+

Turki et al., 2023 - Google Patents

Pynerf: Pyramidal neural radiance fields

Turki et al., 2023

View PDF
Document ID
2727718855567085966
Author
Turki H
Zollhöfer M
Richardt C
Ramanan D
Publication year
Publication venue
Advances in neural information processing systems

External Links

Snippet

Abstract Neural Radiance Fields (NeRFs) can be dramatically accelerated by spatial grid representations. However, they do not explicitly reason about scale and so introduce aliasing artifacts when reconstructing scenes captured at different camera distances. Mip …
Continue reading at proceedings.neurips.cc (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/20Perspective computation
    • G06T15/205Image-based rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding, e.g. from bit-mapped to non bit-mapped
    • G06T9/001Model-based coding, e.g. wire frame
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/04Texture mapping
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/06Ray-tracing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/50Lighting effects
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image, e.g. from bit-mapped to bit-mapped creating a different image
    • G06T3/40Scaling the whole image or part thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T13/00Animation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/32Image data format
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details

Similar Documents

Publication Publication Date Title
Fridovich-Keil et al. K-planes: Explicit radiance fields in space, time, and appearance
Turki et al. Pynerf: Pyramidal neural radiance fields
Turki et al. Mega-nerf: Scalable construction of large-scale nerfs for virtual fly-throughs
Liu et al. Neural sparse voxel fields
Jiang et al. Gaussianshader: 3d gaussian splatting with shading functions for reflective surfaces
Kopf et al. One shot 3d photography
Chen et al. Mobilenerf: Exploiting the polygon rasterization pipeline for efficient neural field rendering on mobile architectures
Morgenstern et al. Compact 3d scene representation via self-organizing gaussian grids
Wang et al. Adaptive O-CNN: A patch-based deep representation of 3D shapes
Kratimenos et al. Dynmf: Neural motion factorization for real-time dynamic view synthesis with 3d gaussian splatting
Müller et al. Autorf: Learning 3d object radiance fields from single view observations
Wei et al. Fast texture synthesis using tree-structured vector quantization
Guo et al. Vmesh: Hybrid volume-mesh representation for efficient view synthesis
WO2022198684A1 (en) Methods and systems for training quantized neural radiance field
Wan et al. Learning neural duplex radiance fields for real-time view synthesis
Fischer et al. Dynamic 3d gaussian fields for urban areas
Mihajlovic et al. Splatfields: Neural gaussian splats for sparse 3d and 4d reconstruction
Jang et al. D-tensorf: Tensorial radiance fields for dynamic scenes
Wan et al. Superpoint gaussian splatting for real-time high-fidelity dynamic scene reconstruction
Li et al. Ho-gaussian: Hybrid optimization of 3d gaussian splatting for urban scenes
Hwang et al. Vegs: View extrapolation of urban scenes in 3d gaussian splatting using learned priors
Ververas et al. Sags: Structure-aware 3d gaussian splatting
Li et al. Dgnr: Density-guided neural point rendering of large driving scenes
Lai et al. Fast radiance field reconstruction from sparse inputs
Zhao et al. Tclc-gs: Tightly coupled lidar-camera gaussian splatting for autonomous driving: Supplementary materials
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载