+

Pillutla et al., 2020 - Google Patents

Area-efficient low-latency polynomial basis finite field GF (2m) systolic multiplier for a class of trinomials

Pillutla et al., 2020

Document ID
1176442196036482805
Author
Pillutla S
Boppana L
Publication year
Publication venue
Microelectronics Journal

External Links

Snippet

Many security and data reliability algorithms rely heavily on finite field GF (2 m) arithmetic computations, in particular, multiplication. The design of a field multiplier employing systolic architecture is very much suited for very large scale integration (VLSI) implementation …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/724Finite field arithmetic
    • G06F7/726Inversion; Reciprocal calculation; Division of elements of a finite field
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/53Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/724Finite field arithmetic
    • G06F7/725Finite field arithmetic over elliptic curves
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • G06F7/5443Sum of products
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/50Adding; Subtracting
    • G06F7/505Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/141Discrete Fourier transforms
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/38Indexing scheme relating to groups G06F7/38 - G06F7/575
    • G06F2207/3804Details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/72Indexing scheme relating to groups G06F7/72 - G06F7/729
    • G06F2207/7209Calculation via subfield, i.e. the subfield being GF(q) with q a prime power, e.g. GF ((2**m)**n) via GF(2**m)
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes

Similar Documents

Publication Publication Date Title
Pillutla et al. Area-efficient low-latency polynomial basis finite field GF (2m) systolic multiplier for a class of trinomials
Lee et al. Scalable Gaussian normal basis multipliers over GF (2 m) using Hankel matrix-vector representation
Kim et al. FPGA implementation of high performance elliptic curve cryptographic processor over GF (2163)
Meher et al. Low-Latency, Low-Area, and Scalable Systolic-Like Modular Multipliers for $ GF (2^{m}) $ Based on Irreducible All-One Polynomials
Fardad et al. A low-complexity hardware for deterministic compressive sensing reconstruction
Pillutla et al. An area-efficient bit-serial sequential polynomial basis finite field GF (2m) multiplier
Chen et al. Scalable and systolic dual basis multiplier over GF (2m)
Katti et al. Low complexity multiplication in a finite field using ring representation
Lee Low-latency bit-parallel systolic multiplier for irreducible x m+ x n+ 1 with gcd (m, n)= 1
Ibrahim Low-complexity systolic array structure for field multiplication in resource-constrained IoT nodes
Lee et al. Area-efficient subquadratic space-complexity digit-serial multiplier for type-II optimal normal basis of $ GF (2^{m}) $ using symmetric TMVP and block recombination techniques
Jeon et al. Elliptic curve based hardware architecture using cellular automata
Bernard Scalable hardware implementing high-radix Montgomery multiplication algorithm
Pradhan et al. Digit-Size Selection for FPGA Implementation of Generic Digit-Serial Multiplication Over GF (2m)
Ho Design and implementation of a polynomial basis multiplier architecture over GF (2m)
Mozhi et al. Efficient bit-parallel systolic multiplier over GF (2 m)
Pillutla et al. High-throughput area-delay-efficient systolic multiplier over GF (2m) for a class of trinomials
Baktır et al. Finite field polynomial multiplication in the frequency domain with application to elliptic curve cryptography
El-Razouk Novel trace-based construction of the parallel-in-serial-out multiplication for elliptic curve digital signature algorithm like binary extension fields
Pillutla et al. Low-Hardware Digit-Serial Sequential Polynomial Basis Finite Field GF (2 m) Multiplier for Trinomials
Hasan et al. Sequential multiplier with sub-linear gate complexity
TWI863789B (en) Number theoretic transform operation circuit
Fournaris et al. Applying systolic multiplication–inversion architectures based on modified extended Euclidean algorithm for GF (2k) in elliptic curve cryptography
Shao et al. Low Complexity Implementation of Unified Systolic Multipliers for NIST Pentanomials and Trinomials Over $\textit {GF}(2^{m}) $
Trujillo-Olaya et al. Half-matrix normal basis multiplier over GF ($ p^{m} $)
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载