Zhang et al., 2020 - Google Patents
Selectivity estimation for relation-tree joinsZhang et al., 2020
View PDF- Document ID
- 8890587925056056940
- Author
- Zhang C
- Lu J
- Publication year
- Publication venue
- Proceedings of the 32nd International Conference on Scientific and Statistical Database Management
External Links
Snippet
Estimating the join selectivity is a crucial problem in many aspects of query processing, such as query optimization and query refinement. Selectivity estimation has been extensively studied for the relational joins in SQL queries and structural joins in path-oriented queries …
- 238000000034 method 0 abstract description 11
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30386—Retrieval requests
- G06F17/30424—Query processing
- G06F17/30533—Other types of queries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30386—Retrieval requests
- G06F17/30424—Query processing
- G06F17/30477—Query execution
- G06F17/30507—Applying rules; deductive queries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30386—Retrieval requests
- G06F17/30424—Query processing
- G06F17/30477—Query execution
- G06F17/30483—Query execution of query operations
- G06F17/30486—Unary operations; data partitioning operations
- G06F17/30489—Aggregation and duplicate elimination
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30386—Retrieval requests
- G06F17/30424—Query processing
- G06F17/30442—Query optimisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30587—Details of specialised database models
- G06F17/30592—Multi-dimensional databases and data warehouses, e.g. MOLAP, ROLAP
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30587—Details of specialised database models
- G06F17/30595—Relational databases
- G06F17/30598—Clustering or classification
- G06F17/30601—Clustering or classification including cluster or class visualization or browsing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30386—Retrieval requests
- G06F17/30389—Query formulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30289—Database design, administration or maintenance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30312—Storage and indexing structures; Management thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/3071—Clustering or classification including class or cluster creation or modification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management, e.g. organising, planning, scheduling or allocating time, human or machine resources; Enterprise planning; Organisational models
- G06Q10/063—Operations research or analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2216/00—Indexing scheme relating to additional aspects of information retrieval not explicitly covered by G06F17/30 and subgroups
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ding et al. | Quickinsights: Quick and automatic discovery of insights from multi-dimensional data | |
CN102117302B (en) | Data origin tracking method on sensor data stream complex query results | |
US20080288524A1 (en) | Filtering of multi attribute data via on-demand indexing | |
US20120117054A1 (en) | Query Analysis in a Database | |
Simmen et al. | Large-scale graph analytics in aster 6: bringing context to big data discovery | |
Shakhovska et al. | Association rules mining in big data | |
Shi et al. | Learned index benefits: Machine learning based index performance estimation | |
Rizzi et al. | Cubeload: A parametric generator of realistic OLAP workloads | |
Gahar et al. | A distributed approach for high-dimensionality heterogeneous data reduction | |
Kim et al. | Asm: Harmonizing autoregressive model, sampling, and multi-dimensional statistics merging for cardinality estimation | |
Sharma et al. | A novel framework for unification of association rule mining, online analytical processing and statistical reasoning | |
Zhang et al. | Selectivity estimation for relation-tree joins | |
Hu et al. | Computing complex temporal join queries efficiently | |
Gong et al. | Nexus: Correlation discovery over collections of spatio-temporal tabular data | |
Leclercq et al. | A tensor based data model for polystore: an application to social networks data | |
Bordawekar et al. | Analyzing analytics | |
Zhou et al. | Clustering analysis in large graphs with rich attributes | |
Galindo-Legaria et al. | Optimizing star join queries for data warehousing in microsoft sql server | |
Haruna et al. | A hybrid data deduplication approach in entity resolution using chromatic correlation clustering | |
Falih Hasan et al. | An optimised method for fetching and transforming survey data based on SQL and R programming language | |
Gosain et al. | Quality metrics for data warehouse multidimensional models with focus on dimension hierarchy sharing | |
Toumi et al. | EMeD-part: an efficient methodology for horizontal partitioning in data warehouses | |
McClean et al. | Knowledge discovery by probabilistic clustering of distributed databases | |
Zhu | [Retracted] Discussion on Redundant Processing Algorithm of Association Rules Based on Hypergraph in Data Mining | |
Simitsis et al. | Revisiting ETL benchmarking: The case for hybrid flows |