+

Permuter et al., 2011 - Google Patents

Source coding with a side information “Vending Machine”

Permuter et al., 2011

View PDF
Document ID
2373064040909138172
Author
Permuter H
Weissman T
Publication year
Publication venue
IEEE Transactions on Information Theory

External Links

Snippet

We study source coding in the presence of side information, when the system can take actions that affect the availability, quality, or nature of the side information. We begin by extending the Wyner-Ziv problem of source coding with decoder side information to the case …
Continue reading at www.ee.bgu.ac.il (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same information or similar information or a subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/40Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/3707Adaptive decoding and hybrid decoding, e.g. decoding methods or techniques providing more than one decoding algorithm for one code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communication the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
    • H04L9/30Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems

Similar Documents

Publication Publication Date Title
Permuter et al. Source coding with a side information “Vending Machine”
Johnson et al. On compressing encrypted data
Wang et al. One-shot classical-quantum capacity and hypothesis testing
Lapidoth et al. Sending a bivariate Gaussian over a Gaussian MAC
Blasco-Serrano et al. Polar codes for cooperative relaying
CN112332985A (en) Quantum key distribution data negotiation method and system based on LDPC-Polar joint coding
Ahmed et al. Erasure multiple descriptions
Sriramu et al. Fast channel simulation via error-correcting codes
Tian et al. New coding schemes for the symmetric $ K $-description problem
Liang et al. Improved communication efficiency for distributed mean estimation with side information
Yao et al. Optimality of polar codes in additive steganography under constant distortion profile
Zhao et al. Partially block Markov superposition transmission of a Gaussian source with nested lattice codes
Blasco-Serrano et al. Polar codes for compress-and-forward in binary relay channels
Simeone et al. Source coding when the side information may be delayed
Si et al. Polar coding for fading channels
JP5642651B2 (en) Decoding device, encoding / decoding system, encoding / decoding method, and decoding program
Dumitrescu et al. Index mapping for bit-error resilient multiple description lattice vector quantizer
Kittichokechai et al. Secure source coding with action-dependent side information
Liu et al. Polar lattices are good for lossy compression
Cassuto et al. Efficient compression of long arbitrary sequences with no reference at the encoder
Baron et al. Redundancy rates of Slepian-Wolf coding
Weissman et al. Source Coding with a Side Information" Vending Machine"
Lomnitz et al. Universal communication—Part I: Modulo additive channels
Shirazinia et al. Channel-optimized vector quantizer design for compressed sensing measurements
Gastpar et al. Algebraic structure in network information theory
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载