comprising inserting the insertion part 25 of claims 33-39 into the baking part before providing the cover part on the baking part. 42. Toepassing van een latente warmte opslag warmtewisselaarsamenstel met de technische kenmerken van een der conclusies 1 - 20 in een klimaatregelsamenstel. 30Use of a latent heat storage heat exchanger assembly with the technical features of any one of claims 1 to 20 in a climate control assembly. 30 43. Klimaatregelsamenstel omvattende ten minste een latent warmte opslag warmtewisselinrichting volgens een der conclusies 1 - 20.A climate control assembly comprising at least one latent heat storage heat exchange device as claimed in any one of claims 1 to 20.
NL2007209A 2011-08-01 2011-08-01 Latent heat storage heat exchanger assembly. NL2007209C2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
NL2007209A NL2007209C2 (en) 2011-08-01 2011-08-01 Latent heat storage heat exchanger assembly.
NL2007269A NL2007269C2 (en) 2011-08-01 2011-08-16 Climate control system.
EP12750862.0A EP2739912A1 (en) 2011-08-01 2012-08-01 Climate system
PCT/NL2012/050544 WO2013019113A1 (en) 2011-08-01 2012-08-01 Climate system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2007209 2011-08-01
NL2007209A NL2007209C2 (en) 2011-08-01 2011-08-01 Latent heat storage heat exchanger assembly.

Publications (1)

Publication Number Publication Date
NL2007209C2 true NL2007209C2 (en) 2013-02-04

Family

ID=45034108

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2007209A NL2007209C2 (en) 2011-08-01 2011-08-01 Latent heat storage heat exchanger assembly.

Country Status (1)

Country Link
NL (1) NL2007209C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3052246A1 (en) * 2016-06-06 2017-12-08 Valeo Systemes Thermiques THERMAL EXCHANGER HAVING MEANS FOR DAMPING TEMPERATURE VARIATIONS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165363U (en) * 1985-04-02 1986-10-14
JPH01260294A (en) * 1988-04-11 1989-10-17 Matsushita Seiko Co Ltd Heat accumulating device
US5901572A (en) * 1995-12-07 1999-05-11 Rocky Research Auxiliary heating and air conditioning system for a motor vehicle
WO2010089920A1 (en) * 2009-02-05 2010-08-12 三菱電機株式会社 Indoor unit for air conditioner, and air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165363U (en) * 1985-04-02 1986-10-14
JPH01260294A (en) * 1988-04-11 1989-10-17 Matsushita Seiko Co Ltd Heat accumulating device
US5901572A (en) * 1995-12-07 1999-05-11 Rocky Research Auxiliary heating and air conditioning system for a motor vehicle
WO2010089920A1 (en) * 2009-02-05 2010-08-12 三菱電機株式会社 Indoor unit for air conditioner, and air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3052246A1 (en) * 2016-06-06 2017-12-08 Valeo Systemes Thermiques THERMAL EXCHANGER HAVING MEANS FOR DAMPING TEMPERATURE VARIATIONS
WO2017212155A1 (en) * 2016-06-06 2017-12-14 Valeo Systemes Thermiques Heat exchanger comprising means for mitigating variations in temperature

Similar Documents

Publication Publication Date Title
NL2009052C2 (en) A container for pcm, a pcm unit, a pcm module comprising a series of pcm units, and a climate system comprising a pcm module.
NL2007269C2 (en) Climate control system.
KR101597402B1 (en) Heat exchanger arrangement
EP2893283B1 (en) Liquid panel assembly
CN105121989A (en) Membrane-integrated energy exchange assembly
US20150027662A1 (en) Climate system
JP6760928B2 (en) How to manufacture heat exchangers for batteries, batteries, vehicles, heat exchangers
US20170106639A1 (en) Methods and systems for thermoforming two and three way heat exchangers
US11788800B2 (en) Radiant cooling devices and methods of forming the same
US20160363387A1 (en) Phase-change material heat exchanger
BRPI0913340B1 (en) Microfluidic structure and method for its production
JP2021524567A (en) Three-way heat exchanger for air conditioning system of liquid desiccant, and manufacturing method
JP5750458B2 (en) Process of forming machine and mold
NL2007209C2 (en) Latent heat storage heat exchanger assembly.
EP2965031B1 (en) Laminated heat exchanger including a heat sink and a thermoelectric device
CN111347933A (en) Cooling module for an electrical energy storage system of an electric vehicle
WO2011022738A1 (en) Liquid-gas heat exchanger
JP6126875B2 (en) Heat exchange element
WO2012128611A1 (en) Latent heat storage heat exchanger
CN102686968B (en) A method of producing multiple channels for use in a device for exchange of solutes or heat between fluid flows
US20200247083A1 (en) Thermal insulating element
JP6150346B2 (en) HEAT EXCHANGE STRUCTURE AND METHOD OF CONSTRUCTING HEAT EXCHANGE STRUCTURE
EP2775250A1 (en) Laminated heat exchanger including a heat sink and a thermoelectric device
KR20180101780A (en) Apparatus for latent heat storage
JPH01200197A (en) Heat exchange body made of synthetic resin for cooling tower and straight-flow type cooling tower utilizing heat exchanger consisting thereof
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载