Todorova et al., 2016 - Google Patents
DDoS attack detection in SDN-based VANET architecturesTodorova et al., 2016
View PDF- Document ID
- 2937037367831273868
- Author
- Todorova M
- Todorova S
- Publication year
- Publication venue
- Master Appl Sci
External Links
Snippet
Software-defined networking (SDN) is an emerging technology, which provides network architecture that decouples the control plane from the data plane. This main characteristic of SDN are bringing several of advantages. Due to the centralized control the network …
- 238000001514 detection method 0 title description 69
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1441—Countermeasures against malicious traffic
- H04L63/1458—Denial of Service
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1408—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
- H04L63/1425—Traffic logging, e.g. anomaly detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1408—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
- H04L63/1416—Event detection, e.g. attack signature detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/02—Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
- H04L63/0227—Filtering policies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1433—Vulnerability analysis
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/02—Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
- H04L63/0209—Architectural arrangements, e.g. perimeter networks or demilitarized zones
- H04L63/0218—Distributed architectures, e.g. distributed firewalls
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/20—Network architectures or network communication protocols for network security for managing network security; network security policies in general
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/16—Implementing security features at a particular protocol layer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/10—Network architectures or network communication protocols for network security for controlling access to network resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/04—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/12—Applying verification of the received information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organizing networks, e.g. ad-hoc networks or sensor networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W12/00—Security arrangements, e.g. access security or fraud detection; Authentication, e.g. verifying user identity or authorisation; Protecting privacy or anonymity
- H04W12/08—Access security
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W28/00—Network traffic or resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W4/00—Mobile application services or facilities specially adapted for wireless communication networks
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Jaballah et al. | A survey on software-defined VANETs: benefits, challenges, and future directions | |
| Salahdine et al. | Security in 5G and beyond recent advances and future challenges | |
| Kazmi et al. | Survey on joint paradigm of 5G and SDN emerging mobile technologies: Architecture, security, challenges and research directions | |
| Iwendi et al. | On detection of Sybil attack in large-scale VANETs using spider-monkey technique | |
| Suomalainen et al. | Machine learning threatens 5G security | |
| Tanwar et al. | A systematic review on security issues in vehicular ad hoc network | |
| Chaudhary et al. | Network service chaining in fog and cloud computing for the 5G environment: Data management and security challenges | |
| US20210211408A1 (en) | Security for container networks | |
| Todorova et al. | DDoS attack detection in SDN-based VANET architectures | |
| Ubale et al. | Survey on DDoS attack techniques and solutions in software-defined network | |
| Sharma et al. | A detailed tutorial survey on VANETs: Emerging architectures, applications, security issues, and solutions | |
| Conti et al. | CENSOR: Cloud‐enabled secure IoT architecture over SDN paradigm | |
| Ramprasath et al. | Secure access of resources in software‐defined networks using dynamic access control list | |
| Alam et al. | IoT virtualization: A survey of software definition & function virtualization techniques for internet of things | |
| Rahman et al. | BlockSD‐5GNet: Enhancing security of 5G network through blockchain‐SDN with ML‐based bandwidth prediction | |
| CN110326314A (en) | Security architecture for machine type communication | |
| Vamshi Krishna et al. | Classification of distributed denial of service attacks in VANET: a survey | |
| Kholidy et al. | An experimental 5g testbed for secure network slicing evaluation | |
| Ahmad et al. | Design principles for 5G security | |
| Siddiqui et al. | On the impact of DDoS attacks on software-defined Internet-of-Vehicles control plane | |
| CN108418776B (en) | Method and apparatus for providing secure services | |
| Amari et al. | Securing software-defined vehicular network architecture against ddos attack | |
| Isyaku et al. | Managing Smart Technologies with Software-Defined Networks for Routing and Security Challenges: A Survey. | |
| Anand et al. | Securing software defined networks: A comprehensive analysis of approaches, applications, and future strategies against DoS attacks | |
| Zabeeulla et al. | Design and Modelling of hybrid network security method for increasing security in vehicular ad-hoc network |