Shi et al., 2025 - Google Patents
Customized FPGA implementation of authenticated lightweight cipher fountain for IoT systemsShi et al., 2025
- Document ID
- 2324960243104285580
- Author
- Shi Z
- Chen C
- Yang G
- Zhou H
- Xiong H
- Wan Z
- Publication year
- Publication venue
- ACM Transactions on Embedded Computing Systems
External Links
Snippet
Authenticated Encryption with Associated-Data (AEAD) can ensure both confidentiality and integrity of information in encrypted communication. Distinctive variants are customized from AEAD to satisfy various requirements. In this paper, we take a 128-bit lightweight AEAD …
- 238000004891 communication 0 abstract description 6
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/06—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
- H04L9/0618—Block ciphers, i.e. encrypting groups of characters of a plain text message using fixed encryption transformation
- H04L9/0631—Substitution permutation network [SPN], i.e. cipher composed of a number of stages or rounds each involving linear and nonlinear transformations, e.g. AES algorithms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/06—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
- H04L9/0618—Block ciphers, i.e. encrypting groups of characters of a plain text message using fixed encryption transformation
- H04L9/0637—Modes of operation, e.g. cipher block chaining [CBC], electronic codebook [ECB] or Galois/counter mode [GCM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/12—Details relating to cryptographic hardware or logic circuitry
- H04L2209/125—Parallelization or pipelining, e.g. for accelerating processing of cryptographic operations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3247—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/06—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
- H04L9/065—Encryption by serially and continuously modifying data stream elements, e.g. stream cipher systems, RC4, SEAL or A5/3
- H04L9/0656—Pseudorandom key sequence combined element-for-element with data sequence, e.g. one-time-pad [OTP] or Vernam's cipher
- H04L9/0662—Pseudorandom key sequence combined element-for-element with data sequence, e.g. one-time-pad [OTP] or Vernam's cipher with particular pseudorandom sequence generator
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3236—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/58—Random or pseudo-random number generators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/80—Wireless
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/08—Randomization, e.g. dummy operations or using noise
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/30—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/60—Digital content management, e.g. content distribution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2207/00—Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Kowsalya et al. | Low area PRESENT cryptography in FPGA using TRNGPRNG key generation | |
| Aysu et al. | SIMON says: Break area records of block ciphers on FPGAs | |
| Lara-Nino et al. | Novel FPGA-based low-cost hardware architecture for the PRESENT block cipher | |
| Chu et al. | Low area memory-free FPGA implementation of the AES algorithm | |
| Ting et al. | An FPGA based SHA-256 processor | |
| KR100800468B1 (en) | Hardware encryption / decryption device and method for low power high speed operation | |
| Rashidi | High‐throughput and flexible ASIC implementations of SIMON and SPECK lightweight block ciphers | |
| Daoud et al. | Optimization of advanced encryption standard (aes) using vivado high level synthesis (hls) | |
| Drimer et al. | DSPs, BRAMs, and a pinch of logic: Extended recipes for AES on FPGAs | |
| Rajasekar et al. | Design and implementation of power and area optimized AES architecture on FPGA for IoT application | |
| CN106254062A (en) | Stream cipher realizes device and sequential cipher realization method thereof | |
| Wong et al. | Circuit and system design for optimal lightweight AES encryption on FPGA | |
| Rashidi | Efficient and high‐throughput application‐specific integrated circuit implementations of HIGHT and PRESENT block ciphers | |
| Pandey et al. | An efficient VLSI architecture for PRESENT block cipher and its FPGA implementation | |
| Shi et al. | Design space exploration of galois and fibonacci configuration based on espresso stream cipher | |
| Shi et al. | Customized FPGA implementation of authenticated lightweight cipher fountain for IoT systems | |
| Konstantopoulou et al. | Review and Analysis of FPGA and ASIC Implementations of NIST Lightweight Cryptography Finalists | |
| Balamanikandan et al. | Low area ASIC implementation of LUT–CLA–QTL architecture for cryptography applications | |
| Bahadori et al. | FPGA implementations of 256-Bit SNOW stream ciphers for postquantum mobile security | |
| Wamser et al. | Pushing the limits further: Sub-atomic AES | |
| Yang et al. | Hardware optimizations of fruit-80 stream cipher: Smaller than grain | |
| Gangadari et al. | Programmable cellular automata-based low-power architecture to S-box: an application to WBAN | |
| Thangarajan et al. | High speed and low power implementation of AES for wireless sensor networks | |
| San et al. | Compact hardware architecture for hummingbird cryptographic algorithm | |
| Mohanraj et al. | High performance GCM architecture for the security of high speed network |