+

Gibson et al., 2020 - Google Patents

Directed energy deposition

Gibson et al., 2020

Document ID
2962975196764522351
Author
Gibson I
Rosen D
Stucker B
Khorasani M
Publication year
Publication venue
Additive manufacturing technologies

External Links

Snippet

Abstract Directed Energy Deposition (DED) is a method for melting material as it is being deposited layer-by-layer. Material in wire or powder form is delivered along with the energy required to melt it. Although it has been shown that a number of material types can be …
Continue reading at link.springer.com (other versions)

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infra-red radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F3/1055Selective sintering, i.e. stereolithography
    • B22F2003/1056Apparatus components, details or accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/322Bonding taking account of the properties of the material involved involving coated metal parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2201/00Articles made by soldering, welding or cutting by applying heat locally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2203/00Materials to be soldered, welded or cut
    • B23K2203/02Iron or ferrous alloys
    • B23K2203/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Similar Documents

Publication Publication Date Title
Gibson et al. Directed energy deposition processes
Gibson et al. Directed energy deposition
Singh et al. Wire arc additive manufacturing (WAAM): A new process to shape engineering materials
Gu Laser additive manufacturing (AM): classification, processing philosophy, and metallurgical mechanisms
Dávila et al. Hybrid manufacturing: a review of the synergy between directed energy deposition and subtractive processes
Gadagi et al. A review on advances in 3D metal printing
Sames et al. The metallurgy and processing science of metal additive manufacturing
Costa et al. Laser powder deposition
Duda et al. 3D metal printing technology
Lathabai Additive manufacturing of aluminium-based alloys and composites
Ding et al. Wire-feed additive manufacturing of metal components: technologies, developments and future interests
Moradi et al. Additive manufacturing of stellite 6 superalloy by direct laser metal deposition–Part 1: Effects of laser power and focal plane position
US11141809B2 (en) Electron beam additive manufacturing
Srinivas et al. A critical review on recent research methodologies in additive manufacturing
Gu Laser additive manufacturing of high-performance materials
Mazumder Laser-aided direct metal deposition of metals and alloys
Dutta et al. The additive manufacturing (AM) of titanium alloys
Korzhyk et al. Welding technology in additive manufacturing processes of 3D objects
Keicher et al. The laser forming of metallic components using particulate materials
Peleshenko et al. Analysis of the current state of additive welding technologies for manufacturing volume metallic products
Sanjeeviprakash et al. Additive manufacturing of metal-based functionally graded materials: overview, recent advancements and challenges
Pinkerton Laser direct metal deposition: theory and applications in manufacturing and maintenance
Paul et al. Metal additive manufacturing using lasers
Badoniya et al. A state-of-the-art review on metal additive manufacturing: milestones, trends, challenges and perspectives
Kreutz et al. Rapid prototyping with CO2 laser radiation
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载